A remark on Garsia's integral test about sample continuity of L_{p}-processes

By
Norio Kôno
(Received Aug. 9, 1978)

§ 1. Introduction

First of all, we are concerned with a simple sufficient condition for essential continuity of a real function f defined on $D_{N}=\left\{\left(i_{1} 2^{-n}, \cdots, i_{N} 2^{-n}\right) ; n=0,1,2, \cdots\right.$, $\left.i_{k}=0,1, \cdots, 2^{n}, 1 \leqq k \leqq N\right\}$. Set

$$
\Delta_{n}(f)=\max _{|i-j|=1}\left|f\left(\boldsymbol{i} 2^{-n}\right)-f\left(\boldsymbol{j} 2^{-n}\right)\right|,
$$

where $\boldsymbol{i}=\left(i_{1}, \cdots i_{N}\right), \boldsymbol{j}=\left(j_{1}, \cdots, j_{N}\right), 1 \leqq i_{k}, j_{k} \leqq 2^{n}$, and $|\boldsymbol{x}|=\max _{1 \leq k \leq N}\left|x_{k}\right|$ for $\boldsymbol{x}=$ $\left(x_{1}, \cdots, x_{N}\right)$.

Then we have
Lemma 1. If $\sum_{n}^{\infty} \Delta_{n}(f)<+\infty$, then there exists a continuous function \bar{f} defined on $I_{N}=[0,1]^{N}$ such that $\bar{f}(\boldsymbol{x})=f(\boldsymbol{x})$ for all $\boldsymbol{x} \in D_{N}$.

From this lemma, we get very easily an integral test for sample continuity of stochastic processes with the help of Fubini's theorem and Hölder's inequality. (c. f. [4])

We shall say that a separable and measurable stochastic process $\{X(\boldsymbol{t}, \omega)$; $\left.\boldsymbol{t} \in I_{N}, \omega \in \Omega\right\}$ is an L_{p}-process if the sample path belongs to $L_{p}\left(I_{N}, d \boldsymbol{t}\right)$ with probability 1. Then a stochastic version of Lemma 1 is the following:

Corollary 1. If an L_{p}-process $\left\{X(\boldsymbol{t}, \boldsymbol{\omega}) ; \boldsymbol{t} \in I_{N}, \omega \in \Omega\right\}$ with $p \geqq 1$ has a nondecreasing continuous function $\sigma(h)$ such that

$$
\left(E\left[|X(\boldsymbol{t}+\boldsymbol{h})-X(\boldsymbol{t})|^{p}\right]\right)^{1 / p} \leqq \sigma(|\boldsymbol{h}|),
$$

and

$$
\int_{+0} \sigma(\delta) \delta^{-(1+N / p)} d \delta<+\infty,
$$

then the sample path is continuous with probability 1.
These arguments are due to Delporte [2] and this integral test is best possible in a sense at least when $N=1$ and $p \geqq 2$, ([5], [8]).

A sharper form than Corollary 1 is obtained by Garsia and others ([3], [9])
by virtue of the following real variable lemma: Set

$$
Q_{p}(\hat{o}, f)=\left(\int_{|s-t|<\delta}|f(s)-f(\boldsymbol{t})|^{p} d \boldsymbol{s} d \boldsymbol{t}\right)^{1 / p}
$$

for $f \in L_{p}\left(I_{N}, d t\right), p \geqq 1$.
Lemma 2. ([3], [9]). If

$$
\int_{+0} Q_{p}(\delta, f) \delta^{-(1+2 N / p)} d \delta<+\infty,
$$

then $f(\boldsymbol{t})$ is essentially continuous.
From this lemma, a sharper form than Corollay 1 is obtained again by Fubini's theorem and Hölder's inequality.

Corollary 2. If an L_{p}-process $\left\{X(\boldsymbol{t}, \omega) ; \boldsymbol{t} \in I_{N}, \omega \in \Omega\right\}$ with $p \geqq 1$ satisfies

$$
\int_{+0}\left(\int_{|s-t| \leq \delta} E\left[|X(\boldsymbol{s})-X(\boldsymbol{t})|^{p}\right] d \boldsymbol{s} d \boldsymbol{t}\right)^{1 / p} \delta^{-(1+2 N / p)} d \delta<+\infty,
$$

then the sample path is continuous with probability 1.
In this paper, we shall give a real analytical proof for Lemma 2, which is elementary and simpler than that of their combinatorial or Fourier analytical methods. In § 3, applying our real analytical method we shall obtain an integral test for differentiabililty of $f \in L_{p}([0,1], d t)$ and of sample paths of L_{p}-processes, which is sharper than that of [7]. In §4, we shall give some remarks

§ 2. Real analytical proof of Lemma 2.

Set

$$
\begin{array}{rlrl}
I_{n, i} & =\left((i-1) 2^{-n}, i 2^{-n}\right], & & \text { if } i=2, \cdots, 2^{n}, \\
& =\left[0,2^{-n}\right], & & \text { if } i=1, \\
D_{n, i} & =\prod_{k=1}^{N} I_{n, i_{k}} & & \text { for } \boldsymbol{i}=\left(i_{1}, \cdots, i_{N}\right), \\
f_{n}(\boldsymbol{t}) & =2^{n, N} \int_{D_{n, i}} f(\boldsymbol{u}) d \boldsymbol{u} & \text { for } \boldsymbol{t} \in D_{n, i},
\end{array}
$$

and

$$
A_{n}(f)=\max _{\mid i-j=1}\left|f_{n}\left(i 2^{-n}\right)-f_{n}\left(j^{-n}\right)\right|
$$

Since $|\boldsymbol{i}-\boldsymbol{j}|=1$ and $(\boldsymbol{u}, \boldsymbol{v}) \in D_{n, i} \times D_{n, j}$ imply $|\boldsymbol{u}-\boldsymbol{v}| \leqq 2^{-n+1}$, we have

$$
\begin{aligned}
A_{n}(f) & \left.\leqq \max _{|i-j|=1} 2^{2 n N} \int_{D_{n, i} \times D_{n, \boldsymbol{j}}}|f(\boldsymbol{u})-f(\boldsymbol{v})|^{p} d \boldsymbol{u} d \boldsymbol{v}\right)^{1 / p} \\
& \leqq 2^{2 n N / p} Q_{p}\left(2^{-n+1}, f\right) .
\end{aligned}
$$

First we shall show that $f_{n}(\boldsymbol{t})$ converges uniformly to a continuous function $f_{\infty}(\boldsymbol{t})$. In fact $\boldsymbol{t} \in D_{n, i} \cap D_{n+1, j}$ and $(\boldsymbol{u}, \boldsymbol{v}) \in D_{n, i} \times D_{n+1, j}$ imply $|\boldsymbol{u}-\boldsymbol{v}| \leqq 2^{-n}$, which yields

$$
\begin{aligned}
& \sum_{n}^{\infty}\left|f_{n+1}(\boldsymbol{t})-f_{n}(\boldsymbol{t})\right| \\
& \quad \leqq \sum_{n}^{\infty} 2^{(2 n+1) N / p}\left(\int_{D_{n, i} \times D_{n, j}}|f(\boldsymbol{u})-f(\boldsymbol{v})|^{p} d \boldsymbol{u} d \boldsymbol{v}\right)^{1 / p} \\
& \quad \leqq \sum_{n}^{\infty} 2^{(2 n+1) N / p} Q_{p}\left(2^{-n}, f\right) \\
& \quad \leqq 2^{1+3 N / p} \int_{+0}^{1} Q_{p}(\delta, f) \delta^{-(1+2 N / p)} d \delta<+\infty
\end{aligned}
$$

Therefore there exists a limit function $f_{\infty}(\boldsymbol{t})$ of $\left\{f_{n}(\boldsymbol{t})\right\}$.
Next we shall show that $f_{\infty}(\boldsymbol{t})$ is continuous. Since $\boldsymbol{t} \in D_{q, i}, \boldsymbol{s} \in D_{q, \boldsymbol{j}}$ and $2^{-q-1} \leqq|\boldsymbol{s}-\boldsymbol{t}|<2^{-q}$ imply $|\boldsymbol{i}-\boldsymbol{j}| \leqq 1$, it follows that

$$
\left|f_{q}(\boldsymbol{s})-f_{q}(\boldsymbol{t})\right| \leqq A_{q}(f) \leqq 2^{2 q N / p} Q_{p}\left(2^{-q+1}, f\right) .
$$

Therefore we have

$$
\begin{aligned}
& \left|f_{\infty}(\boldsymbol{s})-f_{\infty}(\boldsymbol{t})\right| \leqq \sum_{n=q}^{\infty}\left|f_{n+1}(\boldsymbol{s})-f_{n}(\boldsymbol{s})\right| \\
& \quad+\sum_{n=q}^{\infty}\left|f_{n+1}(\boldsymbol{t})-f_{n}(\boldsymbol{t})\right|+\left|f_{q}(\boldsymbol{s})-f_{q}(\boldsymbol{t})\right| \\
& \quad \leqq 2^{1+N / p} \sum_{n=q}^{\infty} 2^{2 n N / p} Q_{p}\left(2^{-n}, f\right)+2^{2 q N / p} Q_{p}\left(2^{-q+1}, f\right) \\
& \quad \leqq 4^{1+2 N / p} \int_{+0}^{2-q+2} Q_{p}(\delta, f) \delta^{-(1+2 N / p)} d \delta \\
& \quad \leqq 4^{1+2 N / p} \int_{+0}^{8 / s-t 1} Q_{p}(\delta, f) \delta^{-(1+2 N / p)} d \delta
\end{aligned}
$$

Remark. The above modulus of continuity is slightly different from that of Garsia.

Finally we shall show that $f(\boldsymbol{t})=f_{\infty}(\boldsymbol{t})$ almost everywhere. It is sufficient to check that $f_{n}(\boldsymbol{t})$ converges to $f(\boldsymbol{t})$ in $L_{p}\left(I_{N}, d \boldsymbol{t}\right)$-norm. In fact

$$
\begin{aligned}
& \int_{I_{N}}\left|f(\boldsymbol{t})-f_{n}(\boldsymbol{t})\right|^{p} d \boldsymbol{t} \\
& \quad=\sum_{i} \int_{D_{n, i}}\left|f(\boldsymbol{t})-2^{n N} \int_{D_{n, i}} f(\boldsymbol{u}) d \boldsymbol{u}\right|^{p} d \boldsymbol{t} \\
& \quad \leqq 2^{p n N} \sum_{i} \int_{D_{n, i} \times D_{n, i}}|f(\boldsymbol{t})-f(\boldsymbol{u})|^{p} d \boldsymbol{u} \dot{d} \boldsymbol{t} \\
& \quad \leqq 2^{p n N} Q_{p}\left(2^{-n}, f\right)^{p} \\
& \quad \leqq 2^{p+N}\left(\int_{2^{-n}}^{2-n+1} Q_{p}(\delta, f) \delta^{-(1+N / p)} d \delta\right)^{p} \longrightarrow 0, \\
& \\
& \quad \text { as } n \longrightarrow+\infty .
\end{aligned}
$$

§3. An integral test for differentiability

Now we shall extend the idea of $\S 2$ to obtain a sufficient condition for differentiability of $f \in L_{p}([0,1], d t)$. Set

$$
\begin{aligned}
& \theta_{h} f(t)=f(t+h), \\
& \begin{aligned}
\Delta_{h}^{(r)} f(t) & =\left(\theta_{h}-\theta_{0}\right)^{r} f(t) \\
& =\sum_{k=0}^{r}(-1)^{r-k}\binom{r}{k} f(t+k h),
\end{aligned}
\end{aligned}
$$

and

$$
Q_{p}^{(r)}(\delta, f)=\left(\int_{0}^{\delta} \int_{0}^{1-\tau h}\left|\Delta_{h}^{(r)} f(t)\right|^{p} d t d h\right)^{1 / p}, \quad(p \geqq 1)
$$

Then we have
Lemma 3. If

$$
\int_{+0} Q_{p}^{(r+1)}(\delta, f) \delta^{-(1+r+2 / p)} d \delta<+\infty,
$$

then there exists \bar{f} having the r-th continuous derivative which coincides with f almost everywhere.

From this lemma, a sharper form than that of [7] is obtained by Fubini's theorem and Hölder's inequality.

Corollary 3. If an L_{p}-process $\{X(t, \omega) ; 0 \leqq t \leqq 1, \omega \in \Omega\}$ with $p \geqq 1$ satisfies

$$
\int_{+0}\left(\int_{0}^{\delta} \int_{0}^{1-(r+1) h} E\left[\left|\Delta_{h}^{(r+1)} X(t)\right|^{p}\right] d t d h\right)^{1 / p} \delta^{-(1+r+2 / p)} d \delta<\infty,
$$

then the sample path $X(t, \omega)$ has the r-th continuous derivative with probability 1.
Proof of Lemma 3. Set

$$
\begin{aligned}
f_{n}^{(r)}(t) & =f_{n}^{(r)}\left(2^{-n}\right) \\
& =(r+2) 2^{(r+2) n} \int_{0}^{2^{-n}} \int_{i 2^{-n}}^{i 2^{-n}+h} \Delta_{h}^{(r)} f(s) d s d h,
\end{aligned}
$$

for $i 2^{-n} \leqq t<(i+1) 2^{-n}$ and $0 \leqq i \leqq 2^{n}-(r+1)$,

$$
f_{n}^{(r)}(t)=f_{n}^{(r)}\left(1-(r+1) 2^{-n}\right), \quad \text { for } \quad 1-r 2^{-n} \leqq t \leqq 1,
$$

and

$$
A_{n}^{(r)}(f)=\max _{1 \leq i \leq 2^{n}-(r+1)}\left|f_{n}^{(r)}\left(i 2^{-n}\right)-f_{n}^{(r)}\left((i-1) 2^{-n}\right)\right| .
$$

We remark that if $f(t)$ has the r-th continuous derivative $f^{(r)}(t)$, then $f_{n}^{(r)}(t)$ tends to $f^{(r)}(t)$ as $n \rightarrow+\infty$. Since we have

$$
f_{n}^{(r)}\left(i 2^{-n}\right)=(r+2) 2^{(r+2) n}\left\{\int_{0}^{2-n} \int_{0}^{i 2^{-n}} \Delta_{h}^{(r+1)} f(s) d s d h+\int_{0}^{2-n} \int_{0}^{h} \Delta_{h}^{(r)} f(s) d s d h\right\},
$$

it follows by Hölder's inequality that

$$
\begin{aligned}
A_{n}^{(r)}(f) & =\left\{\max _{1 \leq i \leq 2^{n}-(r+1)}(r+2)^{p} 2^{p(r+2) n}\left(\int_{0}^{2-n} \int_{(i-1) 2^{-n}}^{i 2^{-n}}\left|\Delta_{h}^{(r+1)} f(s)\right| d s d h\right)^{p}\right\}^{1 / p} \\
& \leqq(r+2) 2^{(r+2 / p) n} Q_{p}^{(r+1)}\left(2^{-n}, f\right) .
\end{aligned}
$$

By an obvious formula

$$
\Delta_{h}^{(r)}+\Delta_{h}^{(r)} \theta_{h / 2}-2^{r+1} \Delta_{h / 2}^{(r)}=\sum_{j=1}^{r} 2^{j}\left(\theta_{h / 2}+\theta_{0}\right)^{r-j} \Delta_{h / / 2}^{(r+1)},
$$

it follows that for $i 2^{-n} \leqq t<(2 i+1) 2^{-n-1}$,

$$
\begin{aligned}
& \left|f_{n}^{(r)}(t)-f_{n+1}^{(r)}(t)\right| \\
& \quad=(r+2) 2^{(r+2) n}\left|\int_{0}^{2-n}\left\{\int_{i 2^{-n}}^{i 2-n+h} \Delta_{h}^{(r)} f(\dot{s}) d s-2^{r+1} \int_{i 2-n}^{i 2^{-n+n / 2}} \Delta_{h / 2}^{(r)} f(s) d s\right\} d h\right| \\
& \quad=(r+2) 2^{(r+2) n}\left|\int_{0}^{2-n} \int_{i 2^{2}-n}^{i 2^{-n+h / 2}}\left(\sum_{j=0}^{r} 2^{j}\left(\theta_{h / 2}+\theta_{0}\right)^{r-j} \Delta_{h / 2}^{(r+1)}\right) f(s) d s d h\right| \\
& \quad \leqq(r+2)^{2} 2^{r-3(1-1 / p)+(r+2 / p) n} Q_{p}^{(r+1)}\left(2^{-n-1}, f\right),
\end{aligned}
$$

and for $(2 i+1) 2^{-n-1} \leqq t<(i+1) 2^{-n}$,

$$
\begin{aligned}
& \left|f_{n}^{(r)}(t)-f_{n+1}^{(r)}(t)\right| \leqq\left|f_{n}^{(r)}\left(i 2^{-n}\right)-f_{n+1}^{(r)}\left(i 2^{-n}\right)\right|+\left|f_{n+1}^{(r)}\left(2 i 2^{-n-1}\right)-f_{n+1}^{(r)}\left((2 i+1) 2^{-n-1}\right)\right| \\
& \quad \leqq(r+2)^{2} 2^{r-3(1-1 / p)+(r+2 / p) n} Q_{p}^{(r+1)}\left(2^{-n-1}, f\right)+A_{n+1}^{(r)}(f) \\
& \quad \leqq(r+2)^{2} 2^{r+3 / p} 2^{(r+2 / p) n} Q_{p}^{(r+1)}\left(2^{-n-1}, f\right) .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \sum_{n=q}^{\infty}\left|f_{n}^{(r)}(t)-f_{n+1}^{(r)}(t)\right| \\
& \quad \leqq(r+2)^{2} 2^{r+3 / p} \sum_{n=q}^{\infty} 2^{(r+2 / p) n} Q_{p}^{(r+1)}\left(2^{-n-1}, f\right) \\
& \quad \leqq 2(r+2)^{2} 2^{r+3 / p} \int_{+0}^{2-q} Q_{p}^{(r+1)}(\delta, f) \delta^{-(1+r+2 / p)} d \delta<+\infty .
\end{aligned}
$$

This implies that $f_{n}^{(t)}(t)$ converges uniformly on any compact subset of $[0,1]$ to a limit function $f_{\infty}^{(r)}(t), 0 \leqq t<1$.

Next we shall show that $f_{\infty}^{(r)}(t)$ is uniformly continuous, so it is extendable continuously till $t=1$. In fact, for $2^{-q-1} \leqq s-t<2^{-q}$ we have

$$
\begin{aligned}
& \left|f_{\infty}^{(r)}(s)-f_{\infty}^{(r)}(t)\right| \\
& \quad \leqq \sum_{n=q}^{\infty}\left|f_{n+1}^{(r)}(s)-f_{n}^{(r)}(s)\right|+\left|f_{q}^{(r)}(s)-f_{q}^{(r)}(t)\right|+\sum_{n=q}^{\infty}\left|f_{n+1}^{(r)}(t)-f_{n}^{(r)}(t)\right| \\
& \quad \leqq 4(r+2)^{2} 2^{r+3 / p} \int_{+0}^{2-q} Q_{p}^{(r+1)}(\delta, f) \delta^{-(1+r+2 / p)} d \bar{\delta}+A_{q}^{(r)}(f) \\
& \quad \leqq 4(r+2)^{2} 2^{r+3 / p} \int_{+0}^{2-q+1} Q_{p}^{(r+1)}(\delta, f) \delta^{-(1+r+2 / p)} d \delta \\
& \quad \leqq 4(r+2)^{2} 2^{r+3 / p} \int_{+0}^{41 s-t \mid} Q_{p}^{(r+1)}(\delta, f) \delta^{-(1+r+2 / p)} d \delta .
\end{aligned}
$$

Finally, we have to show that $f_{\infty}^{(r)}(t)$ is the r-th derivative of an $\bar{f}(t)$ which coincides with $f(t)$ almost everywhere. Let $\rho(s)$ be a non-negative c^{∞}-function on $(-1,1)$ such that $\int_{-1}^{1} \rho(s) d s=1$, and set

$$
f^{(\varepsilon)}(t)=\int_{-\varepsilon}^{\varepsilon} f(t+\varepsilon-s) \rho(s / \varepsilon) d s / \varepsilon, \quad 0 \leqq t \leqq 1-2 \varepsilon_{0} \quad 0<\varepsilon<\varepsilon_{0},
$$

for arbitrarily small $\varepsilon_{0}>0$.
Then we have

$$
\begin{aligned}
Q_{p}^{\prime(r+1)}\left(\delta, f^{(s)}\right) & \equiv\left(\int_{0}^{\delta} \int_{0}^{1-(r+1) h-2 \varepsilon_{0}}\left|\Delta_{h}^{(r+1)} f^{(s)}(u)\right|^{p} d u d h\right)^{1 / p} \\
& \leqq\left(\int_{0}^{\delta} \int_{0}^{1-2 \varepsilon_{0}-(r+1) h} \int_{-\varepsilon}^{\varepsilon}\left|\Delta_{h}^{(r+1)} f(u+\varepsilon-s)\right|^{p} \rho(s / \varepsilon) \varepsilon^{-1} d s d u d h\right)^{1 / p} \\
& \leqq\left(\int_{0}^{\delta} \int_{0}^{1-(r+1) h}\left|\Delta_{h}^{(r+1)} f(u)\right|^{p} d u d h\right)^{1 / p}=Q_{p}^{(r+1)}(\delta, f) .
\end{aligned}
$$

Since the convergence of f_{n} to zero in $L_{p}\left(\left[0,1-2 \varepsilon_{0}\right], d t\right)$ implies that $Q_{p}^{\prime(r+1)}$ (δ, f_{n}) tends to zero, we have the convergence of $Q_{p}^{(r+1)}\left(\delta, f^{(\varepsilon)}-f\right)$ to zero as ε goes to zero. On the other hand, we have

$$
Q_{p}^{(r+1)}\left(\delta, f^{(s)}-f\right) \leqq 2 Q_{p}^{(r+1)}(\delta, f),
$$

and

$$
\begin{aligned}
& \left|\frac{d^{r} f^{(s)}}{d t^{r}}-f_{\infty}^{(r)}(t)\right| \\
& \quad \leqq 4(r+2)^{2} 2^{r+3 / p} \int_{+0}^{2-q} Q_{q}^{\prime(r+1)}\left(\delta, f^{(s)}-f\right) \delta^{-(1+r+2 / p)} d \delta+\left|f_{q}^{(s)(r)}(t)-f_{q}^{(r)}(t)\right|
\end{aligned}
$$

The first term tends to zero uniformly on $\left[0,1-2 \varepsilon_{0}\right]$ as $\varepsilon \downarrow 0$ by Lebesgue's convergence theorem. The second term is estimated by

$$
\begin{aligned}
& \left|f_{q}^{(\epsilon)(r)}(t)-f_{q}^{(r)}(t)\right| \\
& \quad=(r+2) 2^{(r+2) q}\left|\int_{0}^{2-q} \int_{i 2^{2-q}}^{i-q+h} \Delta_{h}^{(r)}\left(f^{(s)}(s)-f(s)\right) d s d h\right| \\
& \quad \leqq(r+2) 2^{(r+2) q+r} \int_{0}^{2-q} \int_{0}^{1-2 \varepsilon_{0}}\left|f(s)-f^{(s)}(s)\right| d s d h \longrightarrow 0, \\
& \quad \text { as } \varepsilon \downarrow 0 \text { uniformly on }\left[0,1-2 \varepsilon_{0}\right] .
\end{aligned}
$$

Therefore $\frac{d^{r} f^{(s)}}{d t^{r}}$ converges uniformly on $\left[0,1-2 \varepsilon_{0}\right]$ to $f_{\infty}^{(2)}(t)$. By taking account of $f^{(s)}$ tending to f in $L_{p}\left(\left[0,1-2 \varepsilon_{0}\right], d t\right), f^{(\varepsilon)}$ conveges to an \bar{f} uniformly on [$0,1-2 \varepsilon_{0}$] which coincides with f almost everywhere, where ε_{0} is arbitrarily small and $f_{\infty}^{(r)}(t)$ is continuous on $[0,1]$. This implies that $f_{\infty}^{(r)}(t)$ is the r-th derivative of $\bar{f}(t)$ on $[0,1]$ which coincides with f almost everywhere.
Q. E. D.

§4. Remarks.

Let σ be a non-negative continuous (not necessarily non-decreasing) function defined on $[0,1]$, and set

$$
Q_{p}(\delta)=\left(\int_{0}^{\delta} \sigma^{p}(h) d h\right)^{1 / p}, \quad(p \geqq 1) .
$$

Then we have
Lemma 4. If

$$
\int_{+0} Q_{p}(\delta) \delta^{-(1+2 / p)} d \delta<+\infty,
$$

then

$$
\int_{+0} \sigma(h) h^{-(1+1 / p)} d h<+\infty .
$$

Proof. Since we have

$$
\int_{+0}\left(\int_{0}^{\delta} \sigma(h) d h\right) \delta^{-(2+1 / p)} d \delta \leqq \int_{+0} Q(\delta) \delta^{-(1+2 / p)} d \delta<+\infty,
$$

it follows that

$$
\begin{aligned}
& \frac{1-2^{-(1+1 / p)}}{1+1 / p} \cdot 2^{(1+1 / p) n} \int_{0}^{2-n} \sigma(h) d h \\
& \quad \leqq \int_{2-n}^{2-n+1}\left(\int_{0}^{\delta} \sigma(h) d h\right) \delta^{-(2+1 / p)} d \delta \longrightarrow 0, \quad \text { as } n \longrightarrow+\infty .
\end{aligned}
$$

This implies that

$$
\lim _{\delta \dot{\delta} 0} \delta^{-(1+1 / p)} \int_{0}^{\delta} \sigma(h) d h=0 .
$$

Therefore, we have from integration by parts,

$$
\begin{aligned}
+\infty>\int_{+0}\left(\int_{0}^{\delta} \sigma(h) d h\right) \delta^{-(2+1 / p)} d \delta= & -\left.\frac{1}{1+1 / p} \delta^{-(1+1 / p)} \int_{0}^{\delta} \sigma(h) d h\right|_{+0} \\
& +\frac{1}{1+1 / p} \int_{+0} \sigma(h) h^{-(1+1 / p)} d h \text {. Q. E. D. }
\end{aligned}
$$

Lemma 5. In addition, if σ is sub-additive, i.e. $\sigma(s+t) \leqq \sigma(s)+\sigma(t)$, and $1 \leqq$ $p<\log 6 / \log 2=2.58 \cdots$, then

$$
\sum_{n} 2^{n / p} \sigma\left(2^{-n}\right)<+\infty
$$

implies

$$
\int_{+0} Q_{p}(\delta) \delta^{-(1+2 / p)} d \delta<+\infty .
$$

Proof. First we have

$$
\int_{+0} Q_{p}(\delta) \delta^{-(1+2 / p)} d \delta=\sum_{n}^{\infty} \int_{2-n-1}^{2-n} Q_{p}(\delta) \delta^{-(1+2 / p)} d \delta
$$

$$
\leqq p\left(2^{2 / p}-1\right) / 2 \sum_{n}^{\infty} 2^{2 n / p} Q_{p}\left(2^{-n}\right) .
$$

By sub-additivity of σ and convexity of x^{p},

$$
\sigma^{p}(h) \leqq 2^{p-1}\left(\sigma^{p}\left(h-2^{-n-1}\right)+\sigma^{p}\left(2^{-n-1}\right)\right)
$$

holds for $2^{-n-1}<h \leqq 2^{-n}$. Therefore integrating this by h, we have

$$
\int_{2^{-n-1}}^{2-n} \sigma^{p}(h) d h \leqq 2^{p-1} \int_{0}^{2-n-1} \sigma^{p}(h) d h+2^{p-n-2} \sigma^{p}\left(2^{-n-1}\right),
$$

and

$$
\int_{0}^{2-n} \sigma^{p}(h) d h \leqq\left(2^{p-1}+1\right) \int_{0}^{2-n-1} \sigma^{p}(h) d h+2^{p-n-2} \sigma^{p}\left(2^{-n-1}\right) .
$$

This yields

$$
2^{2 n / p} Q_{p}\left(2^{-n}\right) \leqq\left(2^{p-1}+1\right)^{1 / p} 2^{-2 / p+2(n+1) / p} Q_{p}\left(2^{-n-1}\right)+2^{1-2 / p+n / p} \sigma\left(2^{-n-1}\right)
$$

and

$$
\sum_{n}^{\infty} 2^{2 n / p} Q_{p}\left(2^{-n}\right)<+\infty \quad \text { if } \quad p<\log 6 / \log 2 . \quad \text { Q. E. D. }
$$

If the above σ is a majorant of an L_{p}-process $\{X(t, \omega) ; 0 \leqq t \leqq 1, \omega \in \Omega\}$, i. e. $\left(E\left[|X(t+h)-X(t)|^{p}\right]\right)^{1 / p} \leqq \sigma(|h|)$, then

$$
\sum_{n}^{\infty} 2^{n / p} \sigma\left(2^{-n}\right)<+\infty
$$

is a sufficient condition for sample continuity of $\{X(t, \omega)\}$ (Theorem 1 of [7]). On the other hand,

$$
\int_{+0} Q_{p}(\delta) \delta^{-(1+2 / p)} d \delta<+\infty
$$

is another sufficient condition for sample continuity of $\{X(t, \omega)\}$ from our Corollary 2.

Institute of Mathematics
Yoshida College
Kyoto University

Refences

[1] Ciesielski, Z.; Approximation by splines and its application to Lipschitz classes and stochastic processes, Proc. of international conference on theory of approximation of functions (1977), 397-404.
[2] Delporte, J.; Fonctions aléatoires presque sûrement continues sur un intervalle fermé, Ann. Inst. H. Poincaré Sec. B, vol. 1 (1964), 111-215.
[3] Garsia, A. M. A remarkable inequality and the uniform convergence of Fourier series, Indiana Univ. Math. J. 25 (1976), 85-102.
[4] Hahn, M.G.; Conditions for sample-continuity and the central limit theorem, Ann. Prob. vol. 5 (1977), 351-360.
[5] Hahn, M. G. and Klass, M. J. ; Sample-continuity of squareintegrable processes, Ann. Prob. vol. 5 (1977), 361-370.
[6] Ibragimov, I. A.; Properties of sample functions for stochastic processes and embedding theorems, Theory of Prob. and its Appl. vol. 18 (1973), 442-453. (English translation)
[7] Kôno, N.; Real variable lemmas and their applications to sample properties of stochastic processes, J. Math. Kyoto Univ.
[8] Proc. Japan Acad.
[9] Park, T. W.; Sobolev type inequalities and path continuity of L_{p}-processes with multi-dimensional time parameter. (doctoral dissertation)

