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1. Introduction

The Wiener s p a c e ,  which is a  typical example of abstract Wiener spaces intro-
duced by L. Gross [1], is a triple (B, H, it) where
( i ) B  is a Banach space consisting of real-valued continuous functions x(t) with
x(0)=0 defined on the interval T= [0, 1] endowed with norm jlxil =sup lx(t)1.

osist
(ii) H  is a  Hilbert space consisting of absolutely continuous functions x(t) with
x(0)=0 such that x'(t)e L 2 (T) endowed with the inner product

<x, y>1.1=5 '  x'(t)Y(t)dt

and
(iii) it is the Wiener measure, i.e., the Borel probability measure on B such that

(1.1) exp{i(h, x)} u(dx) = e x p  —1<h, h>

where h e B * c H  and ( , ) is a  natural pairing of B* and B .  Note that 114 <Ix',
= \ k x , x > „  for x e H , then the inclusion m ap i: H-413 is continuous. Hence we
have B *cH* , --H  and  we regard B* a s  a  subset o f  H. It is readily seen that
{x(t); 0< t< 1} is a standard W iener process on  the  probability space (B, it). A
real-valued (or more generally, a Banach space-valued) measurable function defined
on  the  probability space (B, i t )  is called a  Wiener f u n c t i o n a l .  We identify two
Wiener functionals F 1 (x) and F 2 (x) if F ,(x)= F 2 (x) a.e. (it). Typical examples of
Wiener functionals are solutions of stochastic differential equations or Ito's multiple
Wiener integrals [2].

P. Malliavin introduced a  notion o f  derivatives of W iener functionals and
applied it to the absolute continuity and the smoothness of density of the probability
law induced by the solution of the stochastic differential equation at a  fixed time
[6], [7]. Here we define the derivatives of the Wiener functionals in a somewhat
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different way and rephrase a theorem of M alliavin. We shall apply it to the absolute
continuity of the probability law induced by a system of multiple Wiener integrals.

The author wishes to thank Professor S. Watanabe for his valuable suggestion
and encouragement.

2. Notion of derivative

Let (B, H, p) be the Wiener space or more generally, any abstract Wiener space.
Let E be a separable Banach space and F be a mapping from B into E .  F is said to
be B-differentiable (or Fréchet differentiable) at x E B  if  there exists a n  operator
T= Tx  e 2(B , E ) (we denote the space of all bounded linear operators from B  into
E by 2(B , E)) such that

(2.1) F(x+ y)—  F(x)=T(y)+ °(I YM) as (y e B).

The operator T =Tx  is called the B-derivative (or Fréchet derivative) of F at xe B ,
F'(x ) in  no ta tion . If  F is B-differentiable at every point of B , we say simply that
F is B -dif f erentiable. Similarly F  is said to be H-differentiable at x e B  if  there
exists an operator S  S x  E .29 (H, E) such that

(2.2) F(x + h)—  F(x)= S(h)+ o(IhlH) as (h e H).

The operator S=S,, is called the H-derivative of F  at xe B , DF(x) in  no ta tion . If
F is H-differentiable at every point of B , we say F is H -dif f erentiable. Clearly if
F  is B-differentiable, then F  is also H-differentiable a n d  D F ( x ) = F ( x ) I n .  I n -
ductively we can define F", F"',... and D2 F, D3 F ,... .  We may regard F ( ") as an
element of ..r"(B ; E) and D"F as an element of Y n(H, E) where Y "(B , E) is a  space
of continuous n-linear operators from B" into E and ..F"(H, E) is defined similarly.
When E is a Hilbert space, S e .12 9 "(H, E) is said to be of Hilbert-Schmidt class if

0 0

(2.3) 1S(hi„ hi,,..., h i „)Ii< co
..... i„=1

for any orthonormal system Ih i lr= 1 in H. W e  d e n o te  b y  2 ) (H, E) the space of
all S e..F"(H, E) which are of Hilbert-Schmidt c la s s . Then .r 2 ) (H, E) is a Hilbert
space with inner product given by

(2.4)< T, S> (H,E)= <T (h i,,..., h i n ), S (h i i ,..., E

for T, S E  1
(

1
2 ) (H , E ) . Where {h1} r=1 i s  a  complete orthonormal system in H .  1f

F: B--*E is m-times B-differentiable then D"'F is of Hilbert-Schmidt class (cf. [4]).
Let K  be a  separable Hilbert sp a c e . For p> 1, we denote by LP(p; K) the set

of all K-valued Wiener functionals F: B--*K such that

IIFIlLP(,K ) —(1,1F(x)licii(dx)) P < co

Difinition 2.1. For p o , 1, we define H(p o , p„)(K ) to  b e  the
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space of all Wiener functionals F(x) e LP0(y; K) such that there exists a  sequence
Ifkrk°=t of functions on B into K  with the following properties;
( i ) for any k =1, 2..... f

k
 is a n-times B-differentiable mapping from B into K  and

f k  LP °01 ; K),
(ii) lim fk = F  in LP0(11; K),

k—■oo
(iii) fo r  a n y  m = l,n ,  D m  fk (X ) ..re 2 ) (H , K ) fo r  a l l  x  B  a n d  a  sequence
ID'n fk lck°, 1 is a Cauchy sequence in LP-(,u; 2 '7'2 )(H, K)),
(iv) f o r  any k =1 , 2,..., there exists a  finite dimensional projection Qk: B -43 such
that Q k li i  is an orthogonal projection in H and f k (x )= fk (Qk x).
For F  H ( p o , p ) (K ) , we set DmF=lim Din f k a n d  call it the  m -th weak H-

k-,00
derivative of F.

The sequence of above definition is called a n  approximating sequence. By
the following lemma our definition of weak H-derivatives are justified; they are well-
defined independent of a particular choice of an approximating sequence {fk }.

Lemma 2.1. If F e H(p o , p,)(K ) and F=O, then DF =O.

P roo f. In the proof we may assume K = R .  Indeed w e take 1 K * and con-
sider the functional l(F(x )) . Then evidently l(F(X ))e H(p o , P i )

 (R) a n d  Dl(F(x))
=10DF(x) from the chain rule of differential. F u rtherm ore  if DI(F(x))=1.DF(x) -= 0
for all le K *, we have D F(x )=0 . So we shall assume K = R .  Take an  approxi-
m a ting  sequence  { f,J , o f  F  a n d  h e B * c H  such that 1h1 H  = 1 .  L e t H , be a
subspace of H  spanned by h, H 2  b e  an  orthogonal complement of H  in  H  and
H2 be a  completion of H 2 in  B .  Then B =H 1 C)H2 where C I stands for the direct
sum; indeed any x e B  can be expressed as x= (h , x )h+(x -(h , x )h ) where (h, x)h
eH 1 a n d  x - ( h ,  x)h e  2 . Therefore n(x) = x - (h, x)h defines a projection of B
onto H2  and  (H 2 , H2, 1.7) is an  abstract Wiener space where fi = iton - 1  i.e., induced
measure of It by 7r. Note that if we express x e B  as x= y+ th  where y=7r(x) and
t=(h, x), then jt is expressed as

1 t2

it(dx )= f t(dy )  x -
1 2 7 r

e  2  d t.

Since f k ->0 in LP°(it) as k->cc,

02 I t 25 I fk  (X )  I P ° 111( d X
)  = 5 A (dY ) ifk(Y  +th)IP° e  2 d t---0:)

B .) H2

,,Ç 1 _,2
as k ->o o . Consequently if we put gk(y )= IfaY  +th)1 P ° ,—e  2  d t ,  we see that- . ,2.7r
g1 ---0) in L'(j1) as k-■ co. By extracting a subsequence if necessary, we may assume
gk ->0 a.e. (fl). By a similar argument, we have110.  1<pf k (Y  - FM), h> H -  <DR y  +th), h>

as k--*co a.e. (A). Note that for a fixed y , fk(y +th) is differentiable with respect to



and

i n  LP. dt)
•\127r

d 
fk (Y+th ) - - > <DF(y+111), h> Hdt
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t and its derivative is

d 
dt fk(Y +th)= <DL O' + 110, II> H.

Therefore we have for a.e. y(rt)

fk ( y  + th ) - - -> 0  in
m

e  2 d1)

as k-> co . By a well-known result in one dimensional case, we have

<DF(y  + th ) ,  h >  = 0  \ I f
i
 7 r- e -  d t-a .e .

Hence <DF(x), h>11 =O a.e. (a). Since h e B* is arbitrary and B* is dense in H, we
have DF(x)= 0 a.e. (p). Q. E. D.

Obviously H(p o , pi••••, p „ ) ( K )  is a  Banach space endow ed w ith  norm

11F1111(po, pi ,....pn)(K) = II Di n  F  L P ,n ( p ;2 '7 '2 ) ( 1 1 ;K ) ) ,  especially f o r  po  = Pi =••• = p„ = 2,
m=o

H(2, 2,..., 2)(K) is  a  H ilbert space endowed with norm (considering the Hilbert
n+1

space  structure, w e  m od ify  th e  a b o v e  n o rm  i n  th is  c a s e )  IFIii(2,2,...,2)(10=

±  U r n  i.
20 ,; y •('',,,,,,„ ) ) . We can also characterize the space H(p o , p i ,..., p„)(K)

m=o
in another w a y . We introduce the notion of smooth functional. Let K be a sepa
rable Hilbert space. Then a  K-valued sm ooth functional 9(x) defined on B is the
mapping cp: B->K expressed as cp(x)=f ((I 1 , x), (1 2 , x ) ..... ( l  x )) where d  is a  posi-
tive integer and f :  Rd ->K  is a  K-valued C  fu n c tio n  w ith  compact support and
11 , 12 ,..., ld e  B * . It is easy to see that a  smooth functional is B-differentiable of
any order and its derivatives are all smooth functionals. Then we have:

Proposition 2.1. H(p o , p,,..., p n ) (K ) is the completion of all K-valued smooth
functionals with norm • ii(m.p,....p„)(k) defined above.

P ro o f .  What we have to  show is that K-valued smooth functionals are dense
in  H(p o , p „ ) ( K ) .  Take any F e H(p o , p „ ) ( K ) .  F o r  any  E> 0, from
Definition 2.1, there exists f  e L P.(u: K ) satisfying (i) and (iv) of Definition 2.1 such
th a t I l f - F 6 (p 0 ,1„   ,)(J) < •  From (i) and (iv) of Definition 2.1, f  is expressed
as f(x )=g ((1 1 , x), (1 2 , x ),...,(l d , x )) where /1 , l  e B* and g  is a  K-valued C"
function defined on Rd. W e m ay assume that /,, 12 ,..., /d  a re  orthonormal system
in H .  For N =1, 2,..., let c,,,( ): Rd-4Z is a Cc' function such that 0 < e ,„()< 1 and

if I I N

if 1 .N +1.
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We may assume that {c N } , is uniformly bounded together with its derivatives.
Then it is easy to show that

cN 4/1 , x), (1 2 , x),..., (1,1, x))g((1 1 , x), (1 2 , x ) , . . . , ( la . x))

f ( x )  i n  H(p o , p ,,..., p „)(K ) a s  N cc.

Then we may assume tha t g  has com pact support. But g  can be approximated
uniformly by a  Cc° function with compact support by using the  m olifier. Hence
we can find a  smooth functional tp such thatII f II-  ,  .11(po,P1,— ,p,,)(K).< E. This com-
plete the proof. Q. E. D.

Proposition 2.2. If  F e H(p o , p )(K )  and DF =-0, then F =constant a.e. (p).

P roo f. We may assume K =R  a s  in  L em m a 2.1. It is enough to  prove in
case of bounded F .  Indeed take a e °  function cN (0 : R-*R such that

if
(2.5) c,v(0=

sgn (0 (N  +1) if

and consider the  function c,„.F. Then clearly clef' e ll(p o ,  p ,) (R )  a n d  DcN oF
= cN' (F)DF = O . Note finally that if cN .F=constant for all N e N, it is evident that
F = co n stan t. S o  let F  be  bounded . For any h e B * such that IhI H =1 w e have,
similarly as in Lemma 2.1 (we use the same notation)

B =H 1CT1 2 , p(dx )= ,t1(dy )x  \ 1 2
1—rc e-  ' 2 2  dt

where x = y + th .  In the following we fix h and s e R . F ro m  the  assumption, for
a.e. y(fi)

d F(y  +th)- <D F(y +th), h> H = 0dt

where th e  derivative is in  th e  distributional se n se . Consequently we have for
a.e. y(p)

and hence

Thus we have

Hence

F(y + th)= constant a.e. i n  t

F(y +(t + s)h)=F(y + th) a.e. i n  t.

F(x +sh)=F(x ) a.e. (p).

113 FOC)/1(dX) = . 13 F(x + sh)p(dx)

=  F(x) exp is(h, x ) - P(dx).
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To show the second equality, we use the following fact. I f  we define ph (•)=,u(• — h),
then 11„ is absolutely continuous with respect to jt if and only if h e H  and its Radon-

Nikodym derivative is given by exp 1<h, x>  ( s e e  K u o  [ 4 ] ) .  I f  w e put

C =  F (x )p (d x ) , we have

SB 
(F(x)— C)e(s",x)y(dx)=0

for any S E  R  and h E BB su c h  th a t h 1 1 1 =
 1. O u r a sse rtio n  now follows from the

following.

Lemma 2.2. l e ( h , •); h e B*1 spans L2 0 4

This fact is well known (see Lehman [5]).

Next we shall obtain a formula on the integration by parts for Wiener integrals
(see also  K uo [3]). In  order to state the formula we need the  Hermitian poly-
nomials defined by

(2.6) H,,G)= (—  I )   e" d"2  _ e  2 ER, fl 0 , 1 ....

This definition is a  little different from ordinary one but it is more convenient for
our purposes. We list below some properties of the Hermitian polynomials:

HoG)=1

d
(g 11,,(5)= H n- 1( )

(2.9) (n+1)14+1,(0—  aln (0 + H n _1 (0  =0

r . 4 2 1  (2.10) HinG)H„(0 v 2 i r e  2b . , .  n ! •

In (2.8) and (2.9), we set H_ 1 ( ) =0  if n=0.
Let {17,} 1 =B * be a complete orthonormal system in H and fix it until Lemma

2.3. Let a=(a i , a 2 ,...)  b e  a  sequence o f non  negative integers such that a i  = 0
except for finitely many j .  We define the Fourier-Herm ite functionals H a (x ) on
B as

(2.11) H a (x)= H a ,((h 1 , x))11,((h2, 'C )) -  •

From (2.10) we have

0 i f  a  b
(2.12)5 f i Ha Hb )

0
1

i f  a= ba!

where a!=a 1 !a2 !••• .

(2.7)

(2.8)
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It is easily seen that for F eH(p o , p)(K ), Dm F(x) is symmetric a.e. (p)
i.e., Bon F(x) (u u,„)= TY" F(x)(u f f (  U , ( 2 ) , ..., '4 ( 0  a .e . (p )  fo r any u 1 , u 2 ,...,
u„,E H and any permutation a  of {1, 2,..., m }. F o r a  sequence a =(a i , a 2 ,...)  as
above we define

(2.13) Dial F (X )(h a) =  D ial
F ( X ) ( 11

1 , • • • ,  h l
, h2 , ... , h2,—.)

a l a 2

where lal=a 2 + a 2 +•••.

Lemma 2 .3 .  Let F E H(p o , p„)(R) such that p o >1 and p1 , P2 ' • '  P n  1 .
Then it holds that

(2.14) DI ° I F(x )019(x ),u(dx )

B
F(x) 

b 5 a

( —  o lb i D 1b1 9(x )(M )H a _b (x )y (dx ).

f o r any  sm ooth functional 9 and any sequence a =(a .,) such that a i =0 except for
f in ite ly  m an y  j. H e re  b  <a m e an s  th at b =(b )  is  a  sequence of  non negative
integers such that b f <a i  f or all j.

P ro o f . First we assume p o , p„_ i > 1 and pn > 1. We shall prove it by

induction on lai. Let 'al =1 i.e., a = (5,=(0, 0,..., 0, 1, 0,...) for some i E N . T a k e
an approximating sequence {fk } 2 for F .  Similarly as in Lemma 2.1, we set

B = H i C)F12 , i t ( d x ) = g d y )  x v21  e  r22 dt

where x =y +th i . Then

<Dfk (x ), h i > 9(x)p(dx)

_
1,1(dy) <Dfk (y  + th,), h i > 9(y + hi)

t2 
v 2 n  e 2  d t

H2

d1  - 1'=1 1 i l ( d y ) 1 _ .  f k (y +th i )9 (y +th i ) v 2- -n e  2  d t.

By integration by parts in the one dimensional case, we have

<Dfk (x),h i >9(x),u(dx)

d t2
= ,i1(dy) f k (y +th i ) ITC),  + th,) \ / 2 7 r  e -  2  d t112-  00 dt

t2
= 11(dy) f k (y  +th ,){ <D 9(y +th i ), h i > —  (y +th i )t}—'-L -e  2 d t

112 ,127r

fk (x ){ —  <D9(x ), h i > + 9(x)(hi, x)}  ii(dx)
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Letting k—> co, we have

(2.15)

B < D F ( x ) ,  h,> y o(x )p(dx )=1 B F(x ){ —  <D9(x ), hi > + ço(x)(h i , x )}  p(dx ).

Thus (2.14) holds for a=5 1. Next we assume (2.14) for all a ' such that
and we shall show (2.14) for a-F(51. N ote th a t <DF(x), hi > e H(pi, P2, ••., P)(R )
if F E 131, • •, Pn)(R). Hence by induction

Dial(<DF(x ), h i >)(ha)9(x )p(dx )

=5 <D F(x ) ,  E  o ibi  a!
13 b < a  b!

Again by induction for Si , we have

SB
 D ial-"F(x)(ha-")9(.011(dX)

D '1 9(x )(h b ) H a _b (x )p(dx ).

=5 F (x ) [  E (— 011, 1+1  al  D ib i+ 1
 (p ( x ) ( h b +  OH a_ b (X )

B b5a b!

— E H  1)1b1+1  al  Di b lq)(x)(h b )<D H a - b (x ), hi>
b5a b!

( - 1 ) 1b L ai D l b lgo(x)(h b ) H a _ b (x )(h i , x)],u(dx)
b<a b!

=5 F (x )C  E ( - 1 ) 1b1+1  am
!  D 1 b 1 + 1 (p (X ) (h b + 6 0 H a _ b (X )

B b5a

+ E (— olbl  a !
  Do 19(x)(hb){— x )11a-b(x )} ]P(dx )

b5a b!

oibiDibi9(x)(hbgia + _b (x)= 5  F (x ) [  E
B

x  a l  +  
a

• (a i — b i + 1 )]u (d x )(b — 60! b!

F(x ) ( — ablIDIbl(p(x)(hb)11„+6,_b(x)p(dx).
B b5a-1-3;

Here we used the following general formula:

(2.16) (ai+1)1/„+(x )—  (h x )H  a (x)+ H a _ ,,,(x)= 0

which is a consequence of ( 2 .9 ) .  Here we set H a _ i i (x )=0  if a. = 0 . T hus w e  have
(2.14) for a+ 1. The restriction to nor .r 2,• • •, pn-1> 1 can be removed from Proposi-
tion 2.1. Q. E. D.

Definition 2.2. The Ornstein-Uhlenbeck  operator L is defined, for any func-
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tion f : B -4 t which is twice B-differentiable, by

(2.17) Lf (x)= trace D2  f (x)— (f (x), x) .

R em ark. It is known that if A E .99 (B, B*) then Al, e £° ( , ) (H) where ...r ( o (H)
is a  space of trace class operators on H (see Kuo [4]). Since f  is twice B-differenti-
able, f  '(x ) ..99 2 (B, R)=..r(B, B*) and trace D2  f (x) can be defined.

Now we shall extend the Ornstein-Uhlenbeck operator L as follows:

Definition 2 .3 .  F o r  n  n n  nPo'co, r  >  r r  > -11 we define H(p o , p i , p 2 ; pi )  to  b e  the
space o f all Wiener functionals F(x)E H(p o , p i , p 2 )(R ) such that there exists an
approximating sequence {A},T=, in  H(p o , p i , p 2 ) (R )  fo r  F  satisfying also that
{LA} i  is  a Cauchy sequence in L P L ( / 2 ) .  W e  c a ll the lim it o f  {Lfk } i  in  LPL(p)
the weak L-derivative and denote it by LF.

This weak L-derivative is well-defined as we shall see in Lemma 2.5 below. We
can take a sequence of smooth functionals as an approximating sequence.

Lemma 2 .4 .  If  F E H(p o , p i , p 2 ; P L ) ,  then

(2.18) B L F(x )9(x ),u(dx )=1B F(x )L 9(x )p(dx )

f or any smooth functional 9(x).

Pro o f . First we prove (2.18) fo r  a  smooth functional F .  Take any h e B*
such that 1h1

11
---1. T h e n  <DF(x), h>H  is also a  smooth functional and hence from

Lemma 2.3,

(2.19) {D2F(x)(h, h)— (h, x )<DF(x), h> H} 9(x)p(dx)

= 5  D(<DF(x), h> H )(h)9(x )ii(dx )

x)<DF(x), h> H9(x)p(dx)

= <DF(x), h> H<D9(x), h> Hil(dx).

Since F and 9  are finite dimensional functions, there exists an orthonormal system
{h 1 , h 2 ,..., hk} in H  and hi e B * (i=1, k) such that

B LF (x )9 (x )p (d x )= B  {trace D2 F(x)—  (F'(x), x)}  9(x)pi(dx)

{D2 F(x)(h 1, h i ) — (h i , x )<DF(x ), h i > H } 9(x )p(dx )B1=1

<DF(x), D9(x )> Htl(dx ) =1 <DF(x), h i > H<D9(x), hi> Hli(dx).
JB Bi=1

and
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From (2.19) we have

1B  L F (x)9(x )k t(dx )=  —  13 <DF(x), Dcp(x)> H y ( d x ) .

By exchanging F a n d  we have

5BF(x)L9(x)p(dx)=
 — 5 <DF(x), Dcp(x)> H it (d x ).

and (2.18) is p roved . The general case is easily obtained by approximating F  with
smooth functionals. Q. E. D.

Lemma 2 .5 .  If  F E H(p o , p i , p 2 ; P L )  and F = 0 , then LF =O.

Pro o f . From Lemma 2.4, we have

5B LF(x)9(x),u(dx)= 13 F(x)L9(x),u(dx)= 0

for any smooth functional 9 .  Then it is easy to conclude that LF =O. Q .E.D .

Clearly H(p o , p l , p 2 ; pi )  is a Banach space endowed with norm IlF11,,,po,pi,p2;pL)
l i ( p o ,P l i p 2 ) ( R ) +  LF 11 LP L o o .  Especially for p o = p i = p 2 = pL =2, H (2, 2, 2; 2) is

a Hilbert space endowed with norm IF$ ( 2 , 2 , 2 ; 2 ) = 1 F 1 ( 2 , 2 , 2 ) ±  ILFIi2( p ). We shall
show later that H(2, 2, 2; 2)= H(2, 2, 2)(R) i.e., the weak L-differentiability follows
autom atically. In the sequel we shall mainly consider the space H(1, 2, 1; 1).
This space convenient as we shall see, for instance, in the following lemmas.

Lemma 2 .6 .  L e t F=(FL, F 2 , . . . ,  F d )  b e  a n  R d-valued W iener functional
defined on B  and u  be an  element of  C i(R d) (the space consisting of  all twice
continuously  dif ferentiable functions which are  bounded together w ith their
derivatives up to the second order). I f  Fi E H(1, 2, 1; 1) f o r i = 1, 2,..., d , then
uoF e H(1, 2, 1; 1).

Pro o f . Let { f } 1 be  an approximating sequence for F i in H(1, 2, 1; 1) and
put f i = ( f  f f  P .  By extracting a subsequence if necessary, we have u ( fa x ))

u(F(x)) a.e. GO as co and hence in D (jA). Clearly u o fk is twice B-differentiable.
We shall show that fu o fk l ,  is an approximating sequence for uoF . Since { f
is an approximating sequence for F i(x ) (i= 1 , 2,..., d) we have

d
D(U °

f k ) ( X )
—

dE
i=1

au 
(fk (x ))D fk (x )

Ou
. (F (x ))D F i(x ) i n  L 2 02; H )

d a 2 u . d au
D 2

( U 4 k ( X ) ) =  E  a i  

( f ,( x ) )D f (x )0 D f i,( x )+
, av ( f k (o D 2 f 1 (x )

i , ; . ,

d az.,
- ,  E   -  -   (F (x ))D F i(x )O D F i(x )+  i  au (F(x ) )D 2 F i(x )

1,;---1 OV eV i=1 eV

i n  L l(p ; .. 9.t2 ) (H ; R)),
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d (32u
L (W fk )(X )

=
a v a v  (fk (x ))< D fi(x ),  P1(x )>Ir

d au
( f k ( x ) ) - L f i ( x )

a2 Zi 
a i av  (R x ))<D F i (x ), DFi(x)> H

d au+ E (F(x ))L Fi(x ) i n  L 1 (p)

as k — >co. T h u s  uoF E H(1, 2 , 1; 1). Q. E. D.

Using this lemma we shall generalize Lemma 2.4 as follows:

Lemma 2.7. If  F, G  e H(1, 2, 1; 1 ) an d  F , G  are  both  bounded, then the
following equality  holds.

(2.20) 113 LF(x)G(x)f t(dx)=- 13 F(x )L G(x )p(dx ).

P ro o f . From Lemma 2.4, (2.20) holds if G is a  smooth functional. W e can
see by using Lemma 2.6 tha t G is approximated by smooth functionals which are
uniformly bounded and hence (2.20) follows. Q .  E .  D.

Lemma 2.8. If  F and  G  belong to H(1, 2, 1 ; 1) and they  are  both bounded,
then F(x)• G(x) E H(1, 2 , 1 ; 1) and the following equality holds;

(2.21) L(F G)(x)=LF(x)G(x)+2<DF(x), DG(x)> i l +F(x)LG(x).

P ro o f . Let {fk },T= 1  a n d  Ig k };.,° ,, be approximating sequences fo r F  and G
respectively. From Lemma 2.6, we may assume tha t { fk },T= 1  and fg k I,T= 1  a re  uni-
formly bounded and converge a.e. (p) as  k--*oo . Clearly fk(x)• 9k (x ) is tw ice B-
differentiable. W e shall show th a t { fk • gk }lf= i  i s  an approximating sequence for
F • G .  Since {fk }ckl_i  a n d  {gk }f= 1 are  the approximating sequences for F  and G
respectively we have

f k (x)g k (x) F(x )G (x ) in L ' (/1),

D(fk 9k)(x)— 9k(x)Dfk(x)+fk(x)Dgk(x)

- G(x)DF(x)+ F(x)DG(x) i n  L2 (.2; H),

D2 (fk. g k)(x)- g k(x)D 2  fk(x)+ Dfk(x)0Dgk(x)+ Dg k(x)®Dfk(x)+fk(x)D 2 gk (x)
- G(x)D2F(x)+ DF(x)0DG(x)+ DG(x)0DF(x)+ F(x)D 2 G(x)

i n  Ll(p; 2 ' 2 ) (H; R)),

gfk. gk)(x)- ilk(x)g k(x)+2<pfk(x), Dg k(x)>H+fk(x)14k(x)
- LF(x)G(x)+2<DF(x), DG(x)> H + F(x )L G(x ) i n  L 1(12)

as k— )oo. Thus we have F(x)• G(x)e H(1, 2, 1; 1) and (2.21) holds. Q .E.D .
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3 .  Absolute continuity of probability laws

Let F  be an Rd-valued Wiener functional. W e investigate the absolute con-
tinuity o f p0E - 1  i .e . ,  the probability law on Rd induced by F ,  with respect to
Lebesgue m easure . Original method is due to Malliavin using stochastic derivatives.
Here we rephrase his ideas using our derivatives.

Lemma 3.1. (M alliav in [ 6 ] )  Let y be a f inite measure on R d such that there
exists a constant C>0 and for any  cp e g (R d )

(3.1) 1 R d  07k v ( d ) f o r k  =1 ,  2 ,..., d.

T hen y  is absolutely  continuous i.e., there ex ists u e L t(R d) such that v (d)=
u()ck .

Using this lemma we have the following main theorem.

Theorem 3.1. L et F =(F', F 2 ,..., Fd) b e  a n  R d-v alued W iener functional
defined o n  B .  We assume that F satisfies the followings:
(i) Fi e H(1, 2 ,1 ;  1) i=1, d,
(ii) o- u ( x ) =0 F 1(x ), DFi(x)>, E  H(1, 2, 1; 1)i ,  j =1, 2,..., d,
(iii) d e t  (o- ii(x)) 0 0 a.e. (a).

Then the probability  law of F is absolutely continuous.

P ro o f . T ake an  arbitrary e > O . S in c e  o-(x )=((rii(x )) is invertible a.e. (j4)
i.e., h a s  i t s  full measure on GL(n), there esxists J i  e  q°(GL (n)) such that

4/(x),u(dx)— ,u(dx)11 <e where 1// =1//i ou and the norm 11.  II i s  the total variation.
Moreover there exists u: GL(n)-0/1„(M n i s  a  space of (n, n)-matrices) such that
u(A)=A - 1  on the support of tii i  and u e C,T(GL (n)). Let C= t(C i , ( 2 ,..., Cd )  be the
first column vector of u(a) (for simplicity we consider only the first column vector,

d
the other case being similar). Note that E  Ck o-ki = i on the support of tp. From

k=1
Lemma 2.6 tJi, C k  E  H(1, 2, 1; 1), k=1, n. Let cp e C (R d ) and 0 = 9 .F .  We
shall show the following equality.

(3.2) Ck(x)< 'C), DO(x )> N 0(x )y (dx )
Bk=1

— {Ck(X)<DO(X), DF k (X)> H4 - 0(X)<DCk(X),DF k (X)>
k=1

Ck(X)0(X)LF k (X)}43(x),1(dx).

First we show that (3.2) holds for FkN =c N oFk, where c , is the function defined by
(2 .5 ). We may assume that the derivatives of cN  is uniformly bounded in N .  Since
Fk is bounded and belongs to H(1, 2, 1; 1) we have, from Lemma 2.7 and Lemma
2.8, that
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1 a  1  C k ( x ) ( D n ( x ) ,  DC,6(x)>0(x)u(dx)

(x) Ian • 0 )(x )- P it,(x)Lep'(x) —  Ln(x)(7j (x)}0(x)p(dx)

IL (k •sb )(x )n (x ) —  L(Ck . F ik'sb)(x) —  Ck(x)Ln(x)sb(x)}
B k=1

Cp(x)ft(dx)

= —1 {0(x)<DCk(x), Dn(x)> H  + C k ( X ) <D O ( X ) ,  D P ( x ) > H
B k=1

k(x)gb(x)LF Igx)} CP" (x)p(dx)

Note that DF,—*DFk in  L 2 (pt; H ) and LF,(; ,-- LFk in  1,1 02) a s  N—>cc. Hence by
letting N-+ cc, we have (3.2). On the other hand,

C d
k(x) <DF k (x ), 1 ) (19' (X )> (X )I1(d  X)

B k=1

( k ( X ) < D F k ( X ) ,  
8
0 ;1 ( F ( X ) ) D F I (X )> 110(X )/1(d X )

B k,1= 1

C k(X )0 ."  (X )  aa;, (F (x ))0 (x )u (d x )
B k,I=1

a
 aZ (F (x ))0 (x )u (dx ).

Thus we have

(3.3)

where

a(P  (Rx))sb(x),(1(dx)i_ c11(p11.
B  ao

C =5 IC k (X ) < D O ( X ) ,  D F k (X )> H  S b (X )  <DC k ( X ) ,  D F k (X )> H
B  k =1

k ( X ) 0 ( X ) L F k (X ) }  u(dx)

Consequently tlf(x)p(dx).F - '  is absolutely continuous by Lemma 3.1. But IIIP(x)•
u(dx)— u(dx)11<s and s is arbitrary. Hence 1toF- 1  is absolutely continuous.

Q. E. D.

4 .  Derivatives of the multiple Wiener integrals.

In  this section we shall investigate the differentiability of the multiple Wiener
in teg ra l. Let (B, H, be the Wiener space . W e pu t T= [0, 1]. F o r  f e L 2 (TP)
(p G N), we define a multiple Wiener integral I ( f )  of f  as

Pit l t p -1
(4.1) 1 ,( f )= a. ; p co d X ( 1 1 )  1 0 d X (. 12) • • • f  (ter(1  )1  to (2 ), • • • ta(p))dx(tp)



276 Ichiro Shigekaw a

where integrals are understood in the sense of Ito's stochastic integrals and a runs
51

over all permutations of {1, 2,..., p}. W e also denote • •• f ( t i , t 2 ,..., t p )dx (t i )
o o

dx (t 2 )•••dx(t p )  in  p lace  o f I p ( f ) .  Then th e  mapping I p  f l— */ p ( f )  is  a  bounded
linear operator from L 2 (T P )  into L 2 (y) such that

(4,2) lip (f ) 1/2(lL)=14(.7)12(L) n I 73=. 1,, 1 —2(TP):5-P!Ifli2(TP)

where f  is the symmetrization of f :

(4.3) jr(ii, /2,—, ) == - 1 - E  dr(t t  2 t ) .P 1)!,,csp a( ) 9  a( ) 9 9 a ( P )

We shall show that I ( f )  has all moments and I ,  is continuous mapping from L 2 (T P )

into L ( u )  for any q > 1 .  First, we introduce some nota tions. For f e L 2 ( T P )  and
g e L 2 (T P ) (p ,  f  O g  e L 2 (T P'q) is defined by

f  O g (t i , t 2 ,..., t p , s i , s 2 ,..., s q )= f ( t i , t 2 ,..., t p )g(s,, s 2 ,..., s q ) .

Let {i i , i 2 ,..., i 1} a n d  { j , ,  j 2 ,..., j j  be 1 different elements of {1, p } a n d  {1, 2,
q} respectively. Then c(i l ,  /2,•••, li; j1, :12,• • •, O g  is defined by

[ C ( i i , i f ;  j l , i i i , . • • ,  ii,, •.., tp, SO]

=5
1  51

••• f ( t sq )du i•••du ,
o o

ui tit
•

- 4•141 S i , 21,1

where, for example, 1 means that the variable t 1 is removed and means that
the variable ti , is replaced by the variable u p  B y  the Schwartz' inequality, it is easy
to see that c(i i , i 2 , • • • ,  ;  j1 5  2 ,• •  • Og e L 2 (T P -1 2 I), more precisely

/2,•••, 1> j2,•••,ig  O g I L 2( T p+g- 2 ) _ I f I L 2( T p) IgIL2 ( T., ) .

Now we have;

Lemma 4 . 1 .  For f  e  L 2 (T P), g e  L 2(T )

(4.4) 4 ( f ) I q ( g )

P I A  1.

= E ip+q - 2 / ( c ( i i ,  i 2 , . . . ;  i i ;  j i , i i ) f 0 g )
1=0 — {ii , i2 ,• • • , iz } .( i ,2 ..... p)

q )

where E denotes, for each fixed 1<p A q, the sum over possible
fit, i2--, ioœtt,2,— ,p)
{ ii,i2 .... .11}.{1,2.... q)

ways of choosing 1 different elements { i„ i 2 ,..., i i }  and { j  1
, j 2 ,..., j i } fr om  {1,2,—, p l

and {1, 2,..., q}  respectively.

P ro o f . Without loss of generality we may assume q < p  and we prove it by
induction on q .  For q = 1 ,  it was proved by Itô ([2], Theorem 2.2). Assume that
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the formula is true up to g . Let f  E  L2 (TP), g E  
L 2 ( T )  a n d  he L2 ( T ) .  We denote

f= f ( t i , t 2 ,..., t i,), g = g ( s i , s 2 ,..., s q ) and h=h(s q + i ). By induction for g  and 1,

Ip ( f ) 4 + 1 (g Oh)

= Ip ( f ) t i g ( g ) I i (h)— ;q+ Oh)}

= Ip ( f ) l q ( g ) I i (h)—  ‘A l p ( f ) I q _1 ( c ( j ;  g+ 1)g 012).

By induction,

/p ( f )/ q ( g )

q 1= E fp + , - 2 / (c ( i i ,  i 2 9 . • • ,  i l ;  : 1 1 1 1 2 , • • • ,  i l ) f 0 g ) •
1= 0  11 ...... P)

...... q)

Hence we have

Ip ( f ) I 0 . 1 (g Oh)

vq
= n I p + q - 2 1 ( C ( h 1 1  j 2 , • • • 9  i l ; f ,  1 2 ,•  •  •  :11)/0 0

1= 0 [111/12,•••■
........ q )

X  .11 (h)— Ip ( f ) l q _1 ( c ( j ; g+ 1)g Oh).

Again by induction for p+ g —21, l and p, g — 1,

Ip ( f ) 1 0 _,(g Oh)

q
= E + ,+ 1 -2 1 (1 c (ii,  i2 ,• • • , / 2 ,• • • , ./ O f0 g } O h )

1-0 • 1 2 , • • •■  ii} .(1 ,2 ...... P)

1

1 = 0  11 O h . . . . . i i
.......j i ) c { 1 , 2 ,•••,9 )

I p + q - 2 1 ( C ( 1 4 - 1 , q + 1 ) { c ( 1 1 , i 2 , ; ; ; ; i 1 ;  f Og} Oh)
9 -1

+ E
1=0 • (ii.12.•••, i1 }= {1,2 ...... P ) i 1 + 1 * f l s i 2  . . . . . f i

{ f  1 , 1 2  . . . . .  I } C  (1 ,2 ...... 9)

4 4 .q - 2 1 - 1 ( C ( / 1 - 1 - 1 4 +  1) { C ( i i ,  / 2 , • • • 5 i 1 ;  1 9 1 2 1 . - 5  1 ) f 0 9 }  Oh)

q  q- 1  1
E E  rff=i 1=0 i 2 , . . . ,  ...... P)

. ..... h }
12

(1 ,2 ...... t i ) ‘

Ip + q _2 ,_ ,(c( i i , i 2 , . . . ,  i ;  1 , j i ) f0  { c ( j  ;  g +  e g 0 h } ) .

Note that the third term and the forth term are cancelled each other. Consequently,
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Oh)

q-,-1
= E . . 

0
E

{1 ,2
I p +  q -2 1 ( C ( i 1 1 ;  1 ,  2 9 *  •  I I ) f ®  f g  O h l) .

1=0 • i 2,•••,1 .
(j1 , 3 2 ........ h } c { 1 , 2 ,  ,q ,q + 1 }

Now (4.4) follows by noting that functions of the form g ®  h  for g e L2 (Tg) and
h  L 2 (T ) span L 2 (Tq+i). Q. E. D.

By this lemma, we have the following estimate:

/ p ( f ) 2 / q (g) 2 ,u (d x )<K p , q (l f ii2(Tp)ig 1 2c2(z , o)

for f  E L 2 (TP) and g e L2 (Tq) where K  p ,  is a constant which depends only on p  and
g. If we use this lemma repeatedly, we have

/ p i ( f
1
) p 2 ( f 2 ) 2 .•. 4 „( L ) 2 ,11(dX)

< K PI,P2,•••,lonifla2(TP1)1f21 2L2(TP2) — IfnI 2L, (TP")

for f , e  L 2 (T PI), f 2  e L 2 (T P2),..., f„e L 2 (T P-) where IC p 1 . p 2  pn  i s  a constant which
depends only on P t 2, • • • ,  p n • Especially, for J e L 2 (TP)

JB
I p ( f ) 2 n,u(dx)_<C p ,„If1 222 ( T p)

where C = K .  Hence I p ( f )  has all moments.

Now we can investigate the weak H-derivatives of I p ( f )  of J e L 2 (TP). Since
I p ( f ) = I p ( f )  where f  is the symmetrization of f , we may assume that f  is symmetric.
We denote the space of all symmetric functions in L 2 (T P) by L 2 ( T P ) .  Let f „, k  =1,
2,... and f  be in L 2 (T P) such that Ifk —fI L 2( 2 -p) —+0 as k--> co and f k  is  a special step
function for every k. Here by a special step function, we mean a function of the
form

(4.5) t 2 , . . . ,  t )

N -1

i i E  i .f ii ,... 1p  4 ( 1 1 , t 2  , ...... 1 0 ( 1 1 ,  1 2/ • • • 5  t  p )i , 2 p o  

where A = {0 = to < t, < • • • < t N  = 1} is a partition of [0, 1],

A(ii, ip )=  Cti „ t i 1 + i ) x [ t 12 , • x [t i p , t,p + i )

and f 11 ,12  , , , , ,  are constants such that they are symmetric in i 1 ,  i2 ,..., ip  and f11 2 ......... ip

=0 if there exist same elements among i 1 , j 2 ..... i,, (cf. Ito [2 ] ) .  We shall show
that { / p ( f k )} 1. 1 is  an approximating sequence for I p ( f )  in  H(p o , p i ,..., p„)(R ) for
any ne N  and po , p „>  1 .  First we investigate I ( f )  such that f  is a  special
step symmetric function of the form  (4.5). Then the multiple Wiener integral
of f  is expressed as
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N-1
(4.6) I p ( f ) ( x )= E f 1,

ii,12 ..... ip=0

w h e re  zlx(i i , i 2 ,..., i i,) =(x (ti i +,) — x(ti i ))(x(ti 2 +,) — x(ti 2 ))•••(x (tip+i) — x(ti p )).

Clearly I ( f )  is B-differentiable and its derivatives are given by

N-1
(4.7) rp ( f ) ( x ) (Y )=P E f

(4 .8 ) f p ( f ) (x ) (y , z )

N -1= AP -  I) E id (Y (t11+1 )-A t11 ))ii,i,,i3,...,ip=0

x (zo1 2 + 0 - z ( 0 )

for y, z e  B  and so o n .  Finally

ip ( f ) ( P ) (x)(.11 1, Y2 ,• •• ,  y p )

N -1
= P! E f i,,1 2 ...... i i, ( y ...........................Y ( l i , ) ) (  y  2 ( t i 2 + 1 ) -  2 0 , 0 ) -

ii,i2 ,...,ip =0

x (yp(ti p -1-1) — yp(t1p ))

f o r  y 1 , y 2 , .. ., y p e B  and

ip ( f ) ( P+ I ) = 0 , /p (f ) (P+2 ) =0,....

Next we study the integrability of fl-derivatives of I p ( f ) .

IDI p (f ) ( x ) l ig t ( d x )

=1 N - 1 N-1

•E E
B il= 0

i p 4 x ( i 2 , ip))21A (ii)111(dx)

N -1 N -1
=

P
2 E 121(ii.)1 E , 2 ,i,=0 12 , i3 ..... p =0  5B

3  •  •  • i P = C1

x jp )ki(dx)

N -1
= P 2 ( P -

 I ) ! E f?„i2 ,,,,, 1pl4(i1)11z1(12,•••,

= P ( p O l f i i 2 ( T P )

w here •1 is the Lebesgue measure. Similarly, we have

ID 2 /p(f)1.2 2,m ; ft )ilId x )= P (P - 1 )(P!)1.fli2(Tp
) .

In general

iDm 1p(f)1 2 1 of;a4t(dx)=P(P-1).••(p—m+1)(1,0ifii2(Tp).

i p
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Thus we obtain that DmIp ( f ) e L 2 (p; ,..rn 2 ) (H; R )). We can obtain stronger results
by using Lemma 4.1. First we note that

<DIp (f), h> H  = IT  •••11 {Y  f(t i , 12 ,..., t p )h'(t 1 )cit i ldx(t 2 ).—dx(t p )
o o o

for h e H .  Let be a complete orthonormal system in H .  Then we have

1B  IDIp (f )(x )111p(dx)= B (IDI„(f)(x)1 2H) 2 p(dx )

=5 B ( <Dip ( f)(x ), h ) 2 p(dx)

= <DIp(f)(x), h i >k<DIp (f )(x ),1 0 K p (d x ).
B

By the Schwartz' inequality, this is majorized by

{5 <DIp (f )(x ), h 1 >4 p(dx)}
1
{5  <D I p (f )(x ), h i >tp(dx)}

1
B

and this is majorized by

t2 ,...,  tp)m o d t , }
2

 dt2 ..•chp)

f(s,, s 2 ,..., s p )h i (s i )ds,1 2 ds2 .••dsp )
) 0  J O  0

= K2[51...11 j 5 ' i i / 2 , . . . ,  tp )hi(ti)diit
2

 dt2 .—dt
- 2

p

o o i=i o

= K 2 If Ii2(TP)

by the remark of Lemma 4.1 where K is a constant depending only on p .  Thus we
have DI p ( f )e  L4 (1t; H) and

IDIp ( f ) I f ( d x ) K,Ifit2 ( T p )

Similarly we can show that for any p, DI (f) e LP'01.; H) and

(4.9) 1/3'4( P l it'ilt(dx) K p ,p , f  7,1(Tp,

where K p a ,  is a constant depending only on p and p i . W e can get similar results
on the higher weak H-derivatives; for a n y  in e  N  and p  LP-,(p;
3 ) (H, R)) and

(4.10) SB IDon/p (f)(x )i ,n it(dx) K„,
.F ( 2 ) (H; R) ,p„,1 f 11;3 ( T P )

where K,„,p „, is a constant depending only on m and p m . Now the following propo-
sition is easily obtained.
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Proposition 4 . 1 .  Let f  be an  element of  L 2 ( T P ) .  T hen  f o r any  n E N and
Po' p ,,. . . ,  1, I p (f )e  H (p o , p ) ( R )  and  its w eak  H-deriv ativ es are  given
by

(4 .1 1 ) <DI p ( f ) (x ) ,  h> H = p

5o. . . 504af i t i '  t 2 " . "  
tp)h'(ti)dt,} dx (t2)•••dx (tp)

f or h e H ,

(4 .1 2 ) D2 I p (f )(x )(h , k )

= P(P -

1
)

1  

• •
(1  j ( 1 ( 1

f i t i ,  1 2, t3,...,1011'(11)k '(t2)dtiolt2} dx(t3)•••dx(tp)
o i o l ) o ) o

f or h, k e H  and so o n .  Moreover

(4.13) DP I p ( f ) ( x )= p !  f ,  DP- " I p (f )(x) =- 0, DP+  21 p (f ) (x) = 0, ,

where we regard f  as an element of 2 f 2 ) (H ; R) in the following way;

(4.14) f (h i , h 2 ,..., h p ) = 1 •••Y  f (t 1 ,1 2 ,..., t p )I4 (O h ; (t2 )•••h p' (tp )dt i dt 2 ••-dt po o

f or h 1 , h 2 ,..., hp e H.
If {f k}=! is  a sequence of special step functions in L 2 (TP) which converges to

f e  L 2 (T P) in  L 2 (T P) then { I p ( f k )} i° ,, is  an  approxim ating sequence f o r I p ( f )  in
H(Po, Pi>•••> P.)(R).

From this proposition we see that p + 1-th weak H-derivative of the multiple
Wiener integral I p ( f )  o ff E L 2 (T P ) is O. The converse also holds as we shall see in
the following.

Proposition 4 .2 .  If  F EH(p o , p„)(R ) and DPIF =0 f o r m <n , then F  is
the linear combination of multiple W iener integrals w ith degree <ni.

P ro o f . From  th e  assumption Dm F =0 and Proposition 2.2 , w e have that
Dm- lF=constant a.e. CO . H ence there exists f„,_, e L 2 (Tm- 1 )  su ch  th a t Dm- 1 F
=(m - 1 ) !fm i , here we identify  L 2 (T m ) and 27 1

25'(H; R) as in Proposition 4.1.
Then clearly F— I„,_,(f„,_,)G H(p o , P i '   p „)(R )  a n d  Dm- 1 (F — I 1 ( f„,_ 0)=0.

m—t
By repeating this procedure we have F =  E I k ( f k )  for some f k L 2 (T k ) k = 1, 2,...,

k=0
— 1. Q. E. D.

Next we consider the weak L-derivative of the multiple Wiener in teg ra l. Let
f  be a  special step function in L 2 ( T )  defined by (4 .5 ). Then firstly we have from
(4.7)

(1,(f) (x), x )= pl p ( f ) (x ) .

Secondly we have

trace D 2 Ip ( f )(x )= .c iiD 24 (f )(x )(h ,,h ,)
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where is  a  complete orthonormal system in  H .  W e choose { h,}70_, as

fo llow s. L e t h i = h i l l h i l i t  i=1 , N ,  where h 1(t)=1 ' 1 [( u ) d u .  By adding
0 t i -

appropriate elements h „, ,  h N + 2,••. t o  I h i l l i v = 1 ,  w e  g e t  a  complete orthonormal
system {hi }71 1 . Since f  is a  special step function

trace D2 4 ( f ) (x )= D2 4 ( f ) ( x ) (h 1, h i )
i=1

C lC I• IYY f i t ,  t2 , t3, tp )h'i (t 1 )h ( t 2 )dt 1 dt2}
0 0 0  0

dx (t 3 )•••dx (t p )

=0.

Therefore

L(I p (f ))(x )= trace D2 I p (f )(x )—  (4( f )(x ), x)= —  pl p (f )(x )

From this we can easily conclude the following.

Proposition 4 .3 .  If  f  E L 2 (T P ) ,  then I p ( f )E  H(PO , P i ,  P z ; P L ) f or any  Po ,  Pi,
Pz, 1 and weak L -derivative of !(f ) is giv en by

(4.15) LIp(f)= —  pl p ( f ) .

We have defined the space H(Po ,( R )  for Po ,  Pi , •••,.  We simply
denote H(2, 2,..., 2)(R) by H" , 2 . We may regard H" , 2  as a  subspace of L2 (p). It

n-FI
is well known that FE L2 (1) can be expanded by the multiple Wiener integrals;

(4.16) F= I ( f ) i n  L 2 (p)
p=0

where f p e L 2 (TP) for p = 1, 2,... and

(4.17) IF121,200= E iii,(fp )112( „) = Ex  P ! I f  12
p=0 P  L 2 ( T  ) .p=0

Using this expansion, we can characterize H" , 2  as follows:

Proposition 4 .4 .  L et F e L 2 (p) be expanded as (4.16). Then F eH"• 2  if  and
only  if

(4.18) P(P—  1 ) — (P —  n+1)14(f )12.(„)< 0 0 .
p=

Pro o f . (Necessity) Let F e H". 2 given by (4.16) a n d  {h1}71. 1 b e  a  complete
orthonormal system in H such that hi B * .  From Lemma 2.3,

<DF(x ), h i > H Hp(x )p(dx )

F(x){ —  <DH„(x), h i > I I + (h i , x )Hp(x )} p(dx )
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=1 B F(x){ —  11„_,, i (x)+ (h i , x )H a (x )}  p(dx )

F(x )(a i +1)11 a 4 . (x )p(dx )

where 11,,(x) is a Fourier-Hermite functional given by (2.11) and we use the formula
(2 .1 6 ). Here we used (2.14); in Lemma 2.3 we prove it only for smooth functional

but it can be extended to cover this c a s e . We note that {H0 (x)/(a!) 2 ) .  is the com-
plete orthonormal system in L 2 (p) and

H a (x )= I  a 1(11',0 • • • 0 1 4 0  h '2 ® • • • Oh'2 0 • • •). If p=la + b i l, then we have

al a2

B <DF(x), hi> tilia(x )p(dx )

Ip(f p)(ai+ 1 )1 1 0-1-a,(x)tt(dx)
JR

P(a
! ( a i  60

+ 1 ?+ t t p)k ( t  1 ) . — 14 ( 1 a i)k2( 1 ai+

h (t at- a2)• • • dt 141 2 .•• dt p

= p 1  i p _1 (c(1; 1)fp014)11 a (x )g(dx ).

Hence we have

<DF(x ), h i >  = p_ #(1 ; 1) . 6 0
P= 1

Similarly we have

DmF(x)(h i ,, h i 2 ,..., h i „,)

= p(p—  1)•• •(p —  m +1)4_(c(1, m ; 1, 2,—, ni)fp®
P=

fk,® •••(:)k m } ) .

Finally, since F e H n ' 2  we have

SB 
IDn F(X)1 Z,(H ,R),U(d

=1 D"F(x )(h i i , hi „) 2  /1(dX)
B ..... i„=1

= [ p (p -1 )— (p — n +1 )/ p _n (c(1, n; 1 , 2 ,..., n)fp..... i , , 1 B  p=n

0 { ki 1 C)•••®k „} )] 2 p(dx )

r i
= P(13 - 1) — (P — n + 1 ) ( P ! ) 1 " '1 Win =1p=n 0 0  0 0
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f p ( it ,  2 , ", t p )k i (t i )•••14„(t„)dt i .• •d t„rd t„ + ,•••dtp

= P(P - 1 )•• . (p — h + 1 )(P!)Ifp112(TP)
p=n

= P(P - 1 ) — (P — n + 1 )iip(f )1 2c2on
P=n

Thus we have (4.18).
(Sufficiency) Take F e L 2( y )  satisfying (4 .1 8 ). Choose a  complete orthonormal

system in  H  such that h i e B* . W e p u t  GN =  E, I p ( f p )  fo r N  = 1, 2,.... Then
p=0

G N E  H" , 2  from Proposition 4.1 and

Irr i G N(X)& ',"2 ,(H ,R ),U (dX )
JB

DrnGN(x)(hi„ h i , , . . . ,  h i m ) 2/.2(dx)
Bi t ,i 2 ,...,i,„=1

N
= E D'n p ( f  p )(x )(h i „ h i 2 ,..., h i m ) 2 f t(dx )

Bil,i2,...,i,„=1 P=0

N
13(11 - 1).—(13 - - in H E 1 )  " .

Ci

501 {5' •••01 5. o1
= 

f it1 , 12,..., t 0 11'ii ( t i ) k 2 (t2)• • •Ifi „,(t„,)dtr• • dt„,}dx(im+i)• • • dx(t p )] 2 p(dx )

xco, rr

p'tn {1 3  (P  1 ) . .  ( 1 3  M  + 1 ) 2  ( P  M ) !i ) i r i

0 0 0 0

f ( t t p)14,(t Oki 2(12) • •kjtm) dt1 • • • dt m } 2 d1m +1 • • • dt p ]

= p ( p - 1 ) • • • ( p œ  m+ 1)(p!)Ifpli2(Tp)
pm

= P(P - 1 )• - (P — m + 1 )14 ( f 0 1 2/.200.
P= m

Now it is easy to see that {GN } ,  is a Cauchy sequence in Hn , 2  from (4.18). Since
GN -+F in  L2 (p ) as N .-- co, t h e  limit o f  {G,} ,  coinside with F .  Consequently
F e H" ' 2 . Q. E. D.

Proposition 4.5. W e  h a v e  H 2 ,2 ( = H(2, 2, 2)(R)) = H(2, 2 ,2 ; 2 )  and the
follow ing equality  holds;

(4.19) SBILF(x)1211(dx)— (1D R X )1 ii + I1 2 F(x)1.22-t2)(n;n))12 ( 1x )

f o r  F E H(2, 2 ,2 ; 2).

P ro o f .  It is obvious that H(2, 2, 2; 2)cH 2 -2 . Let F  H2 , 2  be expanded as



Derivatives of Wiener functionals 285

(4 .16). I f  we p u t G N = I ( f )  fo r N =1 , 2 ,..., then from  Proposition 4.3, we
p=0

have GN e H(2, 2, 2; 2) and

LG N = — pip(fp)•p= 1

Hence

LG N121,2 (A )  =  L G N (X ) 2 11 ( d X )  =  E p 2 I 4(42) I L2(11)•
p=1

But from Proposition 4.4, we have

P(P - 1 )14(fp)1 2L2 ()<  co.
P=2

Then it is easy to see that {GN } i  is  a Cauchy sequence in H(2, 2, 2; 2) and hence
F e H(2, 2, 2; 2). Thus H 2 .2 =H(2, 2, 2; 2). Now it is clear that

L F = — pip(fp),
p= 1

L F l i 2  = P214( f p )121,2
p=1

But from Proposition 4.4, we have

IDAX)1 20 ( p ,H) = p(f 012 („),
p=1

I D 2 F(X) I._ 2 (p ;2 q 2 )(H ;R )) O lip (fp )1 2 L 2 (# )•p=2

Hence we have (4.19). Q. E. D.

So far we have investigated the derivatives of multiple Wiener in tegrals. For
another example, we discuss on solutions of stochastic differential equations; we
d o  not give a  proof, however. W e consider the following stochastic differential
equation in one dimension (the extension to  the multi-dimensional case is straight-
forward);

(4.20) X (t)= a (X (s))dx(s)+5: b (X (s))ds.
Jo 

We assume a, b e O R ) .  Then the solution X (t) of (4.20) for fixed t  belongs to
H(2, 2)(R) and its weak H-derivative DX(t) is given by the solution of the stochastic
differential equation

da (4.21) <DX(t), 11=
o  c g  

( X(s))<DX(s), h> N dx(s)

(X(s))<DX(s), h> H ds +S a(X(s))h'(s)ds
0 cg
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fo r  h E H .  Furthermore, i f  a, b E C (R ), then  X ( t )  f o r  a  fixed t belongs to
H(p o , p ,)(R ) for every n and every po , p „ ._ I.

5. Absolute continuity of probability laws of the multiple Wiener integrals

Now we investigate the absolute continuity of probability laws of the multiple
Wiener integrals as an application of Theorem 3.1. First we treat the case of a
single multiple Wiener integral.

Theorem 5 .1 .  Let F be a real valued W iener functional given by F =  E  ( f  )
=o "

f or f p e L 2 ( T P ) ,  p=1, 2,..., N .  I f  f N O, then the probability  law  o n  R P induced
by F  is absolutely continuous.

P ro o f . We prove this theorem by induction on the degree N .  For N =1 , the
theorem is true since 11 ( f 1 )  has a  normal d istribution. Assume the theorem is true

N+1
for N .  Let F =  E  I ( f ) .  The conditions (i) and (ii) of Theorem 3.1 are satisfied

p = 0  -
by Propositions 4.1 and 4 .3 . Therefore it suffices to establish the condition (iii),
i.e.,

o-(x)=<DF(x), DF(x)>H=IDF(x)1 2H 0 O a .e . (y ).

For any h EH,
1 1

<DF(x), h> H = ( N + 1 ) 0 ' • •

{

)( 1
0 1 . Is1+ 1 ( 11, 1 2, — , 1N+1)11' (10 d 1 i —}dX ( 12)

dx(tN + 1 ) + (lower terms).

Since 0 0, there exists h e H such that
r i

12,•••, 1N+1)“/I)dtt 0 0 i n  L 2 ( T ").
Jo

Hence, by induction, we have <DF(x), O H O ° a.e. (p ) for such h e H .  Thus a(x)
= 0 0 a.e. (p) and the theorem is true for N +1 . Q. E. D.

Next we discuss the case of a system of multiple W iener integrals. This case is
rather complicated. W e  g iv e  h e r e  o n e  sufficient co n d itio n  fo r  th e  absolute
continuity.

Theorem 5.2. L e t  F =(F 1, F 2,..., Fd) b e  a n  R d-v alued W iener functional
given by

Nt
(5.1) Fi = E  ( f ) ,  i  = 1 ,  2 ,..., d ,  f pw eL 2 ( T P ) .

p = 0  P  P

We assume that there ex ists h e L 2 (T ) such that the system of functions
g (t )  defined by

(5.2) g ..• fV ;(t,1 2 ,•••, v i )ff(12)••• 11'(IN 1 )dt2''
o o

gi(t), g2(t),



Derivatives of Wiener functionals 287

is linearly  independent in L 2 ( T ) .  Then the probability  law  on R d induced by  F
is absolutely continuous.

P ro o f . Put G = I  (g ) ,  K = I q (k ) for g e L 2 (TP), k E L 2 ( T q ) .  We shall evaluate
<DG(x), DK(x)> H  concretely. L et {hi } r , ,  be a  complete orthonorm al system in
H .  Then by Proposition 4.1 and Lemma 4.1,

<DG(x), DIC(x)> H  = <DG(x), hi> H < D I C ( x ) ,  hi>i=t
co

= E E c(m; 1)gOh'i g q _ ,(E  c (n ; 1 )k e k )
i=l m=1 n=1

.0  1 PA9 - 1 P

E E  E  E
• 1= 0  m=1 n=1 {mt,n12 , ...... n it} c (1 ,2 , . . . ,P M { m }

In ], n2 , .... , n il a 1 1 ,2  ..........(n)

ip +q -2 1 -2 (C (n 2 1 1 1 1 1 2 ,.. . ,  M I ;  n 1 , n2 ,..., n i )(c(m; 1)g(S)h'i ) Ø (c (n ; 1 )k (:)1 ))

P A 9  1= E E ip+,-2/(c(rni, n1 2 ,...rn i ; n1 , n2 ,..., n 1)g 0 k ).
1=1 i • tmi,m2 .... m O c ( 1 ,2 , . . . , P )

( n i ,  n 2 , . . . ,  n i) ,( 1 , 2 , . . . , 0

Hence if  g e C2 (TP ) a n d  ke L2 (T q ), then th e  highest term in the expansion of

<DG(x), DK(x)>„ is  the multiple Wiener integral o f  pq g(u, t 2 ,...,t p )k(u, s 2 ,...,

sq )d u .  N ow it is clear that o- ii(x )=<D F i(x ), D P (x )> H :H (1 , 2 , 1 ;  1 ) .  Thus the
condition (i) and (ii) of Theorem 3.1 are clearly satisfied. It suffices to establish the
condition (iii) i.e., det (crii(x)) 0 0 a.e. (p).  But

d
(5.3) det (c r i l (x ) )=  E  sgn (t) fl criz(i)(x).

-reSa i=1

Since crii(x) is  a  sum o f multiple Wiener integrals, so is also det (o- ii(x)). The
highest term in the expansion of det (o- ii(x)) is the multiple Wiener integral I k ( f )
of the function f  e L 2 (Tk) defined by

(5.4) f= N iN i• • •N 3  E  sgn(t){c(1; 1 )f (
Nt ) f ( t(1 ))1NT( i)

T E S  d

{41 ; 1) .012 0 .114(V}
d

where k =2( E  N i — d). We shall show that the symmetrization f  of f  is not the
zero element in L 2 (T k ) .  It is easy to see that J O if and only if there exists h E H

such that the inner product <h' C)h' • • C) h' , f> L 2 ( T . ) 0 O. But this inner product is
just a constant multiple of the Gramian of the system of functions {g i(t)} defined by
(6.2) and consequently, Jo 0 if and only if {g 1(t)} defined by (6.2) is linearly independ-
end for some h EH. Thus we can conclude f  0 0 . From Theorem 5.1, det (crii(x))
0 0 a.e. (y). Q. E. D.

We shall give an example.

Exam ple. L e tfi,E L 2 (R P ) for p=1, N  which has a support on ( — co, 0]P.
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We define the stationary process {X,; — oo <t< oo}  by

N  Cl Cr
=  E • •• f p (u,— t, u 2 — t,..., up  — t)dx(u,)• • • dx(up )

p=0  

where { x(t); — co < t < co} is the Wiener process such that x (0 )= 0 . Then any finite
dimensional joint distribution is absolutely continuous.

P ro o f .  So far we assume that the Wiener process is defined on the time interval
[0 , 1 ]. But we can easily extend above results in the case of time interval ( — co, co).
We shall prove that fo r — oo < t, < t2 < •• • < t„ < co, the probability law of (X ,„ X ,„

X ,)  on 1 1" is absolutely continuous. We prove it by induction on n. We may
assume that f o  =0, = 0 , . . . ,  = 0  and the  support o f f N  is  n o t in c lu d ed  in
(— co, — er for any s > O .  The general case can be proved similarly. For n=1,
the probability law of X t , is absolutely continuous from Theorem 5.1. Assume that
the statement is true for n and consider the law of (X ,„ If we
put

t I l .y 1 1

• •• f N (u,—  t„,,,..., —t ± 1 )dx(u,)•-• dx(u N )
-co

X f N (U i — in +1 ,• • • ,  UN 7,+ i)dX(111)• • • dX(UN)

= Y1 + Y2,

then clearly (X 11 , X tn, Y1 ) and Y2 are independent and (X 11 ,..., X „) a n d  Y2

have the absolutely continuous probability laws from the assumption of induction
and Theorem 5.1. Hence for any Borel subset A cRn+ 1 such that IA =0,

X „, X t . +  i )e A)

=E [1 A (X , 1 , + Y2 )]

=E p [E p [l A (X ,,, X 1 2 ,..., X ,, Y, + Y2 ) I X i i , X t„, Y1 ] ]

= E A(X 
t1

, X
2

, . . . ,  Xt„, + )v y 2 ( d )

where vy , is a  induced measure by Y2. Since vy , is absolutely continuous and the
probability law of (X 1 1 , X 1 2 ,..., X „) is absolutely continuous, we have

1.4((X11 , X 1 2 ,..., X „, e A )= 0.

Hence the probability law of (X „, X 1 2 ,..., X „, X ,„ + ,) is absolutely continuous.
Q. E. D.
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