
J. Math. Kyoto Univ. (JMKYAZ)
20-2 (1980) 243-261

Eikonal equations and spectral
representations for long-range

Schrbdinger Hamilton ians

By

Hiroshi Isozmul)

(Received Dec. 22, 1978)

§1. Introduction

We shall investigate in this paper spectral representations for the Schilidinger
operator defined as the self-adjoint realization in  L2 (Rn) o f  H= —  A  +V (x), where
A denotes the Laplacian in L 2 (R )  and the potential V (x) satisfies the following

• A ssum ption: V (x ) is a real-valued C 3 (R")-function such that for some 6>0

D V (x )=0 (r - 1 2 1 - 6 ) a s  r — > oo (0 .10c1 3)

w h e r e  D x —
(  0 0   )

, a is a multi-index.Ox l  '••"  ax„
As has been noted by Ikebe [2], the usual Fourier transform (precisely speaking,

its restriction to  the sphere) is obtained from the asymptotic expansion of the solu-
tion of the Helmholtz equation (for instance in R3 , and if f  E  C (R 3 ),

e i V i r

 R 3
1

4n  JR , I x  — y f (y )dY  = 4nr f (y )d y  +0 (r - 2 )

as r=lxl—> co, where co =x1r).
Suggested by the above observation, Ikebe [2] and Saito [10] have obtained the

spectral representation theorems for SchrOdinger operators with long-range potentials
by considering the following limit

(1.2) lim r(n -
) / 2 e - i K ( x , A ) (RP. + i0)f ) (r .)

in L2 (S" - 1 ), where R(z)=(H—  z) - 1 , and it has been observed that K(x, A) should be
chosen as an (approximate) solution of the eikonal equation

(1.3) K(x, ))I 2  +V (x)= A

(see Ikebe-Isozaki [3]). T his procedure has also been adopted by Mochizuki-

1) Partially supported by Sakkokai Foundations.
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Uchiyama [9] in  a  slightly modified form in  the case that the  potential has an
oscillation at infinity.

Here we remark the follow ing: First in  the work of some previous authors
(see e.g. Saito [10] and Isozaki [5]) it seems that too much smoothness has been
required o f  V(x) in  order to solve (approximately) th e  eikonal equation (1.3).
Second, the existence of the limit (1.2) has been guaranteed only along a certain
sequence {r,n} , diverging to infinity.

The purpose of the  present paper is two-fold. First, we shall construct the
exact (asymptotic) solution of the eikonal equation under the  above mentioned
assumption on the potential V (x ). (This solution is utilized in  a  stationary  proof
o f the  completeness o f  th e  time-dependent modified wave operators (see Ikebe-
Isozaki [4].) To solve (1.3) we follow the standard line of Hamilton-Jacobi's theory
of solving first order partial differential equations. However, the attempt to find
a  local solution a t  inf inity  o f  (1.3) will complicate our arguments considerably.
Second, we shall prove the existence of the limit (1.2) without taking a  sequence
{r,n)„,= 1 , which will remove the inconvenience that has so far occurred whenever we
have dealt with limits like (1.2) in discussions connected to spectral representations
for the SchrOdinger operators. Here we should mention the work of Saito [10],
which has also shown the existence of the lim it (1.2) without taking a  sequence
fr inbnc°= 1 . However, since he transforms the SchrOdinger operators — + V(x) into
the ordinary differential operators with operator valued coefficients by passing to
the  spherical coordinates, his theory cannot be applied directly to the case R2 .
Whereas, our arguments hold good in the case Rn , n> 2.

The contents of this paper are as fo llow s. In § 2, we shall prove the existence
of the limit (1.2) and the spectral representation theorem for H assuming the existence
and certain asymptotic properties of the solution of the eikonal equation (1.3).
Some technical lemmas will be proved in § 3 .  The solution of the eikonal equation
(1.3) will be constructed in §4.

§ 2 .  Spectral representation

Let us begin with the following lemma.

Lem m a 2.1. L e t  12,----(0, oo). T h ere  ex is ts  a  real-v alued C3(R" x It + )-
function Y(x, 2) having the following properties:
(1) L et A  b e  a n  arb itrary  com pact set in  R .  T h e n  th e re  e x is ts  a constant
R o = R o (A )>0 such that

—  0Y/ (x, =1V ,Y(x, 2)1 2 + V(x)ar

f or r=lx1>R 0 , 2e A.
(2) For any compact set A  in R + , there exists a constant C=C(A) such that

114Y(x, 2)1 _< C(1+ 0 1 -1 .1- 6 ( 0 3) •

We shall prove this lemma in § 4. Note that if we put K(x, 2)= Y(x, 2),
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it must satisfy the eikonal equation K(x, 2)1 2 +Y (x)= 2 for sufficiently large I'd.
We introduce several notations.
F or a  domain G in  R n  and a  real constant /3, le t L 2 ,p (G) denote the Hilbert

space o f all measurable functions f  over G such that If  ii =  ( 1  ±  I x1)2 fl I f (x)12

dx <  o o . If /3=0 or G= Rn , we often omit the subscript.
Let K(x, 2)=Jr—  Y (x , 2) as above, and the differential operators 9, g ± ,

be defined by

0 n - 1 O Kg l = g y 2 ) =  + g • T- (x, (5c'i=xi/r, j= 1 ,.. . ,  n),ax ; 2 r ax •

0
r

 n - 1 O K  = E  •gt - + T-i (x , A),• " O 2r Or

g ai=gracli-- igradK (x , 2), (grad=grad—  , = x / r ) .ar

L e t  E= Ix e Rn : > 1 } .  I n  general B(H I : H 2 ) denotes th e  to tality  of
bounded linear operators from a Banach space H , to a  Banach space H2.

T he  following theorem d u e  t o  Ikebe-Saito [6] asserts the existence of the
boundary values R(2+ i0) of the resolvent R(z)= (H — z)- 1 - (z E C—R).

Theorem 2 .2 .  Let so  be  a constant such that 0 <so <612.
(1) For 2>0, there exists a strong lim it

s-urn R (2+ is) R (1± i0) E 13(L2 , (l + c o )/2 : L2 , —(1 -FE0)/2) •
E 10

Moreover, for f  e 
L 2 , ( 1 + E o ) / 2 ,

 R (2±i0)f  is continuous for 2> 0 in  L2 , _ + ) / 2 .

(2) For f  e L2,(1 +4)/2/ R(2+ i0)f satisfies the radiation condition

g±(2)R(2±i0)f  e L2 , _ (1 — eo)/2(E ) •

(3) R(2+ i0)f is the unique solution of the following problem

( -  +  V- ).)u =f, f e L2,(1 + so)/25

u e L2 , _  .I.E0/2 7

g (2)u e L2 , _ (i _ 60 )/2(E)

(4) The part of H  in R + is absolutely continuous.

We also need the following lemma whose proof has been given in Isozaki [5].

Lemma 2 .3 .  Let f  e L2 , (3 _, 0 )/2. Then we have

g  ( 2 )R(2 ± l 0 )f11(1-zo )/2,E clIf11 ( 3- e0)/2,

where the constant C is independent of 2 in a com pact set in R+.
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In the following we refer only to the outgoing radiation operator 9+(/1.), and
write it g (A). Now, let u = R(A+ i0) f (f e L2 ,( i  + ,0 )/ 2 ). Then u satisfies

(2.1) ( -4+V—.1)u=f.

Let 91 be the formal adjoint of g i , and A be the Laplace-Beltrami operator on
S" - 1  (the unit sphere in  12"). Then by a  d irec t calculation we can rewrite the
equation (2.1) as follows

(2,2) E •u — 2i EJ J
j  t J •X J

= f - (17  +117 17 12 - 2,R. aa r
Y  )u —  '0

2
r

17
2 +  A

r 2 ,37 )u,

where P(x)= V(x)+ (n —1)(n— 3)/(4r2) .
First we investigate some properties of the surface integral.

Lemma 2 .4 .  L et f e L2 ,( 3 _,0 )/ 2 , u =R (.1 +i0 ) f . L e t  v e lif o c
2 ) be such that

v e L 2 , - ( 1 - F t 0 ) / 2  and  9(.1)v e L2 ,_ ( i _e 0 )1 2 (E). Then we have the following equality

d (g  u )b d S =  — 2 i/ 5 F(r) ,dr r ixi=r

where IF(r)jdr<oo.

.P roo f. Noting that .4  —  a —  n -1 arc+ t we have by a  straightforwardOr 2r Or
calculation

d  ((2.3)
d r  j

(.9
r
u )M S  = (4 g ,.u )D

' x i
dS + (.9,.u)(grv)dS .

rx1=r jx1=r

The second term of the right hand side of (2.3) is easily seen to belong to L 1((1, co))
by our assumption and  Lemma 2.3. Since E g I 9 ; = .9 : 9 , .+ 2 , ,* 9 0„  we have in
view of (2.2)

— 9 :g ,u =.9 t ) .9 u - 2 1 g —  2ig rad K. g  +  A ( x ) ,

where A (x)= — f±(17  +IV YI24 ) u +  i (   0

o
, 2 Y

r2r 2+
A Y

  

)u B y  Le mma 2.1

and Theorem 2.2 we see that

A (X )D  CIS E  i ( (1  ,  GO)).

Since gradK = — gradY = 0(r - 6 ) by Lemma 2.1, we have by the use of Lemma 2.3

rad K. .9„u)iidSe L i ((1, 00)).

2) Hm —the Sobolev space of order m.



Long-range Schriidinger Ham iltonians

We can also see that by integration by parts

(gtg,ott)edS  =1 (g „,u)(.9„v)dS,
lx1 = r 1x1=r

which implies by Lemma 2.3 that

(gZ g„u)f )dS eL 1 ((1, cc)).
xl = r

OK K  i  2Now we have only to evaluate g r ) .ui" Since O1 3 Y
Or Or Or

=0 (r - 6 ) by Lemma 2.1 we have by using Lemma 2.3 that

a,
r r
Y  .9 ubdS eL ,((1, oo)).

lx1=,  u  
We have thus

d  (.9 r u)edS = (gru )6dS +F(r),
dr lx1=,

where

1cet
 IF(r)ldr <co.

Lemma 2 .5 .  Under the same assumption as in Lemma 2.4 we have

r u -edS  -* 0 a s  r -> co.
lx1=,

P roo f. Put 440=1 ru e d S . Then we have by Lemma 2.4
Ixl r

d  (K O = -  I /10 ( 0 + F ( r) ,  1 c: IF(r)ldr < co.dr

247

and

Q.E.D.

Letting r)=e 2di.,/Ar4)(r) w e have tP(r)=e2i•RrF(r), which implies
dr

- E r. e 2 i 'l A s F(S)C1S. Since F(s) e LAI, cc)), we see that there exists a  limit lirn 0(r).
1 00 ,--.00

By our assumption and Lemma 2.3 we have r- '010(r)ldr< co, from which we see
i

that lirn inflO(r)I= 0. This implies, since there exists a  lim it lim 0(r), th a t 10(01

OW =OM

r-.00 r..00

=10(r)j->0 as r-+co.

Lemma 2 .6 .  Let f e  L2 , (3 _, 0 )/ 2, U = R (.1 +  i0 )f. Then we have

( R(A+ i0) f - i0 ) f ,
r-.co ixl=r

P roo f. Since ( -21+ V- ))u = f ,  we have by Green's formula

(uf— fa)dx= ix1 , ( a
aur a—u a

a
ti
r )d s

lx1<r

ax(9 ,.u iri-u g r u)dS +2i
lxi=r Ix l= r  Ur

Q. E. D.
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In view of Lemma 2.5, we see that .9,.uadS-03 as r-* co. W e also see that the
ixi=r

left hand side of the above equality tends to  (R(2 + i0)f  - R (2.- i0)J; f ) a s  r-> Go.
-  0 YThus to complete the proof of the lemma, we have only to note that  a r  = —  a r

ay and Q. E. D.

Definition 2.7. For f  e  L2 , (3 ( ) /2, let ,F(A , r)f  e L 2 (S" - 1 ) be deaned by

V (A , r)f )(w )=C (A )r ( "- I) 1 2 e - riK("'" ) (R ().+ i0 )f )(no),

E Sn - 1 , C ( 2 ) =  e ( n- 3 )ni/4 7r- 1 /2 2 1 /4 .

In view of Lemma 2.6, we have for fe  L
2,(3 —E0)/2

(2.4)
i

( R ( .1 + i0 ) f - R ( A - i0 ) . f , f ) = I im  V (A , r) .f . 1112 ( s-1)./7r

Lemma 2 .8 .  Let f  E L2 , (3 _ ,0 / 2 .  Then there exists a  weak limit

w-lim r)f  - .."(,1 )f  in L 2 (S" - ').
r - +oo

Pro o f . Since 11,FR r)f il L s „-1 ) is uniformly bounded in r (by (2.4)), we have
only to show the existence of the limit lim (4), F(A , r)f ) L 2(S " -  )  for e Cœ(S" -  ').

Now let (1)(w )e0°(S n - ')  and v be defined by

(2.5) V = p(r)r— (n-1)/2eiK (x '2 .)0 (W ) w= x1r),

where p(r)E C'(R.,) such that p(r)=0 (r <1), p(r)=. 1 (r > 2). W e  let

(2.6) g = ( -  + V - ) )v.

Then we have by a straightforward calculation if r> 2

( 2 .7 )  g(x, .1.)=eiK ( xm { ( - 2 \ 1). aa/
1" + irxr2+ P)0(co) +i( a

a
2
r
Y
2 +  A

r2
Y )0(w)

-  4 4)( )+2igradY -grad4)(w )Ir-01-')12 •

In  view o f  Lemma 2.1, we see that g  satisfies <C(1+ r) - ( "+')/ 2 - 6 ,  in particular
g(., ).) E  L 2 ,(1 + c o ))2 *  W e can also see that y E L2 , .. ( j +, 0 )/2 , .9(.1)v E L2 , _ ( 1  — 6 0 ) / 2 ( E )

and 2,2)=0 if r> 2 . N ow  le tting  u =R(2+ i0)f , we have by using Green's formula

(2.8) v (d ii)} d x =. 1(.9,v)rt - v(g ,31)}  cIS
lx1=,

+ 215  c1S.
)1 x 1 = r  ä r

A s r tends to infinity, the left hand side of (2.8) tends to  (v , f )-(g, R (A .-1-i0)f).

Since g r v = 0  for r > 2  and lim v2 r u d S =0  by Lemma 2.5, we see that the
r- co Ix  Ir
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first term of the right hand side of (2.8) tends to 0 as r—>co. We can also see that,
0Ysince —0(r-6),Or

lim2i aK\ vi t clS
r .  CO Xl=rix' ,  or

=liM  C (1 ) (0 , F ( /1 , r) f )L 2 (S n -1 ) ,

where C(.1)=
2 e ( n -  1  )  i / 4 7 t 1  / 2 / 1 . 1  / 4 .

Thus we have by letting r tend to infinity in (2.8),

(2.9) f)— (g,+ i0 ) f  ) = 1 im  C ( A ) ( 0 , r )f )"s „ - )),

which proves the lemma.

We also need the following lemma whose proof will be given in §3.

Lemma 2 .9 .  Let f E L2 , (3 _ co n . Then there exists a sequence {r„,}."=, tending
to infinity  such that r„,)f converges strongly to „F(A)f in L 2 (Sn ) as m--400.

Now we can obtain the following theorem.

Theorem 2 .1 0 . Let f  E L2 , (3 _ E 0 )/2. Then g V .,r ) f  converges strongly to
in L 2 (Sn - ' )  as r--+ co. Moreover we have

1 (2.10) 17ri (R (),+  i0 ) f  R ( iO f  ) , f  )  = .F(A )f  1 1 i
2 (s— i).

P ro o f . Since "(.1 )f is the weak limit of ,F (A , r)f (Lemma 2.8), we have

(2.11)1  ,F  (A )f II L2( sn- inf II , F (A, f  II L2(5, '  1 ).r .  00

By the use of the sequence {r„,}„,7= , given in Lemma 2.9 we have

(2.12) lim inf r) r ,n)f c 2 isn - .).r-0.0 m-,co

=11.fl/l/f L2 (s . t).

In view of (2.11) and (2.12) we have

Il.F(A)f inf r ) f  II L2(5— .)
r -

= lirn (A, Of II L2 (5, , - 1) (by (2 .4 )),

which shows the existence of the strong limit s-lim r)f=3(.11)f in  L 2 (S" - ').
r - .00

The equality (2.10) will be derived from (2.4). Q. E. D.

Lemma 2 .1 1 . ..F(A)E 11(L2 , (3 _ E 0 )/2 : L 2 (Sn - ')). 3 7 (.1)f is jointly  continuous for
0 and f E L2 , (3 _ co ),2 .

P ro o f . It follows from Theorems 2.2 and 2.10 that



250 Hiroshi lsozaki

L2(s 1) C11.1. 11(1 + coo1167 (AV 11 —

C11 f 11(3  -4 ) /2 ,

which shows the first assertion, moreover the  operator norm  o f  9 .( )  is locally
bounded for .1.>  0 . Also by Theorems 2.2 and 2.10 we see that 11 (2 ) f  -  )  is
continuous in .1> 0 .  Thus to show the continuity of ,F (A) f  in  A we have only to
show that fo r  4) c C"(S" - 1 ) (0, <F(rl)f)/.2(sn- 1)  is continuous fo r /1.> 0 .  However,
this follows from Theorem 2.2 and (2.9). Q. E. D.

Now we are in a position of stating the spectral representation theorem for H .

L et i? = L 2 (R +  : L2 (Sn- 1 )) be the Hilbert space o f  L 2 (S" - 1 )-valued square integr-
able functions over R + . L et the  operator 9/ be  defined  by  (, f ) ( .1 ) . _ ,- (.1.)f.
Then

Theorem 2.12. (Spectral Representation for H).
(1) F ,  defined above, is uniquely extended to a  p a r t ia l isometry on = L,(Rn)
w ith  in it ia l s e t Y a c (11) (th e  absolutely continuous subspace for H ) a n d  f in a l  set
JP, which w ill be denoted by F  also.
(2) F o r a  bounded Borel func tion  a(A) defined on R we have for j

(..Foc(H)f)(A)= cx(2)(F f)(A) a.e. A> 0.

(3) For f e a c (H) the follow ing inversion form ula holds:

f =s-limS .F(A)*(Ff)(A)dA.
N-0.0 1/N

(4) ,F(A)* e B(L,(Sn -  1 ): L 2 , _ (3  _ , 0 ) /2 )  is  a n  eigenoperator o f  H  w ith  eigenvalue
in the sense that for any 0 e L2 (S" - ')

(— z1+ V),F(A)*0 = AF(A)*

holds.

Since this theorem is proved in the same way as  Theorem 2.8 o f Ikebe [2],
we omit the proof.

§ 3 .  Proof of Lemma 2.9

As in §2, we let u = R(/1+ i0)f, where f  E L 2 , (3 _ C 0 ) /2.

Proposition 3 . 1 .  There exists a sequence { r,„} , tend ing to  in fin ity  such that

r,„ 0 Igul2dS 0  a s  tri—). co.

P r o o f .  We have by Lemma 2.3

r i - "
(5 

lx1=r 
I9ul 2 dS)dr< co.

Thus the lemma readily follows from this inequality.
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Proposition 3 .2 .  L et {r„,} ,  be a  sequence specified in  Proposition 3.1, and
e C(SH - 1 ). Then we have if rm <r„

I W( 11
9  r i n ) f  F(A , r„)f , 95)1. 2 (s-1)1

C(rm)(IICIL2(s" - ') + rm- 
(2-to)/ 211 A112Ali

L 2 (S n - 1 ) )  9

where the constant C(rm ) is independent of 4), and C(r,„) tends to 0 as

P ro o f . We have only to  show the proposition when 0 e Cm(S" - 1 ). Now let
E C '(S " - ') ,  y and g  be defined by (2.5) and (2.6), respectively. B y  the use of

(2.8) we have

( 3 .1 ) (vf — g R)dx+
lx1=ro lx 1 = r )

v 9 , . u d S

5 ro ,< 1 x 1 < r"

= 210 OK vudS .
51x1=,„/ or

Since 11, (A., 011L2(s—') is uniformly bounded in r (by (2.4)), by using Lemma 2.1 we
can estimate the right hand side of (3.1) as follows

OK 
lx1= rn 1 1 x 1 = r „ , )  O r 

v udS

> Const.1GF (A, r„ )f-.F (A , rm )f, 0 )L 20 .-i> 1

— Const.r;, 6 (suP r„).flit,2(S-1))11011L2 (S" - 1 )•
n r n

The second term of the left hand side of (3.1) is estimated from above as follows

 K S ix l= r , ,
(3.3)

—5 ix i=rm )v 9rudS

\ 1 / 2
<C onst.(sup 19r U 1 2 dS) 11 11L 2 (S ' .

ix l= r , ,

We shall evaluate the first term of the left hand side of (3.1). By Schwarz' inequality
we have

(3.4) 5r„., < Ix] 
< ro  V fd x 1

r - l - E°11 011
2

L 2 (S" )C ir) 2
0

c° Y n + E °  11 f(r.)113
ro,rm

1/2
COnSt.r;" 1 2 0 + r) 1+E° f(x)I 2 d x )  11011 L 2 (S " - 1 ) .

l x  >r,„

(3.2)
216

To evaluate giidx , using (2.7), we split the integral into two parts /1 and
rm <1x1<rn

/2, where
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11=5 euccx,..1.1 _ 2 aY  + v 11x 2 v)
r,„< I xi < r,, ‘ i Or

i

+ iC23  +  A Y   )14)(w)iir - o - ' )1 2 dx,
er2 r 2

12=
r„,<Ixi <r,,

e • —iK(x A)( A4)( w)
2

+2igradY. gradO(co))fir - ( " - 1 ) 1 2 dx.

By Lemma 2.1, we have

(3.5) kid <Const.1 r - 1 - 6 11.F (A, OfIlL 2 (S"-i)dr110111. 2 (S"
co

<Consi.r;36(sup11.FQ, f11120 -  1 0110 111.2(Sn - 1 ).

Since

MA"2(e-uc(r. ''1 ) u)(r . )11L2 (Sn =  M( g . u ) ( r . )111.2(s--- ') ,

11(g rade- 
Ki

A  ) 4 2 (s—i>=11( 9 .u)(r•)11L 2 (S-1),

we have by integration by parts

(3.6) 112 1 __Const. r(" - 3 )12 11A 112 011L 2 ( s n i)11(9 .u)(011 L2 (s.-1)dr

+ Const.
r,,,

g . -+ Consi. 5  r o - 1 ) 1 2 - 6 11011L2 (sn-i)11( 0(011 c 2 (s- i ) dr

1/2
< C O n S t . r ; (2 - " )/ 2 (1 (1  +  r ) 1 - to I g u  i 2 d x )  11A I/2 4 )4 2 (S n -1 )

xi >r,”

+ Const.r( sup 11," ( )., r)fl1L 2 (s.- 1)) ii 0111.,(s',- -1 )

1/2
+Const.r;e 0 /2 (1 (1+ r) 1 - 0 I9ul 2 d x )  11611„L2 (s"-i)•

r> r",

In view of (3.1) to (3.6), we get the present lemma.

Proof of Lemma 2.9.
Let {r in } 1 be a sequence specified in Proposition 3.1. Then we have

(3.7)M  /1 1 / 2 F(A, rm/fIlL 2 (S-1)=r2'" ) / 2 11(g.u)(011 L2(Sn - 1 )

=o(r;„°12)

as m--4 co.
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Using Proposition 3.2 we have by choosing 4)=.9"(.1, rm ) f

(3 .8 ) I (,F(A , rnA f — . (A, rn ) f , rm).f11.2(s--1)1

C (r)(11 ..F(), rm )f  L2 (S n -I)+  r; (2 — " ) / 2 11A 1 / 2 9 . (2.9 L2(S.- 1).

Since ..9V, r„)f  converges weakly to (A) f  by Lemma 2.8, we have by letting n tend
to infinity in (3.8)

(3.9) j ILF (2 , rm).111 2 1.2(sn - 1) — (F ( 1 ) f , •FR  rm ).f h . 2 (sn-1)I

. C (r.)(11" .(A, r.)f 111. 2 (s-1)+ r n ,- ( 2 - E0 )1 2 11/1'12F(A , rm )f  II L 2 ( s n-i ) ).

In view of (3.7), we have by letting m tend to infinity in (3.8)

LA S. -  1 ) = .9 - (#)f II c2(s„ - 1) ,

from which we can conclude the strong convergence of g(A , r,„)f , since it converges
weakly to

§ 4 .  Solution of the eikonal equation

In this section we shall find a solution of the eikonal (Hamilton-Jacobi) equation

(4.1) K(x, A A ' V (x)= A.

Here we assume on the potential the following condition:

V (x) is a real-valued C '-f unction of  x E R'  such that M y (x )=0 (ix j - m(11 1)) as
Ixl—>oo, where

f k + 6 (O k<3)
m (k )=

3+5+2(k-3)/3 (k .

Theorem 4.1. T h e re  e x is ts  a  real-v alued f unction Y (x, A) e Cc(Rn x R + )
satisfying
(1) For any  compact set A +, there ex ists a constant R= R (A ) such that for
/1E A, ixj> R

2,1). 
 a

a l
Y
. (x , A )=- V (x )+ IF x Y (x, A)12 ,( r =  1 x 1 ) .

(2) ID W IY (X , ry-lcc1-6 (Icd- - k k 2 ) ,

(x , _ Ck(1+ r)AU0+ 1 (k 3),

IDV4Y (x, 2.)i <CŒ, r)4 (la  
l + k ) - 1 a 1 + 1 ( 1 0 6 I  + k > 4 , > I),

where u(k )= max {0, k +1—  m (k +1)} , and the constants Ck , C k  are independent of
A in a compact set in R + .

Before proving Theorem 4.1, we shall give some remarks on the assumption of
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the potential V (x ). The above theorem is the same as Lemma 2.1 except for the
differentiability of Y(x, ).) and the estimates for its higher order derivatives. As for
the spectral representations, it is sufficient to assume th a t Y(x, ).) is a  C3-function,
since Lemma 2.3 which is crucial to the spectral representations can be proved under
the above weak condition (see Appendix o f Isozaki [5]). However, as has been
stated in the introduction, the results of this paper is utilized in  the proof of the
completeness of modified wave operators (see [4]), in the case of which we need the
more differentiability o f  Y (x , )).  By this reason we shall prove here the stronger
version of Lemma 2.1 (which is really Theorem 4.1). Our assumption on V in this
section is stronger than that of § 1 .  However, the proof o f Lemma 2.1, which is
based on the Assumption in § I, will be obtained in the course of the proof of Theo-
rem

First let us begin with the following Hamilton's canonical equation of motion

 

(4.2)

 

where H = H(x, =11 2 + V (x ). The following lemma is essentially due to fliirman-
der [1].

Lemma 4 .2 .  L et K  b e  a com pact se t in  R"— {0}. T hen i f  11T and  e are
suff iciently  small, the equation (4.2) has a solution x=x(t, C , p ), = (t, C, p) f or
a l l  t> T  w ith an  arb itrary  C auchy  data x(T, p ) = n ,  C ,  p ) = p  such that

K, 2p <e 4  having the following properties:

lx(t, /))1 et.

1):Ye,p(4t, CT-6 (loci _ 1).

IDZ,p4t, P)I . Cti, (1Œ1) f o r any  a, where ii(k)=max {0, k+1— m(k+ 1)} .

IDItTt,p4t, C, p)i < Ct- m(k+1.1)+ H f o r  any  a and k (k> 1).

Moreover, we also have the more refined estimates:
There exists (C, p) such that it is tw ice continuously  dif ferentiable w ith

respect to and p, and (, p) as t---*oo.

(6) IEV3z, p (x((, P)/t - 2 03(C, (k+ lad 2).

(7) IMDZ, p (x(t, C, p )It-2 (t, C, p))I (k+  j  <2).

Pro o f . The assertions (1), (2) and  (3) have been shown in  Lemma 3.7 of
Hi5rmander [1]. Let us prove (4) by induction . By (4.2) we have

3) The relavance of our two assumptions o n  V(x) is seen in  Lemma 3.3 of Hiirmander [1].
4) In this condition, the number 2 is not essential at all. T h e  c ru c ia l fact is that the directions of

and p are very close.
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(4.3)
_  a ft ) ,

—  E
j=1

where (1);  consists of a finite sum of the following terms

Dtip x •-•D t,y , ki > i,  k i + • + k J=1 061 •

(When lcxl =0, we set j=  0 and C = 1 . )  Now, suppose (Di  'aax
V  » ;  is estimated by

a constant times t to  the power — m(1+ loci). (This is true when loci =O.) Then
by the condition of the potential V and the estimate (3), when we differentiate the
above equality (4.3) with respect to  C or p, the greatest contributions arise from the

• 0 V  , ,  .terms Dc ,p (D -1- a—,c4 9 j  u  =IN ), and they are estimated by a constant times t to  the
power

— m(I + loel)+ +  {  — m(2+ lap+ m(1 + Ict1)} +1

= — m( 1 +1a1+ 1)+10(1+ 1 .

Thus we see that (4) is true for any a and k= 1. Again by the use of (4.2)
N

(4.4) D 1 =  —  E  Di 
a

n t i/
x  axi=1

Where o f  is a finite sum of the following terms

Mix•••Mix, ki+•••+ki=N.

• 0(When N = 0 , we set j = 0 a n d  0 V= 1 ) .  Now, let us suppose tha t (DI  ex )1k;  is
bounded by t raised to the power — m(N +1). (This is true when N = 0 .)  Then
when we differentiate (4.1) with respect to t, the greatest contributions arise from the

0 Vterms / 4 / 4   ex  ) 0 N , which will be estimated from above by a constant times t to
the power + m(N+ 1)+ {m(N + 1)— m(N +2)1= — m(N+ 2). Thus we see that (4)
is true for any k> 1 and loci = 0 .  The proof of (4) for any a is obtained in a similar
way.

Now, by (4.2) we have

p) —C ,  P ) =  — Ç' a
a x

V  (x(s, C, P))ds,

from which in  view of (1), we see that there exists p) such that 4t, C, p)—>
oo(C, p) as t—> co, and

Coe aV 4t, C ,P)— .(C ,P)=) ,  ex ( x ( s ,  C ,  M ds.

Using this equality and (3) w e see  .Q(C, p) is twice continuously differentiable and
satisfies

(4.5) IDitgYe,p((t, P) — cc,(C, P))I C r k -â ( k + I a l  2).

5) We denote by DI the differential operators DI(Ig
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Since x(t, C, p)- T C = 2  4 s , C, p)ds, we have

(4.6) x(t, C, p)/t- 2 ,  p )= T 0 -2 T oo lt+5 t
T (  -  co )d s I t

In view of (4.5) and (4.6), w e get (6). The assertion (7) is obtained from (4.5) and
(6). Q. E. D.

Now, for co e S" - 1  let p(co: A)= A -17 (T co)co, and consider the equation

dx  _  a

( 4 . 7 )

8 H

x(T)= To),

pi
d t  _  

a
'

dt ax

( T )=p (o ): A),

where we restrict A on a compact set A In view of Lemma 4.2, by taking
T sufficiently large, we see that the solution x = x(t, co: A), =4t, co: A ) of (4.5) exists
for t> T. Let U(t, co: /1)=x(t, co: A) .  W e show by choosing R  sufficiently large
that the map (t, co)I-*U(t, co: A) gives a diffeomorphism for t> R .  For this pur-
pose we first show the following lemma. Recall that by Lemma 4.2, 4t, co: A)->

co = c,o (co: A) as t -*co.

Lemma 4 .3 .  F o r sufficiently larg e  T  a n d  t, th e  s e ts  {p(o.): A): co ES^ - 1 },
{x(t, co: A): co E S" - 1 }  a n d  { o,(co: A): co e S" - 1 }  are  c o m p ac t hypersurfaces of
codimension 1, each diffeomorphic to S 4 - '. M oreover { oo (co: A): co e Sn- 1 } is
the sphere of  the radius f i  with the center at the origin.

P roo f. We know in general the following fact: Suppose K  and K 1 are open
sets in Rn and 0 is a diffeomorphism from K to K 1 . Then if S is a compact hyper-
surface of codimension 1 in K, the image of S by 0  is also an n -1  dimensional
compact hypersurface in  K l . Now, since D.(p(co: A)- \ I -A-C.0)=0(7- 6 ), we see
taking T sufficiently large tha t p(co: A) gives a  diffeomorphism from  an open set
containing the unit sphere to an open set containing the sphere of the radius \ /X.
Thus we see that {p(co: A): co E s.-1}  is  a compact hypersurface of codimension 1
diffeomorphic to S" - 1 . By Lemma 4.2 (2) we have

D,,( (w: A)- p(co: A))= O(T - 6 ),

from which we see that { oo (co: A): co e Sn- 1 } is diffeomorphic to {p(co: A): co e S" - 1 }
by choosing T sufficiently la rge . By Lemma 4.2 (7), by taking t sufficiently large,
w e see that {x(t, co: A): co e S" - 1 } is diffeom orphic to g Jo): A): co e Sn - 1 1. W e
show the final assertion. Since the energy conservation law holds;

co: A.)12 + Y(x(t, co: A))= A, c o  E Sn-1,

t> T,

t> T,
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taking account of Lemma 4.2 (1), we see by letting t tend to infinity that „(co: /I) 2

=A . We also see that { cc (o.): 4  co e S"- 1 }  is  open and closed in the sphere of
radius j .  Thus we have only to use the connectedness of the sphere to get the
result. Q .  E .  D .

Now, let

F(t, co: A)= Tco— 2T A) +1 T
t (4 s, co: A)— Apds.

By (4.5) and (4.6) we have

x (t, co: ) ) = g c o (co: .,)z+ F(1, co: A),
(4.8)

t  IDO'tqin,F(t, w: ( j+ k + 2).

Since the map ml -4,o (co: )) is a diffeomorphism, we can express co as a function of
w= : A). Let f (t, A)= F(t, co( c,) : A): A). We have by (4.8)

x (t, co( ao : 2)=2 c t+f (t, A),
(4.9)

IM M D L f (t, cr): (I + k +

Now let us enter into a heuristic argument. If there exists a function y(x, A)
such that x= YliYI: 2), it must satisfy

2 )1Yl+f(lyl, co(yllyl: A): A).

Let Ixl = r, x lr z  an d  = 2 .9(Y/IYI IYI/r. Then we have

z=C+f(r1C1/( 2-s».), VAC/ICI: A,)/r,
(4.10)

IMPZD;f(f (r11/(2 VA), -s/AC/i CI : 2)/r)I Cr - k - 6 k+ _2).

Lemma 4 .4 .  L et K  b e  an  o p e n  se t containing th e  u n it sp h e re . Suppose
g(C: r, A) be a C2 -function f o r  e K , r>0, A e A  (A  is a com pact set in 12,), such
that

DOZD'.‘g(C: r, ),)=0(r - " )  a s  r- cc+  k +  <2).
Then f o r any  com pact set K , in  K , tak ing R , suff iciently  large, there ex ists a
C2 -function C(z: r, A) defined for z e K i , r>R i , A e A  such that

z =((z :r, A )+g(((z : r, A): r, A), z e K , ,  r> R i , AEA,

r, A )—  z)= 0(r - k- ')  a s  r  co (i+k +lccl 2).

P ro o f . This lemma will be proved by the method of successive approximation.
For the details see Lemma 4.1 of Ikebe-Isozaki [3].

Now, let us return to the equation (4.10). Let K 1 be a compact set containing
the unit sphere excluding the origin. By lemma 4.4, taking R , sufficiently large,
we see that there exists a C2-function C(z : r, A), (z  K i , r > R ,, A E A) such that
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=C(z : r, 2)+1(r1W (2, I 2), \I A), z e K i , r > R i , AEA,
(4.11)

1. ID iADP1.1 (C(z: r, 2) — z)I (j + k+10(1.2).

Le t t(x, /1.)-= Ix' Ixl, 4/(21).), and co(x, 2) be the image o f ,/g(x/Ixl: Ixl, 1 )1
IC(xlIx1:1x1, 2)1 by the map (a): 2 )l - + w . D e fine  y(x, A)=t(x, )L)co(x. 2). Then we

see by (4.11) that fo r 1x1 >R i  and A E A y(x, A) satisfies

x=U(1y1, YllYI: A),

(4.12) D'ILIcl(t(x, 2)— r1(2,1A))= 0(r 1 - 1' k +la 1 2 ,

D pco (x , A )=  0 (r -121 ), k <2,

where r=Ixl.
W e  have show n that y(x, A) is  a  C2-function o f  x  an d  A. However, since

U(t, A) is  a  Cx-function, we see that y(x, 1) is  a  C'-function o f x  and A. We

m ust get the estimate o f  DP"ty(x, 2). The  fo llow ing Lem m a 4.5 will be proved

by induction.

Lemma 4.5. L e t  0(y,

CIY1'111+k)-lœ1+1

2)=U(IYI, YllYI: 2 ). Then we h av e  113 p3.0 (Y, 2 )1
f or every a and k.

Lemma 4.6. IDPV(x, 2)1 < Cr./W.1+0- 1.1+1 f or any a and k (r=lxI)-

P roo f. We differentiate 0(y(x, A): 2)= x by x to  obta in  (DA). Dx y = 1 .  Since

we know  by (4.12) Dx y(x, 2) is bounded, we see ((D y 0)(y(x, 2): 2)) - 1  is bounded.

By a further differentiation we have

1.1 .
(4.13) E (wy 0)0 ; +(D y 0 ).D D )= 0 , (10(1 _2),

j=2

where cki  is a finite sum of the following terms

Dix‘1y—D12y, ki+•••+ki=lal.

Now, suppose (Diy 0)4) ; 2 )  is estimated by a constant times r to  the power y(lal)
— 'al + 1 .  (This is true when la' =2 by a direct calculation.) W hen we differentiate

(4.13) with respect to x, by Lemma 4.5 and our assumption, we see that the greatest

contributions arise from  the term s Dx (D10)(j) j  ( j= la l) ,  w hich  are estimated from

above by a constant times r raised to the power

P(I ll) — 10(1+ 1 + +1)—(lal +1)+11 — {12(1cel) — 10(1+ 1 }]

=i4lal+ 1) — (Ial +1)+1.

Thus DIal+iy=0(rA (121 +1 )-(1 1 1 +0 + '). W e have thus shown that the present lemma

is true for any a and k = O .  The assertion for any k is proved in  a sim ilar way.

Summing up, we have obtained the following lemma.

Lemma 4.7. Fo r sufficiently larg e  R i ,  there exists a  C'-function y(x, 1)
(1x1>R i , A E A) such that
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x=U(IYI, Y/IYI : A ) f o r  Ix' R i , )e A ,

A )=0(r10111 +10-1 a1+ ')  f o r any a and k ,

DV Y (1y(x , ) )I — r 1(2 \ I ) )) = 0 k + lal 2 ,

DV Y ,t(y(x, ))11y(x, -= 0(r- k +  c < 2,

for r =Hal> R i , )e A .

Now, let x 0 =x (R , co: ) ), po =(R , co: A), where x(t, A) and 4 t ,  co: A) is the
solution of (4.7). Let M R = IX 0 = x (R , co: A): co E S"- '1, which is a compact hyper-
surface of codimension 1 by Lemma 4.3, and consider the equation

(4.14) R),

x (R )= x 0 ,

«R ) = p 0 .

By Lemma 4.7, taking R  sufficiently large, the solution x (t), 4 t) of (4.14) exists for
t >R ,  a n d  th e  m ap  (t, co)i —*.x(t) defines a  diffeomorphism fro m  {(t, co): t

e S" -1 } to  {x: x is outside of M R }. Let

110=5 W , 0  ) :  A) 0): 2)cli F
at

where x(t, co: A), 4 t , co: A) is the solution of (4.7), and consider the Cauchy problem

117x 1(12 + V(x)=A o u t s i d e  M R ,{

K(x, A)= u 0 o n  MR.

The corresponding characteristic equation is given by (4.14). By what we have
proved (Lemma 4.7), we see that the solution of (4.15) really exists and is given by

K (x , A )--1 : ( s ) ° x  (s)ds + u 0 .R( I S

L e t Y(x, A)=VAIx1 —K(x, A). W e show tha t th is func tion  Y (x, A ) has the
properties enumerated in Theorem 4.1. Since 17 „K (x , A )=4t) by our construction,
we have

rx Y (x, A)=,1AxIlx1— ( t).

By Lemma 4.2 (7) and Lemma 4.7, we have by a direct calculation

.1)1,{D y  x Y  (x, A )= 0(r -1 1 1 -6 ) ( k +  <2),

which shows the first assertion of Theorem 4.1 (2). Let us show  the remainder
assertions. B y  the n o t a t io n of Lemma 4.2, ( t )=4 t , co, p), where

(4.15)
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p=,1A — V(TY1IYIVIIYI.
p= \12 — “Ty/IY IV/IY I.

Let P(y , )L )=(t, w , p), where (0=Y/IYI,
Then by induction we see that

(4.16) A)1<Cly111(121+k)-111 for any a and k.

Let 0(x, 1)=P(y (x , A), A), where y(x, ),) is  inverse function given in  Lemma 4.7.
Then we have by Lemma 4.7 and (4.16)

IDV) 110(x, /1.)I<CrPclal+k) - Ial( r =  1 x 1 ) .

Clearly Dpl,t(j/Tx/Ix1)=0(r - 1 1 1 ). Thus we see that

'DW I ! x Y (x, A)I<Crg( 111+k)-1 "1,

which proves the remainder assertions of Theorem 4.1 (2) when I l  > 1 .  The case
for lal =0 will be proved by integrating Dx 1Y Y (x, A).

Now, let A . ( j=1 , 2,...) be open sets in R +  such that A, c A2= • -11, and the
closure of A i  is also contained in the following o n e .  By the above results there
exists a solution K i (x, ) ) of eikonal equation (4.1) for 1x1> R 1 (R 1 sufficiently large),

e A i . Let A, be an open set in A , such that its closure is also contained in A ,.
Let 0 1(A) e C (A ,)  such that 0 1)= 1  fo r ). E A l , and  ST= {xeRn : lx1=T }. We
consider the function v(w, A) on ST defined by

v(w, A)= 0 1 (A)K 1 (T co, A) + (1 — 0,(A)),1 AT (T R 1) .

We shall find a function p=(p,,..., p„) on ST  such that

pi + • • • +pi +11 (x) =.1. (.1 e A2 ),

and as an 1-form on ST

d v  = Ê p d x .,
J =1

Choosing T sufficiently large we see that such a function p really exists and has the
property

p= p(w, A )= A w+ 0(T - 6 ) (w E S8 - 1 ) .

Let us consider the equation

dx  _  OH 
dt

cg  _  
dt Ox

x(T)= Tco weSn-1,

(T)=p(co, A) (OE S 1 ,

where p(w, A) is the function we have just constructed. By Lemma 4.2, the solution
x =x(t, co, p), = (t, co, p )  o f  (4.17) really exists f o r  t > T  a n d  b y  th e  similar
arguments w e  have given in  t h e  p ro o f  o f  Lemma 4.3, w e  se e  th a t the set

(4.17)

t> T,

t> T,
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MR = {x(R, a), p): w e S" - 1 } is a compact hypersurface of codimension 1 by choosing
R sufficiently la rg e . L e t

u 1 =S (t, a), p) 
 a
e
x
t (I, a), p)dt+ v(co, A),

and consider the Cauchy problem

(4.18)
{ I VxKl 2 + V(X)=),

K(x, A )= a, o n  MR,

outside MR,

where A e A 2 .  By th e  similar arguments we have just given above, by taking R
sufficiently large, we see that the solution K 2 (x, .1) of (4.18) exists, moreover K 2 (x, A)
=K i (x, ),) for A n A 1 ,  Ix' R2 (R , sufficiently la rg e ) . Repeating these arguments
we see that there exist such constants R i  that there exists a solution K (x, A.) of (4.1)
in  the  region G =U { x : x I>R } x A .  O u ts id e  G  we continue K (x , A) in  a

fashion. WeWe have thus completed the proof of Theorem 4.1.
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