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§1. Introduction

We shall investigate in this paper spectral representations for the Schrodinger
operator defined as the self-adjoint realization in L,(R") of H= —A4+ V(x), where
4 denotes the Laplacian in L,(R") and the potential V(x) satisfies the following

" Assumption: V(x) is a real-valued C3(R")-function such that for some 6>0
DV(x)=0(r"121"9) as r=|x|>00 (0<L|a<3)

0 0
where D"=<-&c‘1"”’ e
As has been noted by Tkebe [2], the usual Fourier transform (precisely speaking,
its restriction to the sphere) is obtained from the asymptotic expansion of the solu-
tion of the Helmholtz equation (for instance in R3, and if f e C(R?),

>, o is a multi-index.

1 eiJle—yl eiJI
S 3 nr

1 . " -iJio -2
1 g Sy =S e p()dy+06)
as r=|x|—>oo0, where w=x/r).

Suggested by the above observation, Ikebe [2] and Saité [10] have obtained the
spectral representation theorems for Schrédinger operators with long-range potentials
by considering the following limit

(1.2) lim r(#=1/2= K& AD(R(A+i0)f) (r-)

r—o

in L,(S""1), where R(z)=(H —z)™!, and it has been observed that K(x, 4) should be
chosen as an (approximate) solution of the eikonal equation

(L.3) |7 K(x, D2+ V(x)=4
(see Ikebe-Isozaki [3]). This procedure has also been adopted by Mochizuki-

1) Partially supported by Sakkokai Foundations.
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Uchiyama [9] in a slightly modified form in the case that the potential has an
oscillation at infinity.

Here we remark the following: First in the work of some previous authors
(see e.g. Saité [10] and Isozaki [5]) it seems that too much smoothness has been
required of V(x) in order to solve (approximately) the eikonal equation (1.3).
Second, the existence of the limit (1.2) has been guaranteed only along a certain
sequence {r,}2-, diverging to infinity.

The purpose of the present paper is two-fold. First, we shall construct the
exact (asymptotic) solution of the eikonal equation under the above mentioned
assumption on the potential V(x). (This solution is utilized in a stationary proof
of the completeness of the time-dependent modified wave operators (see Ikebe-
Isozaki [4].) To solve (1.3) we follow the standard line of Hamilton-Jacobi’s theory
of solving first order partial differential equations. However, the attempt to find
a local solution at infinity of (1.3) will complicate our arguments considerably.
Second, we shall prove the existence of the limit (1.2) without taking a sequence
{rm}2-,, which will remove the inconvenience that has so far occurred whenever we
have dealt with limits like (1.2) in discussions connected to spectral representations
for the Schrodinger operators. Here we should mention the work of Saito [10],
which has also shown the existence of the limit (1.2) without taking a sequence
{r.}>_,. However, since he transforms the Schrodinger operators — 4+ V(x) into
the ordinary differential operators with operator valued coefficients by passing to
the spherical coordinates, his theory cannot be applied directly to the case R2.
Whereas, our arguments hold good in the case R”, n>2.

The contents of this paper are as follows. In §2, we shall prove the existence
of the limit (1.2) and the spectral representation theorem for H assuming the existence
and certain asymptotic properties of the solution of the eikonal equation (1.3).
Some technical lemmas will be proved in §3. The solution of the eikonal equation
(1.3) will be constructed in §4.

§2. Spectral representation
Let us begin with the following lemma.

Lemma 2.1. Let R,=(0, 00). There exists a real-valued C3}R"xR,)-
function Y(x, 1) having the following properties:
(1) Let A be an arbitrary compact set in R,. Then there exists a constant
Ro=Ry(A)>0 such that

2T Y (x, =17, ¥ (x, DI+ V()
for r=|x|>R,, A€ A.
(2) For any compact set A in R, there exists a constant C=C(A) such that
[D2Y(x, )| < C(1 +r)t-lal=s 0O<|a)<3).
We shall prove this lemma in §4. Note that if we put K(x, A)=/2r—Y(x, 1),
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it must satisfy the eikonal equation |V K(x, )|2+ V(x)=A for sufficiently large |x|.
We introduce several notations.
For a domain G in R" and a real constant §, let L, 4(G) denote the Hilbert

space of all measurable functions f over G such that | f II%’(;:SG(IHXDMI F(x)]?

dx<oo. If f=0or G=R", we often omit the subscript.
Let K(x, /1)=\/Ir— Y(x, A) as above, and the differential operators 2, 2
2%, 2% be defined by

2t =2%()= ai,. sl )2,-?1’35 (.2 (Fj=x0r j=1, ),

gi—(@i,..., 9':})’
0

m~~ ~~~ a
2%=gradFigradK(x, 1), (grad grad— % —— a3 X=x/r).

Let E={xeR":|x|>1}. In general B(H,: H,) denotes the totality of
bounded linear operators from a Banach space H, to a Banach space H,.

The following theorem due to Ikebe-Saito [6] asserts the existence of the
boundary values R(4 % i0) of the resolvent R(z)=(H —2z)"! (ze C—R).

Theorem 2.2. Let ¢, be a constant such that 0<gy,<3/2.
(1) For A>0, there exists a strong limit

S;]il(;n R(I{ i‘ i&) = R(}»i io) € B(LZ,(I +£0)/2 . LZ, -\ +£0)/2) .
Moreover, for f€ Ly (1 442, R(AE10)f is continuous for A>0 in Ly _ ;4 ,0y2-
(2) For feL,,q+4s)2 R(ALI0)f satisfies the radiation condition
D*(MR(A£i0)fe Ly, (1 —4p)2(E) -
(3) R(A+i0)f is the unique solution of the following problem

(=4+V=Wu=f, f€Lj ey

U€Ly _(1+e0)2>
DEMueL,,_ (- .0)2(E).
(4) The part of H in R, is absolutely continuous.
We also need the following lemma whose proof has been given in Isozaki [5].
Lemma 2.3. Let feL, ;_.,2- Then we have

2 (ARAEI0)f (1 -20y/2,6 < CILf (3025

where the constant C is independent of A in a compact set in R .
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In the following we refer only to the outgoing radiation operator 2+*(4), and
write it 2(4). Now, let u=R(A+i0)f (f€ L, ;+¢,)2)- Then u satisfies

(2.1) (—4+V=Du=f.

Let 2% be the formal adjoint of 2;, and A be the Laplace-Beltrami operator on
Sn—1 (the unit sphere in R"). Then by a direct calculation we can rewrite the
equation (2.1) as follows

(2,2) Z D¥D ju—2 Z»—@ u

=f—<l7+ |VY[2—2\/I%> <‘3;Y +AY >u,

where V(x)=V(x)+(n—1)(n—3)/(4r?).
First we investigate some properties of the surface integral.

Lemma 24. Let feL,3_.2 u=R(A+i0)f. Let veH}.> be such that
VE Ly _(14e0y2 And D(AWE Ly _ (1 _g)2(E). Then we have the following equality

-4 S|x|=, (2,u)5dS=—2iJ7 Sm:’ (D,u)5dS+ F(r),

where Sw |F(r)ldr < oo.
1

0 n—l_l_laK

Proof. Noting that 2} = —% " i

we have by a straightforward

calculation
ey 5 (@uwus=-{ _(@rowiast| (@u@vas.

The second term of the right hand side of (2.3) is easily seen to belong to L,((1, o))
by our assumption and Lemma 2.3. Since ¥ 2%2;=9}9,+2%52,, we have in
J

view of (2.2)

D Du=DED u— 2166—K9u digradK-D ,u+ A(x),

where A(x)=—f+<I7+IVY|2 2/,1‘36Y> (%2f+AY>u. By Lemma 2.1

and Theorem 2.2 we see that

SI _ AG)RdSELy((1, 0)).

Since gradK = —gradY=0(r"%) by Lemma 2.1, we have by the use of Lemma 2.3

m~~
Sl _ (GradK-2,1)5dSe Ly((1, ).

2) Hm™=the Sobolev space of order m.
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We can also see that by integration by parts
| _(aso.wias=| (@.u@m)ds,
|x|=r x|=r
which implies by Lemma 2.3 that

SI _(@59,0)5dSe Li(1, ).

0K - . 0K ~ 0Y oY
Now we have only to evaluate W@,uv. Since —ar—z\/,l_W and wre
=0(r"%) by Lemma 2.1 we have by using Lemma 2.3 that
S W guvdseLy((1, ).
|x|=r
We have thus
d _ . T -
dr (2,u)vdS=—2i /A ' (2,u)odS+ F(r),
|x|=r x|=r
where
SwIF(r)|dr<oo. 0.E.D.
1

Lemma 2.5. Under the same assumption as in Lemma 2.4 we have -

S QuvdS -0 as r— oo.
Ixl=r
Proof. Put <15(r)=gI | 2,uvdS. Then we have by Lemma 2.4

2 p(n=-2J16(+F0), |"IFOldr<co.

Letting y(r)=e2virp(r) we have 7—l//(r) e2ivIZrF(r), which implies y(r)=y(1)
+S e2iVisF(s)ds. Since F(s)e L,((1, o)), we see that there exists a limit lim y(r).

By our assumption and Lemma 2.3 we have S r=%0|¢(r)|dr < oo, from which we see
that liminf |/(r)]=0. This implies, since there exists a limit lim y(r), that |y(r)|
r—o r—oo

=|¢(r)| -0 as r—oo. Q.E.D.
Lemma 2.6. Let fe L, 3_.,2 4=R(A+i0)f. Then we have

(R(A+i0) f— R(1—i0) f, f)=lim 21'\/715| _, lul?as.

Proof. Since (— A4+ V—A)u=f, we have by Green’s formula

I N e

|x|=r

=SI N (.@,ua—u?ﬁ)dsuig %_’f|u|2ds.
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In view of Lemma 2.5, we see that S DuiidS—0as r»o0. We also see that the
left hand side of the above equality tends to (R(A+i0)f—R(A— 10)f f) as r—»oo

Thus to complete the proof of the lemma, we have only to note that ——\/ /1— P
and g—f =0(r9). Q. E. D.
Definition 2.7. For fe L, 3_,,2, let F(4, r)fe L,(S"") be deaned by
(F (4, ) )(@)=C(2)rn=DI2e ik D(R(A+i0) f)(rw),
weS" ', C(A)=elr~Irmildg=1/2)1/4

In view of Lemma 2.6, we have for fe L, ;3.2
(2.4) ,m (R(A+1i0)f— R(A-i0) f, f)—llm £ (2, #) fl70sm-1)-

Lemma 2.8. Let fe L, 3-,,2. Then there exists a weak limit

w-lim F(, r)f=F () f in Ly(S"™").

r—o

Proof. Since | F (4, r)fll},sn-1) is uniformly bounded in r (by (2.4)), we have
only to show the existence of the limit lim (¢, F (A, r)f)L,sn-1) for ¢peC(S"~1).

Now let ¢(w) e C*(S"!) and v be defined by

(2.5) v=p(r)r-("D2eKENP(w)  (r=|x], @ =x/r),
where p(r) e C®(R,) such that p(r)=0 (r<1), p(r)=1 (r>2). We let
(2.6) g=(—4+V-»2).

Then we have by a straightforward calculation if r>2

@7) gx, D=eren (—2J1 L 417,72+ Pyg) +i( G T+ A o)

A : Z'f\c/l'Y ’_\';i ( —(n=1)/2
_—;5‘45(‘0)"‘ igradY-gradd(w)}r .
In view of Lemma 2.1, we see that g satisfies |g| < C(l+r)~"+1)/274 in particular

g(+, A€ Ly (1 450)2- We can also see that v€ Ly _((400)20 D(AVE Ly —(1-40)/2(E)
and 2,0=0if r>2. Now letting u=R(A+i0)f, we have by using Green’s formula

s ((oyi-oamydx={  (@wii-v(@u)ds

+2ig 9K ynds.
x|=r Or

As r tends to infinity, the left hand side of (2.8) tends to (v, f)—(g, R(A+i0)f).
Since 2,0=0 for r>2 and IimS _ v9,udS=0 by Lemma 2.5, we see that the

r—o
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first term of the right hand side of (2.8) tends to 0 as r—c0. We can also see that,

. aY — _6
since —--- =0(r9),

lim 21'8' i a—KvﬁdS=lim2i\/Zg' _ vids

roo or r—»00

=r1i12 C(A) (¢, #(4, ")f)Lz(s"-l),

where C(1)=2e("~Drildg1/2)1/4
Thus we have by letting r tend to infinity in (2.8),

(2.9) (©, /)= (g, R(A+i0)f)=lim C(A)($, F (4 ) f)rasn-1),
which proves the lemma.

We also need the following lemma whose proof will be given in § 3.

Lemma 2.9, Let feL, 3_,,,2- Then there exists a sequence {r,}»-, tending
1o infinity such that F (A, r,,)f converges strongly to F(A)f in L,(S""1) as m—oo0.

Now we can obtain the following theorem.

Theorem 2.10. Let fe L, 3_.,,2- Then F(4,r)f converges strongly to F(1)f
in Ly(S"™1) as r->o0. Moreover we have

(2.10) i (ROA+10) f= RG=101), ) = | F (A y5n-1.

Proof. Since &#(4)f is the weak limit of F(4, r)f (Lemma 2.8), we have

(2.11) ”y(l)ful,z(s"-I)Sli?lglf I A 1) f |Lysn-1y-

By the use of the sequence {r,}2-, given in Lemma 2.9 we have

(2.12) “I'El'jonf £ (4, ")f||L;.‘(:::"-1)$”l'i_.“3o IF (A ) fllLycsn-ye

=[F DS Lysn-1y-
In view of (2.11) and (2.12) we have

llf(l)f”l.z(sn-l)=li?l£1f 1# (A ) fllLysn-1)
=“_}£lo 1 (A ) f D Lyesn-1y (by (2.4)),
which shows the existence of the strong limit s-lim F(4, r)f=F(1)f in L,(S"1).
The equality (2.10) will be derived from (2.4). Q.E.D.

Lemma 2.11. F ()€ B(Ly 3 _.)2: L2(S"Y). F(A)f is jointly continuous for
A>0and fe L, ;_cp)2-

Proof. It follows from Theorems 2.2 and 2.10 that
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'Ig(/l)fuu(s"-1)SC”]‘”(| +£0)/2
<Clfll3=eoys2s

which shows the first assertion, moreover the operator norm of (1) is locally
bounded for A>0. Also by Theorems 2.2 and 2.10 we see that | F(1)f],n-1) is
continuous in A>0. Thus to show the continuity of #(4)f in 1 we have only to
show that for ¢ e C*(S""!) (¢, F(A)f)L,sn-1, is continuous for A>0. However,
this follows from Theorem 2.2 and (2.9). Q.E.D.

Now we are in a position of stating the spectral representation theorem for H.
Let ##=L,(R,: L,(S*1)) be the Hilbert space of L,(S"~!)-valued square integr-
able functions over R,. Let the operator & be defined by (Ff)(AW)=F1)f.
Then

Theorem 2.12. (Spectral Representation for H).
(1) &, defined above, is uniquely extended to a partial isometry on # =L,(R")
with initial set s ,(H) (the absolutely continuous subspace for H) and final set
o, which will be denoted by F also.
(2) For a bounded Borel function a(A) defined on R we have for f € #

(FauH)YA)=a(W)(F f)(1) a.e. A>0.
(3) For fe s#,(H) the following inversion formula holds:
F=slim S" FO)XFf)(L)da.
N-w JI/N

4) FA)*eB(Ly(S"1): Ly _(3-52) is an eigenoperator of H with eigenvalue A
in the sense that for any ¢ € L,(S"™')

(—4+WVFN)*¢=1F()*¢
holds.

Since this theorem is proved in the same way as Theorem 2.8 of lkebe [2],
we omit the proof.

§3. Proof of Lemma 2.9
As in §2, we let u=R(4+4i0)f, where fe L, 3.

Proposition 3.1. There exists a sequence {r,}sm-, tending to infinity such that
r,%,“"g |2u|?dS -0 as m— 0.

x| =rm

Proof. We have by Lemma 2.3

Sw rl'“"(S |9u|2d5>dr< 0.
1 |x|=r

Thus the lemma readily follows from this inequality.
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Proposition 3.2. Let {r,}%-, be a sequence specified in Proposition 3.1, and
¢ e CY(S"Y). Then we have if r,,<r,

|('9°-(;L’ rm)f— .9-()., rn)f’ ¢)L2(S"")|
SC(rrn)(”¢|lLz(S"")+rm_(2_£°)/2” A1/2¢||L2(S"“)) s
where the constant C(r,,) is independent of ¢, and C(r,,) tends to 0 as m— 0.

Proof. We have only to show the proposition when ¢ e C®(S"~!). Now let
¢ e C*(S" 1), v and g be defined by (2.5) and (2.6), respectively. By the use of
(2.8) we have

3.1) (vf— gt‘l)dx+<g - g|x|=.m>”%ds

Sr,,.<|x|<r,.

|x|=rn

- 2i<g xl=rm S|x|=r..>?§vads'

Since || # (A, )l Lysn-1) is uniformly bounded in r (by (2.4)), by using Lemma 2.1 we
can estimate the right hand side of (3.1) as follows

. 0K -
(3.2) |2’<S|x|=r" —Sm:rm 9K vaas|
2C0nSt'|(‘g()‘a rn)f_ ?(l’ rm)f’ ¢)L2(S"“)|

_CO”St-"fné(ﬁgp (4, fn)f“Lz(sn-l))”(b||L2(s'--l).

The second term of the left hand side of (3.1) is estimated from above as follows

(3.3) Kg —S )u@_,uds\
|x|=rn |X]=rm
1/2
SConst.(supSI | 12,428 )19 |50,
nzm J|x|=rn
We shall evaluate the first term of the left hand side of (3.1). By Schwarz’ inequality
we have
(3.4) S of dx|
rm<|x|<rn
© 1/2/(® 1/2
<(§7 et litasmndr) (7 el 26 ndr)
1/2
<Constryzo(§ (14Dl fld) 19l s,
x|>rm
To evaluate S " gidx, using (2.7), we split the integral into two parts I, and
rm<ixi<rn

I,, where
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i = 0Y
= iK(x, ) — 2
h Sr..,<|x|<r,,e {( 2\/)*—6,, +17.Y] +[7>

[/ 0%Y | AY -
ti{ 52t —r—z—)}g‘b(w)ur (n=D/2gx,

L= S eiK(x,l)< _ Ad(w)
rm<[x|<rn r2

—~—~ —~—
+ 2igradY-grad¢(w)>a,-—(n—|)/2dx.

By Lemma 2.1, we have
)

(3.5) |1 SCO"“-S rriTF (4, r)f”Lz(S"‘l)d’"d)"Lz(S"“)

rm

SCOnst.r,_,,‘s(Sup ”-g’.()., r)f”Lz(sn-l))l|¢|lbz(s:u—l)_

r2rm

Since

I K
o A2 (e Duy(r) |y sn-1y = 1( Do) (r) | Lyesn-nys

—~~ . A
[(grade™ X&Pu)(r )| L,sn-1)= 1(2,u)(r)llL s -1y,

we have by integration by parts

(3.6) |Iz|SC0”St~S rO= 2 APy sn-iy (D ou)(r) |y sn-ndr

rm

[ o]
+Const.S F0 @l L, s - F (4, P) fllLysn-vydr

r

[}
+ CO'ISLS r=D278 G L sn-1y (Do) (r )l Ly (sn-1ydr
r

m

1/2
< consz.r;,u-eo)ﬂ(g (+ryi=so| @ul2dx) | A2 s

|x|>rm

+C0”St-";va(r3é1rp 1# (A, 1) fllLysn-) 1@l Lysn-1y

1/2
+Const.r;,‘°/2(g ( +r)1“°|9u|2dx) T

r>rm

In view of (3.1) to (3.6), we get the present lemma.

Proof of Lemma 2.9.
Let {r,}©-, be a sequence specified in Proposition 3.1. Then we have

3.7 [ AY2FE (A, 1) fllLysn-1y=rSFO2I1(D ou)(r ) Lyesn-1
=o(ri?)

as m—00.



Long-range Schridinger Hamiltonians 253
Using Proposition 3.2 we have by choosing ¢ =% (4, r,)f
3.8 (FQLr)f=F A r)f Fra) Nias)
SCrmIF Ay 1) fllLaesn-1y +rn 22| AVRF (A, 1) fll Ly (sn-1)-

Since # (4, r,)f converges weakly to #(4)f by Lemma 2.8, we have by letting n tend
to infinity in (3.8)

3.9) |II#(@4, "m)f||21,2(s"-1)—(-7('1)f, F(2, rm)f)L;(S"“)'
Sc(rm)("?(}w rm)f”Lz(S"") +rm_(2_80)/2” Al/ng‘(l, rm)f”L;(S"“‘))'
In view of (3.7), we have by letting m tend to infinity in (3.8)

"lll_fl;lo £ (4, "m)f”Lz(s"-l): IF M La(s"- 1)

from which we can conclude the strong convergence of & (4, r,)f, since it converges
weakly to F(4)f.

§4. Solution of the eikonal equation

In this section we shall find a solution of the eikonal (Hamilton-Jacobi) equation
4.1) |7 K(x, )2+ V(x)=A.
Here we assume on the potential the following condition:

V(x) is a real-valued C*-function of xeR" such that D*V(x)=0(|x|™(2D) as
[x|—> o0, where
k+6 0<k<3)
m(k)=
3+6+2(k—3)/3 (k=4).

Theorem 4.1. There exists a real-valued function Y(x,2)eC*(R"xR,)

satisfying
(1) For any compact set A=R., there exists a constant R=R(A) such that for
Aed, |x|>R

2 e, D=V + 17X (e, DI (=),

©) |DEDYY (x, M) < Cp (L4 r)1 71172 (lal+k<3, £<2),
IDIY (x, D)< Ci(1+ r)p+t (k=3),
|DIDEY (x, M < C, k(14 pyrtisi=trzialyt (o] + k>4, |a] > 1),

where p(k)=max {0, k+1—m(k+ 1)}, and the constants C,, C,, are independent of
A in a compact set in R,.

Before proving Theorem 4.1, we shall give some remarks on the assumption of
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the potential V(x). The above theorem is the same as Lemma 2.1 except for the
differentiability of Y(x, A) and the estimates for its higher order derivatives. As for
the spectral representations, it is sufficient to assume that Y(x, 1) is a C3-function,
since Lemma 2.3 which is crucial to the spectral representations can be proved under
the above weak condition (see Appendix of Isozaki [5]). However, as has been
stated in the introduction, the results of this paper is utilized in the proof of the
completeness of modified wave operators (see [4]), in the case of which we need the
more differentiability of Y(x, ). By this reason we shall prove here the stronger
version of Lemma 2.1 (which is really Theorem 4.1). Our assumption on V in this
section is stronger than that of §1. However, the proof of Lemma 2.1, which is
based on the Assumption in § I, will be obtained in the course of the proof of Theo-
rem 4.1.3
First let us begin with the following Hamilton’s canonical equation of motion

dx _ 0H

dt T oE”
4.2)

dt _ _0H

i~ ox°

where H=H(x, £)=|£|>+ V(x). The following lemma is essentially due to Hérman-
der [1].

Lemma 4.2, Let K be a compact set in R*"—{0}. Then if 1/T and ¢ are
sufficiently small, the equation (4.2) has a solution x=x(t, {, p), E=&(, {, p) for
all t>T with an arbitrary Cauchy data x(T, {, p)=TC, &T, ¢, py=p such that
{eK, |{—2p|<e* having the following properties:

(M Ix(t, ¢, p)l=et.

) IDg & L p~PI<SCT? (el <D).

(3) |D2"p§(t’, { pl<Crdeb  for any a, where p(k)=max {0, k+1—m(k+1)}.
(4) |DEDg &1, ¢, p)l < Crmiktlebrial  for any a and k (k>1).

Moreover, we also have the more refined estimates:

(5) There exists £,({, p) such that it is twice continuously differentiable with
respect to { and p, and &(t, {, p)—E&({, p) as t—c0.

(6) |DEDE (x(t, £, p)t =28 (L, pHI<C7 72 (k+al<2).
() IDEDE o(x(1, §, p)/1—=28(t. & pNI<Crt=? (k+]al<2).

Proof. The assertions (1), (2) and (3) have been shown in Lemma 3.7 of
Hormander [1]. Let us prove (4) by induction. By (4.2) we have

3) The relavance of our two assumptions on V(x) is seen in Lemma 3.3 of Hérmander [1].
4) In this condition, the number 2 is not essential at all. The crucial fact is that the directions of
{ and p are very close.
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(4.3) D,Dg i=— z <D, o >¢,,5>

where ¢; consists of a finite sum of the following terms

Dé"lpx-.-Dé‘,Jpx, ki>1, kl+"'+kj=|d|.

(When |af=0, we set j=0 and ¢;=1.) Now, suppose (D{ g—;/)gbj is estimated by

a constant times ¢ to the power |¢|—m(1+|a|). (This is true when |¢|=0.) Then
by the condition of the potential ¥ and the estimate (3), when we differentiate the
above equality (4 3) with respect to { or p, the greatest contributions arise from the

terms Dy, ‘,< )d) (j=]la|), and they are estimated by a constant times ¢ to the
power
—m(1+|a)+ o] +{—mQ2+ o)+ m(1 +|e|)} + 1
=—m(1 +Jo|+ 1)+ |a| +1.

Thus we see that (4) is true for any « and k=1. Again by the use of (4.2)
oV
(4.4) prrie=- 3 (0155,

Where ; is a finite sum of the following terms

Dz‘lX“'ijx, kizl, k1+"'+kj=N-

(When N=0, we set j=0 and y;=1). Now, let us suppose that (Dig—xV)ﬁ ;s
bounded by ¢ raised to the power —m(N+1). (This is true when N=0.) Then
when we differentiate (4.1) with respect to ¢, the greatest contributions arise from the

terms D,(DN aV)lﬂN, which will be estimated from above by a constant times ¢t to

the power +m(N+1)+{m(N+1)—m(N+2)}=—m(N+2). Thus we see that (4)
is true for any k>1 and |¢|=0. The proof of (4) for any « is obtained in a similar
way.

Now, by (4.2) we have

i 6= 6 p) == Sl a5, ¢ pyas,

from which in view of (1), we see that there exists £,({, p) such that &(t, {, p)—
¢o(l, p) as t—o0, and

e L p) =Ll )= (x(s, €, p)ds.

Using this equality and (3) we see &({, p) is twice continuously differentiable and
satisfies

(4.5) IDEDE J(&(t, &, P)—Eulls PNISCE*2 (ko <2).

5) We denote by D7 the differential operators Di(| 8| =/).
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Since x(t, {, p)— TC=2S; &(s, €, p)ds, we have

(4.6) x(t, &, p)t=28 (L, P)=TL[t=2TE [t + S; (E—&L)ds)t.
In view of (4.5) and (4.6), we get (6). The assertion (7) is obtained from (4.5) and
(6). Q.E.D.
Now, for we S"! let p(w: )=./A—V(Tw)w, and consider the equation
dx _ O0H
@ = =2h
d¢é _ _ 0H
4.7) =T =2h
x(T)=Tw,
AT)=plw: ),

where we restrict A on a compact set AcR,. In view of Lemma 4.2, by taking
T sufficiently large, we see that the solution x=x(t, w: ), E=£&(t, w: A) of (4.5) exists
for t>T. Let U(t, w: )=x(t, w: 1). We show by choosing R sufficiently large
that the map (¢, w)| = U(t, w: 1) gives a difftomorphism for t>R. For this pur-
pose we first show the following lemma. Recall that by Lemma 4.2, {(t, w: 1)—
Eo=E¢ (w2 A) as t—>c0.

Lemma 4.3. For sufficiently large T and t, the sets {p(w:1): weS""1},
{x(t, v: 1): weS* '} and {{ (w:A): weS"" '} are compact hypersurfaces of
codimension 1, each diffeomorphic to S"~!. Moreover {{ (w:A): weS" 1} is
the sphere of the radius \//T with the center at the origin.

Proof. We know in general the following fact: Suppose K and K, are open
sets in R” and @ is a diffeomorphism from K to K;. Then if S is a compact hyper-
surface of codimension 1 in K, the image of S by @ is also an n—1 dimensional
compact hypersurface in K;. Now, since D (p(w: l)—\/Ia))=O(T ~%), we see
taking T sufficiently large that p(w: 1) gives a diffeomorphism from an open set
containing the unit sphere to an open set containing the sphere of the radius /4.
Thus we see that {p(w: 1): we S""1} is a compact hypersurface of codimension 1
diffeomorphic to S"~'. By Lemma 4.2 (2) we have

D, ({n(@: 2)—plw: A)=0(T~?),

from which we see that {£ (w: A): we S""!} is diffeomorphic to {p(w: 1): w e S*~1}
by choosing T sufficiently large. By Lemma 4.2 (7), by taking ¢ sufficiently large,
we see that {x(t, w:1): weS" !} is diffeomorphic to {{ (w:A): weS"1}. We
show the final assertion. Since the energy conservation law holds;

(L, w: D+ V(x(t, w: A)=24, weS" 1,
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taking account of Lemma 4.2 (1), we see by letting ¢ tend to infinity that |€_(w: 1)]?
=A. We also see that {¢ (w:A): weS" '} is open and closed in the sphere of
radius ﬁ Thus we have only to use the connectedness of the sphere to get the
result. Q.E.D.

Now, let
F(t, @: )= To—2TE (w: )+ S'T (s, @: A)— & (w: A)ds.

By (4.5) and (4.6) we have
[ x(t, : A)=26(w: )+ F(, w:A),
4.8) )
|DiDYDLF(t, w: )| < Cel=k-2 (j+k+|al<2).

Since the map w| =& (w: A) is a diffeomorphism, we can express w as a function of

Eor 0=w(E,: A). Let f(t, &t A)=F(t, o(&,: 4): A). We have by (4.8)
x(t, 0(lo: A): A) =28l + (2, £ A),

4.9

#9) [ |D{D¥D}_f(t, é: A)| < CelmH0 (j+k+|af<2).

Now let us enter into a heuristic argument. If there exists a function y(x, 1)
such that x=U(|y|, y/|y|: 4), it must satisfy

x=28,(/1yl: DY+l Syl D)2 ).
Let [x|=r, x/r=z and {=2&,(¥/|y|:A)|y|/r. Then we have
(4.10) l z=L+f (1L 2R, ALNIL: D),
|DIDEDE(f(rIL1/(2JA), VAL : D[ <Crés (j+k+]al<2).

Lemma 4.4, Let K be an open set containing the unit sphere. Suppose
g(¢:r, A) be a C*-function for (€K, r>0, Ae A (A is a compact set in R,), such
that

DiDgDig(L:r, N)=0(r"%%) as rooo (j+k+|a<2).

Then for any compact set K, in K, taking R, sufficiently large, there exists a
C2-function {(z: r, A) defined for ze K,, r>R,, A€ A such that

z={(z:r, )+g((z: r,2):r,A), zeK,, r>R,, A€ A,
DiD:D¥({(z:r, A)—2z)=0("*%) as r—ow G+k+a <2).

Proof. This lemma will be proved by the method of successive approximation.
For the details see Lemma 4.1 of Ikebe-Isozaki [3].

Now, let us return to the equation (4.10). Let K; be a compact set containing
the unit sphere excluding the origin. By lemma 4.4, taking R, sufficiently large,
we see that there exists a C2-function {(z: r, 1), (ze K, r>R;, A€ A) such that
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@ [ z={(z:r, ) +LILQRYD), JALNEN D), zeKy, r>R,, A€,
' |DiDzDE ({(z:r, A)—2)|<Cr*=8  (j+k+|a|<2).

Let t(x, A)=|x|{(x/|x|: |x|, ,1)1/(2\/1), and w(x, A) be the image of \/ZC(x/lxI: |x|, A)/
|¢(x/Ix|: |x], A)| by the map & (w: A)|»w. Define y(x, )=t(x, D)o(x. 1). Then we
see by (4.11) that for |x|>R, and A€ 4 y(x, 1) satisfies

x=U(yl, y/lyl: ),
(4.12) DED(t(x, 2)—r[(2\/2)=0(r'"12179), k+|a| <2,

DiDiw(x, A)=0(@"12), k+|a|<2,

where r=|x|.

We have shown that y(x, 1) is a C?-function of x and A. However, since
U(t, w: 1) is a C®-function, we see that y(x, A) is a C®-function of x and 1. We
must get the estimate of DzD%y(x, ). The following Lemma 4.5 will be proved
by induction.

Lemma 4.5. Let ®(y, )=U(lyl, y/lyl: 2). Then we have |DiDid(y, })|<
Cly|rtel+i)=1al+1 for every o and k.

Lemma 4.6. |D2Dy(x, )| < Crrtelto=lal+l for any o and k (r=|x|).

Proof. We differentiate ®(y(x, 4): )=x by x to obtain (D,®)-D,y=1. Since
we know by (4.12) D,y(x, A) is bounded, we see ((D,®)(y(x, 4): 4))~! is bounded.
By a further differentiation we have

(4.13) £ (0j0)8,+(D,0)- D3y =0, (1>2),

where ¢; is a finite sum of the following terms
D.’;ly'"Dl;jy’ kiZI’ k1+"'+kj=|a|'

Now, suppose (Di®)¢; (j=2) is estimated by a constant times r to the power pu(ja|)
—Ja|+1. (This is true when |¢|=2 by a direct calculation.) When we differentiate
(4.13) with respect to x, by Lemma 4.5 and our assumption, we see that the greatest
contributions arise from the terms D,(Dﬁtb)gbj (j=la|), which are estimated from
above by a constant times r raised to the power
i) = lol + 1+ [{p(lal + 1D = (el + 1) + 13 = {u(fer) — o] + 1]
=u(la| + 1) —(le| + 1) +1.

Thus Dlel*1y=0(r*(zI+*H-Ual+D+1)  We have thus shown that the present lemma
is true for any o« and k=0. The assertion for any k is proved in a similar way.

Summing up, we have obtained the following lemma.

Lemma 4.7. For sufficiently large R,, there exists a C®-function y(x, A)
(Ix|=R,, A€ A) such that
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x=U(lyl, y/lyl: 4) for |x|=Ry, Ae 4,
DDk y(x, A)=0(rrte*=lal*1y - for any a and k,
DaD(1y(x, M =r]/2J2)=0(r'"1217%), k+]«|<2,
DEDi(y(x, Dly(x, YD =0(r"1=1), k+]a|<2,
for r=|x|>R,, A€ A.

Now, let xo=x(R, w: 1), po=&(R, w: 1), where x(t, w: 1) and &(t, w: A) is the
solution of (4.7). Let Mz={xo=x(R, w: 1): w € S"~1}, which is a compact hyper-
surface of codimension | by Lemma 4.3, and consider the equation

dx _ 0H
_d;‘—__(:“? (t=R),
de __oH

(4.14) @ T T =R
x(R)=Xxq,
E(R)=p,.

By Lemma 4.7, taking R sufficiently large, the solution x(t), &(t) of (4.14) exists for
t>R, and the map (f, w)|—>x(t) defines a diffeomorphism from {(t, w): t>R,
we S" 1} to {x: x is outside of My}. Let

u0=S: &, 0: ) F(, 0 Ddi+ AT,

where x(t, w: 1), &(t, w: A) is the solution of (4.7), and consider the Cauchy problem

|7 K2+ V(x)=2 outside Mg,

(4.15)
K(x, H)=u, on M;.

The corresponding characteristic equation is given by (4.14). By what we have
proved (Lemma 4.7), we see that the solution of (4.15) really exists and is given by

K(x, /1)=S; c(s)g_:(s)dw o,

Let Y(x, )=\/A|x|—K(x, A). We show that this function Y(x, 1) has the
properties enumerated in Theorem 4.1. Since V,K(x, 1)=¢&(t) by our construction,
we have

VL Y(x, 2)=/2x/Ix| = &)
By Lemma 4.2 (7) and Lemma 4.7, we have by a direct calculation
DiDaP Y (x, )= O(r~121-9) (k+1a]<2),

which shows the first assertion of Theorem 4.1 (2). Let us show the remainder
assertions. By the notation of Lemma 4.2, &¢@)=¢&{t, w,p), where
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p=yA=V(My[lyDy/lyl.  Let ¥(y, H=&{t @, p), where t=|yl, o=y/lyl,
p=+/A=V(Ty/lyD)y/ly]. Then by induction we see that

(4.16) |DeDY(y, A)| < Cly[rd=l*k-lzl  for any o and k.

Let &(x, 1)=¥(y(x, 1), ), where y(x, A) is inverse function given in Lemma 4.7.
Then we have by Lemma 4.7 and (4.16)

|D2DY®(x, 1)| < Crrdialth=lal (r=1x]).
Clearly D2D%(\/2x/|x|)=0(r"!*). Thus we see that
|D2DEP Y (x, A)| < Cretielti=lal

which proves the remainder assertions of Theorem 4.1 (2) when |a|>1. The case
for |«| =0 will be proved by integrating D, D¥Y(x, 4).

Now, let 4; (j=1, 2,...) be open sets in R such that 4, =A4,<---R, and the
closure of A; is also contained in the following one. By the above results there
exists a solution K,(x, 4) of eikonal equation (4.1) for |x| >R, (R, sufficiently large),
AeA,. Let A, be an open set in A, such that its closure is also contained in 4,.
Let ¢,(1) e CZ(A,) such that ¢,(1)=1 for Ae A, and Sp={xeR": |x|=T}. We
consider the function v(w, A) on St defined by

v, )=¢ (MK (Tw, H)+(1—-¢,(MJAT (T=Ry).
We shall find a function p=(py,..., p,) on Sy such that
P4+ p2+V(x)=4 (e dy),
and as an 1-form on Sy

dv= i p;jdx;.
j=1

Choosing T sufficiently large we see that such a function p really exists and has the
property
p=plw, )=/lo+0(T"%)  (weS").

Let us consider the equation

dx _ 0H
at _ _O0H

@.17) @ T ox 2T,
x(T)=Tw weS" !,

&T)=p(w, 1) wes,

where p(w, ) is the function we have just constructed. By Lemma 4.2, the solution
x=x(t, o, p), E=E&(t, o, p) of (4.17) really exists for t>T and by the similar
arguments we have given in the proof of Lemma 4.3, we see that the set
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Mz={x(R, w, p): @€ S" '} is a compact hypersurface of codimension 1 by choosing
R sufficiently large. Let

_(R ox 1
U= Té(t’ , p)—at—(t’ , p)dt+v(w$ )9

and consider the Cauchy problem

[P K24+ V(x)=A  outside Mg,
(4.18)

K(x, )=u, on My,

where AeA,. By the similar arguments we have just given above, by taking R
sufficiently large, we see that the solution K,(x, 1) of (4.18) exists, moreover K,(x, 4)
=K,(x, A) for Ae A,, |x| >R, (R, sufficiently large). Repeating these arguments
we see that there exist such constants R; that there exists a solution K(x, 4) of (4.1)
in the region G=\U{x: lesz}x/fj. Outside G we continue K(x, 4) in a C®-

fashion. We have thus completed the proof of Theorem 4.1.
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