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§ 1. Introduction

The central aim  o f this paper is to construct som e classes o f infinite
dimensional stochastic processes related to population genetics or statistical
m echanics by m aking u s e  o f  infinite dimensional stochastic differential
equations.

T o  b eg in  w ith , w e w ill exp la in  a n  e x a m p le  r e la te d  to  population
gen etics . L et S  b e  a  countable s e t  w h ich  w e co n sid er a s  th e  se t o f
colonies. Suppose that there are  two alleles A  and a  in  each colony and
th a t  th e  ch an g e  o f gene frequencies is  caused  by random  sam p ling ,
mutation, selection and  m igration . A s is well-known in population gene-
t ic s  a l ] ,  [6 ] ) ,  w h e n  w e  ignore the m igration effect, the frequency x i (t)
of A-genes in  th e  i- th  co lo n y  a t t im e  t  m ay be considered  a  path  of
1-dimensional diffusion process on  the in terval [0 , 1 ] determ ined  by the
diffusion coefficient

1 
4N x i ( 1 — x i)

and the drift coefficient

v— (u+ v)x ,d-sx ,(1— x i )

fo r each i E S .  H ence t h e  frequency x , ( t )  satisfies th e  following 1-di-
mensional stochastic differential equation

1(t) = / x ; (1 —x i )dB ,(t)  ( y —  (u + v )x i +s x i (1—x ; ) ) d t2N

fo r each i E S , w h e re  {13,(t)} ;„ is  a n  independent system  of 1-dimens-
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ional Brownian m otions. N ow, w e suppose that q ,  stands for the rate of
migration from th e  j- th  co lony to  t h e  i - t h .  It seem s qu ite  natura l to
consider the following stochastic differential equation

1 (1 .1)d x , ( t )  — x,(1 —x,)dB,(t) + (v — (u+v)x,+ s x ,(1 —x ,)
2N

+ E q„.x.,)dt, i ES.
j e S

Such a  system should be called a  continuous time stepping stone model. The
discrete time stepping stone model was proposed by M . K im ura for the
problem  o f  lo c a l d ifferentiation o f  gene frequencies a n d  it h as been
studied by many biologists. (c f. J .  F . Crow &  M . K im u ra  [1 ]). N atu ra -
lly , w e expect that Eq. (1. 1) has a unique solution X (t) = fx, (01 ; E s  taking
values in the s p a c e  [ 0 ,  l ] .  In § 3, we shall discuss the following stochastic
differential equation, which is more general than Eq.(1. 1) ,

(1 .2)d x , ( t ) = a ; ( x , ( t ) ) d B ; ( t ) +  f ( X ( t ) ) d t , i ES,

where X (t) = { x i (t)}, E s ,  a n d  {B,(t)}, E ,  i s  a n  independent system  o f 1 -
dimensional Brownian m otions and w e  sh a ll g iv e  a  su ffic ien t condition
under which Eq.(1. 2 ) h as  a  u n iq u e  strong  solution X (t) =  fx,(t)} , E s E
[0 ,  l r  f o r  an y  in itial data X (0) E  [0 , 1]. E rgodic behaviors of the system
(1 . 1 ) have been discussed by one of the authors [11].

Secondly, we suppose that there a r e  in fin ite  m any a lle les A 1, A2,

A„, . . . in  each  co lony. W e denote by x 7 ( t )  th e  frequency o f An-genes
in  th e  i-th  colony at tim e t. Then x 7 (t) satisfies the stochastic differen-
tial equation (1. 3) under some genetical assumptions

71

(1 .3)d x ( t )  =  E a r (x ! ,  x 2„ . . . , xn,)dB:" + ( 4 4 ' — x",) +  E q„x;)dt
m=1 i s

.x7(t) =0, i E S , nEN

w here N  is the set o f natural numbers, the fun ctio n s ar, i E S , n, m EN
a re  continuous on the n-dim ensional set ((xl, x 2 , . x") ; for each

k and E 11 , the triangular matrix  A =  ( a m) . is  d e te rm in ed  b y  the
k=1

relation

{1 (n =m)
A A , , (5,, _ x -))„ . „,„ where (7 2 _ -. 0  and ö = 0  ( n * m )

and U3, (t)}, E s = {(13;, /3 2,, . . . , .) L E , is  a n  independent system  of
infinite dimesional Brownian motions.
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W e sh a ll p ro v e  in  § 3  th a t  Eq.(1. 3 )  h a s  a  u n iq u e  strong solution
X (t) =  {x ( t ) } „ „ , , „ E  (L...)" fo r an y  in it ia l d a ta  X (0 ) E  (/ ) 5 w h ere  L c.,=
{X =  (x 1 , .x2   x " ,  . . . ) ;  x " . 0 for any n E N  a n d  E x -=  1 ).

n E N

Finally, in  § 4 we shall discuss diffusion processes on Y ' ( Zd), the space
of all tempered sequences on Zd. It enable us to construct a time evolution
o f an  unbounded sp in  system in statistical mechanics as a diffusion process
on b  ( Z i )  determ ined by the following stochastic differential equation

1(1.4)d x , ( t ) , dBi (t) — (4);(x i ( t ) ) +  E 0;, ; (x ,(t ), x i (t )))d t,
2

where B (t )=  {B , (t ) }„ z a is  a n  independent system o f  1-dimensional Bro-
wnian motions, 0, (x), i E Za a r e  self-potential functions, 0 ,(x , y ), i, jE  za

a are  p a ir  potential functions an d  0 : (x ,  y) = 0, ,(x, y ).
'

Recently H . Doss and  G . R o yer [ 2 ]  constructed a  d iffu s io n  process
associated with (1 . 4 ). However, our method which is based on a standard
approximation procedure in  th e  theory of stochastc differential equations,
seems to be more natural.

§  2 .  Preliminaries

L et S  b e  a  countable set. L e t ,  f o r  e a ch  i E S ,  a ,  b e  a  continuous
mapping from d-dimensional Euclidean space Rd in to  th e  space o f  d xd
matrices RdORd and f  b e  a  m apping from  (Rd)s in to  Rd w hich  is con-
tinuous in  th e  product topology o f  (R d )" .  Each po in t o f the space (R")s
is denoted by X =  {x,}, E ,  where x ,E R d . x ,1  denotes t h e  d-dimensional

d

Euclidean norm of x , and a , 1 2 (a7"')2, where a r  is the (n,m)-compo-

nent of a,.
In th is  section , w e shall d iscuss th e  following stochastic differential

equation ;

(2. 1) x i (t) =x ; ( 0 )  +  a ; (x i (s))dB i (s) +S t f i (X(s))ds, i ES,

where B (t)=  {B ; (t )} , E s  is an independent system of d-dimensional Brownian
m otions. W e w ill g ive th e  definition of a solution of Eq.(2.1).

Definition. A  p a ir  (X ,  B )= (X ( t ) ,  B ( t ) ) , 0 d efin ed  o n  a  probability
space (Q, P ;  r' ‘ )  is called  a so lution of (2. 1) if the following condi-
tions (i)-  (iii) a re  satisfied
( i ) B (t )=  [Bi(t)1 is a n  independent system  o f  d-dim ensional 37:,-
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Brownian motions w ith  B(0) =0,
(ii) ) X (t)=  fxi(t)1 i e s  i s  a  .F,-adapted stochastic process an d  x ; ( t )  is
continuous in  t . () with probability one for each l'ES and
(iii) (X ( t ) ,  B ( t ) ) „  satisfies t h e  stochastic d ifferential equation (2. 1)
with probability one.

First, we shall discuss the ex istence o f a  so lu tion  o f E q.(2. 1 ) under
the following assumption.

L et r = tri } ,  b e  a positive sequence on S and let L 2 (1) b e  the space
of a ll square r-summable sequences on S. i. e.

L 2 (1) = {xE (R d ) S ; 11x11 = E n Ixi 12 ‹  +col
i E S

Assumption [ A ]  For some positive constant C , it holds that

(2. 2) E n la ('x) 1 2 5C (1 +11X112 )
iE S

and

(2.3)E  ri If (x)1 2 c(1+11x11) fo r any XEL 2 (1).i.,
Then we get

Theorem 2.1. L e t  X E L 2 (1 ) .  Then there exists a solution (X (t ) ,  B (t ) )
of Eq.(2.1) on a probability space (Q, , P ;  , )  such that

(2.4)P [ X ( 0 )  = X] =1

and

(2. 5) P [X (t )  is a L 2 ( r ) - v a l u e d  strongly continuous function o f t 0] =1.

P ro o f. L e t  {S„} b e  a  sequence o f finite subsets o f S  such that S „ i'S
as n-->00. L et u s consider the following equation ;

(2 .6)x 1 ( t )= x 1

x ,(t) = x , -F S : ,(x",(s))dB(s) f, (X" (s))ds,

B y Skorohod's existence theorem o f  fin ite d im ensional c a s e  [1 2 ], there
exists a so lution  (X " (t) , B " (t)) =  (x7  (t) , 137 (t))1 ; e s  o n  a  probability space
(SP, P ; )  fo r each n.

T hen w e can  easily see that fo r each  fin ite  T  there exists a constant
C '>0  such that
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(2.7) sup .E1 sup IIX"(t) +  0 0 ,
O t T

and

(2.8) sup E"[IRC"(t) — X" (s) t for

Thus, we see

(2.9) sup P "[ sup lx7(t)1>C] - - ->0, as  C--)00, and
o O t T

(2. 10) sup sup P n E I (t) — x7(s)1>E] --->0, a s  h-->0, i S
n 

D t, s T

fo r  a n y  s > 0 .  By m aking use o f Skorohod's argument, w e  can  see  th a t
there exist a sequence (71,1, a sequence of stochastic processes (In (t), P "P (t))
a n d  a  stochastic process (g ( t ) , ( t ) )  defined on a probability space (D,

P )  su ch  th a t f in ite  dimesional distributions of ( fCP (t), 13"P (t)) and
(X 5  (t ),  B n P  ( t ) )  coincide a n d  (Xi :P ( t )  Y i P ( t ) )  converges to (X i (t ), f3 ,(t ))
in  probability as p—> + 00 fo r an y  t  and  i E S .  W e m ay assume th a t  the
processes £,7P(t) have continuous trajectories an d  th a t I P ( t )  and 1-3 ( t )  are
independent systems of d-dimensional Brownian motions.

I t  is  k n o w n  (c f .  N . V . K ry lov  [4 ] )  th a t  th e  p a ir  ( frP( t) , 13 ' ( t ) )
satisfies the finite dimensional stochastic differential equation

(2. 11) it) =x ,

(t) i + St a i (S))df3';P (t) +Si  f (SCP (s))ds,
0

Since cri ( ( t ) )  converges to  a (± i ( t ) )  i n  p ro b ab ility , w e see  th at S o a i

(.t n
i

P (S))Clij ni P  (S ) converges to S' a i (.t i  (s))d13,(s) i n  probability as + co .

(c f . A . V . Skorohod [12], p. 3 2).

O n the other hand , w e  can  see  th a t {f— P (5CP ( t ,  6)))1 p , ,  is uniformly
integrable w ith respect to  the measure dt x P(dcb) o n  [0 , T ] x r2 because

S U  0p S  dt B [Ifi ( t  (7) ) )  I ] < + ° ° .
P 

Noting that fCP(t, eii) converges t o  j't ( t ,  6 )  in  m easure  w ith  respect to
dt x P (dco) o n  [0, T ] x  (T (  0 0 )  ,  we see that there exists a subsequence
[72;} o f  {ni } such that jr•P'(t, (b) converges to  g (t,  ai) almost everywhere
(t, co) with respect to dt x (clai) . Taking into consideration of the continuity
of f, (X ) , w e have

ESn p
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d t P [I f( .7 -CP' (t, ei))) — f(g(t, ) 1]-->0 as p—› +  0 0 .

Thus, we see that th e  p a ir  (g ( t ) ,  1 3  ( t ) ) ,  satisfies

.t, (t) —x 1 =S:cx,(X" i (s)) 4 ( s ) + S o
r ( g ( s ) ) d s , i E S , a. s.

fo r each  t. T he right hand side o f th is equality has a  continuous modi-
fication fo r each i E S  which we denote by ± 1 (t) —x• P u t

= r\ [a f g (s )  , (s), ,Ar]
e>0

where d r stands for all subsets o f f )  w ith  P-measure 0. T hen , it is clear
th a t C g ( t ) ,  f3 ( t ) ) , , 0 i s  a  so lu tio n  defined o n  (D, P; „F,) of Eq.(2. 1)

Finally w e note that k ( t )  is a L2 (r) -valued strongly continuous function
of t 0 with probability o n e .  To show this it is sufficient to see that

(2. 12) PEE r. sup a  (x  (s ))dB  (s ) < -F  co for an y  r< 0 0 ]=  1
t E S  0 5 t < T 0

and

(2. 13) PEE r i ( S  If (X (s)) Ids) 2 <+ 00 for an y  T< 00]= 1.
i E S 0

It follows from (2. 7) that

(2. 14) n,R [lig(t)111<+ co for any fin ite  T.
O T

By using (2. 14) and a m axim al inequality for m artingales, w e  c a n  sce

(2. 15) E 11PE sup a i (."X; (s))c/f3, (s) 12 i  <  0 0 fo r any fin ite  T.
i ES 0

T hus (2. 12) is v a l id .  A lso, (2. 13) follows immediately from (2. 14).

Remark 2.1. S u p p o se  that fo r some constant C > 0  la ; (x,)C  and
If (X ) 1._C hold any x,ERd, any X E  (Rd)s and any i E S . Then, Assumption
[A ] h o ld s for an y  positive sequence r= { n }  w ith  E r,<+ .0 . Moreover,
i f  su p  Ix , < + 0 0 , th e re  ex is ts  a  so lu t io n  o f  Eq(2. 1 ) such that sup E

[ sup lxi(t) 1 2 ] <+oe.
0 5 t

L et K  be a compact set of Rd. A solution (X ( t ) ,  B ( t ) ) , , , ,  o f Eq. (2. 1)
defined o n  (Q,34'7 , P ;  t ) is  c a lled  L 2 (r) -valued  (K s-valued) if X (t) E
L 2 (1) (resp. X (t)E K s )  f o r  a l l  t 0  almost surely. Theorem 2. 1 asserts
the existence of a L2 (7) -valued solution under Assumption [A ], and  it w ill
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be d iscussed  in  § 3 the case th a t  Eq.(2. 1 )  h a s  a  K s-valued solution.
W e w ill omit the definitions of the pathwise uniqueness o f  L 2 (r)-valued
(or K s-valued ) solutions and of a L 2 (r)-va lued (o r  Ks-valued) strong
solution because these defin itions can be given in  th e  s a m e  w a y  as in
the theory o f finite dim ensional stochastic differential equations. (cf. T.
Yamada &  S. W atanabe [13])

Thus, we obtain

Theorem 2.2. The existence o f  a L 2 ( )-v alued (K s-v alued) solution and
the path wise uniqueness o f  L 2 (r)-valued (Ks-valued) solutions imply the existence
o f  a unique L 2 (r)-valued (resp. 1(5 -valued) strong solution.

§ 3. Stochastic  d ifferen tia l equations re la ted  to  stepp ing stone
models

First, we consider the following stochastic differential equation
d

(3.1) d x ( t )  =  E (x, ( t))d B r(t) (X (t ))d t i E S , 1 <n <d,
m--=1

where B (t)=  { (B ;(t ), 1 3 ;.(t ), . . , A l(t )} , E ,  is an  independent system  of
d-dim ensional Brownian motions. W e d en o te  b y  L  the d-dimensional

d

set (x= (x', x 2 , , xd) R 5 ; .r k 0  fo r each k  and E X k 1 ) .

Let us consider Eq.(3. 1) under the following assumptions.

A ssumption [B -1 ]  a r  (x ),  iE S , 1 m d  a r e  continuous functions
defined on the set L , uniform ly bounded in  i E S  an d  1 and
satisfy the following conditions ; for each i ES,

(3. 2) [a ; •a:]" (x) =0 if x =  (x ',  .  ,  x d ) E L  and x"= 0, and
d d d

(3.3)E  E  [a i •ajn -  (x) =0 if x =  (xl, . . , xd) E L  and E x"= 1.
n --= 1  n t-= 1 nr--1

A ssum ption [B-2] f7 (X ) ,  i E S ,  1 a r e  continuous functions
defined on L s, equipped w ith the product topology, such that

(3.4) sup sup If, (X ) l< + 00,
i e S  X e L S

(3.5)f 7 ( X ) _ _ _ ( )  i f  X = tx7) EL 5  an d  x = 0 i E S ,  1 <n <d ,

and

(3. 6) i f  X =  {x7} ELs and x:n= 1.
I n = 1
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Then under Assumptions [B -1 ] and [B -2] we obtain

Theorem 3. 1. For any X E L s, the stochastic differential equation (3. 1)
has a solution (X ( t ) ,  B ( t ) ) ,  on  a probability space (Q, P ;  g ." ,)  such that

P[X (0)=  X  and X ( t ) L s  f o r  a l l  t._10]=1.

P ro o f. Let p  b e the projection mapping from Rd onto L, j. e . for each
x , p x  is uniquely determined by Ix — px1=inf { !.x ;  y  EL) . Set c (x ) =
cr ,(p x )  a n d  f; (X ) =  ( p X ) ,  w h e re  pX-= (Pxil i e s  fo r  X =  (xi iEsE (R d ) s .
T hen  by Remark 2. 1 there exists a solution (X ( t ) ,  B ( t ) ) , , ,  on a probability
space (Q, „97 , P ;  t )  of the following stochastic differential equation,

(3. 7) dx ':(t)= cy7(x 1 ( t ) )d ,B 7 ( t )+ P i (X (t) )d t

X(0) = XELs

and it holds that

(3.8) sup E[ sup Ix; (t) <  0 9  for each  fin ite T.
i e S O gtgT

To complete this theorem it suffices to show

P[X  (t) E L '  for all 0] =1.

For an y s> 0 , set u, (y )  =  - 1 -  ( y E R ' ) .  Then by using Assumptions [B-1]
3) -

and [B-2], w e see easily that there exists a positive constant K  such that

1 d

(3.9) - - - 1 4 ( x )  E ( - 7( i) ) 2 +71:(x) P:(X)2 „.:=1

and
d d d d

(3. 10) -
1
—U: ( 1 — E x ) E E E (K k a :"
2 n= 1 n = 1  m = 1  k = 1

if x7> — s,

da d

—u:(1 — E (  f7 (X )) i f  E x< I. +E.
n=1

Applying Ito's formula w e have

(3. 11) E[u,(x';(t A z-,„))] (x7) + Kt for an y  0 < a< s

where r:,„ is defined  by .4 = inf{t 0 ; 4 ( 0  — 6 )  f o r  e a c h  i, n  and 6.
So, letting ô tend to  e, w e have P[1-; „ t] = 0 for a n y  f in ite  t  and e>0.
Hence, P[x" .

; (t) 0 for a l l  t_.0] = 1 holds.
In the same way, setting r:= inf {t 0 ; 1 — x7(t) , we obtain

n= 1
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d

E[u,(1— E x7 (tA r;)]< +. fo r any fin ite  t>0.
.-1

d

Thus, we have Pr E x7(t) 1 for all 0] =1 fo r an y  i E S .

Remark 3. 1. T h e  following examples a re  found in population gene-
tics, which satisfy Assumption [B-1].

( 1 ) [a, • cr;]"" (x ) =a 2x"(3„. „, —x-)

( 2 ) [ai•a;]— (x)=a2x"(6„,„,— x-)-1-x".e(V „„,± E V „X PX q

—  X P (17 „p + V„,p )) (c f . N . O kada [7 ])p-.
d

(  3 ) [a; • a l  (x) =0-2x " ( 5  —x'") d- ( E  4
8

, X
'
 P n  Xm)

m 0

+6„,43„x" (c f . K . Sato [10]),

d

where (72 _ 0, x =  Ix/ iskad E L , x° =1— E x . ,  {v"—} i s  nonnegative de--1
fin ite , P„ 0 (0. n. d).

Now, w e are in position to discuss the uniqueness of so lutions of Eq.
(3 . 5 ). W e w ill begin  w ith  the case d= 1.

Assumption [B-1 ] '  a , ( y ) , iE S  are real-valued —
1

-1-161der continuous and
2

uniformly bounded functions, which satisfy

(3. 12) a,(0)=- a ; (1) = 0  fo r each i ES .

From now on , the  coordinate o f a  p o in t X E  [0 , lis  w ill be denoted
b y  X =  (x i where x,ER'.

Assumption [B-2 ] ' f ,  (X ), i E S  a r e  continuous functions defined on
[0 , lls and  satisfy th e  following conditions ;

(3. 13) there exists a  matrix Q= t(2,, i li, J Es such that fo r  all i and
j ,  sup E (21.1<+oe, and

ies ; Es
If (x) - f i(17

)  I -5 E Q.; Ix; — y» fo r any X = {x } ,  Y= {y I ,

i s

(3. 14) f i (X )  0 if  X =  tx 1 } E [0, l ]  and x i = 0,

and
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(3.15)f  ( X )  0 i f  X= {xi } E [0 , l ]  an d  x i = 1.

Then, T heorem  3. 1 im p lies th at un d er A ssum ptions [B-l ] '  a n d  [B-2] '
for any X =  { x 1} E [0, 1]s ,  th e stochastic differential equation

(3. 1)' dx ,(t) = a, (x i  (t))dB i (t) +  f (X  (t))d t i E S ,

w h ere  {B, (t)} is a n  independent system o f  1-dimensional Brownian
motions, has a so lution { (X (t ), B (t )) ,  (Q , P ; F t ) }  such that

P [X (0 ) = X  and  X (t) lr  for all 0] =1.

Furthermore, we obtain

Theorem  3 .  2 .  Let X E  [0, l ] . Under A ssumptions [B-1 ] ' a n d  [B-2] '
Eq. (3. 1)' has a unique [0, l ] 5 -valued strong solution w ith  X(0) =X .

Proof. I t  is  su ff ic ie n t to  show th at th e  pathwise uniquencess o f  Eq.
(3. 1)' h o ld s . L e t (X ( t ) ,  B ( t ) )  an d  (X '( t ) ,  B ( t ) )  b e  tw o  [0, 1 ] 3 -valued
solutions of (3. 1)' d efin ed  o n  (9, P ; , )  w ith  X(0) =X'(0) = X.
Choose a  sequence o f smooth functions on R ', {O p  (e )} such that

0 0,(e)71e1 as p— > + 00, 10;(e) 5,1 a n d  f 10;($)1pi
is uniform ly bounded and converges to 0 as p ,  + 0 0 . Using Ito's formula
for Op a n d  letting p---> ± co, we see that

E [Ix i (t ) — x (t) I] E s (2,, S :E [Ix  ,(s ) — x(s)

Noting that E [Ix i (t ) — x (t) I] 1 and A ssumption [B-2]', it follows evidently
th a t E [  (t) — x(t) ] =0 f o r  a n y  t a n d  i E S .  T hus, th e  proof is
complete.

In  th is p lace , w e can  state  p recise ly  th e  example whose outline has
already been m entioned at the beginning o f § 1.

E x am p le . W e put ai (x )  =  V  1 x (1  —z) f o r  x [ 0 ,  1 ] ,  and2N

f i (X )=v —  (u+v)x i +s x i (1 — x ,) +  x i qi ,  for X =  Ix ;} E[0, .
i s

H ere, u and y  a r e  non-negative constant, s is a constant and we assume
th a t {.7,11 satisfies

0 (i #j) , q = O, and sup lqu I< +  00.;Es
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Then, since Assumptions [B-1 ] ' a n d  [B-2 ] ' a r e  fu lf illed , T h eo rem  3. 2
holds in  th is case.

Again, we w ill discuss th e  d-dimensional c a s e . O u r  concern  at th is
moment i s  t o  sh o w  th e  p a th w ise  uniqueness o f so lu tions o f Eq.(3. 1).
H ow ever, it is  ra ther d ifficu lt to  show it w ith o u t sp ec ia l conditions on
the coefficients of (3 . 1 ) because the Lipschitz continuity of a:—  (x ) cannot
be assumed for our case.

Assumption [B-1 ] "  ce, (x) =  ta r  (x )) 1 ,m d ,  a r e  low er triangular
matrices such that

(3. 56) a, • a:(x) = {g 2x"(6„, — . V n )  l n , n a d , i  E S , .r E L

an d  a ; (x ) , iE S  a re  continuous on L.

Assumption [B - 2 ]"  t f n i (X ) ) ,  iE S , 1 .c l satisfy Assumption [B -2].
Moreover f'; (X )  depends only o n  th e  first n -c o o rd in a te s  (x . . . . . x )J ;es

o f  X =  { (x ;, . . . , x 1)} ,, fo r each  1 n d  and  i E S , and

(3. 17) there exists a  matrix Q  { Q }  i ,J E , such that 0  for all i and
1, sup E Q, < +  00, and

i e S  j e S

If (X ) — f(Y )E  C2; I x ; f o r  an y  X =  {x 1} , Y =  ty i )
;es

H ere w e note that a 1 ( x )  o f Assumption [B-1 ] "  is un iquely  determ ined
and  satisfies that

(3. 18) if  .zk =yk for k = 1, 2, . . . , n — 1, then
ar (x ) —  ar (y ) _.<2o- V ix" —y' I for any x  and y EL.

(c f . K . S ato  [9 ])

T hen w e have

Theorem 3. 3. Under Assumption [B-1 ] " a n d  [B -2 ]" , th e  stochastic
differenti2l equation (3 . 1) has a unique L 5 -valued strong solution with X (0 )=X
for any X EL 5 .

P ro o f .  T h e  p a th w ise  uniqueness o f so lu tio n s o f Eq. (3. 1) c a n  b e
proved  by induction  on  n. F ir s t ,  w e  c a n  s e e  b y  Theorem 3 . 2  that
tx;(t)i ,Es is uniquely determ ined. Secondly, w e assume th at { x (t)}  iE S ,

a re  u n iq u e ly  d e te rm in ed . T h en  b y  (3 . 1 8 )  and the argum ent
sim ilar to the proof o f T heorem  3 . 2 , w e  c a n  show th a t  { x ;+'(t))  i S
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(3.22) q.; ; 0 E q.„= 0  and  sup l< +  0 0 .
j E S i E S
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is un iquely determ ined . T hus, the proof is complete.

Remark 3. 2. B y  Theorem 3 . 3 we can construct a  strongly continuous
M arkov sem i-group IT11,0 on C (L 5 )  such that

(3.19)T ,  g  — g  =S t T Ag ds for each g E  (L s ),
0

where
d a2

Ag (X) =  E  E  cr2x"; (ô  —x7) g (X)
i E S  72,7,1 = 1 ariar7

d a+ E {(aj, x . . . . . .  x , )}  , E s ) — g  (X)) ,
ax7

C (Ls) denotes the set of all continuous functions on L s and C (L 5 )  denotes
th e  s e t  o f  a l l  C2 -fu n c tio n s o n  L s  which depend only on finitely many
coordinates.

F inally , w e w ill d iscuss a n  in fin ite  a lle les m odel. Suppose that w e
have infinite num ber o f alleles A 1,  A2, . ,  A „, .  D enote by x7(t) the
A ,-gen e  frequency in  colony i  at tim e t. W e exp ec t th a t t (x !( t ) ,  x 2, ( t ) ,
. . . , x7(t), • • •)) i E S  is a d iffusion process on  the state space (1,0) 5  with its
infinitesimal genetator

2
Ag (X) = E ( E a2x7 (a „,,„ — x aT) g (X )  E t; (X ) g (X))

ax7;ax7 n E N 6.T7

where N  is the set o f natural numbers.
H ere, we restrict our treatment to the case that f': (X ) can be expressed

in  th e  form

(3. 20) f7 (X ) = E it„„xl E qi ;  x3 fo r each n.
k=1 je s

Suppose the following conditions on {N J  a n d  {q1,}

(3.21)/ 4 „ - 0  (k  *n ) , E ,a,„ = 0  and  sup Ix. i< + oe-
n=k

I n  o rd er to  co n struct t h e  above m en tioned  diffusion process, we
consider th e  following stochastic differential equation

(3 .  2 3 )  dx7(t) = Ê (t) , , x 7 (t))d/ 3 7 (t) f ': (X (t ))d t i E  S , nE N
2n=1
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where B= [(131(t) .........  B7 (t) ,......
• ) ) s

 is  an  independent system of infinite
dimensional Brownian m otions and  tar (xl .........  x4)}1 g„ are continuous

functions on L„ ,  { (x 1 , .  ,  x " )  E R "; x 0 fo r  each h a n d  E x k  1} which
k=1

satisfy
nAm

(3. 24) E a7k(x1, • . . , x")aT 1 (x', , =ex"(3„,„,— x-)
k=1

for any n, m E N  and x = (x 1 , x 2 , , x", . . )  E L ,  Then we have

Theorem 3.4. Suppose that (3. 20), (3. 21), (3. 22) a n d  (3. 24) hold.
For any X E (1 0 ) 5 , the stochastic differential equation (3. 23) has a unique
( L ) 3 -valued strong solution with X (0) =X .

P ro o f. Note th a t a ll th e  assumptions o f  Theorem 3 . 3  a r e  fulfilled
when we restrict our observation to . . . . .  .x 1 ) )  i e s . Hence the
stochastic differential equation

dx7(t) = , x 'pc/B r(t) ± f (X (t))dt i E S , 1 <n <d
m= 1

has a un ique strong solution Xd (t) = (t) , ,  x l ( t ) )  with given initial
d a ta  (V, , x a) and  satisfies

d

P [ X 7  ( t )  0  ( 1  fl d ) ,  an d  E x ( t )  1 for all t 0] = 1 .
„=1

Thus, Eq. (3. 23) has a unique strong solution X (t) = (xn, (0 )s a t i s f y i n g

P [x 7 ( t )  0 (n E N )  and E x ( t )  1 for all 0]= 1.
n = 1

To complete th e  proof it is sufficient to show that
00

(3.25) PEE x7(t) = 1  for all and  i ES ] =1
n = 1

Set Z . =1—  E x ';(t). Then by (3. 20) we can easily see
n = 1

(3. 26) E [4 ( t ) ] = E Pk„E[xki(snds+ E q f i St E v i (snds
0  n = 1  k = 1 j E S 0

E q,,S t E[Z ,(s)]ds.
' e s o

Thus we have E [Z ,( t ) ]=0  fo r  any i E S  and t0 . A ls o , s in c e  w e  s e e
easily that Z , ( t )  is a  continuous function o f t -121 almost surely, we obtain
(3. 25).
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§ 4. Diffusion processes on ( V )

In  this section w e  sh a ll co n stru c t diffusion processes o n  ,96'( Z d )  by
m eans o f  stochastic  d ifferen tia l equations. A lso , w e sha ll app ly  it to
construct a  tim e evo lu tion  o f  a n  unbounded sp in  system  in  statistical
mechanics.

L e t Zd b e the d-dimensional Euclidean lattice space. (Z d )  denotes
the space o f all rapidly decreasing (real) sequences o n  Z a .  We introduce
the H ilbertian norms H Hp, p E Z 1 , o n  R ;;

E (i i I +1) 2P
i z a

a = fad i E z d E R Z d

Then it is know n that 5 9  (Z d) is a  nuclear space by th e  sequence of the
norms Ill I ; = 1 , 2 , . . .) .

L et u s deno te by Y ' (Z a) th e  d u a l sp ace  of ( Z d ) . Then 5 '9 '(zd )
coincides with the set o f all tempered sequences on Za.

For each integer p ,  define by

,9°  p(Za) = {X =  tx z a  R z d  ; 11X1 Ip<  c°1.

Then, it holds that

(4.1)( Z a )  = 9 i,(Z a) and <9"'(Za) =_),9°P(Za).

H ere Y ' (Z d) is endowed with the strong  topo logy . B u t w e note th at a
curve X „ t E [0 ,  c o ) in (Z d) is strongly continuous if  an d  only i f  it is
weakly continuous. (c f . I. M . G el' fand-N . Y a. V ilenkin  [3 ])

L et u s consider t h e  follow ing stochastic differential equation under
the Assumptions [CA] an d  [C -2 ].

(4.2)d x  i (t) = ce(x ( t ) )  3 (t) +f ; (x ,(t), X  (t))dt i E Za ,

where X (t) = (x i (0} i . z a  a n d  B (t) = ( 0 1  z d  i s  a n  independent system

of one-dimensional Brownian motions on a probability space (Q, P ;  , )

Assumption [C-1] a 1 , iE  Za a r e  real continuous functions on .1?' which
satisfy the following conditions ;

(4. 3) sup la,(0) 1<+ co
i.zd

and  there exists a constant L  such that
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(4.4)( x )  —  a ,(y) Ix —y I

for any x , y ER 1 a n d  i EZd.

Assumption [ C - 2 ]  f ,  iE  Z a  a re  real functions defined on  .1V x (Za)
which satisfy the following conditions ;

(4.5)f o r  any fin ite subset V o f Za, f , (x , X ),  i E Z d  a r e  locally

Lipschitz continuos in the variables (x, (x }  ,„ ) ,  where X =  {x,} ,E .9°' (Za),

(4.6) sup If (0, 0) I <4- co,
i e z d

there exists a constant K  such that

(4. 7) (x —y) (f, (x , X ) — f (y, X )) ._K(x — y) 2 f o r  any x , y E / 0 ,  X E  (Za)
and i E Zd  and there exists a positive sequence c= i z d E .9° (Za) such that

(4.8)( f i  ( x ,  X ) —  (x , Y)) 2 _-‹ E
jEZd

fo r any X =  {x },  Y =  { y i } E (Z a) , x EIV , and  i E Zd .

Then, under Assumptions [C -1 ] an d  [C -2 ] w e have

Theorem 4.1. F o r  any X E  (Z a) ,  the stochastic differential equation
(4. 2) hass a unique .9°' ( Za)-valued strong solution X ( t )  such that

P[X (0)=- X, and X ( t )  is continuous in  t 1:31]=1 .

For the proof we prepare some lemmas.

Lemma 4.1. F o r  X =  (x } ,  Y = ty ,}  E  (Zd) and x , y E R i,

x f ,(x ,X )_<(f , (0, 0)) 2 +  (IC+ 1 ).X 2 E  c .2 icza
and

( ii) sgn (x  — y) (f ,(x  X ) — f Y ))  (2 1 ( 2 (x — y) 2 + 2 E ci-- ; (x ;
 — Y

je z a

P ro o f. It is immediate from Assumption [C-2].

Lemma 4. 2. L e t c = fc,} , . z a  be a  positive sequence of .9° (Z' 1). Then there

exists a positive sequence {K,,} a constant K and a positive sequence d =  {d1} ,E z d
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of Y  .(0 1) such that

i ) E I +1) - 2 Pci_, I +1) - 2 P for any jEZd and pE N
ie z d

and

( ii) E d i c,_; :<Kdi  for any
i.za

Proof. W e  w ill p rove on ly  ( ii)  since ( i )  is easy.

L et K >  E c, and set d1 =  E  
( c * )

H e r e  c*n  s ta n d s  fo r  th e  n-th— 0 K"; e e l

convolution of c= tc,} . Then the inequality o f  ( i i)  is  obv ious. Set

(0) =- E ei<6 .i>d, and  e( 0) =
Jez a j E z d

where

d<0, j> = E e j ,  for each  0= (0,. 0,) ER a

k=1

and j=  ( j„  . . . , Z d . Then we see

(4. 9) d(0)— K  
K—e (0)

Since t ( 0 )  i s  a  C- -function and , (0) I < K , it fo llow s that d (0 )  is also
a  C- -function . Thus, d= (d i } E Y  (Za ) follows from  this ( c f .  Loève [5],
p. 199)

Lemma 4. 3. L e t  r= i . z a  and a= fa i l be non-neptive sequences on Zd

and let Q = (62 } a  be a non-negative matrix on Zd x Za . L et tu i (t)} , E z ,  be

a sequence o f non-negative measurable functions defined on a finite interval [0, T].
Suppose that the following condition are satisfied ;

(4.10)E  ri a i< + co
i.za

(4. 11) E r ij E  Zd, hold for some K>0,
i e z a

(4. 12) E ri  s u p  u (t) < + co ,
i e z d 0 $ t 5 T

and

(4.13)u i ( t )  5_ a E ui(s)ds, i E Zd .

i E z d

T hen it holds that
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(4.. 14) u ;<  E  ( e x p  f tQ )  ) ; , ;  a . any  i E  Z d and tE  [0 , T ]
j e z d

and

(4. 15) E  ri  sup  u1 ( t )  5 e "  E
0 5 t 5 T j eZ a

Proof. It is obvious.

Proof of Theorem 4. 1.
Let X E  ( 0 2) . Then X E  _  for some p d .  L e t  {S„} be a sequence

of finite subsets o f  Zd such as S „7 S
Consider the following stochastic differential equations ;

(4. 16) x7(t) =x ;

x"i (t) = x + (x"i(s))dB i(s) +S t f i (x7 (s) , X" ( s ) )d s  

where X"(t) = tx"; (01 j E z d .

T hen it is easy to  see that Eq. (4 . 16) is uniquely so lvab le and satisfies

(4 .1 7 ) su p  E L  I  ( t) II<  + co for any fin ite  T>0  and  i E Z d

First, we claim  that

(4. 18) E (  i I +1) - 2P sup E[sup Ix"; (t) + °0  f o r  an y  fin ite  T>0.
i G Z a n 0 5 t 5 T

For sim plicity, w e w ill show (4. 18) under an  additional assumption ;

(4. 19) sup Hail< + co, where ila,11=sup (Y) •
, e z d y e R l

By Ito's formula, we see

(x", (t)) 2 =x+ 2S i  x"i (s)a, (x7 (s))dBi (s) (ai (s) ) 20 0
+2x7(s)f, (x7 (s) , X" ( s ) ) ) d s , iE S .

Also, it follows from a  m ax im al inequality fo r  m artin g a le s  an d  Lemma
4. 1 that

1/2
E[ sup (x7(u))1 4(VE[ (x7 (s) i  (x7 (s))) 2 ] d s ) E [a( x7 (s)) 2

osust
+ 21; (0, 0) 2 + (2K+ 1)x7(s) 2 + 2 E  ci _i x:;(s)2]ds.

; Ezd
Thus, we have

(4. 20) E[ sup (x7(u)) 2 ] E E [x ;( s ) ld s , tE Zd, t<T ,
0s0s, .„za
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w here z,=x - P2liaiii+ (ilaill 2 +2./;(0, 0) 2 ) T  and

=
2c;_i

-
Q i "  { 2c0+211aill +2K+ 1 (i-=j).

Set

ui(t)=-E[ sup (x7 (u)) 2 ], a i =z , and  r, = ( +

T hen, noting L em m a 4. 2, we see that Lemma 4. 3 is applicable for (4. 20)
H ence w e obtain (4. 18).

Secondly, we claim  that

(4. 21) lirn E [ sup I IX7(t) — X " ` ( t ) l i l p ]  =0
os,sT

fo r  a n y  f in ite  T > 0 .  L et m>n and iE S„. Then,

(t) — x7 (t) = t
o (a  (x7' (s)) — a (x7 (s) )dB  (s)

( f i (x7' (s) , (s)) — .1; (x; (s) , X" ( s))ds .

Applying Ito's fo rm ula for P O  as in  th e  proof o f Theorem 3. 2, w e get

(4. 22) lx7(t) —x7(t)

= St° sgn (x7 (s) —x7(s)) (a (x7' (s)) — (x '; (s))d. f3 ; (s)

-FS: sgn (x7' (s) —x7 (s)) ( f (x7' (s) , X'" (s)) — f (x7 (s) , X" (s)))ds.

By using Lemma 4. 1 and a m axim al inequality for martingales,

E [ sup (xr (u) —x7 ( u ) ) 1  8So E[(a (x7' (s)) —  a (x7 (s)) 2 )]ds

F 4TS t E [K 2 (x7 (s) —x7 (s) ) 2 ± c (x3(s) (s))2]ds
j ez d

Setting E[ sup (x7 (u) —x7(u)) 2 ] =N " ( t ) ,  we see
0.st

(4. 23) N7."' (t) sup Er sup (x7 (t) ) 2 ] • I  n (i) E Qi i S N'pm(s)ds,
j e Z a 0

for any iE Zd and  tE [0, T ],  where

l
 ( i  EA) 4Tc._ . (i

I A (i) = a n d  Q .=
8L2 + 4T (K 2 + co))0 (i (24.) = i) •

A pplying Lemma 4. 3 fo r  111 (0  =N 7'"' (t) Q= {Q,J}  a n d  ri = ( 111+ i) — 2 P

we obtain
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(4. 24) E ( i  + 1) - - 2 PNI7. -  (T ) .e T "a " E  (Iii +1) - 2 Pm,(T),
ieza ,Es„,\sn

where

and

Ill; (T ) =  sup E [ (sup (x;(t) ) 2 ]
O T

11(211= s u P  E 1)2 )
j E z d z d I

Thus noting (4. 18) w e  g e t (4. 21).
Thirdly, it follows from  (4. 21) that there exists a  .99 _p-valued strongly

continuous process {X (t ) } , , a such that

lim E[ sup 11X" (t) —X( t)I1 2_„] -= 0 for a n y  f in ite  T > 0 .
O gt T

H e n c e  fo r suitable subsequence  [n ,} ,

Pr lim  sup I X ' (t) — X (t) i_p= 0 fo r any fin ite  T>0] = 1.
Ci t S T

Accordingly, it follows easily that (X (t ) ,  B (t ) )  is a  Y' ( Zd) -valued solution
of Eq.(4. 2 )  a n d  X ( t )  is co n tin uo us i n  t 0  in  th e  strong topology of

(Za) almost surely.
F inally , w e w ill show the uniqueness of solutions. Suppose that (X (t),

B ( t ) )  a n d  (Y (t ) ,  B (t ) )  are two ,90 '( Za)-valued solutions of Eq. (4 . 2 ) such
that

P[X (0 ) = Y(0) = X  a n d  X ( t )  a n d  Y ( t )  a r e  continuous in  t -.0] = 1.
B y L em m a 4.2 there ex ists a positive sequence d= {d,} , E z , o f  .9' ( Za) and
a constant K  such that

(4. 25) E fo r any JE  Zd .

iE za

For each n E N , define

U„= {XE (Za) ; su p  x,(d i ) 114 < n ).
i E Z d

T hen it is easy to  see that U„ is a  open  subset o f  ,99 ' ( Z a )  in  th e  strong
topology. L et us introduce a  sequence o f stopping times [y,,),

r„=inf 0 ; X ( t )— X U „  o r  Y(t)

By th e  continuity o f X ( t )  an d  Y (t), w e have

(4.26)P [ r „ > 0 ]  =1.

Also,
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(4. 27) E [  ( y  (tAr.) —xi (tA 7 0)) 2] =-E (ai (yi (s) —a, (x i (s))) 2c/s]

(y, (s) — x (s)) (f  (s) , Y  (s)) — (s) , X  (s)))ds]

E ‘21.5 i E[0 , sAr„) — x 1 (sA r.)) 2 ]ds,
J ezd 0

where
(c. (i*/)
L 2 +K +1 +c o  ( i = j )  •

Set u. (t) = E[( Y  (t V .)  — xi (tA 7 0))1  and d i fo r each iE
T hen w e see that L em m a 4 .3  is  app licab le for (4. 27).
H ence, EC (3/, (tAr„) — xi (tA r.) )1  =0  f o r  a n y  nE N ,  iE Z d a n d  t>0

Since this implies P[X (t)  = Y (t) for a l l  t] = 1, we complete th e  proof of
T heorem  4. 1.

N ext, w e sh a ll ap p ly  T heorem  4. 1 to  construct a  tim e evolution of
an  unbounded spin system.

Let 0, (x ), iE  Za be 0-functions defined on TV and let 0 ,( x ,  y ) ,  i, j  Z a
be symmetric C2-functions d efin ed  o n  R2 . Let us consider the potentials
o f th e  following type.
For each subset V o f  Zd

(4.28) U ,  (X) =  E 01 (x1) + E , x i ) +  E
IE V 4  O riE V i EV, kEV

where X= (x i } jŒ za ERz a .

A  time evolution associated with the potential functions {Uvl y c z a is defined

by the following stochastic differential equation ;

1(4. 29) dx  (t) = dB , (t) —  - (V i (x
'

 ( t ) )  + E (x 1 (t), x j ( t ) ) ) d t ,  iE Zd ,
2 

is  an  independent system of 1-dimensional Brownian

motions, 0(x )—   dx
d   01 (x ) an d  0 ( x ,  y) —  a

a
x  0 1,1 (x, y) .

A ssumption [C]' T h e re  e x is t  a constant K > 0 , a  p o sitive  m a tr ix  Q =
{Qi.;} J E z d, satisfying sup E Qi <+ co, and a positive sequence c= ,E z a

i.zd
of (Z a) such that

(4.30) sup I 0; (0) I <  co an d  0" (x) —K,
i e z d

w here B  (t) = {B, (0}
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a (4. 31) sup  E 10 ;, (0, 0) l < + co a n d  E

' '

.(x , y .)  is un ifo rm ly con-
ieza

ivergent in  x  on each bounded interval for °a*Iny X= (xi} E  Y '(Z )  and

(4. 32)
o2o .
x 2

.(x , y ) — 6 2 0 ,  anda
a2

axay
y) <c1_,

   

for any x, yeR ' and  i, jE  Z a .

Then, under Assumption [C ] '  w e have

Theorem 4. 2. L e t  X E (Z a ) .  Then the stochzstic dif ferentialequation
(4. 29) has a unique .9°' (Za)-valued strong solution X (t) such that

P [X ( 0 ) =X  and  X ( t )  is continuous in  t O ]=1.

P ro o f. Let

(x, X) -= ( C (x ) E x j ) )  fo r  X= {x,} e (Za).

Then we can easily see that tot, (x) 1 ,  f ( x , X ,) )  satisfies Assumption [C-1]
an d  [C -2 ]. H ence it follows from  Theorem 4. 1.

Remark 4. 1. D enote by X (t : X )  the solution of Eq.(4. 29) w ith  the
initial condition X(0) = X .  Then we can define a ( Za) -valued diffusion
process (X ( t ) ,  Px ) . . y ,(z a ) b y  E x [f ( X ( t ) ) ]= E ( f ( X ( t : X ) ) ]  fo r  e v e ry
bounded m easurable function f  on (Zd).

L et u s denote by g  (,9'(Zd)) th e  s e t  o f  all probab ility m easures on
Y'(Zd). pE Y  (.9° ' (Z d)) is called  a  revers ib le  sta tio n ary  sta te  o f  (X (t ),
Px),, E ,9„( z a) i f  it satisfies the following condition ;

(4. 33) S  (dX)E x  [f(X  (t) ) ]g- (X) = S p(dX )E x [g (X  (t))] f (X )

hold fo r all bounded measurable functions f  and g  o n  ,9" (Za)•
From now on, w e shall suppose Assumption [C ]' a n d  th e  following ;

(4. 34) there exist some constant A satisfying A>  E c . a  co n stan t B
iŒza

such that

x 0;(x ) A x2— B for any x E R i, and iE  Zd.
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Then, we can define Gibbs states associated with the potential functions
tUvl v c z a o f  (4 . 2 8 ) , (c f. G . R oyer  [ 8 ] ) .  In particular, we denote by

T ( )  the set of all Gibbs states associated with (UV } d  which are sup-

ported by ( Z").

Theorem 4 .3 .
(i) g r ( 0 )  is not enzpty,

and
(ii) 1.1E  .9 (,9°' ( Zd) )  is a  reversible stationary state of (X (t),x E y , ( , d ) , if

and only i f (0) .

P ro o f .  This theorem is essentially due to H. Doss and G . R oyer [2].
Since the reader can consult [2 ] , we will omit the details o f  th e  proof.
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