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1. Introduction

In this paper, we shall consider finite element approximations for the vibra-
tion problem of circular arches with the clamped boundary conditions:

du 1 dw ElI /d®w 1 dPuy\_ .
—EA( 2 +§ dsa >+ R \dsa _R dsz)—lpu mn .Q,
EA du 1 d%u .

u=w=d—w=0 on s=0, s=L.

ds

Figure 1 illustrates a circular arch. The above differential equations are derived
by applying the Timoshenko shell theory to the structural arch theory ([18]).
Here R is the radius of the arch, s is the length along the arch, L is the total
arch length, Q is the interval (0, L), u and w represent the tangential and radial
displacements, respectively. E is Young’s modulus, p is the mass density, A and
I are the area and the moment of inertia of the cross section of the arch, respec-
tively. We assume that E, A, I, R and p are positive constants. The vibration
problem (1) is to find the eigenvalue 2 and the corresponding eigenfunction {u, w}
which is different from identically {0, 0}. The natural frequency and the mode
shape of vibration are related to A and {u, w}, respectively.

For the finite element approximations of the static boundary value problem
of circular arches:

EI /d*w .
—EA( ot )+ AT _E )—fl in 2,
EA d‘w 1 d%u .
(2) R( R )+E1 G Ra)=h e,
u=w=ﬂ)—=0 on s=0, s=L,
ds
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numerical results have been published by various authors, using curved finite
elements or straight beam elements (see for instance, Dawe [4], Moan [11], Mur-
ray [12] and the references given there), and convergence proof is given by
Kikuchi [7]. Here f; and f, are given functions which denote the applied forces
in the tangential and radial directions, respectively. However it seems that con-
vergence proof of the finite element schemes for the vibration problem (1) of the
circular arch is not yet established.

In the present paper, we shall derive error estimates for four approximations
based on piecewise linear and cubic Hermite polynomials, i.e., consistent approxi-
mation, partial approximation with semi-consistent mass scheme, straight beam
element approximation and consistent approximation with semi-consistent mass
scheme. They assert that the approximate eigenvalues and eigenfunctions con-
verge to the exact ones. Furthermore, we shall give some numerical results in
order to demonstrate the validity of our mathematical results. For numerical
studies of some other finite element models on vibration problems of arches, we
refer to Petyt and Fleischer [13] and Sabir and Ashwell [15].

Throughout this paper, by C, C,, C,, -, we shall denote generic positive
constants, independent of 4, which are not necessarily the same at each occur-
rence. Here h is the discretization parameter which denotes the mesh size.

w

Figure 1. Circular arch.

2. Notations and variational formulation

We shall use the following notations. Let R! be the space of real numbers.
Let L.(£2) be the real space of square integrable functions on £2=(0, L). The
inner product and the norm in L,(£2) are given by

L
(u, v)=Souvds,

lull=Cu, w)/?,  for u, veLyl).

For a natural number n, let H™»(£2) be the usual real Sobolev space supplied with
the norm
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diu |2

lula=( 3} | 5ot

i=0

)”2, for ue HY(Q).

Define

A0 _du@)_, .
o= =0, =0, 1, -, a1,

3D={u; ueH @),
S=H(D)XHQ),
I=H(Q2)X H{2) .

For the variational formulation of the problem (1), let us introduce symmetric
bilinear forms on % X.9% as follows:

w da
R’ ds

2 247 =
B(u, w: 7, @)=EA c(lil; T d?w 1 du d3w 1 du)’

w
+F)+EI ds?* R ds’ ds* R ds

Gu, w; a, W)=p{(u, #)+(w, W)}, {u, w}, {a, wyea.

The following quantities are also well defined :

Nu, w)y=[B(u, w; u, w)]"?,
My, w)y=[G(u, w; u, w)]'?.

Then, we note that Schwarz’s inequality for N, B, M and G, and the triangle
inequality for N and M hold. The strain energy and the kinetic energy of the
arch are associated with 1/2[N(u, w)]? and 1/2[ M(u, w)]? respectively.

For the vibration problem (1) of the clamped arch, we introduce the follow-
ing variational formulation :

Find {2, u, w} €R'X 4, such that
(3) Blu, w; @, W)=AG(u, w; i, W) for each {@, W} <EH,.

From the theory of positive definite and compact operators (Ciarlet [3], Kikuchi
[7D), it is well known that all the eigenvalues {A;} of (3) are arranged as

0<HEAE - <oo,

and the multiplicity of each eigenvalue is always finite and 1;—oc0 as i—oco. Here
the eigenvalues are repeated according to their multiplicity. The corresponding
eigenfunctions {u;, w;} can be normalized as

G(u;, wy; Uj, wj):5ij,

where d;; is Kronecker’s delta. It is also well known that u;€ H{(2)N\C(2) and
w, € H{(2)NC(2). Here C~(2) denotes the real space of infinitely differentiable
functions on £. From the Rayleigh principle, we have

(4) = min Bwwiww) .,
| dumskegs Gl wsww)t o T
J=1,i-1
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and the minimum is attained by {u;, wi}.
On the other hand, the rotation ¢ of the arch is given by

dw u
?=as TR

as shown in Figure 1.

3. Finite element schemes

In order to construct finite element schemes, we divide the interval 2=(0, L)
into a finite number of subintervals {2;} (i=1, ---, m) in such a way that

0=30<Sl< e <Si-1<3i< o <Sm.=Ly Qi=<si—h Si),

as shown in Figure 2. Let

L,=s;—s;.,, h=maxL;, h=minL;.
1sism 1sisin

We assume that the finite element decomposition satisfies the following condition
0<C=h/h=1,

where C is a positive constant. As the basis functions, we shall use piecewise
linear and Hermite interpolations {b$2;, b$?;, 6%} (i=0, 1, ---, m) which are defined
in each finite element £, as follows:

b (s)=1-5, biy(s)=5;,
(5) bR (s)=(1—35)%(14+25,),  bP(s)=(3—25,)5%,
b 1(s)=L;5:,(1—35,), b(s)=L;5%(5:,—1),

where
§;=(s—si-1)/L;.

Figure 2. Finite element mesh.

Define finite dimensional spaces U*, W"* and S" by
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U”={uh y Up= i’ Up, ibsll,)i, uh=0 on S=0, S=L} ,
i<

W"={w"; wh=ié(w,._ib‘,ﬁ’i+0h,,~b$§,’i), wh=d:;)—sh=0 on s=0, s=L},

St=U*X W,
where us,:, Ws, i, O, are nodal parameteres and

dwa(sy)

On.i= ds

For w,eW", we also define w}® and w${ by

respectively. Let
O, i=0ni—us /R,

di=(un,i-1, Un,iy Wh,i-1, Wh, i ¢n_t—1, ¢h,i)t ,

where ¢ denotes the transpose. It is noted that S*C.4,.
We now formulate the consistent approximation for the problem (3) as fol-

lows :
Find {2y, fin, Wa} €ER'XS" such that

(6) B(iln, Wy fin, Wa)=AnG(iln, Wy @n, Wa)  for each {iy, Wy} ES™.

. > T
From (6), the stiffness and mass matrices k;, m; for the curved element :—1, 1
corresponding to the nodal displacement vector d; are given by

%i:l’;?)'i‘ié?) , f=mP+mP (order 6X6),
where
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1 L 1, L 1 1 L L;
L; 6R? L; 6R? 2R 2R 12R 12R
+ s L3 + 1112 n 1313 ¢, Ly LY
105R* 140R* 210R® 420R* | ' 105R® 140 R®
i Li 1 1 Li Li
L; 6R? 2R 2R 12R 12R
+ L} _13r3 i 1Lr | L3 + L3
5 105R* | 420R® 210R® 140 R® 105R?
kP=EA 8L, 9L 112: 131
35R? 70R® 210R® 420R®
13L; 1313 1113
symmetric 35R? 420R? 210R®
i L3
105R* | 140R?
L}
105R?
3 3 6 6 3 3
R®L; R°L; RL? RL? RL, RL;
3 6 6 3 3
R:L; RL: RL? RL, RL;
12 12 6 6
7c§2’=E1 L} L3 L} L} ,
12 6 6
L} L L?
symmetric 4 2
Li Li
4
L;
L, L;
) 5 0 0 0 o0
L,
— 0 0 0 0
mP=p 0 0 0 0],
0 0 0
symmetric
0 0
0
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Ly L 1112 13L2 Ly L
105R? 140R*® 210R 420R 105R 140R

Ly 1L ury Ly L3

105R? 420R 210R 140R 105R

13L; 9L, 1112 13L2

P =p 35 70 210 420
13L; 131 1113

symmetric 35 420 210

L3 L3

105 140

L}

105

In finite element analysis of the circular arch, each curved element zif,\z is
replaced by the straight beam element i—1, i which denotes its chord, as the
physical model (see Figure 2). The length L¥ and the nodal displacement d; of
the beam 1—1, { are given by

L*=2R sin %zLipi,

di=(fln,i-1, #n,i, Wn i1, Wn i, Gn,i-1, $n,0),
where

2 sin &t
(7) aiz%y pi= 2 )

and @, ; Wy ; and ¢, ; are the tangential displacement, lateral displacement and
rotation of the beam at nodal point j (j=i—1, 1), and ¢ denotes the transpose.
The element stiffness and mass matrices k; m; of the beam i—1, ; are well
known ([9], [14]) and given by

k=kP+k®,  m=mP+mP (order 6X6),

where
1 1
or o 0 0 0 0
1
%; 0 0 0 0
kEP=FEA ) 0 0 0 0],
symmetric
0 0 0
0 0
o)
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k»=EI

T3 (1) —
mP=p

mP=p

Since d;, k; and m; are expressed in the local element system, we transform
them into d¥ k¥ and m¥ in the global coordinate system, respectively in the
following usual manner with the transformation matrix 7 ([9], [14]):

(8)

where

h

%

symmetric

Kazuo Ishihara

symmetric

¥=Tid,,
kf=Tik,T;,

m¥f=Tim;T;,

d¥=un, i-1, Un,s» Whi-1, Wh, o ¢h,i—1’ ¢n, IR

0 0 0 0
0 0 0 0
12 12 6 6
Ly ¥ LF L

12 6 6 |
Ly L¥ LY
symmetric 4 2
L¥ L}
4
L¥
*
%’ 0 0 0 0
*
L9 0 0 o0
0 0 0 o0f,
0 0 0
0 0
0
0 0 0 0
0 0 0 0
13L% L¥ 1L 13LF
35 70 210 420
13L% 13L¥ 11Lp
35 420 210
Ly Ly
105 140
Ly
105
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qi 0 —ti
0 qi 0
Yi 0 qi
T,;:
0 —71;: 0
0 0 0
0 0 0
(9) gi=co0S ﬂ,

0

ri

qi

ri=sin

0
0
0
0
1
0

a;

2

0

S o o o
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Following Kikuchi [7], [8], we note that there are considerable differences not

only between k; and k¥ but also between in; and m¥.

Now we introduce mappings J,, /. and J, defined by

Ji: W — L,(82), Jiwn(8)=(ws, s-1+wn.)/2,

Jo: Wh—> L),

L; L
Jawn(s)= SR W i-lbfll,)i-rf'ﬁwn. b, Si-1=5<5sq,

Jo: UM —> Ly(2),

L L;
fsuh(s)=—27§uh, i-lbf.)i-l—‘ﬁuh. bR —

where

m
_ n
un—izo up, bR U™,

Define bilinear forms B, and G, on S*XS"* as follows:

m
W= 2 Wh, ib

i=

o

1

R

(2)
h.i

Mz

I
o

d
Bu(un, wy; @iy, Wa)= EA(%
dzwh o duh l dzwh . dﬂh l
+E1( ds? ds R’ ds? ds R/’

Gu(n, Wy @n, Wh)

:P{(uh'h[zwn, An+JoWa)+(Jstin+ws, Jolin+105)},
for {un, wa}, {@#n, @Wr} €S The following quantities are also well defined:
Nu(un, wa)=[Bn(un, wn; un, wy)]"?,

Miy(un, wa)=[Gnlun, wn; un, wy)]*?.

1
3
Un, 1161 — =

Sio1=5<sq,

On, D s W,

du _
+Jiwa/R, {2 +],04/R)

Si-1=5<585,

It is noted that the triangle inequality for N, or M,, and Schwarz’s inequality
for Ny, By or My, G, hold. For {us, wa}, {#s, W} €8" and {u, w}, {a, W} e,
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put
gn(un+u, Wrtw; fiy+a, Wy+i)

=220 4 (Jwtwy R, SBED (0, +m)/ R)
dwatw) At | dX@at) _ Al +a) 1
+E1< dss ds R’ ds*  ds F)’

Bu(u, w; un, wa)

duh

=EA(%“S—+w/R +j,wh/R)

d*w du _1_ dzw,, du, 1l
+EI( ds? ds R’ ds? ds R)
Nolun+u, wa+w)=[Bp(untu, wy+w; uptu, wy+w)l"2,

Guluntu, watw; n+a, Tn+d)

=p{(ur+ owntu, n+]oWn+a)+Jsun+wat+w, Join+@,+0)},
Gulu, w; un, wa)=p{(w, un+Jown)+w, Jsun+wa)},
Muuntu, watw)=L[C(ur+u, watw; up+u, wy+w)]'2.

We now formulate the partial approximation with the semi-consistent mass
seheme for the problem (3) in the following manner :

Find {As, @iy, Wa} €ER'XS* such that
(10) Bulin, Wy @i, Wa)=AnGu(@n, Wy ; fn, Wr) for each {iy, Ty} ES™.

The stiffness and mass matrices k;, m; for the curved element i—1, i, induced
from (10) are given by

(11) ki =k +EP m;=m{P+mP (order 6X6),
where
1 1 1 1
L; L; 2R o 000
1 1 1
. 2r 2 0
L L;
(1) i i
kEP=FA 1R iR 0 01,
. L
symmetric 4—1;2 0 0
0 0
0
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k§2)=z§2),
L, Ly i L}
3 % ek 1r ° 0
L, L L
3 1r ek 0 ©
L L
o — ?
mit=pe R ure 0O
. L}
symmetric ToR? 0 0
0 0
0
1313 9L3 1313 9L} 113 131
140R*  280R® 70R 140R 420R 840R
1313 9L3 1313 13L3 1113
140R* ~ 140R 70R 840R 420R
13L, 9L; 11L; 130
o 35 70 210 420
MR symmetric 1L,  13L,  11L3
35 420 210
Ly L
105 140
5
105

Henceforth we shall call m; the semi-consistent mass matrix for the curved ele--
ment 1—1, 1.

In order to establish the variational formulation of the straight beam element
approximation, let us introduce bilinear forms as follows:

BY(un, wn; @n, Wh)

=z qi duh qi duh

= B[EA( s G VR SR TR),
g d*w® 1 dzwﬁf’_ 1 duhi

+El<«/zpl ds* T Vp dst  vp ds R

g d'wi? | 1 dwp 1 da, l) ]
Vpip: ds® ' ~/p: dst  +/p; ds R/a

GE(un, wy; iy, Wh)
= lm;l oLV peqiun+~DipiJown, vV piqsiin+~ pipiJ:Wi)a;

+(Vpipi Jaun+V D qiwP +V Dipiw®, v DipiJatin+ v pigi P+ Dipii@)o, ],
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for {un, wa}={un, wL+wP}, {@n, W} ={itn, WP+wP} €S" Here (-, -)g, denotes
the Ly(£2;) inner product. The following quantities are also well defined :

N¥Cun, wa)=[B¥(un, wn; un, wy)l"?,
M¥(un, wa)=[Gk(un, wn; un, wp)l"2.

Also we put

ﬁ’,‘l‘(uh-l-u, wrtw; ﬁn“l‘?/-{, u_/h'i‘w)

$ qi duh du — g dﬁh da
g[ <\/pl Td?'l‘(\/i’i]:wn-l-w)/R, \/}: s _{_E

B ADR),

g d*wi® 1 dPwf | d'w 1 du, , du
+E]<«/Epl dst TV dst T ds? <vz ds +_ds—>/R’

g dwp | 1 dw w1 da, | da
Vpip: ds? +\/E ds? +dsz («/E ds t >/R)Qi]’

Gi(untu, wytw; iin+at, U,+)

= :El oLV Dqaun+~DidiJswnt1, ¥V Piqitin+~ pipi JoiT n+)g,

+(VpipiJsuntV P+ pipswP+
N DipiJstin+N Diqi0P + i WP+ ), ],
for {u,, wy}, {its, W} €S*, {u, w}, {i1, W} €4, Furthermore, we put
Niuntu, wa+w)=[Biuntu, wytw; up+u, wp+w)]ve,
Mﬁ(zth+u, wh+w)=[G~}':(uh-|—u, wrtw; uptu, watw)].
From direct calculations, we can obtain

m

D dikidi=B¥(un, wy; iy, Wr),

i=

-

m
2 dimidf=Gx(un, wy; iy, Wa),

where d;=(un i-1, Un. iy Wni-1, Wh. i, Pnoi-v Pn.1)' and dF=(iy, 1-1, #p.s, Wp,i-1
Wi Gni-1 Gne)' are the nodal displacements in the global coordinate system.
Thus we can formulate the straight beam approximation for the problem (3) as
follows :

Find {2%, u¥, wi} e R*XS* such that
(12) B(u¥, wk; oy, Wa)=2kGE(u¥, wk; @n, Ws) for each {i,, Wp}es*.

Now, by using (11), the matrix expressions (8) can be rewritten as
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KE=TPEOTP+ TRROTE,
m¥=TPmPTP+TPmP TP,
where T{ (j=1, 2, 3, 4) are diagonal matrices given by

T =diag (¢:/v/'Dv 4:/vDi ¥'Di Vb3, 1, 1),

T®=diag (1/v/ps, 1/vDs, 0:/V' DY 4/ D% 1/V Di, 1/ D),

TP=diag (vV'piqi, Vbugs, V1% VDL 1, 1),

T =diag (v}, vV} Vs, vVDugs, Vi VD

On the other hand, from (7) and (9) it follows that

13) pi=14+0(h?), q;=140(h?.
Thus if we employ the following approximation in the matrices T¢ (j=1, 2, 3, 4)
p1.=.1 ) ql'z.l ’
we can obtain
K=k +EP=k;, m¥=mP+mP=m,.

Therefore, the partial approximation with the semi-consistent mass scheme is
similar to the straight beam approximation in the above sense.

Furthermore, we can propose the consistent approximation with the semi-
consistent mass scheme in such a way that

Find {2n, fin, s} €ER'XS" such that

(14) By, @ ; fin, Wn)=AnGn(Tn, Ty ; i, Tr) for each {i,, Wy}eS".
The stiffness and mass matrices k;, m; for the curved element i—1, 7, induced
from (14) are given by

k.=Fk,, m;=m; (order 6X6).

4. Rate of convergence

In this section, we shall obtain error estimates for the approximations. By
(Zn.s}, nd, (25} and {An.d G=1, 2, -, N, N=3m—3), we denote the approxi-
mate eigenvalues defined by (6), (10), (12) and (14), respectively. Also {#,;, W4, 4},
{ftn. s, Wr.s}, {uks, wE} and {4, Bn4} (=1, 2, -, N) represent the eigenfunc-
tions corresponding to {.:}, {in}, {A%:} and {A..:}, respectively. By using
Lemma 2 below, for sufficiently small A, the eigenvalues are arranged as

o
A
o
=
N
o
s
in
IA

A,

= N
0<2h 1:jlx,2§ éjh )
0<AEA=AE .= - =AW,

(e}
A
ol
&
i
ol
s
I
IA
Y]
&>
2
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The associated eigenfunctions can be orthonormalized in the sense that

i
<.
I\
?.

G(iln, iy Waots Bn iy Wa )=0s5, G(lin, s Wn 15 Ui, wi)=0, 1

Gilfin, i, Waoi; Bnjy Dn )=0s5, Gullln,s Wni; us wi)=0, 1

i
.
1A
=

~
GHuk, i, Wi o uk 5, wk =0y, GFuf i wki;u, w)=0, 1

in
<.
I\
>

Gi(lin, i, Whois Anjy Wn =015, Gplln s Wns; Uy, w20, 1

in
<.
IIA
>

Since S*"C4%,, it is clear from the min-max principle ([17]) that

Zh,izli, i=1, 2, - N.

First, in order to derive error bounds for the eigenvalues of (10) some results
which we shall use are prepared.

Lemma 1. For {u, w,}={u, wP+wP} S there exist positive constants
C; 1=1, 2, 3, 4, 5) independent of h such that

I Jiwn—wall =Cihlwal,

|

w1 =Csllwall, j=1, 2,

dzwh

dPwi )
=G| =45

ds® I

/h, =12,

I Jewnll SCsh | wall ,
| Jsunl =Cshllunl .

Proof. The first two inequalities are proved in [7]. Let

i=

m m
Up= Zo Un, b8, Wy=wP+wH= %(wh, bR +0n, DY) .
i=

Since the basis functions {b¥;_,, b?;, b 1, b} defined by (5) are linearly inde-
pendent on 2, there exist positive constants K, and K, independent of A such
that

% lwale,ZKwh, i-stHwh, o+ L0k, -1+ L30F.5)

I Jsunl 3 S K (uf crot ).
Simple calculations yield
NwPlld,=L(13w}, ;-1 4+, i-xws, s +13wk, :)/35,
w3, =LA20R i-1—30n, i-10n. 11207, /210

Thus it follows that
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”wh”.{?jigKlLi(waL.i-l+wl?th. )=K.L (18w}, :;+18w}, ;)/18
§K1L1(13w72z.t-1+9wn.i-1wh,i+13w;2z,i)/18

=35K,|wiP|3,/18,
and
lwalld, = KiLYOF, i1 463, )=K,L¥463, ;_,+46} ;)/4

Z K\ LY20R, -1 —30n, i-10n, 426}, 1) /4

=210K,[|lw5,/4 .
Hence we have
lwPl=Csllwall,  j=1, 2.

Similarly, simple calculations yield
2 Lg 2
Il]zwhllai=w(w%.f-l—wh.i-lwn.ﬁwh. D=5y 12R2 LiCw}, i-1+2w}, ),
lunlldy=Li(ud, s14un, s-sun, s+ ud, :)/32Li(ud, s +ut, )/6.
Thus we have
h2llwy 3 EhZKl (Wi, ;- 1T wi, )= 6R K ——- 12R2 LiQw}, ;- 1F2wi, )

Z6R2K1”fzwn”bi ,

6K;h?

I Jsunld, <K2 L(u, i tud, i)—T Ui, -1 +ui, )/6

R2

6K
< sz llunlld, .

Therefore, we obtain
| Jewnl| =Cshllwn|

”]:ﬂhz”éCsh”uh” .
The proof is complete.
Lemma 2. Let {u, w}e.%,. Then we have
CiNw, w)=lull,+ | wll,=CoNu, w).

where C, and C, are positive constants independent of {u, w}. Let {us, wy}=
{un, wP+wPy St Then for suficiently small h, we have

ColN(un, wa)SNp(un, wa)<CN(un, w,),
CoNn(un, wR)SN¥(un, wa)SCeNo(un, ws),
CoiMun, wa)SMn(un, wn)SCeM(un, ws),
CoMu(un, wn)SM¥(un, wa)=CioMn(un, ws),

where C; (i=3, 4, -+, 10) are positive constants independent of h.
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Proof. The first three inequalities are proved in [7]. From the definition of
M,, it follows that

[CMa(un, wa)IP=p(lur+Sownl®+ 1 Jour+wal®
=[M(un, wi)124+20(un, Jown)+pll Jowall®+20(Jstn, wa)+pllJsunl?®.
Thus applying Schwarz’s inequality and Lemma 1, we have
|EM(un, wa)J?—CM(up, wa)1?|
=CCpllurlrllwall+ph®lwal®+2phlunl-lwal+phlual®
=C{ph*(lurllP+lwal)+2ph(url®+lwall*)}
=Ch(h+2)[M(un, wn)J*.

Therefore for sufficiently small k, there exist positive constants C,; and C, inde-
pendent of A such that

CoM(up, wp)SEMy(un, wp)SCoM(uyp, wy).

Similarly, from the definitions of M, and M¥ and (13), Schwarz’s inequality and
Lemma 1, we have

[CMu(un, wa)2—CMHK(un, wi)]?
=Ch*p[(lunl+ 1 Jown *+ U Jsunll+ w2l + [ wiP])?]
<Ch2p(lunll+llwe )< CRLM(un, wa)1P<CRLMu(un, wa)J.

Hence for sufficiently small h, we have the desired inequality. This completes
the proof.

Lemma 3 (Schultz [16], Kikuchi [7]). For a given {fi, fo} €La(£2)XL:(SD.
define {u, w} €4, by

Bu, w; @, w)=(f,, &)+(fe, W)  for each {1, W}EIH..

Let {fi,, ¥} €S* be an interpolating element such that

3

fin: & u(s:)bil:
1

m d i
ta= 3 (wsobw+-225 ).
Then, ue H(QNHAR), we H(QNHL2) and
No(fn—u, da—w)SCih(lulHlwl)=ChULAIFI 1D,
where C, and C, are positive constants independent of h.

We now have the following proposition.

Proposition 1. Let {f., fo} €LLQ)XL(2). Define {u, w} € 4o, {un, wp} €S,



Finite elements for arch eigenvalue problem 769
{iin, Wa} €S*, {uk, wit €S" and {f,, Wr}€S™ by
(15) B(u, w; u, w)=(f,, a)+(fs, W)  for each {@, W}EH,,
(16) Buun, wn; itn, W)=(fs, tn+Ju@a)+fo, Jofin+10)
for each {@i,, Wy} S,

By, Wy @n, Wa)=(f1, #n)+(fo, Wn)  for each {iy, Wy} ES",

Bitut, wi; atn, @0)= 3. (i ~/Pagattn+~/ PidoJsa)o,

+(for VPiDstint+V Digi$+~ p:pi®)a,]
for each {#y, W,}ES™,
B(f‘h» Eh; ’th wh):(fh ﬁn+]2u_/n)+(f2y jaﬁh+wh)
for each {it,, w,} S,

respectively. Then, for sufficiently small h, there exist positive constants C; (i=1,
-+, 8) independent of h such that

NuCun, w) SCAAIFI£D,
Nuu—un, w—w) SC fill 4] £IDR
N(iin, ®)SCl fll+1 £,
N(u—1in, w—0)SCl i+ fIDR
Nk, whH=C A+ £,
Niu—ut, w—wH)SCl fil +1 DR,
N(itn, T)SCLI+I£D,
N(u—1i,, w—)ZC( fill+1 £k -

Proof. From (16) and Lemmas 1, 2, it follows that

[Nw(un, wa)3P=(f1, untJown)+(fo, Jsuntws)
=l A0Aual+1Tewa D+ LI Tsunl+Twal)
U A+ LDUurl+Cahllwa | +Cshlluy ]+ | wal)
=CLANF LD R+ D
=CUL AN+ LDl 1wl
=CU fill+ 1 f2DNR(un, wh) .

Thus, we have
Nu(un, w)ZC AN+ LD
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Furthermore by (15) and the definition of ﬁh, we have

diiy
ds

B/h(u, w, ﬁh, L'Uh)= EA(%""W/R, +wh/R)

dw 1 du d°@, 1 dia

+EI(Go —F e o 7 ds)+EA(%+w/R, (i1~ 4)/R)

_ d _
=(for @) +(for W) +EA(-G=+w/R, (JiBn—Tn)/R).
Thus, from (16) and Lemmas 1, 2, 3, we have

| Bp(un—u, wo—w; @in, Wa)l=|Bplu, w; iy, Wn)— Bu(in, Wa; fn, Wh))

=1Bu(u, w; @, W)= (fo, Jilnt#n)—(fo Jstin 1)
=|~Cf LB~ T+ EA(S+u/R, (Ja—02)/R)|

=1 AN U@+l 1 sl +CA fill 4+ 1 D130 n — .l
SChrI Al 1@l +Chll foll - 1@l +CA fill 1 f DA
=CrULANFI DU @n i+ @l )=CRA Fll 1 f2DNaiEn, @) .
Therefore, by equating {@,, @W,} to {un—fln, wo—w,}, we obtain
| Bu(un—fin, wa—n 5 un—fn, wa—da)—Balu—fin, w—1n; un—fla, wa—bn)]
SCh(l A1+ LDNw(un—tn, wa—D4),

where {f,, ¥,} €S" is the interpolating element of {u, w}. Applying Schwarz’s
inequality and Lemma 3 gives

[NW(un—fin, w—D)PZChU il HI Fol)Nw(un—fn, wa—1D0n)
+Bu(u—tn, w—n; up—fin, wa—1n)
SChl Al H1 £l )N — i, wa—Dn)
+Nuu—1fn, w—D)Ny(un—Fn, wa—bs)

ZCh( fll 1 f)Nw(up— B, wa—).
Thus

Nu(up—f, wa—wa)SCia( Al L) .
Therefore, using the triangle inequality yields the desired inequality
Nu(u—un, w—wa)SCih(l fill 1 fal) -

By the same technique as described in the above, we can obtain the others, apply-
ing (13) and Lemmas 1, 2, 3. This completes the proof.

Lemma 4. Let
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81::{{121:’ wi}espan[{uh wl}; Tty {ui) wi}]; M(ﬁl’ wl):]-}'

J
For {au,, wi}=j_21a,-{uj, w;} &4, define {fin;, Whi} ES™ by

i i
17 Byp(fins, Wais @, w”)=p<,§1 Aoz, ﬁh+fzwn)+10(j§ oW, Jain+1,)

for each {@i,, Wy} ES*.
Then, for sufficiently small h, we have

(18) Mn(ﬁni—ﬁt, Wpi—W)=Chi;,

where C is a positive constant independent of h.
Proof. Since {u; w,;} (j=1, .-+, i) are the solutions of (3), we have
Bl@, @4; 7, ©)=p( 3 dasiey, @)+ p( 2 Ay, @)
for each {a, W}ed4,.
Thus from Lemma 1 and Proposition 1, we have

My(ini—ats, Was—W)=C @ ns—@ill®+ 1 Je@nsll*+ 11D n i —@ 1+ || Jodin ]| %)

SCLN R e—#:P 10 i — W12+ ChA | asl+ | D5 1212
1 i
=Ch(|l J;l Zjajuj”‘|"|| jglzjajwﬂDéChliM(ﬁiv W;)=Ch; ’
for sufficiently small A. The proof is complete.

Lemma 5. Let S} be an arbitrary i-dimensional subspace of S*. Let {us, ws}
(#{0, 0}) be an arbitrary element of S? such that

(19) G, whs uy w)=0,  j=1,2, -, i—1.
For {un, wy}, define {u', w'} €4, and {uh, wi}eS* by
(20) B!, w'; @, W)= p(up+Jown, &)+ p(wn+Jsun, @)
for each {i, w}<,,
@D Bu(uh, wh; &n, Wa)=0(un+Jown, #n+/on)+ o(wn+J s, @n+]sits)
for each {ui,, 0,} €S",

respectively. Then, G(u’, w’; u; w;)=0, j=1, 2, ---, i—1, and for sufficiently small
h, there exists a positive constant C independent of h such that

Bp(uh, wh; uh, wh)SA7'Grlun, wh; un, wy)1+CA:h).

Proof. By (3), (20) and (19), we have
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(22) Gluy, wy; u', w)=A"Bluy, w;; u', w')
=pA; {(un+/ows, u)+H wa+Jsun, wj)}’:z?én(uh, Wy uj; wyH=0

j=1,2, -, 1—1.
Applying Proposition 1 and Lemma 1, we obtain

23) Myp(u' —uh, w' —wh)SCh(lun+Jewnll+llwa+/Ssunl) SCAMu(un, wa) .
Using (20), we have
B!, w'; w', w)=p(us+Jowsn, w)+p(wn+Ssun w
=Ca(un, was ', WIS My, wa) M, w').
Hence, applying (4) and (22) yields
LMW, wYREBW!, w';uw, w)SEMy(us, wa) - Mu', w').

Thus we have
M, w)S27"My(up, wa).
From (21), it follows that

Ba(uh, wh; wh, wh)=Ga(in, Wa; Uh, Wh)
SMu(un, wn) Ma(uh, wh)
< My(un, wa)IMu(uh—1’, wh—w)+Mu’, )]
< My(un, w)IMa(uh—u', wh—w)+27 Malun, wa)]
EM(un, wa)IChMp(un, wa)+A7 Mu(un, wa)l
=A7'Gp(un, wy; Un, wa)14+CA:h).
This completes the proof.

We are now in a position to prove the following theorem for the eigenvalues
of the partial approximation with the semi-consistent mass scheme.

Theorem 1. Let 1; and 1,.: be the eigenvalues defined by (3) and (10), respec-
tively. Then there exists a positive constant C independent of h such that

[2:—2n,:| SCA3h,
for sufficiently small h.

Proof. We define a mapping P:&;—S" given by
P(it;, W)= {fins, Wai}, {a;, W} €&y,

where {fin;, Wsil €S™ is defined by (17). Using (17) and (18) yields

~ 1 i
Bu(fini, Whi; fni, wni):Gh(jg zjajuj; 121 Zjajwj; Uni, Wae)
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S AM (s, W) Ma(ilns, Wno)
SALM (i fins, i)+ Malilns, D) IMuilne, Dno)
SAIM,(fins, Wae)PA4+CAR)=24:Gr(fini, Whi; Fnsy, Wa)1+CAh).
Thus we have

Bu(P(@y, Ws); P(is, wi))an(ﬁni, Whi; Bni, Whe)
Gu(P(ity, W) ; Py, W1)) Gulling Whe; Gni Wai)

SA4(1+CAh).

Since S*!=P¢&; is i-dimensional, we obtain
(24) An, 1S 2(1+Ca;h),

for sufficiently small A, from the min-max principle.
On the other hand, by (21) we have

Gn(Un, Wa; Un, Wa)=Bp(uh, wh; un, Wa)SNa(uh, wh)Na(un, ws).
Thus an application of Lemma 5 leads to
LGn(un, wh; Un, wa)l*=Bu(uh, wh; uh, wh) Balun, wa; un, wy)
S271Gh(up, wa; us, wn)(1+61ih)Bn(un, Wy 5 Un, Wr),
from which follows

Bu(tn, wp; Un, Wwp)
Gn(tn, Wy Un, Wh)

=2,(14+-CAh) = 2:(1—Ca;h) .

Since {un, ws}={0, 0} is an arbitrary element of S?, using the min-max principle
yields

(25) An12A(1—CA;h),

for sufficiently small 4. Combining (24) and (25) completes the proof.

Secondly we shall estimate the error bounds for the eigenfunctions of (10).
For the exact solution {2;, u;, w;} of (3), we define {f,; #,:;} €S* by
(26) Bu(fins, Bais @tn, Wn)=A:Gn(us, wi; @y, @) for each {tin, Wy} eS™.
Then, applying Lemma 4 leads to
@7) Mu(fni— s, Bri—w)=CAh=Ch.
Moreover, using the system {{@,1, @s.1}, =, {@r 1, s :}} which is orthonormal
with respect to G,, we expand

i-1
(28) {fins, ﬁzni}———an(ﬁu, Dnis Bnoir Dn ) {8, by D, 2}

+Gu(fney D Bniy Dn ) {Bon, sy Ba, i} + {ff’i, fé’i .
We put
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i-1
(29) {ffi, féi}=k2=)lGn(ﬁM, Dni; On ey Do, ) (B, k, D, s},

In order to derive error bounds for the eigenfunctions, we obtain the following
lemmas for the estimates of M,( f U, 7)) and M( f 14 f 20)

Lemma 6. If A;<Ai., then for sufficiently small h, there exists a positive
constant C independent of h such that

Mu(ft, f1o=Ch.
Proof. From (28) it follows that
(30) Gullte Fls fonos 0, )=0, k=12, -, i.
By (10) we have
(31) Bu(ltn, b, W5 Bn, Wn)=2n, sGn(n, 4y W, x5 i, W)

for each {it,, W,}sS*.

Moreover, combining (31) and (30) yields
(32) Bu(fin, by Wn, s fﬁ'i, féli)zjh, 2 Gu(lin, b, W §f§'i» fé’t)—_-o .

k=1,2, -, 1
From (28) and (30), it follows that

33) Gu(fini, lf/nilfi’t, fzz = 2 Gu(fins, Dnis An, ks Wn, 1) Gnl@n, by W, g ,fm f

+Gu(f 1o P4es P Fro=Gu(Fts, P Pt T4

By (28) and (32), we obtain

(34) Bn(ﬁni, ﬁ)hi;f{{, fm = Z Gh(ahi, Whis Gn ey Wa, 2)Balln, p, Dn, k;flu le)

+Bu(fl, Fiis T, Fin=Ba(Fl, o Fis 1.
Therefore, using (34), (33) and (26) leads to

(35) Bu(ft, P43 1, F—aGu(Pi, Fais Fit, T4
=Bufns, Bne; [l F4)—2Gu(fins, Bnes 714 740
=2Gn(us, wis Flhy P8 —2Ga(Bnes nes F11 F 12
=GB, wi—dass i F4
< AMy(ui— g, wi—dne) Mu(F 1 F1

The eigenvalues are characterized by
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By(fly, Wn; fln, W)

. .min - —,
(€ wp1ES 10,0 Gh(ﬁh, Wh ; 12;“ wh)
Gh(ah,@h; i,,,,:?;h,j)=o
J=1,, k-1

k=1, -, N.

An k=

Thus, from (30) we have
(36) Bu(Fi P45 Flt Fi0Z 00 Gal P lt, T3 P11 £
Hence, from (35) and (36) it follows that

Guoin—=A)Ca(F it Ftis Pt PSRl n(ti— s, wi— D) MalF L5, 110
Thus
G or—2OMu(F 1 IS XMy (ui—Bnt, wi—Dns).

On the other hand, an application of Theorem 1 yields
2);. i+1"zig(xi+1_2i)/2>0;
for sufficiently small #. Therefore, using (27) we have

22 ~
Mn(fx/éy f{ﬁ)é ﬁiwn(ui—ﬁht, w;—1A)=Ch,
+1

for sufficiently small 4. Hence we have the desired estimate. The proof is com-
plete.

For the estimate of M,( f 16 f 21), the following lemma is presented.

Lemma 7. If A,>2;-,, then for sufficiently small h, there exists a positive
constant C independent of h such that

Mu(f1s, F30=Ch.

Proof. From (29) and (31), it follows that
i1, . R R
Bu(fins, ﬁ’ni;f;i, féi): kglzh.k[Gh(ﬁhi; Whis Gn, g Wh, )]

=By(fi0 Fies Fio 710,

and that
i-1
Gunlfini, Wais fii, féi)z Ell:Gh(ﬁhi’ Dnis Bn Wa. )]

=Gu(Fin Faus Flo 710

Thus, by (26) we have
—Bu(F10 Fos Fio Fa0+aGa(Fis Fius F1a 730
=—Ba(flns, Dni; f;i, fét)+1iGn(ﬁni, Dnis f;i: .Féi)
:_ltén(ub Wi, fii, féi)"‘ZiGn(ﬁu, Wri; f{i; féi)
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=2:Gn(Bni—us, Bai—wi; f1i, [10)

< AM(Bni— s, Dai—wi)- Ma(F s, 140
From the property of the eigenvalue and (29), we obtain

Bu(F 1o fis fio FiostnnGa(F o s o Fio.
Therefore, we have

Qe—AnsIMa(F 1o, F20S Al Bni— e, Bai—w).
On the other hand, an application of Theorem 1 yields

A=A, 112 (A—24-1)/2>0,

for sufficiently small A. Hence, using (27) we have

244 Mn(ﬁni—ui, ﬁjhi—wi)§Ch-

Mi(Fio Fros 25—
i i-1

for sufficiently small A. This completes the proof.

We now state the following theorem relating to the convergence for the
eigenfunctions of (10).

Theorem 2. Let A; be an eigenvalue of multiplicity p+1 (p=0, A;-1<Ai=2is1
= oo =21 p<Astper) 0f (B) and {uy, wit, -, {Uhsrp, Wiry} be the associated eigen-
functions. Let {An. s, @n, e Waox} (B=1, =, N) be the solution of (10). Then for
sufficiently small h, there exist positive constants C, and C, independent of h such
that

dist [{u; wi}, Bn ,i<Cih,  dist[{uy, wy}, Bn ,1<Csh,

j=t, i+1, -, i+p,
where

B p=1{{#, D} €span [{@n,s, Dai}, =, {Bn e Dnoivpt]; Malt, D)=1},

dist [{u, w}, Bn.,Di= inf Mu(u—a, w—1),

AA A
(U, wiESB, p

dist [{u, w}, Bn.,]= inf Mu—2a, w—n).
(i, W1EBy. p

Movreover, if A; is a simple eigenvalue, then there exist positive constants C; and
C. independent of h such that

Mn(ui—ﬁn,i, wi—Wn, 1) SCsh, M(ui—ﬁn, o Wi— Wy, )=Cih,

for sufficiently small h.

Proof. We shall prove only the first estimate. The others follow in the
same fashion. Define {4, 0¥} by
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i+p
{ajfk: w;k}':kgia-k{ﬁh.kr wh.k}v ]:17 Tty l+p)
where

3r=Gp(uj, wi; An, gy W x) -

For {4, u; w;}, we define {fi;, dn;} €S" by

Bu(finj, Wnj; s, wh)zljéh(uj’ Wy n, W) for each {#,, Wa}ES".
Then using Lemma 4, we have

Mh(ﬁhj_ujy Wa;—w)H=Ch, J=t, =, i+p,
for sufficiently small h. Write {f,; #;} as follows:

i-1
{ﬁhjy Zj/hj}:kz.‘i Gn(ﬁnj, ﬁ}hj; fn ey Wae){Bn, b Dn, e}

i+p 2
+ Eich(ﬁ“’ ﬁ/hj; Xn. by Dr, ) {Bn, e wh.k}"*—{fljy fzj}-

Since A;4p<Ai+p+: and since {u;, w;} is the eigenfunction corresponding to A:p,
using Lemma 6 leads to

Mu(f1 fep=Ch,
for sufficiently small . We set

i-1
{f{j, fet=2 Gn(ﬁnj, ﬁ/hj; An by D e) {8, ny Do s)
F=1

Since A;-,<2; and since {u;, w;} is the eigenfunction corresponding to Z;, apply-
ing Lemma 7 leads to

M1y Fip=Ch,
for sufficiently small A. Hence, using Schwarz’s inequality we have

Mu(@f—fing, OF—Wn;y)

N i+p A
§Mh(f{jy f;j)—l_ké?ilGh(uj_ﬁhjy wj_@/zj; Aty D, e) | Mu(@n, g, Wh,e)

+Mh(f1j, fzj)§6h+(P+1)Mn(uj—ﬁhj, wj—lf/th-éh:Ch .
Thus, for sufficiently small A,

Mn(uj—‘ﬁ}k, wj—w?)élqh(uj—ﬁnj; wj—ﬁ/hj)_{_Mh(ﬁhj—ﬁ*y 1

wh,—ﬂ)}")é(:h y
and

My (u;—af, w;— DN P=Cn(u;—af, w;—0F ; u;—af, w;—oy)

=G(uj wy; uy, w)—2Gn(uy wy; af, OF)+Ga(@f, @F; af, 0F)
i+p i+p i+

=1-23 @i+ 3 at=1— > a
k=1 k=t k=1

]

1l
-
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“(yEa)i-yEn).

Thus, for sufficiently small A,

i+p ~
{ay, wit=A{af, oF}/ 2 EBn -
=1
Moreover, we have
Mu(af—a¥, of—wH)P=GCnaf—a¥, oF—o¥; af—af, DF—w})

'—Gh(ﬁ*’ w* ’ uj, w*) ZGh,(ujy w;k; iz}k; w}*)-*_Gh(a}k’ w;k; aj’k’ w;k)

=S a-2/Fa +1=(1-,[Za )"

Using the triangle inequality, we have

My(u;—af, wy—wH)<My(u;— ¥, w— o)+ My(aF—ak, DF—a¥)
~ itp
=M (u;—af, w,—w,)+(1 ,Edi)
~ *p
=Mu(u;—af, w;— o)+ [M(u;—ak, w,~—w}*)]2/(1-l~ P )éCh,

for sufficiently small h. Therefore, we have the desired estimate. This completes
the proof.

We can now show the following theorems for the consistent approximation,
the straight beam approximation and the consistent approximation with the semi-
consistent mass scheme. For the consistent approximation, we can use Nitsche’s
trick ([17], [7]). Since these results are easily obtained by the same arguments
as used for the partial approximation with the semi-consistent mass scheme, we
omit the proofs.

Theorem 3. Let Ay i1 Af: and 2n.; be the eigenvalues defined by (3), (6),
(12) and (14), respectively. Then for sufficiently small h, there exist positive con-
stants C,, Cy and Cs independent of h such that

0=15,— A =<C,23h%,
[ 4%, — ;| £C2%h,
| A, i—2;| SCoa2h .

Theorem 4. Let A; be an eigenvalue of multiplicity p-+1 (p=0, A;-, <= -~
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=24 p<Airps1) 0f B) and {uq, wi}, -, {Uirp, Wispt be the associated eigenfunc-
tions. Let {jh,k: Un,wr Wa, et {45, &, uF. 2, w3 o} and {ih,k; Gn, by Wa, e} (=1, -, N)
be the solutions of (6), (12) and (14), respectively. Then, for sufficiently small h,
there exist positive constants C, (=1, -+, 5) independent of h such that

diSt [{uj, w,-}, éh,p]éclhzy
dist [{u;, wy}, B% ,0.<Coh,  dist[{u;, wj}, B% ,1=Csh,
dist [{u;, w}, Bn ,i<Cih,  dist[{u; w,}, Ba ,]1=<Csh,

Jj=t, -+, i+ p, where

én.pZ{{ﬂ: w}espan [{#4,1, Wn.i}, -, {ﬁh,t+p, wh,i+p}] s M(a, w)=1},
Q;‘:,p:{{ﬁ) w}espan[{u’f‘:- i w;‘:,i}; Tty {u;‘l‘,i+pl w;‘:.i+p}] H M?’L((ﬂ’ w>=1},
-‘=Bn.p={{ﬁ, w}espan [{#n, s Da.s}, -, {ﬁh,i+py LT/n.i+p}:|; My(a, w)=1},

dist [{u, w}, 8% ,Je= . .inf, Miu—a, w—0).
(u, w)EQh_p

Movreover, if A; is a simple eigenvalue, then there exist positive constants C, (g=6,
-+, 10) independent of h such that

M(ui—1tin, 1, wi—Wn, )=Ceh®,
Fug—uf i, wi—wik )=Cih, M(u;—u¥,, wi—w¥ )=Csh,
My(us—1p, s, wi—W5, ) =Coh, MQuy—Tin, s, wi—Wa, )SCroh,

for sufficiently small h.

5. Numerical experiments

In this section we shall give some numerical examples to illustrate the results
obtained in the preceeding section. The following two typical examples of cir-
cular clamped arches are dealt as shown in Figure 3.

Example 1. R=20, L=20r/3, E=A=]=p=1.
Example 2. R=10, L=10x, E=A=]=p=1.

The exact eigenvalues and eigenfunctions of the above examples are not
known. The eigenvalue A is equal to «? where @ is the natural frequency of
vibration. For the first eigenvalue of Example 1, Den Hartog [5] and Volterra
and Morell [19] have presented the following approximate numerical solutions by
using the Rayleigh-Ritz method

20, 26_?]5_1'_—,4.21%10-3,
2
A= 3OV E 6151079,

25
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respectively. Also for the first eigenvalue of Example 2, Den Hartog [5] and
Archer [1] have presented the following numerical solutions

2
2=V EL . g1810-,
oR
a2, =2EL g0 510m.

pR

Now the finite element solutions are obtained by employing the four approxi-
mations, i.e., consistent approximation, partial approximation with the semi-con-
sistent mass scheme, beam approximation and consistent approximation with the
semi-consistent mass scheme. The arches are devided into uniform finite elements
with equal length. Tables 1 and 2 show the numerical results of the finite ele-

(b) Example 2.

(a) Example 1.

Figure 3. Examples.

Table 1. The results for Example 1 (first eigenvalues).
Number of Partial semi- . Consistent semi-
elements consistent Beam Consistent consistent
4 4.149x10-2 4.205x 103 4,331x10-3 4.260x10-3
6 4.148x10-% 4.176x 108 4.232x19-3 4.199%x10-3
8 4.135%x10-3 4.135x 103 4,167 x10-3 4.166x10-2
2% 4.219x10-2
2% 4.161x10°3
Table 2. The results for Example 2 (first eigenvalues).
Number of Partial semi- . Consistent semi-
elements consistent Beam Consistent consistent
4 1.905x 102 1.987 x10-3 3.285x10°2 2.667 x10-3
6 1.840x 102 1.874x 103 2.437x10°3 2.206%x 102
8 1.826x 102 1.846x10-? 2.163x10-3 2.043x10°2
10 1.826x10-3 1.835x 102 2.050x10-3 1.979x10-8
12 1.816x10-3 1.816x 103 1.968x10-3 1.912x10-2
2 1.918 x 10-3
pie) 1.922x10-3
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ment methods in comparision with those obtained by Den Hartog, Volterra and
Morell, and Archer. Figure 4 illustrates the usefulness of expressing conver-
gence. The first mode shape for Example 2 is shown in Figure 5, which is in
good agreement with the result obtained by Archer.

All the computations were done in single-precision arithmetic on the FACOM
230-28 computer at Ehime University.

N
Alw
PS: partial semi-consistent
3.4X1073 ¢ B :beam
C :consistent
CS: consistent semi-consistent

3.0x1073

2.5%1073

2.0x1073 F*
———
PS
151073 p
1.0x10-3 1 1 1 1 S
4 6 8 10 12

number of elements
Figure 4. Convergence of eigenvalues for Example 2.

Figure 5. First mode shape for Example 2 (12 finite elements).
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