Simply connected compact simple Lie group $E_{7(-133)}$ of type E_7

By

Takao IMAI and Ichiro YOKOTA

(Communicated by Prof. Toda, Feb. 5, 1980)

It is known that there exist four simple Lie groups of type E_7 up to local isomorphism, one of them is compact and the others are non-compact. One of the non-compact Lie groups of type E_7 is considered by H. Freudenthal [1]. He defined a space \mathfrak{M} in $\mathfrak{P}=\mathfrak{P}\oplus\mathfrak{P}\oplus R\oplus R$ (where \mathfrak{P} is the exceptional Jordan algebra over the field of real numbers R) by

$$\mathfrak{M} = \{ L \in \mathfrak{P} \mid L \times L = 0 \}$$

and showed that the Lie algebra of the group

$$\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{P}, \mathfrak{P}) \mid \alpha \mathfrak{M} = \mathfrak{M}, \det \alpha = 1\}$$

is a simple Lie algebra of type E_7 . In this paper, we consider the compact case. Our result is as follows. The simply connected compact simple Lie group of type E_7 is explicitly given by

$$E_{\tau} = \left\{ \alpha \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{P}^{c}, \, \mathfrak{P}^{c}) \, \middle| \, \begin{array}{l} \alpha \mathfrak{M}^{c} = \mathfrak{M}^{c}, \, \{\alpha 1, \, \alpha \dot{1}\} = 1 \\ \\ \langle \alpha P, \, \alpha Q \rangle = \langle P, \, Q \rangle \end{array} \right\}$$

where \mathfrak{P}^c , \mathfrak{M}^c are the complexifications of \mathfrak{P} , \mathfrak{M} respectively and $\{P, Q\}$, $\langle P, Q \rangle$ inner products defined in \mathfrak{P}^c .

1. Preliminaries.

Let \mathfrak{C}^c denote the Cayley algebra over the field of complex numbers C and \mathfrak{F}^c the exceptional Jordan algebra over C. This \mathfrak{F}^c is the Jordan algebra consisting of all 3×3 Hermitian matrices X with entries in \mathfrak{C}^c

$$X = \begin{pmatrix} \xi_1 & x_3 & \bar{x}_2 \\ \bar{x}_3 & \xi_2 & x_1 \\ x_2 & \bar{x}_1 & \xi_3 \end{pmatrix}, \qquad \xi_i \in C, \ x_i \in \mathbb{C}^c$$

with respect to the multiplication $X \circ Y = \frac{1}{2}(XY + YX)$. In \mathfrak{J}^c , the symmetric inner product $\langle X, Y \rangle$, the crossed product $X \times Y$, the cubic form (X, Y, Z) and the

determinant det X are defined respectively by

$$\begin{split} &(X,\ Y) \!\!=\! \mathrm{tr}(X\!\!\circ\! Y)\,, \\ &\langle X,\ Y\rangle \!\!=\! (\tau X,\ Y) \!\!=\! (\overline{X},\ Y)\,, \\ &X\!\!\times\! Y \!\!=\! \frac{1}{2}(2X\!\!\circ\! Y \!\!-\! \mathrm{tr}(X)Y \!\!-\! \mathrm{tr}(Y)X \!\!+\! (\mathrm{tr}(X)\,\mathrm{tr}(Y) \!\!-\! (X,\ Y))E)\,, \\ &(X,\ Y,\ Z) \!\!=\! (X,\ Y\!\!\times\! Z) \!\!=\! (X\!\!\times\! Y,\ Z)\,, \\ &\det\! X \!\!=\! \frac{1}{3}(X,\ X,\ X) \end{split}$$

where $\tau: \Im^c \to \Im^c$ is the complex conjugation with repect to the basic field $C(\tau X)$ is also denoted by \overline{X}) and E the 3×3 unit matrix.

Now we define a 56 dimensional vector space \mathfrak{P}^c by

$$\mathfrak{P}^c = \mathfrak{I}^c \oplus \mathfrak{I}^c \oplus C \oplus C$$
.

An element
$$P = \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix}$$
 of \mathfrak{P}^c is often denoted by $P = X + \dot{Y} + \xi + \dot{\eta}$ briefly.

We define a bilinear symmetric mapping $\dot{\times}: \mathfrak{P}^c \times \mathfrak{P}^c \to \mathfrak{I}^c \oplus \mathfrak{I}^c \oplus C$ by

$$P \dot{\times} \mathbf{Q} = \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} \dot{\times} \begin{pmatrix} Z \\ W \\ \zeta \\ \omega \end{pmatrix} = \begin{pmatrix} 2X \times Z - \eta W - \omega Y \\ 2Y \times W - \xi Z - \zeta X \\ (X, W) + (Y, Z) - 3(\xi \omega + \eta \zeta) \end{pmatrix}$$

and a space \mathfrak{M}^c by

$$\mathfrak{M}^{c} = \{ L \in \mathfrak{P}^{c} | L \times L = 0 \}$$

$$= \left\{ \begin{pmatrix} M \\ N \\ \mu \\ \nu \end{pmatrix} \in \mathfrak{P}^{c} \middle| \begin{array}{l} M \times M = \nu N \\ N \times N = \mu M \\ (M, N) = 3\mu \nu \end{array} \right\}.$$

For example, the following elements of \mathfrak{P}^c

$$\begin{pmatrix} X \\ \frac{1}{\eta}(X \times X) \\ \frac{1}{\eta^2} \det X \\ \eta \end{pmatrix}, \begin{pmatrix} \frac{1}{\xi}(Y \times Y) \\ Y \\ \xi \\ \frac{1}{\xi^2} \det Y \end{pmatrix}, 1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, i = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

where $\eta \neq 0$, $\xi \neq 0$, belong to \mathfrak{M}^c . Finally, in \mathfrak{P}^c , we define the skew-symmetric inner product $\{P, Q\}$ and the positive definite Hermitian inner product $\langle P, Q \rangle$ respectively by

$$\{P, Q\} = (X, W) - (Z, Y) + \xi \omega - \zeta \eta,$$

$$\langle P, Q \rangle = \langle X, Z \rangle + \langle Y, W \rangle + \bar{\xi} \zeta + \bar{\eta} \omega$$

for $P=X+\dot{Y}+\xi+\dot{\eta}$, $Q=Z+\dot{W}+\zeta+\dot{\omega}\in\mathfrak{P}^c$.

2. Group E_7 and subgroups E_6 , U(1).

The group E_{τ} is defined to be the group of linear isomorphisms of \mathfrak{P}^c leaving the space \mathfrak{M}^c , the skew-symmetric inner product $\{P, Q\}$ and the Hermitian inner product $\langle P, Q \rangle$ invariant:

$$E_{7} = \left\{ \alpha \in \operatorname{Iso}_{c}(\mathfrak{P}^{c}, \mathfrak{P}^{c}) \middle| \begin{array}{c} \alpha \mathfrak{M}^{c} = \mathfrak{M}^{c}, \ \{\alpha 1, \ \alpha i\} = 1 \\ \langle \alpha P, \ \alpha Q \rangle = \langle P, \ Q \rangle \text{ for } P, \ Q \in \mathfrak{P}^{c} \end{array} \right\}.$$

Remark. In the definition of the group E_{τ} , we may replace the condition $\{\alpha 1, \alpha i\} = 1$ by the condition $\{\alpha P, \alpha Q\} = \{P, Q\}$.

Obviously the group E_{τ} is compact as a closed subgroup of the unitary group $U(56)=U(\mathfrak{P}^c)=\{\alpha\in \operatorname{Iso}_c(\mathfrak{P}^c,\,\mathfrak{P}^c)|\langle\alpha P,\,\alpha Q\rangle=\langle P,\,Q\rangle\}$.

We define a subgroup E_6 of E_7 by

$$E_6 = \{ \alpha \in E_7 \mid \alpha 1 = 1 \}.$$

Lemma 1. If $\alpha \in E_{\tau}$ satisfies $\alpha 1 = 1$, then $\alpha \dot{1} = \dot{1}$.

Proof. Put $\alpha \dot{1} = M + \dot{N} + \mu + \dot{\nu}$. Then $\langle \alpha 1, \alpha \dot{1} \rangle = 0$ and $\{\alpha 1, \alpha \dot{1}\} = 1$ imply $\mu = 0$ and $\nu = 1$ respectively. And $\langle \alpha \dot{1}, \alpha \dot{1} \rangle = 1$ implies $\langle M, M \rangle + \langle N, N \rangle + 1 = 1$, hence M = N = 0. Thus we have $\alpha \dot{1} = \dot{1}$.

Proposition 2. The group E_6 is a simply connected compact simple Lie group of type E_6 .

Proof. We define a group $E_{6(-78)}$ by

$$E_{\mathfrak{s}(-78)} = \{ \beta \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{J}^{c}, \mathfrak{J}^{c} | \det \beta X = \det X, \langle \beta X, \beta Y \rangle = \langle X, Y \rangle \}$$

$$= \{ \beta \in \operatorname{Iso}_{\mathcal{C}}(\mathfrak{J}^{c}, \mathfrak{J}^{c}) | \beta X \times \beta Y = \tau \beta \tau(X \times Y), \langle \beta X, \beta Y \rangle = \langle X, Y \rangle \}.$$

Then $E_{6(-78)}$ is a simply connected compact simple Lie group of type E_6 [3]. We shall show that the group E_6 is isomorphic to the group $E_{6(-78)}$. It is easy to verify that, for $\beta \in E_{6(-78)}$, the linear mapping $\alpha : \mathfrak{P}^c \to \mathfrak{P}^c$,

$$lpha = egin{pmatrix} eta & 0 & 0 & 0 \ 0 & aueta au & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

belongs to E_{τ} . Conversely, suppose $\alpha \in E_{\tau}$ satisfies $\alpha 1 = 1$ and $\alpha 1 = 1$ (Lemma 1). Since α leaves the orthogonal complement $\mathfrak{F}^c \oplus \mathfrak{F}^c$ of $C \oplus C$ invariant, α has the following form

$$lpha = egin{pmatrix} eta & eta & 0 & 0 \ \delta & \gamma & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

where β , γ , δ , ε are linear transformations of \Im^c . Since

$$\alpha \begin{pmatrix} X \\ \frac{1}{\eta}(X \times X) \\ \frac{1}{\eta^2} \det X \\ \eta \end{pmatrix} = \begin{pmatrix} \beta X + \frac{1}{\eta} \varepsilon(X \times X) \\ \hat{\sigma} X + \frac{1}{\eta} \gamma(X \times X) \\ \frac{1}{\eta^2} \det X \\ \eta \end{pmatrix} \in \mathfrak{M}^c,$$

we have

$$\Big(\beta X + \frac{1}{\eta} \varepsilon(X \times X)\Big) \times \Big(\beta X + \frac{1}{\eta} \varepsilon(X \times X)\Big) = \eta \Big(\delta X + \frac{1}{\eta} \gamma(X \times X)\Big)$$

for all $0\neq\eta\in C$. Hence we have $\delta X=0$ (for all $X\in\mathfrak{J}^c$) as the coefficient of η , therefore $\delta=0$. Similarly from $\alpha\Big(\frac{1}{\xi}(Y\times Y)+\dot{Y}+\xi+\frac{1}{\xi^2}(\det Y)^{\star}\Big)\in\mathfrak{M}^c$, we have $\varepsilon=0$. Thus

$$\alpha = \begin{pmatrix} \beta & 0 & 0 & 0 \\ 0 & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Again the condition $\alpha(X+(X\times X)^c+\det X+1)=\beta X+\gamma(X\times X)^c+\det X+1\in\mathfrak{M}^c$ implies

$$\begin{cases} \beta X \times \beta X = \gamma(X \times X), \\ (\beta X, \gamma(X \times X)) = 3 \det X. \end{cases}$$

Hence $\det \beta X = \frac{1}{3} (\beta X, \ \beta X \times \beta X) = \frac{1}{3} (\beta X, \ \gamma (X \times X)) = \det X$. Furthermore, $\langle \alpha X, \ \alpha Y \rangle$

 $=\langle X, Y \rangle$ implies $\langle \beta X, \beta Y \rangle = \langle X, Y \rangle$. Therefore we have $\beta \in E_{\mathfrak{g}(-78)}$ and $\gamma = \tau \beta \tau \in E_{\mathfrak{g}(-78)}$. Thus Proposition 2 is proved.

It is easy to see that the group E_{τ} contains the following subgroup

$$U(1) = \left\{ \theta = \begin{pmatrix} \theta^{-1}1 & 0 & 0 & 0 \\ 0 & \theta 1 & 0 & 0 \\ 0 & 0 & \theta^{3} & 0 \\ 0 & 0 & 0 & \theta^{-3} \end{pmatrix} \middle| \theta \in C, |\theta| = 1 \right\}$$

(where 1 is the identity mapping of \Im^c) which is isomorphic to the unitary group $U(1) = \{\theta \in C \mid |\theta| = 1\}$.

From now on, we identify these groups $E_{\epsilon(-78)}$ and E_{ϵ} , U(1) and U(1) under the above correspondences.

3. Lie algebra e_7 of E_7 .

We consider the Lie algebra e_7 of the group E_7 :

$$\mathbf{e}_{\tau} = \left\{ \boldsymbol{\Phi} \in \operatorname{Hom}_{c}(\mathfrak{P}^{c}, \, \mathfrak{P}^{c}) \middle| \begin{array}{c} \boldsymbol{\Phi} L \dot{\times} L = 0 \, \text{ for } \, L \in \mathfrak{M}^{c} \\ \{\boldsymbol{\Phi}1, \, \mathbf{i}\} + \{1, \, \boldsymbol{\Phi}\mathbf{i}\} = 0 \\ \langle \boldsymbol{\Phi}P, \, Q \rangle + \langle P, \, \boldsymbol{\Phi}Q \rangle = 0 \, \text{ for } \, P, \, Q \in \mathfrak{P}^{c} \end{array} \right\},$$

Theorem 3. Any element Φ of the Lie algebra e_q is represented by the form

$$\Phi = \begin{pmatrix}
\phi - \frac{1}{3}\rho 1 & 2A & 0 & -\overline{A} \\
-2\overline{A} & \tau\phi\tau + \frac{1}{3}\rho 1 & A & 0 \\
0 & -\overline{A} & \rho & 0 \\
A & 0 & 0 & -\rho
\end{pmatrix}$$

where $\phi \in \mathfrak{e}_{\mathfrak{g}} = \{ \phi \in \text{Hom}_{\mathcal{C}}(\mathfrak{F}^c, \mathfrak{F}^c) | (\phi X, X, X) = 0, \langle \phi X, Y \rangle + \langle X, \phi Y \rangle = 0 \}$ (which is the Lie algebra of the group $E_{\mathfrak{g}}$), $A \in \mathfrak{F}^c$, $\rho \in C$ such that $\rho + \overline{\rho} = 0$ and the action of Φ on \mathfrak{F}^c is defined by

$$\boldsymbol{\phi} \begin{pmatrix} X \\ Y \\ \xi \\ \eta \end{pmatrix} = \begin{pmatrix} \phi X - \frac{1}{3}\rho X + 2A \times Y - \eta \overline{A} \\ -2\overline{A} \times X + \tau \phi \tau Y + \frac{1}{3}\rho Y + \xi A \\ -\langle A, Y \rangle + \rho \xi \\ (A, X) - \rho \eta \end{pmatrix}$$

In particular, the type of the Lie group E_7 is E_7 [1].

Proof. Theorem 3 is the direct consequence of the following Lemmas 4 and

388

5.

Lemma 4 [1]. Any element Φ of the Lie algebra

$$\mathbf{e}_{\tau}^{c} = \left\{ \boldsymbol{\Phi} \in \operatorname{Hom}_{c}(\mathfrak{P}^{c}, \mathfrak{P}^{c}) \middle| \begin{array}{l} \boldsymbol{\Phi} L \dot{\times} L = 0 \text{ for } L \in \mathfrak{M}^{c} \\ \{\boldsymbol{\Phi}1, i\} + \{1, \boldsymbol{\Phi}i\} = 0 \end{array} \right\}$$

(which is the Lie algebra of type E_7) is represented by the form

$$\Phi = \begin{pmatrix}
\phi - \frac{1}{3}\rho 1 & 2A & 0 & B \\
2B & \phi' + \frac{1}{3}\rho 1 & A & 0 \\
0 & B & \rho & 0 \\
A & 0 & 0 & -\rho
\end{pmatrix}$$

where $\phi \in e_{\epsilon}^{c} = \{\phi \in \operatorname{Hom}_{c}(\mathfrak{J}^{c}, \mathfrak{J}^{c}) | (\phi X, X, X) = 0 \}$ (which is the Lie algebra of the group $E_{\epsilon}^{c} = \{\alpha \in \operatorname{Iso}_{c}(\mathfrak{J}^{c}, \mathfrak{J}^{c}) | \det \alpha X = \det X \}$), ϕ' is the skew-transpose of ϕ with respect to $(X, Y) : (\phi X, Y) + (X, \phi' Y) = 0$, $A, B \in \mathfrak{J}^{c}$ and $\rho \in C$.

Proof. Since $\Phi \in \mathfrak{e}_{\tau}^{c}$ is a linear transformation of \mathfrak{P}^{c} , we denote it by

$$\Phi = \begin{pmatrix}
g & l & C & B \\
k & h & A & D \\
c & b & \rho & \lambda \\
a & d & \kappa & \sigma
\end{pmatrix}$$

where g, h, k, l are linear transformations of \mathfrak{F}^c , a, b, c, d linear functionals of \mathfrak{F}^c , A, B, C, $D \in \mathfrak{F}^c$ and σ , ρ , κ , $\lambda \in C$. Now for any $0 \neq r \in C$, the linear trans-

formation $f_r = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & r1 & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^{-1} \end{pmatrix}$ of \mathfrak{P}^c induces a mapping of \mathfrak{M}^c and it holds that

$$f_{r}^{-1}\Phi f_{r} = \begin{pmatrix} g & rl & r^{2}C & r^{-1}B \\ r^{-1}k & h & rA & r^{-2}D \\ r^{-2}c & r^{-1}b & \rho & r^{-3}\lambda \\ ra & r^{2}d & r^{3}\kappa & \sigma \end{pmatrix} \in \mathfrak{e}_{\tau}^{c}.$$

Therefore Φ is decomposable in

$$\Phi = \Phi_3 + \Phi_{-3} + \Phi_2 + \Phi_{-2} + \Phi_1 + \Phi_{-1} + \Phi_0$$
, $\Phi_i \in e_z^c$

where

Simple Lie group of type
$$E_7$$

Then $\Phi_3 1 \times 1 = 0$ implies $\kappa = 0$, hence $\Phi_3 = 0$ and similarly $\Phi_{-3} = 0$. And then $\Phi_2 \dot{1} \times \dot{1} = 0$ and $\Phi_2 \dot{L} \times \dot{L} = 0$ where $\dot{L} = (\dot{Y} \times \dot{Y}) + \dot{Y} + 1 + (\det Y)$ imply $\dot{C} = 0$ and d=0 respectively, hence $\Phi_2=0$, similarly $\Phi_{-2}=0$. Next $\Phi_1 L \times L=0$ where L=0 $(Y \times Y) + \dot{Y} + 1 + (\det Y)$ implies

$$l(Y)=2A\times Y$$
.

And $\Phi_1 L \times L = 0$ where $L = X + (X \times X) + \det X + 1$ implies

$$2(A \times (X \times X), X \times X) + (\det X)(X, A) = 3(\det X)a(X)$$
.

hence

$$3(\det X)(X, A) = 3(\det X)a(X)$$
.

Therefore we have (since a is a linear funtional of \mathfrak{F}^c , even if for X such that $\det X = 0$

$$a(X)=(A, X)$$
.

Similarly $k(X)=2B\times X$ and b(X)=(B, X). Finally $\Phi_0 L \times L=0$ where L=X+ $(X \times X)$ + det X + 1 implies

$$(2gX \times X = \sigma(X \times X) + h(X \times X)),$$
 (i)

$$\begin{cases} 2gX \times X = \sigma(X \times X) + h(X \times X), & \text{(i)} \\ 2h(X \times X) \times (X \times X) = (\det X)(\rho X + gX), & \text{(ii)} \\ (gX, X \times X) + (h(X \times X), X) = 3(\rho + \sigma) \det X. & \text{(iii)} \end{cases}$$

$$\left| (gX, X \times X) + (h(X \times X), X) = 3(\rho + \sigma) \det X \right|. \tag{iii}$$

Hence if we put $\phi = g - \frac{1}{2}(\rho + 2\sigma)1$, then

$$\begin{split} 3(\phi X,\,X,\,X) &= 3(gX,\,X,\,X) - (\rho + 2\sigma)(X,\,X,\,X) \\ &= \overline{\text{(i)}} \; (\sigma(X \times X) + h(X \times X),\,X) + (gX,\,X,\,X) - 3(\rho + 2\sigma) \text{det} X \\ &= \overline{\text{(iii)}} \; 3\sigma \; \text{det} X + 3(\rho + \sigma) \; \text{det} X - 3(\rho + 2\sigma) \; \text{det} X = 0 \; . \end{split}$$

Therefore we have

$$\phi \in \mathfrak{e}_6^C$$
.

Similarly $\psi = h - \frac{1}{3}(2\rho + \sigma)1 = e_6^c$. And from the above formula (ii),

$$\begin{split} 2\Big(\phi(X\times X) + \frac{1}{3}(2\rho + \sigma)X\times X\Big) \times (X\times X) &= (\det X)\Big(\rho X + \phi X + \frac{1}{3}(\rho + 2\sigma)X\Big)\,. \\ 2\phi(X\times X) \times (X\times X) &= (\det X)\phi X\,. \\ \phi'((X\times X)\times (X\times X)) &= (\det X)\phi X\,. \\ (\det X)\phi'X &= (\det X)\phi X\,. \end{split}$$

Therefore we have (even if for X such that $\det X=0$) $\psi'X=\phi X$, i.e.

$$\phi' = \phi$$
.

Finally from $\{\Phi 1, 1\} + \{1, \Phi 1\} = 0$, we have $\rho + \sigma = 0$. Thus Lemma 4 is just proved.

Lemma 5. Any linear transformation Φ of \mathfrak{P}^c satisfying

$$\langle \Phi P, Q \rangle + \langle P, \Phi Q \rangle = 0$$

is represented by the form

$$\phi = \begin{pmatrix} g & l & C & B \\ k & h & A & D \\ -\overline{C} & -\overline{A} & \rho & -\overline{\kappa} \\ -\overline{B} & -\overline{D} & \kappa & \sigma \end{pmatrix}$$

where g, h, k, l are linear transformations of \mathfrak{F}^c satisfying

$$\langle gX, Y \rangle + \langle X, gY \rangle = 0$$
,
 $\langle hX, Y \rangle + \langle X, hY \rangle = 0$,
 $\langle hX, Y \rangle + \langle X, lY \rangle = 0$.

A, B, C, $D \in \mathfrak{J}^c$ and ρ , κ , $\sigma \in C$ such that $\rho + \bar{\rho} = 0$, $\sigma + \bar{\sigma} = 0$.

Proof. Analogously in Lemma 4, we denote Φ by

$$\Phi = \begin{pmatrix} g & l & C & B \\ k & h & A & D \\ c & b & \rho & \lambda \\ a & d & \kappa & \sigma \end{pmatrix}$$

Then $\langle \Phi X, Y \rangle + \langle X, \Phi Y \rangle = 0$, $\langle \Phi \dot{X}, \dot{Y} \rangle + \langle \dot{X}, \Phi \dot{Y} \rangle = 0$ and $\langle \Phi X, \dot{Y} \rangle + \langle X, \Phi \dot{Y} \rangle = 0$ imply $\langle gX, Y \rangle + \langle X, gY \rangle = 0$, $\langle hX, Y \rangle + \langle X, hY \rangle = 0$ and $\langle hX, Y \rangle + \langle X, lY \rangle = 0$ respectively. And $\langle \Phi X, 1 \rangle + \langle X, \Phi 1 \rangle = 0$, $\langle \Phi X, \dot{1} \rangle + \langle X, \Phi \dot{1} \rangle = 0$, $\langle \Phi \dot{X}, \dot{1} \rangle + \langle \dot{X}, \Phi \dot{1} \rangle = 0$

=0, $\langle \Phi \dot{X}, \dot{1} \rangle + \langle \dot{X}, \Phi \dot{1} \rangle = 0$ imply $c(X) = -\langle C, X \rangle$, $a(X) = -\langle B, X \rangle$, $b(X) = -\langle A, X \rangle$ and $d(X) = -\langle D, X \rangle$ respectively. Finally $\langle \Phi 1, \dot{1} \rangle + \langle 1, \Phi \dot{1} \rangle = 0$ implies $\bar{\kappa} + \lambda = 0$. Thus Lemma 5 is proved.

4. Center $z(E_7)$ of E_7 .

Theorem 6. The center $z(E_7)$ of the group E_7 is isomorphic to the cyclic group \mathbb{Z}_2 of order 2:

$$z(E_7) = \{1, -1\} \cong \mathbb{Z}_2$$

Proof. Let $\alpha \in z(E_7)$. From the commutativity with $\beta \in E_6 \subset E_7$, we have $\beta \alpha 1 = \alpha \beta 1 = \alpha 1$. If we denote $\alpha 1 = M + \dot{N} + \mu + \dot{\nu}$, then $\beta M + (\tau \beta \tau N)^{\dot{\tau}} + \mu + \dot{\nu} = M + \dot{N} + \mu + \dot{\nu}$, hence

$$\beta M = M$$
, $\tau \beta \tau N = N$, for all $\beta \in E_6$.

Therefore M=N=0, so $\alpha 1=\mu+\dot{\nu}$, where $\mu\nu=0$ (since $\alpha 1\in\mathfrak{M}^c$). Suppose that $\mu=0$, i.e. $\alpha 1=\dot{\nu}\neq 0$, then from the commutativity with

$$\theta = \begin{pmatrix} \theta^{-1}1 & 0 & 0 & 0 \\ 0 & \theta 1 & 0 & 0 \\ 0 & 0 & \theta^3 & 0 \\ 0 & 0 & 0 & \theta^{-3} \end{pmatrix} \in U(1) \subset E_7,$$

we have

$$(\theta^{-3}\nu) = \theta\dot{\nu} = \theta\alpha 1 = \alpha\theta 1 = \alpha\theta^3 = (\theta^3\nu)$$
, for all $\theta \in U(1)$.

This is a contradiction. Hence $\alpha 1 = \mu$. Similarly $\alpha \dot{1} = \dot{\lambda}$. The condition $\{\alpha 1, \alpha \dot{1}\}$ = 1 implies $\mu \lambda = 1$, hence

$$\alpha 1 = u$$
, $\alpha \dot{1} = (u^{-1})^{2}$.

Next, note that

$$\iota = \begin{pmatrix} 0 & -1 & & 0 & & 0 \\ 1 & & 0 & & 0 & & 0 \\ 0 & & 0 & & 0 & -1 \\ 0 & & 0 & & 1 & & 0 \end{pmatrix}$$

belongs to E_{τ} , then the commutativity condition $\iota \alpha = \alpha \iota$ implies

$$\dot{\mu} = \iota \mu = \iota \alpha \mathbf{1} = \alpha \iota \mathbf{1} = \alpha \dot{\mathbf{1}} = (\mu^{-1})^{\bullet}$$
,

hence $\mu=\mu^{-1}$, i.e. $\mu=\pm 1$. In the case of $\mu=1$, $\alpha\in E_6$, so $\alpha\in z(E_6)$ which is $\{1, \omega 1, \omega^2 1\}$, $\omega\in C$, $\omega^3=1$, $\omega\neq 1$ [3]. Hence

$$\alpha = \begin{pmatrix} \omega 1 & 0 & 0 & 0 \\ 0 & \omega^{-1} 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \omega \in C, \, \omega^{3} = 1.$$

Again from the commutativity condition $\iota \alpha = \alpha \iota$, we have

$$(\omega X)^{\cdot} = \iota(\omega X) = \iota \alpha X = \alpha \iota X = \alpha \dot{X} = (\omega^{-1}X)^{\cdot}, \quad \text{for all } X \in \mathfrak{J}^{c},$$

hence $\omega = \omega^{-1}$, i.e. $\omega = 1$, therefore $\alpha = 1$. In the case of $\mu = -1$, $-\alpha \in z(E_6)$, so $-\alpha = 1$. Thus we see that $z(E_7) = \{1, -1\}$.

5. Connectedness of E_7 .

We shall prove that the group E_{τ} is connected. We denote, for a while, the connected component of E_{τ} containing the identity 1 by $(E_{\tau})_0$.

Lemma 7. For $a \in C$, the linear transformation of \mathfrak{P}^c defined by

$$\alpha_{1}(a) = \begin{bmatrix} 1 + (\cos|a| - 1)p_{1} & 2a\frac{\sin|a|}{|a|}E_{1} & 0 & -\bar{a}\frac{\sin|a|}{|a|}E_{1} \\ -2\bar{a}\frac{\sin|a|}{|a|}E_{1} & 1 + (\cos|a| - 1)p_{1} & a\frac{\sin|a|}{|a|}E_{1} & 0 \\ 0 & -\bar{a}\frac{\sin|a|}{|a|}E_{1} & \cos|a| & 0 \\ a\frac{\sin|a|}{|a|}E_{1} & 0 & \cos|a| \end{bmatrix}$$

$$\left(if \ a=0, \ then \ a\frac{\sin|a|}{|a|} \ means \ 0 \right) belongs \ to \ (E_7)_0, \ where \ E_1 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right) \in \mathfrak{F}^c,$$

the mapping $p_1: \mathfrak{F}^c \to \mathfrak{F}^c$ is defined by

$$p_{1} \begin{pmatrix} \xi_{1} & x_{3} & \bar{x}_{2} \\ \bar{x}_{3} & \xi_{2} & x_{1} \\ x_{2} & \bar{x}_{1} & \xi_{3} \end{pmatrix} = \begin{pmatrix} \xi_{1} & 0 & 0 \\ 0 & \xi_{2} & x_{1} \\ 0 & \bar{x}_{1} & \xi_{3} \end{pmatrix}$$

and the action $\alpha_1(a)$ on \mathfrak{P}^c is defined as similar to that of Theorem 3. Similarly we can define mappings $\alpha_2(a)$, $\alpha_3(a) \in (E_7)_0$.

$$\text{For } \Phi_{1}(a) = \begin{pmatrix} 0 & 2aE_{1} & 0 & -\bar{a}E_{1} \\ -2\bar{a}E_{1} & 0 & aE_{1} & 0 \\ 0 & -\bar{a}E_{1} & 0 & 0 \\ aE_{1} & 0 & 0 & 0 \end{pmatrix} \in \mathfrak{e}_{7}, \text{ we have } \alpha_{1}(a) = \exp \Phi_{1}(a),$$

hence $\alpha_1(a) \in (E_7)_0$

Proposition 8. Any element $L \in \mathbb{M}^c$ can be transformed in a diagonal form by a certain element $\alpha \in (E_7)_0$:

$$\alpha L = M + \dot{N} + \mu + \dot{\nu}$$
, M , N are diagonal forms.

Moreover we can choose $\alpha \in (E_7)_0$ so that μ is a non-negative real number (if $L \neq 0$, then $\mu > 0$).

Proof. Let $L=M+\dot{N}+\mu+\dot{\nu}\in\mathfrak{M}^c$. First assume that $\mu\neq 0$, then $M=\frac{1}{\mu}(N\times N)$, Choose $\beta\in E_6$ such that $\tau\beta\tau N$ is a diagonal form [3], then

$$\beta M = \frac{1}{\mu} \beta(N \times N) = \frac{1}{\mu} \tau \beta \tau N \times \tau \beta \tau N$$

is also diagonal, so βL is a diagonal form (where $\beta \in E_{\mathfrak{g}} \subset (E_{\tau})_{\mathfrak{g}}$). In the case of $\nu \neq 0$, the statement is also valid. Next we consider the case $L = M + \dot{N} \in \mathfrak{M}^c$, $N \neq 0$. Choose $\beta \in E_{\mathfrak{g}}$ such that

$$aueta au N \!=\! \! egin{pmatrix}
u_1 & 0 & 0 \\
0 &
u_2 & 0 \\
0 & 0 &
u_3 \end{pmatrix}\!, \qquad
u_i \!\in\! C \,.$$

Since $\tau \beta \tau N \neq 0$, we may assume $\nu_1 \neq 0$. Operate $\alpha_1 \left(-\frac{\pi}{2} \right) \in (E_7)_0$ of Lemma 7 on $(\tau \beta \tau N)^*$, then

$$\alpha_1\left(-\frac{\pi}{2}\right)(\tau\beta\tau N) = *+\dot{*}+\nu_1+\dot{*}.$$

So, we can reduce to the first case $\mu\neq 0$. In the case of $M\neq 0$, the statement is also valid. Finally, operate some $\theta\in U(1)\subset (E_7)_0$ on αL (if necessary), then μ becomes a non-negative real number. (If $L\neq 0$, noting $\alpha_3\Big(-\frac{\pi}{2}\Big)\alpha_2\Big(\frac{\pi}{2}\Big)\alpha_1\Big(\frac{\pi}{2}\Big)i=1$, then we can always reduce to the case $\mu\neq 0$). Thus Proposition 8 is proved.

We consider a subspace \mathfrak{M}_1 of \mathfrak{M}^C such that

$$\mathfrak{M}_1 = \{L \in \mathfrak{M}^c | \langle L, L \rangle = 1\}.$$

Theorem 9. The group E_7 acts transitively on \mathfrak{M}_1 (which is connected) and the isotropy subgroup of E_7 at $1 \in \mathfrak{M}_1$ is E_6 . Therefore the homogeneous space E_7/E_6 is homeomorphic to \mathfrak{M}_1 :

$$E_7/E_6 \cong \mathfrak{M}_1$$
.

In particular, the group E_7 is connected.

Proof. Obviously the group E_7 acts on \mathfrak{M}_1 . First we shall prove that the group $(E_7)_0$ acts transitively on \mathfrak{M}_1 . For a given $L=M+\dot{N}+\mu+\dot{\nu}\in\mathfrak{M}_1$, from Proposition 8, there exists $\alpha\in(E_7)_0$ such that

$$\alpha L = \frac{1}{\mu} \begin{pmatrix} \nu_2 \nu_3 & 0 & 0 \\ 0 & \nu_3 \nu_1 & 0 \\ 0 & 0 & \nu_1 \nu_2 \end{pmatrix} + \begin{pmatrix} \nu_1 & 0 & 0 \\ 0 & \nu_2 & 0 \\ 0 & 0 & \nu_3 \end{pmatrix} + \mu + \left(\frac{1}{\mu^2} \nu_1 \nu_2 \nu_3\right), \ \mu > 0.$$

Then the condition $\langle L, L \rangle = 1$ is

$$\begin{split} \frac{1}{\mu^2} &(|\nu_2|^2|\nu_3|^2 + |\nu_3|^2|\nu_1|^2 + |\nu_1|^2|\nu_2|^2) + (|\nu_1|^2 + |\nu_2|^2 + |\nu_3|^2) \\ &+ \mu^2 + \frac{1}{\mu^4} |\nu_1|^2 |\nu_2|^2 |\nu_3|^2 = 1 \;, \end{split}$$

that is

$$\Big(1 + \frac{|\nu_1|^2}{\mu^2}\Big) \Big(1 + \frac{|\nu_2|^2}{\mu^2}\Big) \Big(1 + \frac{|\nu_3|^2}{\mu^2}\Big) = \frac{1}{\mu^2} \,.$$

Choose real numbers r_1 , r_2 , r_3 $(0 \le r_i < \frac{\pi}{2}, i=1, 2, 3)$ such that

$$\tan r_1 = \frac{|\nu_1|}{\mu}$$
, $\tan r_2 = \frac{|\nu_2|}{\mu}$, $\tan r_3 = \frac{|\nu_3|}{\mu}$,

then we have

$$\mu = \cos r_1 \cos r_2 \cos r_3$$
.

And put

$$a_1 = \frac{\nu_1}{|\nu_1|} r_1$$
, $a_2 = \frac{\nu_2}{|\nu_2|} r_2$, $a_3 = \frac{\nu_3}{|\nu_3|} r_3$

(if $\nu_i=0$, then $\frac{\nu_i}{|\nu_i|}r_i$ means 0), then

$$\alpha L = \begin{pmatrix} \cos|a_1| \, a_2 \frac{\sin|a_2|}{|a_2|} \, a_3 \frac{\sin|a_3|}{|a_3|} & 0 & 0 \\ & 0 & a_1 \frac{\sin|a_1|}{|a_1|} \cos|a_2| \, a_3 \frac{\sin|a_3|}{|a_3|} & 0 \\ & 0 & 0 & a_1 \frac{\sin|a_1|}{|a_1|} \, a_2 \frac{\sin|a_2|}{|a_2|} \cos|a_3| \end{pmatrix}$$

$$+ \begin{pmatrix} a_{1} \frac{\sin|a_{1}|}{|a_{1}|} \cos|a_{2}|\cos|a_{3}| & 0 & 0 \\ 0 & \cos|a_{1}|a_{2} \frac{\sin|a_{2}|}{|a_{2}|} \cos|a_{3}| & 0 \\ 0 & 0 & \cos|a_{1}|\cos|a_{2}|a_{3} \frac{\sin|a_{3}|}{|a_{3}|} \end{pmatrix}$$

$$+(\cos|a_1|\cos|a_2|\cos|a_3|)+\left(a_1\frac{\sin|a_1|}{|a_1|}a_2\frac{\sin|a_2|}{|a_2|}a_3\frac{\sin|a_3|}{|a_3|}\right)^2$$

$$=\alpha_3(a_3)\alpha_2(a_2)\alpha_1(a_1)1$$
 $(\alpha_i(a_i)\in (E_7)_0$ are in Lemma 7),

that is

$$L = \alpha^{-1}\alpha_3(a_3)\alpha_2(a_2)\alpha_1(a_1)1$$
.

This shows the transitivity of $(E_7)_0$ on \mathfrak{M}_1 . Thus we have $\mathfrak{M}_1=(E_7)_0 1$, hence \mathfrak{M}_1

is connected. Since the group E_7 acts transitively on \mathfrak{M}_1 and the isotropy subgroup of E_7 at 1 is E_6 , we have the following homeomorphism

$$E_7/E_6 \cong \mathfrak{M}_1$$
.

From Proposition 2, E_6 is connected, so E_7 is also connected. Thus the proof of Theorem 9 is completed.

From the general theory of the compact Lie groups, it is known that the center $z(E_{\tau(-133)})$ of the simply connected compact simple Lie group $E_{\tau(-133)}$ of type E_{τ} is \mathbb{Z}_2 [2]. Thus from Theorems 6 and 9, we have the following

Theorem 10. The group $E_{\tau} = \{\alpha \in \operatorname{Iso}_{c}(\mathfrak{P}^{c}, \mathfrak{P}^{c}) | \alpha \mathfrak{M}^{c} = \mathfrak{M}^{c}, \{\alpha 1, \alpha \dot{1}\} = 1, \langle \alpha P, \alpha Q \rangle = \langle P, Q \rangle \}$ is a simply connected compact simple Lie group of type E_{τ} .

DEPARTMENT OF MATHEMATICS, SHINSHU UNIVERSITY

References

- [1] H. Freudenthal, Beziehungen der E_7 und E_8 zur Oktavenebene I, Nederl. Akad. Weten. Proc. Ser. A, 57 (1954), 218-230.
- [2] J. Tits, Tabellen zur den einfachen Lie Gruppen und ihren Darstellungen, Springer-Verlag, Berlin (1967).
- [3] I. Yokota, Simply connected compact simple Lie group $E_{6(-78)}$ of type E_6 and its involutive automorphisms, Jour. Math. of Kyoto Univ., Vol. 20, No. 3, (1980), 447-472.