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It is known that there exist four simple Lie groups of type E, up to local
isomorphism, one of them is compact and the others are non-compact. One of
the non-compact Lie groups of type E; is considered by H. Freudenthal [1]. He
defined a space M in P=IPIPRPR (where J is the exceptional Jordan algebra
over the field of real numbers R) by

W= {L eP| L X L=0}
and showed that the Lie algebra of the group

{asIsor(B, B)| aWe=M, det a=1}

is a simple Lie algebra of type E;. In this paper, we consider the compact case.

Our result is as follows. The simply connected compact simple Lie group of type
E, is explicitly given by

E7={a6150c(‘13c, B

aMC=MC, {al, al} :l}
{aP, aQ>=<P, Q>

where P, M are the complexifications of B, M respectively and {P, Q}, (P, Q>
inner products defined in PC.

1. Preliminaries.

Let €° denote the Cayley algebra over the field of complex numbers C and
3¢ the exceptional Jordan algebra over C. This I€ is the Jordan algebra consist-
ing of all 3X3 Hermitian matrices X with entries in €¢

& X3 Xy
X=|%s & x|, £&,eC, x,€6°
Xy %1 &

with respect to the multiplication Xo Y:%(XY—}— YX). In ¢, the symmetric inner

product <X, Y, the crossed product XX Y, the cubic form (X, Y, Z) and the
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determinant detX are defined respectively by
X, V)=tr(X-Y),
X, Yo=kX, V)=(X, V),
XX Y=%(2Xo Y—tr(X)Y —tr(Y) X4 (tr(X) tr(Y)— (X, Y)E),

(X, Y, 2)=(X, YXZ)=(XXY, 2),

detX=%(X, X, X)

where 7: 3°—3°¢ is the complex conjugation with repect to the basic field C (z X
is also denoted by X) and E the 3X3 unit matrix.
Now we define a 56 dimensional vector space B¢ by

PC=I°DIDCBC.

X
An element P= g of P is often denoted by P=X+Y +&+7 briefly.

7
We define a bilinear symmetric mapping X : BEXBE-IBIHC by

' X Z

2XXZ—9W—wY
. Y. |W

PxQ= c X = 2YXW—-EZ-LX

(X, W)+(Y, Z)—3(¢w+70)

Vi w

and a space MC by
IMC={L eRC| L X L =0}

M
J MXM=uvN I
N
= ePC | NXN=uM
1 “ (M, N):Sﬂv[
v

For example, the following elements of P

X 1
1 F¥XY) 0 0
5 XX Y ol o
1 y y 1= B 1=
7 detX 3 . 0
1 0 1
7 ?2- detY :




Simple Lie group of type E, 385

where 7#0, £+0, belong to MC. Finally, in B¢, we define the skew-symmetric
inner product {P, Q} and the positive definite Hermitian inner product {P, Q>
respectively by

{P, Q}=(X, W)—(Z, Y)+Eo—L7n,
<P, =X, Zy+<Y, W)+E(+7w
for P=X+Y +&+7%, Q=Z+W+L+aosRe.

2. Group E,; and subgroups E;, U(1).

The group E, is defined to be the group of linear isomorphisms of $¢ leaving
the space IMC, the skew-symmetric inner product {P, @} and the Hermitian inner
product <P, @> invariant:

E1={a€ Isoc(BE, BC)

aMe=Me, {al, ai}=1 }
(aP, aQy={(P, Q) for P, QeP°)

Remark. In the definition of the group E,, we may replace the condition
{al, ai}=1 by the condition {aP, aQ}={P, Q}.

Obviously the group E; is compact as a closed subgroup of the unitary group
U(56)=U(B)= {aclsoc(BC, B)[<aP, aQ>=<P, Q}.
We define a subgroup E; of E; by

E={ac E;|al=1}.
Lemma 1. If acE; satisfies al=1, then al=1.

Proof. Put al=M+N+p+i. Then <al, ai>=0 and {al, ai} =1 imply x=0
and v=1 respectively. And <ai, ai>=1 implies <M, M>+<N, N>+1=1, hence
M=N=0. Thus we have ai=1.

Proposition 2. The group E; is a simply connected compact simple Lie group
of type E..

Proof. We define a group Eg_q5 by

Egrp={BEls0c(I°, I¢|det fX=det X, (BX, BY>=(X, Y}
={Bels0c(I%, IV XX BY =tpr(XXY), (X, BY>=(X, Y)}.

Then Eg . is a simply connected compact simple Lie group of type £, [3]. We
shall show that the group E, is isomorphic to the group Egc_ss.

It is easy to
verify that, for f&€ Eqq, the linear mapping a: PC—-PC,
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g 0 0 O

0 zz 0 O
A=

0 0 1 0

0 0 0 1

belongs to E,. Conversely, suppose a< E, satisfies al=1 and al=1 (Lemma 1).
Since « leaves the orthogonal complement J°PIC of CPC invariant, « has the
following form

3

a—

B
5
0
0

S = O O
= O O

7
0
0

where B, 7, 0, ¢ are linear transformations of €. Since

X ﬁX-I—%e(XxX)
1
PR aX+Lrxx x)
« ) = Y eme,
-7 detX L gerx
7
7 7

we have
(/3X+%e(x>< X)) X(ﬁX—l—%s(Xx X))= r;(&X+%r(X>< X))

for all 0+nC. Hence we have 6X=0 (for all X3¢ as the coefficient of 7,

therefore 6=0. Similarly from a(%(YXY)+Y+E+Ei2(det)’)')e‘mc, we have ¢
=0. Thus
B 0 0 0
0O r 0 O
a=
0 0 1 0
0 0 0 1

Again the condition a(X+(XXX)+detX+1)=BX+7(XxX)+detX+ {eMme im-
plies
{ BXX BX=1(XXX),

(BX, 1(XXX))=3det X.

Hence det,BX———%(‘BX, BXX ﬁX)z%(,BX, 7(Xx X))=detX. Furthermore, {aX, a¥Y)
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=<X, V) implies {B8X, fY>=<X, Y>. Therefore we have B€ Eq_+ and r=tfc
€ Eg-1. Thus Proposition 2 is proved.

It is easy to see that the group E, contains the following subgroup

611 0 0 0
[ 0 61 0 0 l
Uy=) o= peC, 16]= 1
l 0 0 6° 0 (

0 0 06

(where 1 is the identity mapping of J¢) which is isomorphic to the unitary group
Uh={6C||6|=1}.

From now on, we identify these groups E¢:s and Eg, U (1) and U(1l) under
the above correspondences.

3. Lie algebra e, of E,.
We consider the Lie algebra e, of the group E;:
OLXL=0 for LeM®
e,=1@<=Homc(R°, PB°) {@1, 1} + {1, @i} =0 ,
(OP, QY+<(P, ®Q»=0 for P, Q=P°

Theorem 3. Any element @ of the Lie algebra e, is represented by the form

¢—%p1 24 0 —A
- 1
o= —24 r¢r+§p1 A 0
0 —A 0 0
A 0 0 —p

where p<ces={p=Homc(IC, I (@X, X, X)=0, {gX, Y>+<LX, ¢Y>=0} (which is
the Lie algebra of the group E¢), A€JC psC such that p+p=0 and the action
of @ on PBC is defined by

x| [ pX—gpx+24xY—7A
7 1F —zzxx+r¢rY+%pY+sA

¢ (A, Yo+ pE

7 (A, X)—p7

In particular, the type of the Lie group E, is E, [1].

Proof. Theorem 3 is the direct consequence of the following Lemmas 4 and
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Lemma 4 [1]. Any element @ of the Lie algebra
®LXL=0 for Le‘JRC}

e7°={@eHomc(‘Bﬂ ) . ,
{21, 1} +{1, 21} =0

(which is the Lie algebra of type E;) is represented by the form

¢——§—pl 24 0 B

o—| 2B ¢'+%pl A 0
0 B p 0

A 0 0 —p

where g<eC={p=Hom(JC, IO)(pX, X, X)=0} (which is the Lie algebra of the
group EL={acslsoc(I¢, I°)|detaX=detX}), ¢’ is the skew-transpose of ¢ with
respect to (X, Y): (¢X, V)+(X, ¢'Y)=0, A, B€I® and peC.

Proof. Since @<e,C is a linear transformation of R¢, we denote it by

g | C B

k h A D
Q=

¢c b p 2

a d £ o]

where g, h, k, [ are linear transformations of J°, a, b, ¢, d linear functionals of
¢ A, B, C, D¢ and o, p, k, A=C. Now for any 0#reC, the linear trans-

1 0 0 O
0 »1 0 O
formation f,= 0 0~ o of B¢ induces a mapping of M and it holds that
e
0 0 0

g rl  r*C r'B

o rik  h rA r2D .
f7of,= Seq .
r2c r'b p v '

ra rd vk o
Therefore @ is decomposable in

O=0;+ D 34+ 0,4+ D_,+ 0, +0_+ D, Q;se.€

where
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0 0 0 O 0 0 C O 0 ¢ 0 0
0 0 0 O 0O 0 0 O 0 0 A O
¢3= ’ Qz': ’ ¢1= y
0 0 0 O 0 0 0 O 0 0 0 O
0 0 O 0 4 0 O a 0 0 O
0 0 0 O 0 0 0 O 0 0 0 B
0 0 0 O 0 0 0 D k0 0 O
D_,= = D=
0 0 0 2 c 0 0 O 0 o 0 O
0 0 0 O 0 0 0 0 0 0 0 O
g 0 0 0
0 A 0 O
¢0: .
00 p 0
0 0 0 @

Then @;1X1=0 implies x=0, hence ®,=0 and similarly @_,=0. And then
@,1x1=0 and @,LxXL=0 where L=(Y XY)+Y¥+14(detY) imply C=0 and
d=0 respectively, hence @,=0, similarly @_,=0. Next @,L X L=0 where L=
(Y XY)+Y +1-+(detY) implies

I(Y)=2AXY .

And @,L X L=0 where L=X+(XXX)+detX+1 implies
2AAX (XX X), XX X)+(detX)( X, A)=3(detX)a(X).

hence
3(detX)(X, A)=3(detX)a(X).

Therefore we have (since a is a linear funtional of ¢, even if for X such that
det X=0)
a(X)=(4, X).

Similarly P(X)=2BXX and H(X)=(B, X). Finally @0L§<L=O where L=X+4
(XX X) +detX+1 implies

26 XX X=0(XXX)+h(XXX), (i)
2R XX X)X (XX X)=(detX)(pX+gX), (ii)
(gX, XX X)+(h(XXX), X)=3(p+o)detX. (iii)

Hence if we put ¢=g—%(p—l—20)l, then

& (e(XXX)+h(XXX), X)+(gX, X, X)—3(p+20)detX
@ 3o detX+43(p+0)detX—3(p+20) detX=0.
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Therefore we have
peel.

Similarly gb———h—%(z‘o—l-a)lEeGC. And from the above formula (ii),

2(¢(X><X)+%(2p—|—a)X>< X)X(Xx X)=(detX)(pX—{—qbX-}—%(p—{—Zo)X) .

2PXX X)X (XX X)=(detX)p X .
P (XX X)X (XX X))=(detX)gX .
(det X)¢’ X=(det X)pX .
Therefore we have (even if for X such that detX=0) ¢’ X=4¢X, ie.
9'=4.

Finally from {@1, i}+ {1, ®i}=0, we have p+o¢=0. Thus Lemma 4 is just
proved.

Lemma 5. Any linear transformation @ of B¢ satisfying

KDP, Q>+<P, 9Q>=0

is represented by the form
g l C B
k h A D
A I S
—B -D & o
where g, h, k, | are linear transformations of I€ satisfying
(gX, Y>+<X, g¥>=0,
<hX, YH+<X, hY>=0,
CRX, YO4H<X, IY>=0,

A, B,C, DeJ° and p, £, 0 €C such that p+p=0, 6+5=0.

Proof. Analogously in Lemma 4, we denote @ by

g | C B

E h A D
o=

c b p 2

a d £ o

Then (DX, VY5+<(X, @Y >=0, (DX, Y>+<X, @Y>=0 and (@X, YD+<X, OY>=0
imply <(gX, Y>+<X, g¥V>=0, <hX, Y>+<X, hY>=0 and <kX, Y>+<X, [Y>=0
respectively. And <X, 1>4+<(X, O1>=0, (DX, 1>+<X, ®i>=0, (DX, 1)+<X, O1>
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=0, <OX, I>+<X, 01>=0 imply ¢(X)=—<C, XD, a(X)=—<(B, XD, b(X)=—<4, X>
and d(X)=—<D, X> respectively. Finally <®@1, 1>+, ®1>=0 implies #41=0.
Thus Lemma 5 is proved.

4. Center z(E;) of E..

Theorem 6. The center z(E;) of the group E,; is isomorphic to the cyclic
group Z, of order 2:
2(En=1{1, —1}=Z,.

Proof. Let a=z(E;). From the commutativity with f€E,CE,; we have
Bal=apl=al. If we denote al=M+N-+p+y, then BM+(zfrN)+pt+v=
M+N+p+5, hence

BM=M, cpcN=N, for all B€E;.

Therefore M=N=0, so al=p+5i, where pv=0 (since al=Mif). Suppose that p
=0, i.e. al=v+#0, then from the commutativity with

‘7't 0 0 O
0 61 0 O
0= eU(l) C E,,
0 0 & 0
0 0 0¢6°

we have

(0 %)y=0i=0al=abl=ab?*=(0%), for all <U(1).
This is a contradiction. Hence al=g. Similarly ai=Ai. The condition {al, ai}
=1 implies pi=1, hence

al=pu, ai:(/,e")' .
Next, note that

0 —1 0 0
1 0 0 0
[=0 0 0 —1
0 0 1 0

belongs to E;, then the commutativity condition ca=a¢ implies
p=tp=tal=acll=al=(p),

hence p=p™', ie. pu==1. In the case of p=1, a€FE; so acz(E,) which is
{1, w1, 0?1}, weC, »*=1, w#1 [3]. Hence

wl 0 0 0
0 o'l 0 O
a= , wel, v*=1,
0 0 1 0
0 0 0 1
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Again from the commutativity condition ca=ar, we have
(X)y=cwX)=taX=awX=aX=(w'X), for all X3¢,

hence w=w", ie. w=1, therefore a=1. In the case of pu=-—1, —acz(E;), so
—a=1. Thus we see that z(E,)={l, —1}.

5. Connectedness of E..

We shall prove that the group E; is connected. We denote, for a while, the
connected component of E, containing the identity 1 by (E3)o.

Lemma 7. For a=C, the linear transformation of BE defined by

1+(COS|a|_1)pl % Sl|na||aI El 0 _dsﬂnalfl E1

_25%@& 14(cos|a|—1)p, a%nalla—lE1 '
a(a)= i
) . _gsinlel g coslal 0

lal
Sm[alEl . cos|al
lal ’
1 0 0

Sl%f'— means 0) belongs to (E.)o, where E,=|0 0 0 [€3C,

0 0 O

(if a=0, then a

the mapping p,: I°—I°€ is defined by
& xy %) (& 0 O
Pl xs & xi|=| 0 & x
Xy % & 0 x &

and the action a(a) on BE is defined as similar to that of Theorem 3. Similarly
we can define mappings ax(a), as(a)E(Eqs.

Proof. 0 2aE, 0 —akE,
—2dE, 0 aE, 0
For @,(a)= ce, we have a,(a)=exp D,(a),
—aE, 0 0
aE, 0 0 0

hence a,(a)e(E,),.

Proposition 8. Any element LEME can be transformed in a diagonal form
by a certain element a<(E;),:

aL=M+N—|—/,c+)J, M, N are diagonal forms.
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Moreover we can choose a<(E,), so that p is a non-negative real number (if L#0,

then p>0).

Proof. Let L=M—I—N+y+x&€9ﬁc. First assume that p#0, then M=%(N>< N),
Choose fe E; such that 8N is a diagonal form [3], then

ﬁleﬁ(NxN)=irﬁrNXr,BfN
¢ ¢
is also diagonal, so BL is a diagonal form (where S€ E,C(E,),). In the case of

y#0, the statement is also valid. Next we consider the case L=M-+NeMC,
N#0. Choose B E; such that

v, 0 0
tftN=|0 v, 0], v;eC.
0 O V3

Since r8rN+0, we may assume v,#0. Operate al(—-g—)e(Eﬁo of Lemma 7 on
(zBrN), then
al(—%)(r.BTN)'=*+*+v1+='k .
So, we can reduce to the first case #+#0. In the case of M#0, the statement is also
valid. Finally, operate some §€U(1)C(E,), on aL (if necessary), then p becomes
a non-negative real number. (If L=+0, noting « (——l)a (E)a (1>i=1 then we
) 3 2 2 2 1 2 y

can always reduce to the case p#O). Thus Proposition 8 is proved.

We consider a subspace M, of MC such that
={LeM KL, Ly=1}.
Theorem 9. The group E. acts transitively on WM, (which is connected) and

the isotropy subgroup of E, at 1€M, is E,. Therefore the homogeneous space
E./E; is homeomorphic to M, :

E./JE=WM,.
In particular, the group E, is connected.
Proof. Obviously the group E, acts on IM,. First we shall prove that the

group (E;), acts transitively on 9M,. For a given L=M—|—N—|—y+x&e‘m1, from
Proposition 8, there exists a=(E,), such that

vevs 0 0 v, 0 0OY
aL—l 0 v 0 (+]0 v, O]+ -I-(ivuv). >0
o 3V1 2 y24 ;12 1YeVs ), M .
0 0 v, 0 0
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Then the condition <L, L)>=1 is

1
‘#_3(|V2|2|”3|2+|”3|2i1’1|2+|V1|2|V2|2)+(|V1|2+|”2|2+|V3l2)

1
+ﬂ2+7[V1|2'V2|2|V3|2:1 ,

that is

(L)) )=

T

2

Choose real numbers 7y, 75, s (07, <+, i=1, 2, 3) such that

)2 v V
tanrl———I 1 , tanm:I 2| , tanr3=| SI,

Iz 2 e

then we have
#ZCOS ¥1COS7r, COS T3,

And put
=2 4=t a="
! [y b |V2| B |V3| ?
. Vi
(if vs=0, then ﬁri means 0), then
I3
sin|a sin|a
COSlallag l 2| a3 I 3! 0 0
lasl lasl
sin|a sin|a
al= 0 al—gcos]azlasﬁ 0
la,] la,l
sin|a,| sin|a,]|
0 0 a cos|as|
! la,l : |a.,| ’
sin|a,| Y
a,———2 cos|a,|cos|as| 0 0
la,|
sin|a
+ 0 COSIGIIGQ_LLCOS](Z:;I 0
lasl
sin|a
0 0 coslallcoslazlas—#-[—
lasl
sin|a sin|a sinas|
—HCOSIalICOSIaZICOSIaaI)—F(a1 la] as laal | 3')
la,l la.] | asl

=as(asasa)a(a)l  (ai(a;)e(E;), are in Lemma 7),

that is
L=a"'ay(as)aaz)a(a)l.

This shows the transitivity of (E;) on M,. Thus we have M,;=(E;),1, hence M,
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is connected. Since the group FE, acts transitively on 9; and the isotropy
subgroup of E, at 1 is E;, we have the following homeomorphism

E./EZM; .

From Proposition 2, E; is connected, so E; is also connected. Thus the proof of
Theorem 9 is completed.

From the general theory of the compact Lie groups, it is known that the
center z(F;_1s) of the simply connected compact simple Lie group E;¢ 35 0of type
E. is Z, [2]. Thus from Theorems 6 and 9, we have the following

Theorem 10. The group E,={a<Isoc(RE, PE)|aM=MC, {al, ai}=1, <aP,
a@Q>={P, Q>} is a simply connected compact simple Lie group of type E..
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