A class of imperfect prime ideals having the equality of ordinary and symbolic powers

By
Ngo Viet Trung
(Communicated by Prof. M. Nagata, Aug. 31, 1979)

1. Introduction.

Given a polynomial ring R over a field, we are interested in prime ideals $p \subset R$ having the following property:
(A) $\mathfrak{p}^{n}=\mathfrak{p}^{(n)}$ for every positive integer n, where $\mathfrak{p}^{(n)}$ denotes the n-th symbolic power of \mathfrak{p}, i.e. the \mathfrak{p}-primary component of \mathfrak{p}^{n}.

In [5, Theorem 1], Hochster proved that (A) is equivalent to each of the following properties:
(B) $g r_{p}(R):=\bigoplus_{n=0}^{\infty} \mathfrak{p}^{n} / p^{n+1}$, the associated graded ring of R with respect to \mathfrak{p}, is a domain.
(C) The Rees ring $R\left[T, \mathfrak{p} T^{-1}\right]$, the subring of $R\left[T, T^{-1}\right]$ generated over R by the indeterminate T and the elements $a T^{-1}$ with $a \in \mathfrak{p}$, is a unique factorization domain.

On the other hand, Samuel had conjectured that a unique factorization domain is a Cohen-Macaulay ring. Thus, it may be possible that (A) or (B) implies the Cohen-Macaulay property of $g r_{p}(R)$ because, by [6, Theorem 4.11], the CohenMacaulay property of $g r_{p}(R)$ is equivalent to the Cohen-Macaulay property of $R\left[T, \mathfrak{p} T^{-1}\right]$. If we have a prime ideal $\mathfrak{p} \subset R$ with (A) then we can construct either a Cohen-Macaulay graded domain or a counter-example to Samuel's conjecture.

Until now, beside some solitary examples, only two classes of prime ideals \mathfrak{p} with (A) in polynomial rings over a field have been known:

1) \mathfrak{p} is a complete intersection prime (see, e.g., [5, (2.1)]).
2) \mathfrak{p} is generated by the $r \times r$ minors of an $r \times s$ matrix of indetərminates, $r \geqq s$ (see [5, (2.2)], [14] or [2]).

By all known prime ideals \mathfrak{p} with (A) $g r_{p}(R)$ is always a Choen-Macaulay domain. Note that Nagata had raised the question of whether the zero-graded part of a positively graded Cohen-Macaulay ring is a Cohen-Macaulay ring [10, Question 3]. So one might also expect that (A) implies the Cohen-Macaulay property of R / \mathfrak{p}, the zero-graded part of $g r_{p}(R)$. But, like Nagata's question which was negatively answered in [10], that is not true. The first counterexample for that was shown by Hochster [5, (2.3)], and an another can be found
in [13]. However, in these two examples, using [12, Lemma, p. 740], one can easily see that the local ring of R / \mathfrak{p} at the origin is a Buchsbaum ring. Here we have to emphasize that the Buchsbaum rings generalize the Cohen-Macaulay rings in a quite natural way. (See [11] or [12] for definition and further informations; notice that in [11] one used the term of I-rings instead of Buchsbaum rings.)

Recall that an ideal $\mathfrak{a} \subset R$ is perfect (i.e. $\operatorname{dh}_{R} R / \mathfrak{a}=$ grade \mathfrak{a}) if and only if R / \mathfrak{a} is a Cohen-Macaulay ring. We will give, in every polynomial ring $k[X]$ of $2 r+2$ indeterminates over an arbitrary field, $r \geqq 2$, an imperfect homogeneous prime ideal P of dimension $r+2$ having the equality of ordinary and symbolic powers such that $g r_{P}(k[X])$ is a Cohen-Macaulay domain and $k[X]_{(X)} /(P)$ is a non-Buchsbaum ring of depth 3 .

2. Statements about P.

Let $X=\left\{x_{i j} ; i=1,2\right.$ and $\left.j=1, \cdots, r\right\} \cup\left\{x_{1}, x_{2}\right\}$ be a set of indeterminates. Let

$$
\begin{aligned}
& p_{i j}=x_{1 i} x_{2 j}-x_{1 j} x_{2 i} \\
& q_{i j}=x_{1} x_{2 i} x_{2 j}-x_{2} x_{1 i} x_{1 j}
\end{aligned}
$$

for all $i, j=1, \cdots, r$. We define P to be the ideal in $k[X]$ generated by all elements $p_{i j}$ and $q_{i j} . P$ has the following geometrical meaning:

Proposition 1. Let u be an indeterminate. Let Q be the ideal in $k[X, u]$ generated by the 2×2 minors of the matrix

$$
\left(\begin{array}{cccc}
x_{11} \cdots & x_{1 r} & x_{1} & u \\
x_{21} \cdots & x_{2 r} & u & x_{2}
\end{array}\right) .
$$

Then Q is a prime ideal and P is the defining prime ideal of the projection of the algebraic variety in $k^{2 r+2} \times k$ determined by Q on the first factor (i.e. Q $\cap k[X]=P$; see [7, Chap. IV, §2]).

Let A denote the local ring $k[X]_{(X)}$ and \mathfrak{m} its maximal ideal. Let $H_{\mathfrak{m}}^{i}(M)$ denote the i-th local cohomology group of a finitely generated A-module M. Let X_{1} and X_{2} denote the sets $\left\{x_{11}, \cdots, x_{1 r}\right\}$ and $\left\{x_{21}, \cdots, x_{2 r}\right\}$, respectively. Then, considering the ring structure of $A /(P)$ we obtain :

Proposition 2. $H_{m i}^{i}(A /(P))=0$ for $i \neq 3, r+2$, and $H_{m}^{3}(A /(P)) \cong H_{w:}^{2}\left(A /\left(X_{1}, X_{2}\right)\right)$.
Since $H_{\mathrm{II}}^{2}\left(A /\left(X_{1}, X_{2}\right)\right)$ is isomorphic to the injective hull of k over $k\left[\left[x_{1}, x_{2}\right]\right]$ ($[3, \mathrm{p} .67]$), which is not a vector space over $k, A /(P)$ is not a Buchsbaum ring by [12, Corollary 1.1]. Moreover, by [3, Corollary 3.10], from Proposition 2 we also get depth $A /(P)=3$.

Let $Y=\left\{y_{i j} ; 1 \leqq i<j \leqq r\right\}$ and $Z=\left\{z_{i j} ; 1 \leqq i \leqq j \leqq r\right\}$ be sets of indeterminates. Let $y_{i i}=0, y_{j i}=-y_{i j}$, and $z_{j i}=z_{i j}$ for all $i=1, \cdots, r$ and $i<j \leqq r$. Let

$$
\begin{aligned}
& a_{i j l}=x_{1 i} y_{j l}-x_{1 j} y_{i l}+x_{1 l} y_{i j} \\
& b_{i j l}=x_{2 i} y_{j l}-x_{2 j} y_{i l}+x_{2 l} y_{i j} \\
& c_{i j l m}=y_{i m} y_{j l}-y_{j m} y_{i l}+y_{l m} y_{i j} \\
& d_{i j l m}=y_{j l} z_{i m}-y_{j m} z_{i l}-y_{l m} z_{i j} \\
& f_{i j l}=x_{1 i} z_{j l}-x_{1 j} z_{i l}-x_{1} x_{2 l} y_{i j} \\
& g_{i j l}=x_{2 i} z_{j l}-x_{2 j} z_{i l}-x_{2} x_{1 l} y_{i j} \\
& h_{i j l m}=z_{i m} z_{j l}-z_{i l} z_{j m}-x_{1} x_{2} y_{l m} y_{i j}
\end{aligned}
$$

for all $i, j, l, m=1, \cdots, r$. Let I denote the ideal in $k[X, Y, Z]$ generated by all elements $p_{i j}, q_{i j}, a_{i j l}, b_{i j l}, c_{i j l m}, d_{i j l m}, f_{i j l}, g_{i j l}, h_{i j l m}$. Using the same technique employed in [4], we can show that I is a perfect prime ideal. Thus we get:

Proposition 3. $g r_{P}(k[X]) \cong k[X, Y, Z] / I$ and it is a Gorenstein domain.
As we already mentioned at the beginning of $\S 1$, the fact that $P^{n}=P^{(n)}$ for every positive integer n is only a consequence of Proposition 3.

3. Proofs of the Propositions.

Proof of Proposition 1. Let v be a new indeterminate. Let Q_{1} denote the ideal in $k[X, u, v]$ generated by the 2×2 minors of the matrix

$$
\left(\begin{array}{ccccc}
x_{11} & \cdots & x_{1 r} & x_{1} & u \\
x_{21} & \cdots & x_{2 r} & v & x_{2}
\end{array}\right)
$$

By [4, Theorem 1], Q_{1} is a prime ideal with ht $Q_{1}=r+1$. Let Q_{2} denote the ideal ($\left.Q_{1}, u-v, x_{1}-x_{2 r}, x_{1 r}-x_{2(r-1)}, \cdots, x_{12}-x_{21}\right)$. Then $k[X, u, v] / Q_{2}$ is isomorphic to the coordinate ring of the Veronese variety $V_{2, r+1}$; see [1, §4]. Hence Q_{2} is a prime ideal and

$$
\text { ht } \begin{aligned}
Q_{2} & =\operatorname{dim} k[X, u, v]-\operatorname{dim} V_{2, r+2} \\
& =2(r+2)-2=2 r+2 .
\end{aligned}
$$

Since Q_{1}, Q_{2} are homogeneous prime ideals with ht $Q_{2} / Q_{1}=$ ht $Q_{2}-$ ht $Q_{1}=r+1$ and Q_{2} / Q_{1} is generated by the $r+1$ elements $u-v, x_{1}-x_{2 r}, x_{1 r}-x_{2(r-1)}, \cdots, x_{12}-$ x_{21}, we can conclude that $Q_{1} \subset\left(Q_{1}, u-v\right) \subset\left(Q_{1}, u-v, x_{1}-x_{2}\right) \subset \cdots \subset Q_{2}$ is a chain of prime ideals. From this it follows especially that $k[X, u, v] /\left(Q_{1}, u-v\right)$ is a domain of dimension $r+2$. But $k[X, u, v] /\left(Q_{1}, u-v\right) \cong k[X, u] / Q$. Hence Q is a prime ideal with

$$
\text { ht } \begin{aligned}
Q & =\operatorname{dim} k[X, u]-\operatorname{dim} k[X, u, v] /\left(Q_{1}, u-v\right) \\
& =2 r+3-(r+2)=r+1 .
\end{aligned}
$$

As a consequence of this, ht $Q \cap k[X] \leqq r$. Further, it can be easily checked that
$P \cong Q \cap k[X]$. Thus, to prove $Q \cap k[X]=P$ it suffices to show that P is a prime ideal with ht $P=r$. For that we have the following relations:

$$
\begin{aligned}
& x_{11} p_{i j}=x_{1 i} p_{1 j}-x_{1 j} p_{1 i} \\
& x_{11} q_{i j}=x_{1 i} q_{1 j}-x_{1} x_{2 j} q_{1 i} .
\end{aligned}
$$

From these relations we see that $\operatorname{Pk}\left[X, x_{11}^{-1}\right]$ can be generated by the elements $p_{12}, \cdots, p_{1 r}, q_{11}$. On the other hand, eliminating $x_{22}, \cdots, x_{2 r}, x_{2}$ by the help of these elements we also see that $k\left[X, x_{11}^{-1}\right] /\left(p_{12}, \cdots, p_{1 r}, q_{11}\right) \cong k\left[X_{1}, x_{21}, x_{1}, x_{11}^{-1}\right]$. Hence, $\operatorname{Pk}\left[X, x_{11}^{-1}\right]$ must be a prime ideal of height r and x_{2} is not a zerodivisor on $P k\left[X, x_{11}^{-1}\right]$. Let P^{\prime} denote the inverse image of $P k\left[X, x_{11}^{-1}\right]$ in $k[X]$. Then P^{\prime} is also a prime ideal with ht $P^{\prime}=r$ and x_{2} is not a zerodivisor on P^{\prime}, i.e. $P^{\prime}: x_{2}=P^{\prime}$. Further, since $x_{11}^{n} P^{\prime} \subseteq P$ for some large $n, P^{\prime} \cong\left(P, x_{2}\right): x_{11}^{n}$. Note that $\left(P, x_{2}\right)$ has the primary decomposition $\left(P, x_{2},\left(X_{2}\right)^{2}\right) \cap\left(P, x_{1}, x_{2}\right)$, where $\left(P, x_{2},\left(X_{2}\right)^{2}\right)$ is a $\left(X_{2}, x_{2}\right)$-primary ideal and $\left(P, x_{1}, x_{2}\right)$ is a prime ideal ($[4$, Theorem 1]), and that x_{11} is not a zerodivisor on (X_{2}, x_{2}) and (P, x_{1}, x_{2}). So $\left(P, x_{2}\right): x_{11}^{n}=\left(P, x_{2}\right)$. Hence, $P^{\prime} \cong\left(P, x_{2}\right)$ or $P^{\prime}=P+x_{2}\left(P^{\prime}: x_{2}\right)=P+x_{2} P^{\prime}$. Now, applying Nakayama's lemma we get $P^{\prime}=P$, which shows that P is a prime ideal with ht $P=r$. The proof for Proposition 1 is completed.

To prove Proposition 2 and Proposition 3 we prepare some lemmas. Let R be an arbitrary local ring with the maximal ideal \mathfrak{q}. Then we have two wellknown lemmas about Cohen-Macaulay R-modules:

Lemma 4. A finitely generated R-module M is Cohen-Macaulay if and only if $H_{r}^{i}(M)=0$ for all $i=0, \cdots, \operatorname{dim} M-1$.

Proof. It follows immediately from [3, Corollary 3.10].
Lemma 5. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of finitely generated R-modules. Then
(i) M^{\prime} is Cohen-Macaulay if $M, M^{\prime \prime}$ are Cohen-Macaulay with $\operatorname{dim} M^{\prime \prime}$ $\geqq \operatorname{dim} M-1$.
(ii) M is Cohen-Macaulay if $M^{\prime}, M^{\prime \prime}$ are Cohen-Macaulay with $\operatorname{dim} M^{\prime \prime}=\operatorname{dim} M$.

Proof. Notice that $\operatorname{dim} M=\max \left\{\operatorname{dim} M^{\prime}, \operatorname{dim} M^{\prime \prime}\right\}$ by [8, (12.D) and (12.H)]. Then we easily get the statements of Lemma 5 from Lemma 4 by considering the local cohomology sequence

$$
\cdots \longrightarrow H_{9}^{i-1}\left(M^{\prime \prime}\right) \longrightarrow H_{(}^{i}\left(M^{\prime}\right) \longrightarrow H_{9}^{i}(M) \longrightarrow H_{4}^{i}\left(M^{\prime \prime}\right) \longrightarrow \cdots
$$

The following lemma will play an important role in the proofs of Proposition 2 and Proposition 3:

Lemma 6. Let P_{j} denote the ideal ($P, x_{1 j}, x_{2 j}$) in $A, j=1, \cdots, r$. Then $P_{j} /(P)$ is a Cohen-Macaulay A-module of dimension $r+2$.

Proof. By permutation it suffices to show Lemma 6 for $j=r$. If $r=1, P_{1} /(P)$ $=\left(x_{11}, x_{21}\right) /\left(q_{11}\right)$ and the statement follows immediately from Lemma $5(\mathrm{i})$ by considering the exact sequence

$$
0 \longrightarrow\left(x_{11}, x_{21}\right) /\left(q_{11}\right) \longrightarrow A /\left(q_{11}\right) \longrightarrow A /\left(x_{11}, x_{21}\right) \longrightarrow 0 .
$$

Let $r>1$. Note that $\left(P, x_{11}\right) /(P) \cong A /\left((P): x_{11}\right)=A /(P)$ and $\left(P_{r}, x_{11}\right) / P_{r} \cong A /\left(P_{r}: x_{11}\right)$ $=A / P_{r}$. We construct the following commutative diagram:

where α is induced by the multiplication with x_{11} and E denotes the module $P_{1} \cap\left(P_{r}, x_{11}\right) /\left(P, x_{11}\right)$. It can be easily seen that $E \cong\left(P_{r}, x_{11}\right): x_{21} /\left(P, x_{11}\right): x_{21}$ and that

$$
\begin{aligned}
& \left(P_{r}, x_{11}\right)=\left(P_{r}, x_{11}, x_{21}\right) \cap\left(X_{1}, x_{1}, x_{2 r}\right) \cap\left(X_{1}, x_{21}^{2}, x_{22}, \cdots, x_{2 r}\right) \\
& \left(P, x_{11}\right)=\left(P, x_{11}, x_{21}\right) \cap\left(X_{1}, x_{1}\right) \cap\left(X_{1}, x_{21}^{2}, x_{22}, \cdots, x_{2 r}\right) ;
\end{aligned}
$$

hence

$$
\begin{aligned}
& \left(P_{r}, x_{11}\right): x_{21}=\left(X_{1}, x_{1}, x_{2 r}\right) \cap\left(X_{1}, X_{2}\right) \\
& \left(P, x_{11}\right): x_{21}=\left(X_{1}, x_{1}\right) \cap\left(X_{1}, X_{2}\right),
\end{aligned}
$$

therefore $E \cong\left(X_{1}, x_{1}, x_{2 r}\right) \cap\left(X_{1}, X_{2}\right) /\left(X_{1}, x_{1}\right) \cap\left(X_{1}, X_{2}\right) \cong A /\left(\left(X_{1}, x_{1}\right) \cap\left(X_{1}, X_{2}\right)\right): x_{2 r}$ $=A /\left(X_{1}, X_{2}\right)$, which is a Cohen-Macaulay module of dimension $r+1$. Further, by induction we may also assume that $\left(P_{r}, x_{11}, x_{21}\right) / P_{r}$ is a Cohen-Macaulay module of dimension $r+1$. Thus, applying Lemma 4 to E and $\left(P_{r}, x_{11}, x_{21}\right) / P_{r}$, we get the following commutative diagram:

for all $i=0, \cdots, r+1$. This diagram shows that α_{i} and β_{i} are injective for all $i=0, \cdots, r+1$. Now we consider the commutative diagram :

Like β_{i}, γ_{i} is also injective, hence $x_{11} \beta_{i}=\gamma_{i} \alpha_{i}$ is injective, too. From this we can conclude that x_{11} is not a zerodivisor of $H_{w i 1}^{i}\left(P_{r} /(P)\right)$, or, since every element of $H_{\mathrm{wn}}^{i}\left(P_{r} /(P)\right)$ is annihilated by some power of $x_{11}, H_{\mathrm{wn}}^{i}\left(P_{r} /(P)\right)=0$ for $i=0, \cdots, r+1$. Therefore $P_{r} /(P)$ is a Cohen-Macaulay module by Lemma 4, where $\operatorname{dim} P_{r} /(P)=$ $r+2$ is evident.

Now we prove Proposition 2.

Proof of Proposition 2. By Lemma 6, $P_{1} /(P)$ is a Cohen-Macaulay module of dimension $r+2$. Hence, using the local cohomology sequence of the middle row of the first diagram in the proof of Lemma 6, we easily see that

$$
\left.H_{\mathrm{m}}^{i}(A / P)\right) \cong\left\{\begin{array}{l}
0, \quad \text { if } \quad i=0 \\
H_{\mathrm{m}}^{i-1}\left(P_{1} /\left(P, x_{11}\right)\right), \quad \text { if } \quad i=1, \cdots, r+1
\end{array}\right.
$$

On the other hand, since

$$
\begin{aligned}
& P_{1} /\left(P, x_{11}\right) \cong A /\left(P, x_{11}\right): x_{21}=A /\left(X_{1}, x_{1}\right) \cap\left(X_{1}, X_{2}\right) \\
& A /\left(X_{1}, X_{2}\right) \cong\left(X_{1}, X_{2}, x_{1}\right) /\left(X_{1}, X_{2}\right) \cong\left(X_{1}, x_{1}\right) /\left(X_{1}, x_{1}\right) \cap\left(X_{1}, X_{2}\right)
\end{aligned}
$$

we have the following exact sequence

$$
0 \longrightarrow A /\left(X_{1}, X_{2}\right) \longrightarrow P_{1} /\left(P, x_{11}\right) \longrightarrow A /\left(X_{1}, x_{1}\right) \longrightarrow 0 .
$$

Hence, applying Lemma 4 to the Cohen-Macaulay modules $A /\left(X_{1}, X_{2}\right)$ and $A /\left(X_{1}, x_{1}\right)$, we also get

$$
H_{\mathrm{m}}^{i-1}\left(P_{1} /\left(P, x_{11}\right)\right) \cong\left\{\begin{array}{l}
0, \quad \text { if } \quad i \neq 3, r+2 \\
H_{\mathrm{m}}^{2}\left(A /\left(X_{1}, X_{2}\right)\right) \quad \text { if } i=3 .
\end{array}\right.
$$

From the above two relations of local cohomology groups, Proposition 2 is clear.
Remark. Let A^{\prime} be the local ring $k[X]_{\left(x_{1}, x_{2}\right)}$ and \mathfrak{m}^{\prime} its maximal ideal. Using the same method as above we can show that $H_{m}^{i}\left(A^{\prime} /(P)\right)=0$ for $i \neq 1, r$ and $H_{1 \prime \prime}^{1}\left(A^{\prime} /(P)\right) \cong A^{\prime} / \mathfrak{m}^{\prime}$; hence $A^{\prime} /(P)$ is a Buchsbaum ring by [12, Corollary 1.1].

The following simple but useful lemma is due to $[4, \S 5]$:

Lemma 7. Let \mathfrak{a} be an ideal and x an element such that $\sqrt{\mathfrak{a}} \subseteq(\mathfrak{a}, x)$. Then \mathfrak{a} is radical, i.e. $\sqrt{\mathfrak{a}}=\mathfrak{a}$, in the following cases:
(i) There exists an ideal $\mathfrak{b} \supseteq \sqrt{\mathfrak{a}}$ such that $x \mathfrak{b}=\mathfrak{a}$ and $\mathfrak{b}: x=\mathfrak{b}$.
(ii) $\sqrt{\mathfrak{a}}: x=\sqrt{\mathfrak{a}}$ and $\bigcap_{n=1}^{\infty}\left(\mathfrak{a}, x^{n}\right)=\mathfrak{a}$.

Proof. From the assumption $\sqrt{\mathfrak{a}} \subseteq(\mathfrak{a}, x)$ we get $\sqrt{\mathfrak{a}}=\mathfrak{a}+x(\sqrt{\mathfrak{a}}: x)$. In the first case, $x(\sqrt{\mathfrak{a}}: x) \subseteq x(\mathfrak{b}: x)=x \mathfrak{b} \subseteq \mathfrak{a}$, and in the second case, $\sqrt{\mathfrak{a}}=\mathfrak{a}+x \sqrt{\mathfrak{a}}$ $=\mathfrak{a}+x^{2} \sqrt{\mathfrak{a}}=\cdots \cong \bigcap_{n=1}^{\infty}\left(\mathfrak{a}, x^{n}\right)=\mathfrak{a}$.

The proof of Proposition 3 begins, properly speaking, with the proof of the following lemma, which is of independent interest because it gives a new class of (generically) perfect prime ideals (see [4, § 0]) :

Lemma 8. Let

$$
\begin{aligned}
& F_{i j l}=x_{1 i} z_{j l}-x_{1 j} z_{i l} \\
& G_{i j l}=x_{2 i} z_{j l}-x_{2 j} z_{i l} \\
& H_{i j l m}=z_{i l} z_{j m}-z_{i m} z_{j l}
\end{aligned}
$$

for all $i, j, l, m=1, \cdots, r$. Let J denote the ideal in $k[X, Z]$ generated by all elements $p_{i j}, q_{i j}, F_{i j l}, G_{i j l}, H_{i j l m}$. Then J is a perfect prime ideal with ht $J=\binom{r+2}{2}-2$.

Proof. The case $r=1$ is trivial. Let $r>1$. We introduce some notations. Let Z_{j} denote the set $\left\{z_{1 j}, \cdots, z_{r j}\right\}$ for all $j=1, \cdots, r$. Let $j_{1}, \cdots, j_{h}, h<r$, be an arbitrary family of integers with $1 \leqq j_{1} \leqq \cdots \leqq j_{h} \leqq r$. We denote by $J\left(j_{1}, \cdots, j_{h}\right)$ the ideal in $k[X, Z]$ generated by $J, Z_{j_{1}}, \cdots, Z_{j_{h}}$ and all elements $x_{1 j}, x_{2 j}$ with $j=j_{1}, \cdots, j_{h}$. By induction we may assume that $J\left(j_{1}, \cdots, j_{h}\right)$ are perfect prime ideals of height

$$
\left[\binom{r-h+2}{2}-2\right]+[r+\cdots+(r-h+1)+2 h]=\binom{r+2}{2}+h-2 .
$$

Using these induction hypotheses, we claim:
(1) $\left(J, z_{1 r}\right)$ is an unmixed radical ideal of height $\binom{r+2}{2}-1$.

To get (1), we have to consider a large class of ideals. Let s, t be arbitrary integers with $r \geqq s \geqq t \geqq 1$. Let $J_{s, t}$ denote the ideal in $k[X, Z]$ generated by $J, Z_{s+1}, \cdots, Z_{r}$ and the elements $z_{1 s}, \cdots, z_{t s}$. We show that $J_{s, t}$ is a radical ideal. Of course, $J_{1,1}$ is a prime ideal because $J_{1,1}=(P, Z)$. Suppose $s>1$ and let

$$
z= \begin{cases}z_{1(s-1)}, & \text { if } t=s \\ z_{(t+1) s}, & \text { if } t<s .\end{cases}
$$

Notice that

$$
\left(J_{s, t}, z\right)= \begin{cases}J_{s-1,1}, & \text { if } t=s \\ J_{s, t+1}, & \text { if } t<s .\end{cases}
$$

Then by induction on the number of elements in the set $\left\{z_{1 s}, \cdots, z_{t s}\right\} \cup Z_{s+1} \cup \ldots$ $\cup Z_{r}$, we may assume that $\left(J_{s, t}, z\right)$ is a radical ideal. Hence $\sqrt{J_{s, t}} \cong\left(J_{s, t}, z\right)$. On the other hand, if we define

$$
J_{s, t}^{\prime}= \begin{cases}J(s, \cdots, r), & \text { if } t=s \\ J(1, \cdots, t, s, \cdots r), & \text { if } t<s\end{cases}
$$

then it can be checked that $z J_{s, t}^{\prime} \cong J_{s, t}$. Further, by the induction hypotheses on $J(s, \cdots, r)$ and $J(1, \cdots t, s, \cdots, r)$, we see that $J_{s, t}^{\prime} \supseteqq \sqrt{J_{s, t}}$ and $J_{s, t}^{\prime}: z=J_{s, t}^{\prime}$. Thus, by Lemma 2 (i), $J_{s, t}$ is a radical ideal. Especially, $J_{1, r}=\left(J, z_{1 r}\right)$ is a radical ideal. From this we have

$$
\begin{equation*}
\left(J, z_{1 r}\right)=(P, Z) \cap J(1) \cap J(r) . \tag{2}
\end{equation*}
$$

Hence, using the induction hypotheses on $J(1)$ and $J(r)$, we see that ($J, z_{1 r}$) is an unmixed ideal of height $\binom{r+2}{2}-1$. Thus (1) is proved.

Next we will show the following facts:
(3) \sqrt{J} has only one associated prime of height $\binom{r+2}{2}-2$.
(4) $z_{1 r}$ is not a zerodivisor on \sqrt{J}.

Note that we have the following relations:

$$
\begin{aligned}
& x_{11} p_{i j}=x_{1 i} p_{1 j}-x_{1 j} p_{1 i} \\
& x_{11} q_{i j}=x_{1 i} q_{1 j}-x_{1} x_{2 j} p_{1 i} \\
& x_{11} F_{i j l}=x_{1 i} F_{1 j l}-x_{1 j} F_{1 i l} \\
& x_{11} G_{i j l}=x_{2 i} F_{1 j l}-x_{2 j} F_{1 i l}-z_{1 l} p_{i j} \\
& x_{11} H_{i j l m}=x_{i m} F_{1 j l}-z_{j m} F_{1 i l}-z_{1 l} F_{i j m}
\end{aligned}
$$

for all $i, j, l, m=1, \cdots, r$. From these relations we see that $\operatorname{Jk}\left[X, Z, x_{11}^{-1}\right]$ can be generated by the elements $p_{1 i}, q_{11}, F_{1 i j}$ with $i=2, \cdots, r$ and $j=1, \cdots, r$. Eliminating $x_{21}, \cdots, x_{2 r}, x_{2}, z_{12}, \cdots, z_{r r}$ by the help of these elements we then get an isomorphism $k\left[X, Z, x_{11}^{-1}\right] /(J) \cong k\left[X_{1}, x_{21}, x_{1}, z_{11}, x_{11}^{-1}\right]$. Hence $\operatorname{Jk}\left[X, Z, x_{11}^{-1}\right]$ is a prime ideal of height $\binom{r+2}{2}-2$ and $x_{12}, \cdots, x_{2 r}, z_{1 r}$ are not zerodivisors on $J k\left[X, Z, x_{11}^{-1}\right]$. Let J^{\prime} denote the inverse image of $J k\left[X, Z, x_{11}^{-1}\right]$ in $k[X, Z]$. Then J^{\prime} is also a prime ideal of height $\binom{r+2}{2}-2$ and $x_{11}, \cdots, x_{2 r}, z_{1 r}$ are not zerodivisors on J^{\prime}. Note that the same facts also hold if we replace x_{11} by an arbitrary element of the set $X_{1} \cup X_{2}$. We easily see that J^{\prime} is the only associated prime of J which does not contain X_{1}, X_{2}. Thus, $\sqrt{J}=J^{\prime} \cap \sqrt{\left(J, X_{1}, X_{2}\right)}$. On the other hand, it is not hard to see from [1, §4, Corollary] that $\left(J, X_{1}, X_{2}\right)$ is
a prime ideal of height $\binom{r+2}{2}+2 r>\binom{r+2}{2}-2$ and that $z_{1 r}$ is not a zerodivisor on $\left(J, X_{1}, X_{2}\right)$. So \sqrt{J} has only one associated prime of height $\binom{r+2}{2}$ -2 and $z_{1 r}$ is not a zerodivisor on \sqrt{J}. Hence (3) and (4) are just proved.

Now, from (1) and (4) we conclude that $\sqrt{J}=J$, by Lemma 7 (ii), and that J is unmixed, by [8, (15.E), Lemma 4 and Lemma 5]. Hence by (3), J is a prime ideal with ht $J=\binom{r+2}{2}-2$. It remains to show the perfection of J or, equivalently, the Cohen-Maculay property of $k[X, Z] / J$.

Let B denote the local ring $k[X, Z]_{(x, Z)}$. In order to show the CohenMacaulay property of $k[X, Z] / J$ we have only to show the Cohen-Macaulay property of $B /(J)$ (see [9]) or, equivalently, the Cohen-Macaulay property of $B /\left(J, z_{1 r}\right)$. For that consider the following exact sequence

$$
0 \longrightarrow(J(1)) /\left(J, z_{1 r}\right) \longrightarrow B /\left(J, z_{1 r}\right) \longrightarrow B /(J(1)) \longrightarrow 0 .
$$

Using the relation (2), by induction we know that $B /(J(1))$ is Cohen-Macaulay and $\operatorname{dim} B /(J(1))=\operatorname{dim} B /\left(J, z_{1 r}\right)$. Hence, by Lemma 5 (ii), it suffices to show that $(J(1)) /\left(J, z_{1 r}\right)$ is Cohen-Macaulay.

Let us consider the exact sequence

$$
0 \longrightarrow(J(r)) /\left(J_{r, r}\right) \longrightarrow B /\left(J_{r, r}\right) \longrightarrow B /(J(r)) \longrightarrow 0 .
$$

$B /(J(r))$ is Cohen-Macaulay like $B /(J(1))$. Further, since $J_{r, r}$ is a radical ideal by the proof of (1), it can be checked that

$$
\begin{equation*}
J_{r, r}=(P, Z) \cap J(r) . \tag{5}
\end{equation*}
$$

Hence $\operatorname{dim} B /(J(r))=\operatorname{dim} B /\left(J_{r, r}\right)$ and $(J(r)) /\left(J_{r, r}\right) \cong(P, Z, J(r)) /(P, Z) \cong\left(P_{r}\right) /(P)$, which is a Cohen-Macaulay module by Lemma 6. Thus, $(J(r)) /\left(J_{r, r}\right)$ is CohenMacaulay by Lemma 5 (i). Note that $\left(J_{r, r}, J(1)\right)=\left(J_{r, r}, Z_{1}, x_{11}, x_{21}\right)$ has a similar structure like $J_{r, r}$. So using the same method as above, we can also show that $B /\left(J_{r, r}, J(1)\right)$ is Cohen-Macaulay. Now, by Lemma 5 (ii), the exact sequence

$$
0 \longrightarrow\left(J_{r, r}, J(1)\right) /\left(J_{r, r}\right) \longrightarrow B /\left(J_{r, r}\right) \longrightarrow B /\left(J_{r, r}, J(1)\right) \longrightarrow 0
$$

implies that $\left(J_{r, r}, J(1)\right) /\left(J_{r, r}\right)$ is Cohen-Macaulay. On the other hand, using the relations (2) and (5), we have

$$
\begin{aligned}
\left(J_{r, r}, J(1)\right) /\left(J_{r, r}\right) & \cong(J(1)) /\left(J_{r, r} \cap J(1)\right) \\
& \cong(J(1)) /(P, Z) \cap J(1) \cap J(r))=(J(1)) /\left(J_{1, r}\right) .
\end{aligned}
$$

Hence $(J(1)) /\left(J_{1, r}\right)$ is Cohen-Macaulay, as required. This completes the proof of Lemma 8.

Lemma 8 is used to prove the following lemma, which is, like Lemma 8 , of independent interest.

Lemma 9. Let $s(\leqq r)$ be a positive integer. Let I_{s} denote the ideal in $k[X, Y, Z]$ generated by I and all elements $y_{i j}$ with $i, j=1, \cdots, s$. Then I_{s} is a perfect prime ideal with ht $I_{s}=r^{2}+s-1$.

Proof. The case $s=r$ follows immediately from Lemma 8 because $I_{r}=(J, Y)$. Let $s<r$. By induction on s we may assume that I_{s+1} is a perfect prime ideal with ht $I_{s+1}=r^{2}+s$.

Let $t(\leqq s)$ be an arbitrary positive integer. Let $I_{s, t}$ denote the ideal in $k[X, Y, Z]$ generated by I_{s} and the elements $y_{1(s+1)}, \cdots, y_{t(s+1)}$. We prove that $I_{s, t}$ is a radical ideal. Note that $I_{s, s}=I_{s+1}$ is already a prime ideal. We may assume that $t<s$ and that, by induction on $t,\left(I_{s, t}, y_{(t+1)(s+1)}\right)=I_{s, t+1}$ is radical; hence $\sqrt{I_{s, t}} \cong\left(I_{s, t}, y_{(t+1)(s+1)}\right)$. Let $I_{s, t}^{\prime}$ denote the ideal in $k[X, Y, Z]$ generated by I_{s} and all elements $x_{1 i}, x_{2 i}, y_{i j}, z_{i j}$ with $i=1, \cdots, t$ and $j=1, \cdots, r$. Since $I_{s, t}^{\prime}$ has a similar structure like I_{s}, by induction on r to the statement of Lemma 9 (the case $r=1$ is trivial) we may assume that $I_{s, t}^{\prime}$ is a perfect prime ideal with

$$
\text { ht } I_{s, t}^{\prime}=\left[(r-t)^{2}+(s-t)-1\right]+\left[2 t+2 r t-t^{2}\right]=r^{2}+s-t-1 .
$$

By this assumption we get $I_{s, t}^{\prime} \supseteqq \sqrt{I_{s, t}}$ and $I_{s, t}^{\prime}: y_{(t+1)(s+1)}=I_{s, t}^{\prime}$. On the other hand, it can be easily checked that $y_{(t+1)(s+1)} I_{s, t}^{\prime} \cong I_{s, t}$. Hence, by Lemma 7 (i), $I_{s, t}$ is a radical ideal.

Since $\left(I_{s}, y_{1(s+1)}\right)=I_{s, 1}$ is the last member of the class of the ideals $I_{s, t}$, we have just shown that $\left(I_{s}, y_{1(s+1)}\right)$ is a radical ideal. From this we can easily verify that $\left(I_{s}, y_{1(s+1)}\right)=I_{s+1} \cap I_{s, 1}^{\prime}$. Note that $I_{s+1}, I_{s, 1}^{\prime}$, and $\left(I_{s+1}, I_{s, 1}^{\prime}\right)=I_{s+1,1}^{\prime}$ are perfect prime ideals of heights $r^{2}+s, r^{2}+s$, and $r^{2}+s+1$, respectively, by the induction hypotheses. Then, applying [4, Proposition 18], we see that ($I_{s}, y_{1(s+1)}$) is perfect. Thus it is clear that I_{s} is perfect if $y_{1(s+1)}$ is not a zerodivisor on I_{s}. Hence, to complete the roof of Lemma 9 , we have only to show that I_{s} is a prime ideal with ht $I_{s}=r^{2}+s-2$, because the fact that $y_{1(s+1)}$ is not a zerodivisor on I_{s} is then an immediate consequence of this.

Consider the following relations:

$$
\begin{aligned}
& x_{12} p_{i j}=x_{1 i} p_{2 j}-x_{1 j} p_{2 i} \\
& x_{12} q_{i j}=x_{1 i} q_{2 j}-x_{1} x_{2 j} p_{2 i} \\
& x_{12} a_{i j l}=x_{1 i} a_{2 j l}-x_{1 j} a_{2 i l}+x_{1 l} a_{2 i j} \\
& x_{12} b_{i j l}=x_{22} a_{i j l}+y_{j l} p_{2 i}-y_{i l} p_{2 j}+y_{i j} p_{2 l} \\
& x_{12} c_{i j l m}=y_{i l} a_{2 l m}-y_{i l} a_{2 j m}+y_{j l} a_{2 i m}-y_{2 m} a_{i j l}+x_{1 m} c_{2 i j l} \\
& x_{12} d_{i j l m}=y_{l m} f_{2 i j}-y_{j m} f_{2 l i}+y_{j l} f_{2 m i}+z_{2 i} a_{j l m}-x_{1} x_{2 i} c_{2 j l m} \\
& x_{12} f_{i j l}=x_{1 i} f_{2 j l}-x_{1 j} f_{2 i l}-x_{1} x_{21} a_{2 i j} \\
& x_{12} g_{i j l}=x_{22} f_{i j l}+z_{j l} p_{2 i}-z_{i l} p_{2 j}+y_{i j} q_{2 l} \\
& x_{12} h_{i j l m}=z_{i m} f_{2 j l}-z_{j m} f_{2 i l}-z_{2 l} f_{i j m}+x_{1} y_{i j} g_{l m 2}+x_{1} x_{2 l} d_{m i j 2} .
\end{aligned}
$$

We see that $I_{s} k\left[X, Y, Z, x_{12}^{-1}\right]$ can be generated by the elements $p_{2 j}, q_{22}, a_{2 i j}$, $f_{2 i j}$ with $i, j=1, \cdots, r$ and the elements $y_{i j}$ with $i, j=1, \cdots, s$. It follows by eliminating $x_{21}, x_{23}, \cdots, x_{2 r}, x_{2}, y_{i j} \in Y \backslash\left\{y_{2(s+1)}, \cdots, y_{2 r}\right\}, z_{i j} \in Z \backslash\left\{z_{22}\right\}$ that $k\left[X, Y, Z, x_{12}^{-1}\right] /\left(I_{s}\right) \cong k\left[X_{1}, x_{22}, x_{1}, y_{2(s+1)}, \cdots, y_{2 r}, z_{22}, x_{12}^{-1}\right]$. Hence $I_{s} k\left[X, Y, Z, x_{12}^{-1}\right]$ is a prime ideal of height $r^{2}+s-1$. Thus $y_{1(s+1)}$ is not a zerodivisor on $I_{s} k\left[X, Y, Z, x_{12}^{-1}\right]$. Let I_{s}^{\prime} denote the inverse image of $I_{s} k\left[X, Y, Z, x_{12}^{-1}\right]$ in $k[X, Y, Z]$. Then I_{s}^{\prime} is also a prime ideal with ht $I_{s}^{\prime}=r^{2}+s-1$ and $I_{s}^{\prime}: y_{1(s+1)}$ $=I_{s}^{\prime}$. Since $x_{12}^{n} I_{s}^{\prime} \cong I_{s}$ for some large $n, I_{s}^{\prime} \cong\left(I_{s}, y_{1(s+1)}\right): x_{12}^{n}$. But ($I_{s}, y_{1(s+1)}$) $=I_{s+2} \cap I_{s, 1}^{\prime}$, and it is not hard to see from the induction hypotheses on I_{s+1}, $I_{s, 1}^{\prime}$ that x_{12} is not a zerodivisor on $I_{s+1}, I_{s, 1}^{\prime}$. Hence, $\left(I_{s}, y_{1(s+1)}\right): x_{12}^{n}=\left(I_{s}, y_{1(s+1)}\right)$. So we get $I_{s}^{\prime} \cong\left(I_{s}, y_{1(s+1)}\right)$ or $I_{s}^{\prime}=I_{s}+y_{1(s+2)}\left(I_{s}^{\prime}: y_{1(s+1)}\right)=I_{s}+y_{1(s+1)} I_{s}^{\prime}$. Now, applying Nakayama's lemma we have $I_{s}^{\prime}=I_{s}$, which shows that I_{s} is a prime ideal with ht $I_{s}=r^{2}+s-1$. Thus the proof of Lemma 9 is completed.

Proof of Proposition 3. Note that $I=I_{1}$ is a perfect prime ideal by Lemma 9. Then, by [5, § 0, Proposition], it suffices to show that $\operatorname{gr}_{P}(k[X]) \cong k[X, Y, Z] / I_{1}$. To see this, sending $y_{i j}$ and $z_{i j}$ to the images of $p_{i j}$ and $q_{i j}$ in P / P^{2}, we have a natural homomorphism from $k[X, Y, Z]$ to $g r_{P}(k[X])$. Let I^{\prime} be the kernel of this homomorphism. Then, since $k[X]_{P}[Y, Z] /\left(I^{\prime}\right)$ is isomorphic to $\operatorname{gr}_{(P)}\left(k[X]_{P}\right)$, which is a regular domain of the same dimension as $k[X]_{P}, I^{\prime}$ must have a primary component of height $r^{2}\left(=\operatorname{dim} k[X]_{P}[Y, Z]-\operatorname{dim} k[X]_{P}\right)$. But it can be easily checked that $I_{1} \subseteq I^{\prime}$. Hence I_{1} is just the primary component of I^{\prime} mentioned above, because I_{1} is prime and ht $I_{1}=r^{2}$. Consequently, we have $I_{1}=I^{\prime}$, which shows that $g r_{P}(k[X]) \cong k[X, Y, Z] / I_{1}$.

Institute of Mathematics
 208 D. Dôi CÂŃ,
 Hanoi, Vietnam

References

[1] J. Barshay, Determinantal varieties, monomial semigroups, and algebras associated with ideals, Proc. Amer. Math. Soc., 40 (1973), 16-22.
[2] C. De Concini, D. Eisenbud, C. Procesi, Young diagrams and determinantal ideals, Preprint 1978.
[3] A. Grothendieck, Local cohomology (noted by R. Hartshorne), Lecture notes in Mathematics, no. 41, Springer 1967.
[4] M. Hochster, J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math., 93 (1971), 1020-1058.
[5] M. Hochster, Criteria for equality of ordinary and symbolic powers of primes ,Math. Z., 133 (1973), 53-65.
[6] M. Hochster, L. J. Ratliff, Five theorems on Macaulay rings, Pacific J. Math., 44 (1973), 147-172.
[7] S. Lang, Introduction to Algebraic Geometry, Interscience, New York 1964.
[8] H. Matsumura, Commutative Algebra, Benjamin, New York 1970.
[9] J. Matijevic, P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ., 14 (1974), 125-128.
[10] M. Nagata, Some questions on Cohen-Macaulay rings, J. Math. Kyoto Univ., 13 (1973), 123-128.
[11] J. Stückrad, W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwendungen auf ein Problem der Mutiplizitätstheorie, J. Math. Kyoto Univ., 13 (1973), 513-528.
[12] J. Stückrad, W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727-746.
[13] N. V. Trung, Der graduierte Ring bezüglich des Primideals von Macaulay, Beiträge zur Algebra und Geometrie, to appear.
[14] N. V. Trung, On the symbolic powers of determinantal ideals, J. Algebra, 58 (1979), to appear.

