Collapsing of the Eilenberg-Moore spectral sequence mod 5 of the compact exceptional group E_{8}

By
Mamoru Mimura and Yuriko Sambe
(Received February 5, 1979)

§ 1. Introduction.

A principal bundle with structure group G is said to be universal if its homotopy groups are all trivial. Such spaces exist for any compact Lie group G. The base space $B G$ of the universal bundle $E G$ for G is called the classifying space for G. Its importance is stated in the classification theorem that the equivalence classes of G-bundles over B are in one-to-one correspondence with the homotopy classes of maps $f: B \rightarrow B G$. So each G-bundle over B has a homomorphism $f^{*}: H^{*}(B G ; R) \rightarrow H^{*}(B ; R)$ called the characteristic map of the bundle (R is a coefficient ring). The image of $f *$ is the characteristic ring of the bundle. For example, the Stiefel-Whitney classes are the image of f^{*} : $H^{*}\left(B O(n) ; \boldsymbol{Z}_{2}\right) \rightarrow H^{*}\left(B ; \boldsymbol{Z}_{2}\right)$ of the particular elements. Thus it is quite important to determine the ring $H^{*}(B G ; R)$ of the universal characteristic classes for G bundles.

Now let G be a compact, 1-connected, simple Lie group. Then, as is well known, it is classified as
classical type: $\operatorname{Spin}(n), S U(n), S p(n)$,
exceptional type: $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$.
Let us recall the Borel theorems:
(1) If $H^{*}\left(G ; \boldsymbol{Z}_{p}\right)$ is the exterior algebra generated by elements of odd degrees ($p:$ a prime), then

$$
H^{*}\left(B G ; \boldsymbol{Z}_{p}\right) \cong \boldsymbol{Z}_{p}\left[y_{1}, \cdots, y_{l}\right], \quad l=\operatorname{rank} G .
$$

(2) If $H^{*}\left(G ; \boldsymbol{Z}_{2}\right)$ has a simple system of universally transgressive generators, then

$$
H^{*}\left(B G ; \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}\left[y_{1}, \cdots, y_{n}\right] .
$$

The assumption of (1) is satisfied when $H^{*}(G ; \boldsymbol{Z})$ has no p-torsion, e. g.,

$$
\begin{aligned}
& G=S U(n), S p(n) \text { for any } p ; \\
& G=G_{2}, \operatorname{Spin}(n) \text { for } p>2 ; \\
& G=F_{4}, E_{6}, E_{7}, \text { for } p>3 ; \\
& G=E_{8} \text { for } p>5 .
\end{aligned}
$$

The assumption of (2) is satisfied even when $H_{*}(G ; \boldsymbol{Z})$ has 2-torsion, e.g.,

$$
G=G_{2}, F_{4}, \operatorname{Spin}(n)(7 \leqq n \leqq 9) .
$$

The cases not covered by Borel's results are

$$
\begin{aligned}
& G=\operatorname{Spin}(n), E_{6}, E_{7}, E_{8} \text { for } p=2 ; \\
& G=F_{4}, E_{6}, E_{7}, E_{8} \text { for } p=3 ; \\
& G=E_{8} \text { for } p=5 .
\end{aligned}
$$

Of these cases the following were already determined:
$H^{*}\left(B \operatorname{Spin}(n) ; \boldsymbol{Z}_{2}\right)$ by Quillen;
$H^{*}\left(B F_{4} ; \boldsymbol{Z}_{3}\right)$ by Toda;
$H^{*}\left(B E_{6} ; \boldsymbol{Z}_{2}\right), H^{*}\left(B E_{6} ; \boldsymbol{Z}_{3}\right)$ by Kono-Mimura $;$
$H^{*}\left(B E_{7} ; \boldsymbol{Z}_{2}\right)$ by Kono-Mimura-Shimada.

In this paper we will study the module structure of $H^{*}\left(B E_{8} ; \boldsymbol{Z}_{5}\right)$.
Let E_{8} be the compact, 1-connected, simple exceptional Lie group of rank 8. Denote by $\left\{E_{8}: 5\right\}$ the set $\left\{X\right.$: compact, associative H-space such that $H^{*}\left(X ; \boldsymbol{Z}_{5}\right)$ $\cong H^{*}\left(E_{8} ; \boldsymbol{Z}_{5}\right)$ as Hopf algebras $\}$. As is well known, every $X \in\left\{E_{8}: 5\right\}$ has the classifying space $B X$.

The purpose of this paper is to determine the module structure of $H^{*}\left(B X ; \boldsymbol{Z}_{5}\right)$ for any $X \in\left\{E_{8}: 5\right\}$. The method is the Eilenberg-Moore spectral sequence mod $5\left\{E_{r}, d_{r}\right\}$ associated with X :

$$
\begin{aligned}
& E_{2} \cong \operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right) \text { with } A=H^{*}\left(X ; \boldsymbol{Z}_{5}\right), \\
& E_{\infty} \cong \mathcal{G}_{\imath} H^{*}\left(B X ; \boldsymbol{Z}_{5}\right) .
\end{aligned}
$$

In Section 2 we construct an injective resolution $W=A \otimes \bar{W}$ of \boldsymbol{Z}_{5} over A (by making use of the twisted tensor product) so that

$$
H(\bar{W}: d)=\operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right) .
$$

In $\S \S 3$ and 4 we determine all the indecomposable cocycles in the polynomial subalgebra V of \bar{W}.

In $\S 55$ and 6 we determine all the indecomposable cocycles with elements of odd degree. Thus we show that $\operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right)$ has 1040 (indecomposable) algebra generators (Theorem 6.5).

In Section 7 we check the commutativity of these generators and prove that $\operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right)$ is commutative (Theorem 7.1).

In the last section, § 8, we show
Theorem 8.1. The Eilenberg-Moore spectral sequence $\bmod 5$ associated with X collapses for all $X \in\left\{E_{8}: 5\right\}$.

In particular we have

Corollary 8.3. As modules

$$
H^{*}\left(B E_{8} ; \boldsymbol{Z}_{5}\right) \cong \operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right) \text { with } A=H^{*}\left(E_{8} ; \boldsymbol{Z}_{5}\right) .
$$

§ 2. An injective resolution of \boldsymbol{Z}_{5} over $H^{*}\left(X ; \boldsymbol{Z}_{5}\right)$.

Let $X \in\left\{E_{8}: 5\right\}$. First we recall from [2] the Hopf algebra structure of $H^{*}\left(X ; \boldsymbol{Z}_{5}\right)$:

$$
\begin{equation*}
H^{*}\left(X ; \boldsymbol{Z}_{5}\right)=\boldsymbol{Z}_{5}\left[x_{12}\right] /\left(x_{12}^{5}\right) \otimes \Lambda\left(x_{3}, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}\right), \tag{2.1}
\end{equation*}
$$

where $\operatorname{deg} x_{i}=i$;

$$
\begin{array}{ll}
\bar{\phi}\left(x_{i}\right)=0 & \text { for } i=3,11,12, \tag{2.2}\\
\bar{\phi}\left(x_{j}\right)=x_{12} \otimes x_{j-12} & \text { for } j=15,23, \\
\bar{\phi}\left(x_{k}\right)=2 x_{12} \otimes x_{k-12}+x_{12}^{2} \otimes x_{k-24} & \text { for } k=27,35, \\
\bar{\phi}\left(x_{l}\right)=3 x_{12} \otimes x_{l-12}+3 x_{12}^{2} \otimes x_{l-24}+x_{12}^{3} \otimes x_{l-36} & \text { for } l=39,47,
\end{array}
$$

where $\bar{\phi}$ is the reduced diagonal map induced from the multiplication on X.

$$
\text { Notation. } \quad A=H^{*}\left(X ; \boldsymbol{Z}_{5}\right) \quad \text { and } \quad \bar{A}=\widetilde{H}^{*}\left(X ; \boldsymbol{Z}_{5}\right) .
$$

We shall construct an injective resolution of \boldsymbol{Z}_{5} over A using the same construction as that in § 3 of [3].

Let L be a graded submodule of \bar{A} generated by

$$
\left\{x_{3}, x_{11}, x_{12}, x_{12}^{2}, x_{12}^{3}, x_{12}^{4}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}\right\} .
$$

Let $\theta: A \rightarrow L$ be the projection and $\iota: L \rightarrow A$ the injection such that $\circ \theta=1_{A}$. We name the set of corresponding elements under the suspension s as

$$
\begin{equation*}
s L=\left\{a_{4}, a_{12}, a_{13}, c_{25}, c_{37}, c_{49}, b_{16}, b_{24}, d_{28}, d_{36}, e_{40}, e_{48}\right\} \tag{2.3}
\end{equation*}
$$

Define $\bar{\theta}: A \rightarrow s L$ by $\bar{\theta}=s \circ \theta$ and $\bar{c}: s L \rightarrow A$ by $\bar{i}=<\circ \circ^{-1}$. Let $T(s L)$ be the free tensor algebra over $s L$ with the natural product ψ. Consider the two sided ideal I of $T(s L)$ generated by $\operatorname{Im}(\psi \circ(\bar{\theta} \otimes \bar{\theta}) \circ \phi)(\operatorname{Ker} \bar{\theta})$, where ϕ is the diagonal map of A. Put $\bar{W}=T(s L) / I$, that is, $\bar{W}=Z_{5}\left\{a_{i}, b_{j}, d_{k}, e_{l}, c_{m}\right\} \quad(i=4,12,13 ; j=16,24$; $k=28,36 ; l=40,48 ; m=25,37,49)$. It is easy to see that I is generated by
(2.4) $[\alpha, \beta]$ for all pairs (α, β) of generators α, β of $T(s L)$ except

$$
\begin{aligned}
& \left(a_{13}, b_{j}\right) \text { and }\left(c_{m}, b_{j}\right) \text { for } j=16,24, m=25,37, \\
& \left(a_{13}, d_{k}\right) \text { and }\left(c_{m}, d_{k}\right) \text { for } k=28,36, m=25,37 \text {, } \\
& \left(a_{13}, e_{l}\right) \text { and }\left(c_{m}, e_{l}\right) \text { for } l=40,48, m=25,37 \text {, } \\
& \left(a_{13}, c_{m}\right) \quad \text { for } m=25,37,49 \text {, } \\
& \left(c_{m}, c_{m^{\prime}}\right) \quad \text { for } m, m^{\prime}=25,37,49\left(m \neq m^{\prime}\right) \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[a_{13}, b_{j}\right]+c_{25} a_{j-12},} \\
& {\left[c_{25}, b_{j}\right]+c_{37} a_{j-12},} \\
& {\left[c_{37}, b_{j}\right]+c_{49} a_{j-12} \quad \text { for } j=16,24 ;} \\
& {\left[a_{13}, d_{k}\right]+2 c_{25} b_{k-12}+c_{37} a_{k-24},} \\
& {\left[c_{25}, d_{k}\right]+2 c_{37} b_{k-12}+c_{49} a_{k-24},} \\
& {\left[c_{37}, d_{k}\right]+2 c_{49} b_{k-12} \quad \text { for } k=28,36 ;} \\
& {\left[a_{13}, e_{l}\right]+3 c_{25} d_{l-12}+3 c_{37} b_{l-24}+c_{49} a_{l-36},} \\
& {\left[c_{25}, e_{l}\right]+3 c_{37} d_{l-12}+3 c_{49} b_{l-24},} \\
& {\left[c_{37}, e_{l}\right]+3 c_{49} d_{l-12} \quad \text { for } l=40,48,}
\end{aligned}
$$

where $[\alpha, \beta]=\alpha \beta-(-1)^{*} \beta \alpha$ with $*=\operatorname{deg} \alpha \cdot \operatorname{deg} \beta$.
Note that \bar{W} contains the polynomial algebra

$$
V=Z_{5}\left[a_{4}, a_{12}, b_{16}, b_{24}, d_{28}, d_{36}, e_{40}, e_{48}\right] .
$$

Notation. $V_{4}=Z_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$ and $V_{12}=Z_{5}\left[a_{12}, b_{24}, d_{36}, e_{48}\right]$.
We define a map

$$
d=-\psi^{\prime} \circ(\bar{\theta} \otimes \bar{\theta}) \circ \phi \circ \bar{\iota}: s L \rightarrow T(s L)
$$

and extend it naturally over $T(s L)$ as a derivation. Since $d(I) \subset I$ holds, d induces a map $\bar{W} \rightarrow \bar{W}$, which is again denoted by $d: \bar{W} \rightarrow \bar{W}$ by abuse of notation. It is easy to check that $d \circ d=0$ and so \bar{W} is a differential algebra over \boldsymbol{Z}_{5}. Using the relation

$$
d \circ \bar{\theta}+\psi^{\circ}(\bar{\theta} \otimes \bar{\theta}) \circ \phi=0
$$

we can construct the twisted tensor product $W=A \otimes \bar{W}$ with respect to $\bar{\theta}$ [5]. Namely, W is an A-comodule with a differential operator

$$
\bar{d}=1 \otimes d+(1 \otimes \psi) \circ(1 \otimes \bar{\theta} \otimes 1) \circ(\phi \otimes 1) .
$$

More explicitly, the differential operators \bar{d} and d are given by

$$
\begin{array}{ll}
\bar{d}\left(x_{i} \otimes 1\right)=1 \otimes a_{i+1} & \text { for } i=3,11,12, \tag{2.5}\\
\bar{d}\left(x_{12}^{2} \otimes 1\right)=1 \otimes c_{25}+2 x_{12} \otimes a_{13}, & \\
\bar{d}\left(x_{12}^{3} \otimes 1\right)=1 \otimes c_{37}+3 x_{12} \otimes c_{25}+3 x_{12}^{2} \otimes a_{13}, & \\
\bar{d}\left(x_{12}^{4} \otimes 1\right)=1 \otimes c_{49}+4 x_{12} \otimes c_{37}+x_{12}^{2} \otimes c_{25}+4 x_{12}^{3} \otimes a_{13}, & \text { for } j=15,23, \\
\bar{d}\left(x_{j} \otimes 1\right)=1 \otimes b_{j+1}+x_{12} \otimes a_{j-11} & \text { for } k=27,35, \\
\bar{d}\left(x_{k} \otimes 1\right)=1 \otimes d_{k+1}+2 x_{12} \otimes b_{k-11}+x_{12}^{2} \otimes a_{k-23} & \text { for } l=39,47 ;
\end{array}
$$

$$
\begin{array}{ll}
d a_{i}=0 & \text { for } i=4,12,13 \tag{2.6}\\
d c_{25}=3 a_{13}^{2}, & \\
d c_{37}=2\left[a_{13}, c_{25}\right], & \\
d c_{49}=\left[a_{13}, c_{37}\right]-c_{25}^{2}, & \text { for } j=16,24, \\
d b_{j}=-a_{13} a_{j-12} & \text { for } k=28,36, \\
d d_{k}=-2 a_{13} b_{k-12}-c_{25} a_{k-24} & \text { for } l=40,48 .
\end{array}
$$

Now we define weight in $W=A \otimes \bar{W}$ as follows :

$$
\begin{array}{r}
A: x_{3}, x_{11}, x_{12}, x_{12}^{2}, x_{32}^{3}, x_{12}^{4}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47} \tag{2.7}\\
\bar{W}: a_{4}, a_{12}, a_{13}, c_{25}, c_{37}, c_{49}, b_{16}, b_{24}, d_{28}, d_{36}, e_{40}, e_{48} \\
\text { weight }: 0
\end{array} 0
$$

(The weight of a monomial is the sum of the weights of each element.)
Define a filtration

$$
\begin{equation*}
F_{r}=\{x \mid \text { weight } x \leqq r\} . \tag{2.8}
\end{equation*}
$$

Put $E_{0} W=\Sigma F_{i} / F_{i-1}$. Then it is easy to see that

$$
\begin{aligned}
E_{0} W \cong & \Lambda\left(x_{3}, x_{11}, x_{15}, x_{23}, x_{27}, x_{35}, x_{39}, x_{47}\right) \\
& \otimes \boldsymbol{Z}_{5}\left[a_{4}, a_{12}, b_{16}, b_{24}, d_{28}, d_{36}, e_{40}, e_{48}\right] \otimes C\left(Q\left(x_{12}\right)\right)
\end{aligned}
$$

where $C\left(Q\left(x_{12}\right)\right)$ is the cobar construction of $\boldsymbol{Z}_{5}\left[x_{12}\right] /\left(x_{12}^{5}\right)$. The differential formulae (2.5) and (2.6) imply that $E_{0} W$ is acyclic, and hence W is acyclic.

Theorem 2.9. W is an injective resolution of \boldsymbol{Z}_{5} over $A=H^{*}\left(X ; \boldsymbol{Z}_{5}\right)$.
By the definition of Cotor we have
Corollary 2.10. $H(\bar{W}: d)=\operatorname{Ker} d / \operatorname{Im} d \cong \operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right)$.

§ 3. Cocycles in V_{4} and V_{12}.

We define an operator ∂ by

$$
\begin{array}{lll}
\partial a_{i}=0 & \text { for } & i=4,12, \\
\partial b_{j}=a_{j-12} & \text { for } & j=16,24, \\
\partial d_{k}=2 b_{k-12} & \text { for } & k=28,36, \\
\partial e_{l}=3 d_{l-12} & \text { for } & l=40,48,
\end{array}
$$

and extend it over $V=\boldsymbol{Z}_{5}\left[a_{4}, a_{12}, b_{16}, b_{24}, d_{28}, d_{38}, e_{40}, e_{48}\right]$ so that it satisfies

$$
\partial(P+Q)=\partial P+\partial Q \quad \text { and } \quad \partial(P Q)=\partial P \cdot Q+P \partial Q
$$

for any polynomials P and Q of V.
Then we have
Lemma 3.1. For any polynomial P in V we have
(1) $\partial^{5} P=0$;
(2) $\left[a_{13}, P\right]=-c_{25} \partial P-3 c_{37} \partial^{2} P-c_{49} \partial^{3} P$,
$\left[c_{25}, P\right]=-c_{37} \partial P-3 c_{49} \partial^{2} P$,
$\left[c_{37}, P\right]=-c_{49} \partial P ;$
(3) $d P=-a_{13} \partial P+2 c_{25} \partial^{2} P-c_{37} \partial^{3} P+c_{49} \partial^{4} P$.

Proof. (By induction.)
(1) Suppose that $\partial^{5} P=0$ holds for any polynomial P of degree up to l. Then for a monomial $x P$ of degree $l+1$, we have

$$
\partial^{5}(x P)=\partial^{5} x \cdot P+x \partial^{5} P=0 .
$$

Thus $\partial^{5} P=0$ holds for any polynomial of degree $l+1$.
(2) Suppose that (2) holds for any polynomial P of degree up to l. Then for a monomial $x P$ of degree $l+1$, we have

$$
\begin{aligned}
{\left[a_{13}, x P\right]=} & {\left[a_{13}, x\right] P+x\left[a_{13}, P\right] } \\
= & \left(-c_{25} \partial x-3 c_{37} \partial^{2} x-c_{49} \partial^{3} x\right) P+x\left(-c_{25} \partial P-3 c_{37} \partial^{2} P-c_{49} \partial^{3} P\right) \\
= & \left(-c_{25} \partial x-3 c_{37} \partial^{2} x-c_{49} \partial^{3} x\right) P-\left(c_{25} x+c_{37} \partial x+3 c_{49} \partial^{2} x\right) \partial P \\
& \quad-3\left(c_{37} x+c_{49} \partial x\right) \partial^{2} P-c_{49} x \partial^{3} P \\
= & -c_{25}(\partial x \cdot P+x \partial P)-3 c_{37}\left(\partial^{2} x \cdot P+2 \partial x \cdot \partial P+x \partial^{2} P\right) \\
& \quad-c_{49}\left(\partial^{3} x \cdot P+3 \partial^{2} x \cdot \partial P+3 \partial x \cdot \partial^{2} P+x \partial^{3} P\right) \\
= & -c_{25} \partial(x P)-3 c_{37} \partial^{2}(x P)-c_{49} \partial^{3}(x P) .
\end{aligned}
$$

Thus the first relation holds for any polynomial of degree $l+1$. The other two relations are proved similarly.
(3) Suppose that the differential formula holds for any polynomial P of degree up to l. Then for a monomial $x P$ of degree $l+1$, we have

$$
\begin{aligned}
d(x P)= & d x \cdot P+x d P \\
= & \left(-a_{13} \partial x+2 c_{25} \partial^{2} x-c_{37} \partial^{3} x+c_{49} \partial^{4} x\right) P \\
& \quad+x\left(-a_{13} \partial P+2 c_{25} \partial^{2} P-c_{37} \partial^{3} P+c_{49} \partial^{4} P\right) \\
= & \left(-a_{13} \partial x+2 c_{25} \partial^{2} x-c_{37} \partial^{3} x+c_{49} \partial^{4} x\right) P \\
& \quad-\left(a_{13} x+c_{25} \partial x+3 c_{37} \partial^{2} x+c_{49} \partial^{3} x\right) \partial P \\
& +2\left(c_{25} x+c_{37} \partial x+3 c_{49} \partial^{2} x\right) \partial^{2} P
\end{aligned}
$$

$$
\begin{aligned}
& \quad-\left(c_{37} x+c_{49} \partial x\right) \partial^{3} P+c_{49} x \hat{\partial}^{4} P \\
& =-a_{13}(\partial x \cdot P+x \partial P) \\
& +2 c_{25}\left(\partial^{2} x \cdot P+2 \partial x \cdot \partial P+x \partial^{2} P\right) \\
& \quad-c_{37}\left(\partial^{3} x \cdot P+3 \partial^{2} x \cdot \partial P+3 \partial x \cdot \partial^{2} P+x \partial^{3} P\right) \\
& \quad+c_{49}\left(\partial^{4} x \cdot P-\partial^{3} x \cdot \partial P+\partial^{2} x \cdot \partial^{2} P-\partial x \cdot \partial^{3} P+x \partial^{4} P\right) \\
& =-a_{13} \partial(x P)+2 c_{25} \partial^{2}(x P)-c_{37} \partial^{3}(x P)+c_{49} \partial^{4}(x P) .
\end{aligned}
$$

Thus the differential formula holds for any polynomial of degree $l+1$. q. e.d.
Lemma 3.2. Let P be non-trivial in V. Then P is a non-trivial cocycle if and only if $\partial P=0$.

Proof. If P is a cocycle, $d P=0$. Then by the differential formula, we have $\partial P=0$.

Conversely, if $\partial P=0$, then $\partial^{2} P, \partial^{3} P$ and $\partial^{4} P$ are also 0 and we have $d P=0$. Since P does not contain a_{13}, it is not in the d-image and hence P is a nontrivial cocycle.
q. e. d.

We shall find cocycles without elements of odd degree, namely those in V, in the following manner. First, we shall find cocycles in $V_{4}=\boldsymbol{Z}_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$. Cocycles in $V_{12}=\boldsymbol{Z}_{5}\left[a_{12}, b_{24}, d_{36}, e_{48}\right]$ will be obtained quite similarly and of the same form, since by the differential formula (2.6) we see that both V_{4} and V_{12} are closed under the operator ∂ and that they are of the same ∂-structure. Then in Section 4 we shall find cocycles of "mixed type", the ones with both a_{4} and a_{12}. There are 1002 cocycles of mixed type, of which 1001 are in the ∂^{4}-image. We have little interest in enumerating them, as we can easily write them down in polynomial form by mere calculations of ∂-image if necessary.

We shall find cocycles with elements of odd degree in Sections 5 and 6.
Now we shall find cocycles in $V_{4}=Z_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$.
Apparently a_{4} and b_{16}^{5} are the only indecomposable cocycles in $\boldsymbol{Z}_{5}\left[a_{4}, b_{16}\right]$.
A cocycle in $\boldsymbol{Z}_{5}\left[a_{4}, b_{16}, d_{28}\right]$ of degree 1 with respect to d_{28} is of the form

$$
P=A d_{28}-2 B \quad \text { with } \quad A, B \in \boldsymbol{Z}_{5}\left[a_{4}, b_{16}\right] .
$$

The formula $\partial P=\partial A \cdot d_{28}+2 A b_{16}-2 \partial B=0$ gives rise to

$$
\partial A=0 \quad \text { and } \quad A b_{16}=\partial B .
$$

We obtain, for $A=a_{4}$, a cocycle $a_{4} d_{28}-b_{18}^{2}$. It is not hard to see that there are no more indecomposable cocycles in $\boldsymbol{Z}_{5}\left[a_{4}, b_{16}, d_{28}\right]$ except d_{28}^{5}. Thus we have 4 indecomposable cocycles in $\boldsymbol{Z}_{5}\left[a_{4}, b_{16}, d_{28}\right]$:

$$
\begin{align*}
& x_{140}=d_{28}^{5}=\hat{\sigma}^{4}\left(d_{28} e_{40}^{4}\right), \tag{3.3}\\
& x_{4}=a_{4}=\hat{\sigma}^{3} e_{40},
\end{align*}
$$

$$
\begin{aligned}
& y_{80}=b_{16}^{5}=\partial^{4}\left(-b_{16} d_{28}^{4}\right), \\
& z_{32}=a_{4} d_{28}-b_{16}^{2}=\partial^{4}\left(-e_{40}^{2}\right) .
\end{aligned}
$$

A cocycle P_{i} in $Z_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$ of degree i with respect to $e_{40}(i=1,2,3,4)$ is of the form

$$
\begin{aligned}
& P_{1}=A e_{40}+2 B, \\
& P_{2}=A e_{40}^{2}-B e_{40}-2 C, \\
& P_{3}=A e_{40}^{3}+B e_{40}^{2}-C e_{40}-2 D, \\
& P_{4}=A e_{40}^{4}-2 B e_{40}^{3}-2 C e_{40}^{2}+2 D e_{40}-E,
\end{aligned}
$$

where $A, B, C, D, E \in \boldsymbol{Z}_{5}\left[a_{4}, b_{16}, d_{28}\right]$. Now $d P_{i}=0$ gives rise to

$$
\begin{array}{ll}
\partial A=0 & \left(\text { for } P_{1}, P_{2}, P_{3}, P_{4}\right), \tag{3.4}\\
A d_{28}=\partial B & \left(\text { for } P_{1}, P_{2}, P_{3}, P_{4}\right), \\
B d_{28}=\partial C & \left(\text { for } P_{2}, P_{3}, P_{4}\right), \\
C d_{28}=\partial D & \left(\text { for } P_{3}, P_{4}\right), \\
D d_{28}=\partial E & \left(\text { for } P_{4}\right) .
\end{array}
$$

Since $\partial A=0, A$ is a cocycle in $Z_{5}\left[a_{4}, b_{16}, d_{28}\right]$, that is, in $Z_{5}\left[x_{140}, x_{4}, y_{80}, z_{32}\right]$, for which we see if there exist B, C, D and E satisfying (3.4). If for some cocycle A there exist B, C and D but no E, then there exist cocycles P_{1}, P_{2} and P_{3} but that there exists no such P_{4} as beginning with $A e_{40}^{4}$. Similarly, if there exist B and C but no D, there exist P_{1} and P_{2}, but no P_{3} or P_{4}; and so on.

Although choice of B, C, D and E for a cocycle A is not unique, it is sufficient to take one choice, if any, since the difference between two cocycles that begin with the same term $A e_{40}^{i}$ is a cocycle of lower degree with respect to e_{40}.

If there exist cocycles $P_{i}^{\prime}=A^{\prime} e_{40}^{i}+\cdots$ and $P_{i}^{\prime \prime}=A^{\prime \prime} e_{40}^{i}+\cdots$ for A^{\prime} and $A^{\prime \prime}$ respectively, we have

$$
P_{i}^{\prime}+P_{i}^{\prime \prime}=\left(A^{\prime}+A^{\prime \prime}\right) e_{40}^{i}+\cdots
$$

and

$$
A^{\prime} P_{i}^{\prime \prime}=\left(A^{\prime} A^{\prime \prime}\right) e_{40}^{i}+\cdots .
$$

Thus cocycle P_{i} for $A=A^{\prime}+A^{\prime \prime}$ and $A^{\prime} A^{\prime \prime}$ exist but are decomposable (and so are any cocycles for such A).

For $A=x_{140}=d_{28}^{5}$ or $A=x_{4}=a_{4}$, there is no B satisfying (3.4). Thus there is no cocycle beginning with $x_{140} e_{40}^{i}$ or with $x_{4} e_{40}^{i}(i=1,2,3,4)$. And we also see that there is neither cocycle P_{i} for $A=x_{140}^{k}+A^{\prime}(k=1,2, \cdots)$ nor for $A=x_{4} x_{140}^{k}+A^{\prime \prime}$ ($k=0,1,2, \cdots$) whatever cocycles A^{\prime} and $A^{\prime \prime}$ may be.

For $A=x_{4}^{2}=\partial^{4}\left(-d_{28}^{2}\right)$ we have cocycles $P_{i}=\partial^{4}\left(-d_{28}^{2} e_{40}^{i}\right)(i=1,2,3,4)$ and for $A=y_{80}=b_{16}^{5}=\hat{o}^{4}\left(-b_{16} d_{28}^{4}\right)$ we have $P_{i}=\partial^{4}\left(-b_{16} d_{28}^{4} e_{40}^{i}\right)(i=1,2,3,4)$, all of which are indecomposable.

For $A=z_{32}=a_{4} d_{28}-b_{16}^{2}=\partial^{4}\left(-e_{40}^{2}\right)$, we have $B=b_{16} d_{28}^{2}+(\partial$-kernel $)$ and $C=2 d_{28}^{4}$

+ (other terms), but no D. Thus we have

$$
\begin{array}{ll}
P_{1}=z_{32} e_{40}+2 b_{16} d_{28}^{2}=\partial^{4}\left(-2 e_{40}^{3}\right), & \text { say } z_{72}, \\
P_{2}=z_{32} e_{40}^{2}-b_{16} d_{28}^{2} e_{40}+d_{28}^{4}=\partial^{4}\left(-e_{40}^{4}\right), & \text { say } z_{112},
\end{array}
$$

but no P_{3} or P_{4}. And we see also that there exists neither P_{3} nor P_{4} for $A=z_{32} x_{140}^{k}+A^{\prime}(k=0,1,2, \cdots)$ whatever a cocycle A^{\prime} may be.

For $A=x_{4} z_{32}=\partial^{4}\left(-2 d_{28}^{3}\right)$, we have $P_{i}=\partial^{4}\left(-2 d_{28}^{3} e_{40}^{i}\right)=x_{4} z_{32} e_{40}^{i}+\cdots(i=1,2,3,4)$. However P_{1} and P_{2} are decomposable as their beginning terms are the same as $x_{4} z_{72}$ and $x_{4} z_{112}$ respectively. The cocycles P_{3} and P_{4} are indecomposable, since there is no cocycle that begins with $x_{4} e_{40}$ or with $x_{4} e_{40}^{2}$.

For $A=z_{32}^{2}$, we have $P_{1}=z_{32} z_{72}, P_{2}=z_{72}^{2}, P_{3}=z_{72} z_{112}$ and $P_{4}=z_{112}^{2}$, which are all decomposable.

Now let A be a cocycle that has no term of the form $x_{140}^{k}, x_{4} x_{140}^{k}$ or $z_{32} x_{140}^{k}$. Then, each term of A having at least one of $x_{4}^{2}, y_{80}, x_{4} z_{32}$ or z_{32}^{2}, cocycles $P_{i}(i=1,2,3,4)$ for such A exist and are decomposable except the ones that have been found and shown to be indecomposable.

And for such a cocycle as $A=z_{32} x_{140}^{k}+A^{\prime}(k=0,1,2, \cdots)$ with A^{\prime} a cocycle that has no term of the form x_{140}^{k} or $x_{4} x_{140}^{k}$, cocycles P_{1} and P_{2} exist and are decomposable. (There exist no P_{3} or P_{4} as we have mentioned.) Thus we have found all the indecomposable cocycles of degree $1,2,3$ and 4 with respect to e_{40}.

Finally, e_{40}^{5} is the only indecomposable cocycle of degree 5 with respect to e_{40}. It is easy to see that there are no more indecomposable cocycles of degree greater than 5.

Thus the following are all the indecomposable cocycles in $V_{4}=\boldsymbol{Z}_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$:

$$
\begin{align*}
& x_{140}=d_{28}^{5}=\partial^{4}\left(d_{28} e_{40}^{4}\right), \tag{3.5}\\
& x_{200}=e_{40}^{5}, \\
& x_{4}=a_{4}, \\
& x_{48}=a_{4}^{2} e_{40}+\cdots=\partial^{4}\left(-d_{28}^{2} e_{40}\right), \\
& x_{88}=a_{4}^{2} e_{40}^{2}+\cdots=\partial^{4}\left(-d_{28}^{2} e_{40}^{2}\right), \\
& x_{128}=a_{4}^{2} e_{40}^{3}+\cdots=\partial^{4}\left(-d_{28}^{2} e_{40}^{3}\right), \\
& x_{168}=a_{4}^{2} e_{40}^{4}+\cdots=\partial^{4}\left(-d_{28}^{2} e_{40}^{4}\right), \\
& y_{80}=b_{16}^{5}=\partial^{4}\left(-b_{16} d_{28}^{4}\right), \\
& y_{120}^{4}=b_{16}^{5} e_{40}+\cdots=\partial^{4}\left(-b_{16} d_{28}^{4} e_{40}\right), \\
& y_{180}=b_{16}^{5} e_{40}^{2}+\cdots=\partial^{4}\left(-b_{16} d_{28}^{4} e_{40}^{2}\right), \\
& y_{200}=b_{16}^{5} e_{40}^{3}+\cdots=\partial^{4}\left(-b_{16} d_{28}^{4} e_{40}^{3}\right), \\
& y_{240}=b_{16}^{5} e_{40}^{4}+\cdots=\partial^{4}\left(-b_{16} d_{28}^{4} e_{40}^{4}\right), \\
& z_{32}=a_{4} d_{28}-b_{16}^{2}=\partial^{4}\left(-e_{40}^{2}\right), \\
& z_{72}=\left(a_{4} d_{28}-b_{16}^{2}\right) e_{40}+\cdots=\partial^{4}\left(-2 e_{40}^{3}\right),
\end{align*}
$$

$$
\begin{aligned}
& z_{112}=\left(a_{4} d_{28}-b_{16}^{2}\right) e_{40}^{2}+\cdots=\partial^{4}\left(-2 e_{40}^{4}\right), \\
& z_{156}=a_{4}\left(a_{4} d_{28}-b_{16}^{2}\right) e_{40}^{3}+\cdots=\partial^{4}\left(-2 d_{28}^{3} e_{40}^{3}\right), \\
& z_{196}=a_{4}\left(a_{4} d_{28}-b_{16}^{2}\right) e_{40}^{4}+\cdots=\partial^{4}\left(-2 d_{28}^{3} e_{40}^{4}\right) .
\end{aligned}
$$

Remark 3.6. (1) The generators in $V_{4}=Z_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$ are in the ∂^{4} image except x_{4} and x_{200};
(2) x_{4} is in the ∂^{3}-image but not in the ∂^{4}-image ;
(3) x_{200} is not in the ∂-image;
(4) We have $x_{4}^{2}=\partial^{4}\left(-d_{28}^{2}\right)$ and we see that a cocycle in V_{4} is in the ∂^{4}-image if and only if it has no term of the form $x_{4} x_{200}^{k}$ or x_{200}^{k};
(5) A cocycle is in the ∂^{3}-image if it has no term of the form x_{200}^{k};
(6) A cocycle is not in the ∂-image if it has a term x_{200}^{k}.

In other words, we see that a sum $A+A^{\prime}$ is in the ∂^{3}-image or ∂^{4}-image if and only if both A and A^{\prime} are in the image.

Quite similarly one can see that the following are all the indecomposable cocycles in $V_{12}=Z_{5}\left[a_{12}, b_{24}, d_{36}, e_{48}\right]$:

$$
\begin{align*}
& u_{180}=d_{36}^{5}=\hat{o}^{5}\left(d_{36} e_{48}^{4}\right), \tag{3.5}\\
& u_{240}=e_{48}^{5}, \\
& u_{12}=a_{12}, \\
& u_{72}=a_{12}^{2} e_{48}+\cdots=\partial^{4}\left(-d_{36}^{2} e_{48}\right), \\
& u_{120}=a_{12}^{2} e_{48}^{2}+\cdots=\partial^{4}\left(-d_{36}^{2} e_{48}^{2}\right), \\
& u_{168}=a_{12}^{2} e_{48}^{3}+\cdots=\partial^{4}\left(-d_{36}^{2} e_{48}^{3}\right), \\
& u_{216}=a_{12}^{2} e_{48}^{4}+\cdots=\partial^{4}\left(-d_{36}^{2} e_{48}^{4}\right), \\
& v_{120}=b_{24}^{5}=\partial^{4}\left(-b_{24} d_{36}^{4}\right), \\
& v_{168}=b_{24}^{5} e_{48}+\cdots=\partial^{4}\left(-b_{24} d_{36}^{4} e_{48}\right), \\
& v_{216}=b_{24}^{5} e_{48}^{2}+\cdots=\partial^{4}\left(-b_{24} d_{36}^{4} e_{48}^{2}\right), \\
& v_{264}=b_{24}^{5} e_{48}^{3}+\cdots=\partial^{4}\left(-b_{24} d_{36}^{4} e_{48}^{3}\right), \\
& v_{312}=b_{24}^{5} e_{48}^{4}+\cdots=\partial^{4}\left(-b_{24} d_{36}^{4} e_{48}^{4}\right), \\
& w_{48}=a_{12} d_{36}-b_{24}^{2}=\partial^{4}\left(-e_{48}^{2}\right), \\
& w_{96}=\left(a_{12} d_{36}-b_{24}^{2}\right) e_{48}+\cdots=\partial^{4}\left(-2 e_{48}^{3}\right), \\
& w_{144}=\left(a_{12} d_{36}-b_{24}^{2}\right) e_{48}^{2}+\cdots=\partial^{4}\left(-2 e_{48}^{4}\right), \\
& w_{204}=a_{12}\left(a_{12} d_{36}-b_{24}^{2}\right) e_{48}^{3}+\cdots=\partial^{4}\left(-2 d_{36}^{3} e_{48}^{3}\right), \\
& w_{252}=a_{12}\left(a_{12} d_{36}-b_{24}^{2}\right) e_{48}^{4}+\cdots=\partial^{4}\left(-2 d_{36}^{3} e_{48}^{4}\right) .
\end{align*}
$$

Remark 3.6'. (1) The generators in $V_{12}=\boldsymbol{Z}_{5}\left[a_{12}, b_{24}, d_{36}, e_{48}\right]$ are in the ∂^{4} image except u_{12} and u_{240};
(2) u_{12} is in the ∂^{3}-image but not in the ∂^{4}-image;
(3) u_{240} is not in the ∂-image;
(4) We have $u_{12}^{2}=\partial^{4}\left(-d_{36}^{2}\right)$ and we see that a cocycle in V_{12} is in the ∂^{4}-image if and only if it has no term of the form $u_{12} u_{240}^{l}$ or u_{240}^{l};
(5) A cocycle is in the ∂^{3}-image if it has no term of the form u_{240}^{l};
(6) A cocycle is not in the ∂-image if it has a term u_{240}^{l}.

In other words, we see that a sum $P+P^{\prime}$ is in the ∂^{3}-image or ∂^{4}-image if and only if both P and P^{\prime} are in the image.

§4. Cocycles of mixed type.

Throughout this section the letters A, B, C, D and E will be used for elements in $V_{4}=Z_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$ and the letters P, Q, R, S and T will be used for those in $V_{12}=\boldsymbol{Z}_{5}\left[a_{12}, b_{24}, d_{36}, e_{48}\right]$.

Now we shall find cocycles of mixed type, that is, those in $V=Z_{5}\left[a_{4}, b_{16}\right.$, $\left.d_{28}, e_{40}, a_{12}, b_{24}, d_{36}, e_{48}\right]$ with both a_{4} and a_{12}. A polynomial f in V is of the form $f=\sum_{i} A_{i} P_{i}$ where A_{i} 's are polynomials in V_{4} and P_{i} 's in V_{12}. We may suppose that the A_{i} 's and P_{i} 's are all distinct and $\operatorname{deg} A_{1}=\min _{i}\left\{\operatorname{deg} A_{i}\right\}$. The condition for f to be a cocycle is $\partial f=0$.

Now we have $\partial f=\partial A_{1} \cdot P_{1}+A_{1} \partial P_{1}+\sum_{i \geq 2}\left(\partial A_{i} \cdot P_{i}+A_{i} \partial P_{i}\right)$. Note that

$$
\begin{aligned}
& \operatorname{deg} \partial A_{1}=\operatorname{deg} A_{1}-12<\operatorname{deg} A_{i}(i \geqq 1), \\
& P_{1} \neq P_{i}(i \geqq 2) .
\end{aligned}
$$

Thus, in order that ∂f be $0, \partial A_{1}$ must be 0 , that is, A_{1} is a cocycle.
If $\partial P_{1}=0$, then $f=A_{1} P_{1}$ is a (decomposable) cocycle.
If $\partial P_{1} \neq 0$, in order that ∂f be $0,-\partial P_{1}$ must be one of P_{i} 's $(i \geqq 2)$, as $A_{1} \neq A_{i}$ $(i \geqq 2)$. Let $P_{2}=-\partial P_{1}$, then A_{1} must be ∂A_{2}. The element f is now of the form

$$
f=\partial A_{2} \cdot P_{1}-A_{2} \partial P_{1}+\sum_{i \geq 3} A_{i} P_{i} \quad \text { with } \quad \partial^{2} A_{2}=0
$$

and

$$
\partial f=-A_{2} \partial^{2} P_{1}+\sum_{i z 3}\left(\partial A_{i} \cdot P_{i}+A_{i} \partial P_{i}\right)
$$

If $\partial^{2} P_{1}=0$, then $f=\partial A_{2} \cdot P_{1}-A_{2} \partial P_{1}$ is a cocycle.
If $\partial^{2} P_{1} \neq 0$, then, in order that ∂f be $0, \partial^{2} P_{1}$ must be, say, P_{3} and A_{2} must be ∂A_{3} so that

$$
f=\partial^{2} A_{3} \cdot P_{1}-\partial A_{3} \cdot \partial P_{1}+A_{3} \partial^{2} P_{1}+\sum_{i \geq 4} A_{i} P_{i}
$$

with $\partial^{3} A_{3}=0$ and

$$
\partial f=A_{3} \partial^{3} P_{1}+\sum_{i \geq 4}\left(\partial A_{i} \cdot P_{i}+A_{i} \partial P_{i}\right) .
$$

If $\partial^{3} P_{1}=0, f=\partial^{2} A_{3} \cdot P_{1}-\partial A_{3} \cdot \partial P_{1}+A_{3} \partial^{2} P_{1}$ is a cocycle.
If $\partial^{3} P_{1} \neq 0$, then it must be, say, $-P_{4}$ and A_{3} must be ∂A_{4}, so that

$$
f=\partial^{3} A_{4} \cdot P_{1}-\partial^{2} A_{4} \cdot \partial P_{1}+\partial A_{4} \cdot \partial^{2} P_{1}-A_{4} \partial^{3} P_{1}+\sum_{i \geq 5} A_{i} P_{i}
$$

with $\partial^{4} A_{4}=0$ and

$$
\partial f=-A_{4} \partial^{4} P_{1}+\sum_{i \geq 5}\left(\partial A_{i} \cdot P_{i}+A_{i} \partial P_{i}\right) .
$$

If $\partial^{4} P_{1}=0$, then $f=\partial^{3} A_{4} \cdot P_{1}-\cdots-A_{4} \partial^{3} P_{1}$ is a cocycle.
If $\partial^{4} P_{1} \neq 0$, then it must be, say, P_{5} and A_{4} must be ∂A_{5}. This time, $\partial^{5} P_{1}$ being 0 ,

$$
f=\partial^{4} A_{5} \cdot P_{1}-\partial^{3} A_{5} \cdot \partial P_{1}+\partial^{2} A_{5} \cdot \partial^{2} P_{1}-\partial A_{5} \cdot \partial^{3} P_{1}+A_{5} \partial^{4} P_{1}
$$

is a cocycle.
Thus we have had 5 possible cases, which can be written as follows. The first one $A P$ is decomposable and is omitted.

$$
\begin{align*}
& (A, P)_{\mathrm{I}}=A Q-B P \tag{4.1}\\
& (A, P)_{\mathrm{II}}=A R-B Q+C P \\
& (A, P)_{\mathrm{III}}=A S-B R+C Q-D P \\
& (A, P)_{\mathrm{IV}}=A T-B S+C R-D Q+E P,
\end{align*}
$$

where A is a cocycle in $V_{4}=\boldsymbol{Z}_{5}\left[a_{4}, b_{16}, d_{28}, e_{40}\right]$ with $A=\partial B, B=\partial C, C=\partial D, D$ $=\partial E$ and P is a cocycle in $V_{12}=Z_{5}\left[a_{12}, b_{24}, d_{36}, e_{48}\right]$ with $P=\partial Q, Q=\partial R, R=\partial S$, $S=\partial T$.

The notation $(A, P)_{J}$ for $J=\mathrm{I}$, II, III, IV will be used to denote some cocycle of mixed type of the above form, as we shall study such cocycles for pairs of cocycles A and P.

We have

$$
\begin{align*}
& (A, P)_{J}+\left(A^{\prime}, P\right)_{J}=\left(A+A^{\prime}, P\right)_{J}, \tag{4.2}\\
& (A, P)_{J}+\left(A, P^{\prime}\right)_{J}=\left(A, P+P^{\prime}\right)_{J}, \\
& A^{\prime}(A, P)_{J}=\left(A^{\prime} A, P\right)_{J}, \\
& (A, P)_{J} P^{\prime}=\left(A, P P^{\prime}\right)_{J}, \\
& (A, P)_{J}\left(A^{\prime}, P^{\prime}\right)_{K}=\left(A A^{\prime}, P P^{\prime}\right)_{L},
\end{align*}
$$

where J and K are I, II, III or IV, and L is II if $J=K=\mathrm{I}$, is III if $J=\mathrm{I}$ and $K=\mathrm{II}$ or if $J=\mathrm{II}$ and $K=\mathrm{I}$, and is IV otherwise.

We see that there is a cocycle of the form $(A, P)_{J}$ if and only if both A and P are in the ∂^{j}-image, where $j=1,2,3,4$ according as $J=\mathrm{I}$, II, III, IV. Thus by Remarks 3.6 and 3.6^{\prime} we have
(4.3.1) There is no cocycle of the form $(A, P)_{J}$ if A has a term of the form x_{200}^{k} or if P has a term of the form u_{240}^{k};
(4.3.2) There exists a cocycle of the form $(A, P)_{J}$ for $J=\mathrm{I}$, II and III if A has no term of the form x_{200}^{k} and if P has no term of the form u_{240}^{l};
(4.3.3) There exists a cocycle of the form $(A, P)_{\text {IV }}$ only if A has no term of the
form x_{200}^{k} or $x_{4} x_{200}^{k}$ and only if P has no term of the form u_{240}^{l} or $u_{12} u_{240}^{l}$.
We see that, if $A=\partial^{4} E$ (or $P=\partial^{4} T$), cocycles in (4.1) can be written as follows:

$$
\begin{array}{ll}
(A, P)_{\mathrm{I}}=\partial^{4}(E Q) & \left(\text { resp. } \partial^{4}(-B T)\right), \tag{4.4}\\
(A, P)_{\mathrm{II}}=\partial^{4}(E R) & \left(\text { resp. } \partial^{4}(C T)\right), \\
(A, P)_{\mathrm{III}}=\partial^{4}(E S) & \left(\text { resp. } \partial^{4}(-D T)\right), \\
(A, P)_{\mathrm{IV}}=\partial^{4}(E T) & \text { if } A=\partial^{4} E \text { and } P=\partial^{4} T .
\end{array}
$$

Although the choices of B, C, D, E for a cocycle A and Q, R, S, T for P, if any, are not unique, we see
(4.5) The difference between two cocycles of the form $(A, P)_{J}$ is a cocycle with subscript less than J or a decomposable cocycle of the form $A^{\prime} P^{\prime}$.

Notation. $[A, P]_{J}$ will be used to denote a cocycle of the form $(A, P)_{J}$ chosen explicitly.

If follows from the relations (4.2) that
(4.6) If both A and P are indecomposable, then the chosen cocycle $[A, P]_{J}$ is also indecomposable.
(The converse is not true.)
In the following, \bar{A} will be an indecomposable cocycle in V_{4} other than x_{4} and x_{200}, for which \bar{E} will be the element in (3.5) such that $\partial^{4} \bar{E}=\bar{A}$. Similarly, \bar{P} will be an indecomposable cocycle in V_{12} other than u_{12} and u_{240}, for which \bar{T} will be the element in (3.5) such that $\partial^{4} \bar{T}=\bar{P}$.

Now we shall determine indecomposable cocycles of mixed type.
Remark that

$$
\begin{equation*}
\operatorname{deg}[A, P]_{J}=\operatorname{deg} A+\operatorname{deg} P+12 j, \tag{4.7}
\end{equation*}
$$

where $j=1,2,3$ or 4 according as $J=\mathrm{I}$, II, III or IV.
We choose $[A, P]_{\mathrm{I}}$ for each pair of indecomposable cocycles A other than x_{200} and P other than u_{240} as follows:

$$
\begin{align*}
& {\left[x_{4}, u_{12}\right]_{\mathrm{r}}=a_{4} b_{24}-b_{16} a_{12}=\partial^{4}\left(-2 e_{40} d_{36}-d_{28} e_{48}\right) \text {, }} \tag{4.8}\\
& {\left[x_{4}, \bar{P}\right]_{\mathrm{I}}=\partial^{4}\left(-b_{16} \bar{T}\right) \text { for each } \bar{P} \text {, }} \\
& {\left[\bar{A}, u_{12}\right]_{\mathrm{I}}=\partial^{4}\left(\bar{E} b_{24}\right) \quad \text { for each } \bar{A} \text {, }} \\
& {[\bar{A}, \bar{P}]_{\mathrm{I}}=\partial^{4}\left(\bar{E} \partial^{3} \bar{T}\right) \quad \text { for each pair of } \bar{A} \text { and } \bar{P} \text {, }}
\end{align*}
$$

all of which are in the ∂^{4}-image and are indecomposable by (4.6).
Any other $(A, P)_{\mathrm{I}}$ is decomposable by (4.2) and (4.5). We have thus $16 \cdot 16$
$=256$ indecomposable cocycles of the form $(A, P)_{\mathrm{I}}$.
Quite similarly, we obtain cocycles of the form $(A, P)_{J}(J=$ II, III $)$ for each pair of indecomposable cocycles A other than x_{200} and P other than u_{240}, which are all indecomposable:

$$
\begin{align*}
& {\left[x_{4}, u_{12}\right]_{\mathrm{n}}=a_{4} d_{36}-2 b_{16} b_{24}+d_{28} a_{12}=\partial^{4}\left(-2 e_{40} e_{48}\right),} \tag{4.9}\\
& {\left[x_{4}, \bar{P}\right]_{\Pi}=\partial^{4}\left(-2 d_{28} \bar{T}\right) \quad \text { for each } \bar{P} \text {, }} \\
& {\left[\bar{A}, u_{12}\right]_{\mathrm{I}}=\partial^{4}\left(-2 \bar{E} d_{36}\right) \quad \text { for each } \bar{A} \text {, }} \\
& {[\bar{A}, \bar{P}]_{\mathrm{K}}=\partial^{4}\left(\bar{E} \partial^{2} \bar{T}\right) \quad \text { for each pair of } \bar{A} \text { and } \bar{P} \text {; }} \\
& {\left[x_{4}, u_{12}\right]_{\text {III }}=a_{4} e_{48}+2 b_{16} d_{36}-2 d_{28} b_{24}-e_{40} a_{12} \text {, }} \tag{4.10}\\
& {\left[x_{4}, \bar{P}\right]_{\text {III }}=\partial^{4}\left(-e_{40} \bar{T}\right) \text { for each } \bar{P} \text {, }} \\
& {\left[\bar{A}, u_{12}\right]_{\text {III }}=\partial^{4}\left(\bar{E} e_{48}\right) \text { for each } \bar{A} \text {, }} \\
& {[\bar{A}, \bar{P}]_{\mathrm{III}}=\partial^{4}(\bar{E} \partial \bar{T}) \quad \text { for each pair of } \bar{A} \text { and } \bar{P} \text {, }}
\end{align*}
$$

which are all in the ∂^{4}-image except for $\left[x_{4}, u_{12}\right]_{\text {III }}$.
The cocycle $\left[x_{4}, u_{12}\right]_{\text {III }}$ is not in the ∂-image. So we call it m_{52} :

$$
m_{52}=a_{4} e_{48}+2 b_{16} d_{36}-2 d_{28} b_{24}-e_{40} a_{12} .
$$

There are 256 cocycles in (4.9) and 256 in (4.10), which are all the indecomposable cocycles of the form $(A, P)_{\text {II }}$ and $(A, P)_{\text {III }}$, respectively.

Finally, we shall determine indecomposable cocycles of the form $(A, P)_{\mathrm{Iv}}$. Recall that there is no cocycle of the form $\left(x_{4}, P\right)_{\mathrm{IV}}$ or $\left(A, u_{12}\right)_{\mathrm{Iv}}$.

We have

$$
\begin{aligned}
& {[\bar{A}, \bar{P}]_{\mathrm{IV}}=\partial^{4}(\bar{E} \bar{T}) \quad \text { for each pair of } \bar{A} \text { and } \bar{P},} \\
& {\left[x_{4}^{2}, u_{12}^{2}\right]_{\mathrm{IV}}=\partial^{4}\left(d_{28}^{2} d_{36}^{2}\right),} \\
& {\left[x_{4}^{2}, \bar{P}\right]_{\mathrm{Iv}}=\partial^{4}\left(-d_{28}^{2} \bar{T}\right) \quad \text { for each } \bar{P},} \\
& {\left[\bar{A}, u_{12}^{2}\right]_{\mathrm{IV}}=\partial^{4}\left(-\bar{E} d_{36}^{2}\right) \quad \text { for each } \bar{A},}
\end{aligned}
$$

and any other $(A, P)_{\mathrm{IV}}$ is decomposable, since each term in A has x_{4}^{2} or \bar{A} and each term in P has u_{12}^{2} or \bar{P} by (4.3.3).

The cocycles $[\bar{A}, \bar{P}]_{\mathrm{rv}}$ are indecomposable by (4.6).
The cocycle $\left[x_{4}^{2}, u_{12}^{2}\right]_{\mathrm{Iv}}$ can be shown by direct calculation to be decomposed as $-\left\{\left[x_{4}, u_{12}\right]_{\Pi}\right\}^{2}-2 z_{32} w_{48}$.

We have now to check decomposability of the cocycles $\left[x_{4}^{2}, \bar{P}\right]_{\mathrm{Iv}}$ and $\left[\bar{A}, u_{12}^{2}\right]_{\mathrm{Iv}}$.

If $\left[x_{4}^{2}, P\right]_{\mathrm{IV}}=x_{4}^{2} T+\cdots$ is ever decomposable, it is decomposed as

$$
\left(x_{4} T_{1}+\cdots\right)\left(x_{4} T_{2}+\cdots\right)+(\text { other terms })
$$

with $x_{4} T_{1}+\cdots$ and $x_{4} T_{2}+\cdots$ cocycles. Since there is no cocycle of the form $\left(x_{4}, \partial^{4} T_{i}\right)_{\mathrm{IV}}(i=1,2)$, it is necessary that $\partial^{4} T_{1}=\partial^{4} T_{2}=0$. And if $T=T_{1} T_{2}$ with
$\partial^{4} T_{1}=\partial^{4} T_{2}=0$, then $\left[x_{4}^{2}, P\right]_{1 \mathrm{~V}}=\partial^{4}\left(-d_{28}^{2} T\right)$ is rewritten as

$$
\begin{align*}
&\left(a_{4} T_{1}-\right.\left.b_{16} \partial T_{1}-2 d_{28} \partial^{2} T_{1}-e_{40} \partial^{3} T_{1}\right) \cdot\left(a_{4} T_{2}-b_{16} \partial T_{2}-2 d_{28} \partial^{2} T_{2}-e_{40} \partial^{3} T_{2}\right) \tag{4.11}\\
& \quad-\left\{2\left(a_{4} d_{28}-b_{16}^{2}\right)\left(\partial^{2} T_{1} \cdot T_{2}-\partial T_{1} \cdot \partial T_{2}+T_{1} \partial^{2} T_{2}\right)\right. \\
&-\left(a_{4} e_{40}-b_{16} d_{28}\right)\left(\partial^{3} T_{1} \cdot T_{2}+T_{1} \partial^{3} T_{2}\right) \\
&+\left(b_{16} e_{40}-d_{28}^{2}\right)\left(\partial^{3} T_{1} \cdot \partial T_{2}+\partial T_{1} \cdot \partial^{3} T_{2}\right) \\
& \quad+\left.2 d_{28} e_{40}\left(\partial^{3} T_{1} \cdot \partial^{2} T_{2}+\partial^{2} T_{1} \cdot \partial^{3} T_{2}\right)+e_{40}^{2} \partial^{3} T_{1} \cdot \partial^{3} T_{2}\right\} \\
&=\left(x_{4}, \partial^{k} T_{1}\right)_{K}\left(x_{4}, \partial^{l} T_{2}\right)_{L} \\
& \quad-2\left(z_{32}, \partial^{m}\left(\partial^{2} T_{1} \cdot T_{2}-\partial T_{1} \cdot \partial T_{2}+T_{1} \partial^{2} T_{2}\right)\right)_{M},
\end{align*}
$$

where k is such that $\partial^{k} T_{1} \neq 0$ and $\partial^{k+1} T_{1}=0, K=\mathrm{I}$, II or III according as $k=1,2$ or $3 ; l$ and L, m and M are similar except that m can be 4 and then M is IV.

Actually, we have the following decomposition of \bar{T} for \bar{P} :

\bar{P}	\bar{T}	T_{1}	T_{2}
u_{180}	$d_{36} e_{48}^{4}$	$d_{36} e_{48}^{3}$	e_{48}
u_{72}	$-d_{36}^{2} e_{48}$	$-d_{36}$	$d_{36} e_{48}$
u_{120}	$-d_{36}^{2} e_{48}^{2}$	$-d_{36} e_{48}$	$d_{36} e_{48}$
u_{168}	$-d_{36}^{2} e_{48}^{3}$	$-d_{36}$	$d_{36} e_{48}^{3}$
u_{216}	$-d_{36}^{2} e_{48}^{4}$	$-d_{36} e_{48}^{2}$	$d_{36} e_{48}^{2}$
v_{120}	$-b_{24} d_{36}^{4}$	$-d_{36}$	$b_{24} d_{36}^{3}$
v_{168}	$-b_{24} d_{38}^{4} e_{48}$	$-b_{24} d_{36}^{3}$	$d_{36} e_{48}$
v_{216}	$-b_{24} d_{36}^{4} e_{48}^{2}$	$-b_{24} d_{36}^{3}$	$d_{36} e_{48}^{2}$
ν_{264}	$-b_{24} d_{36}^{4} e_{48}^{3}$	$-b_{24} d_{36}^{3}$	$d_{36} e_{48}^{3}$
v_{312}	$-b_{24} d_{38}^{4} e_{48}^{4}$	$-b_{24} d_{36}^{3} e_{48}$	$d_{36} e_{48}^{3}$
w_{48}	$-e_{48}^{2}$	$-e_{48}$	e_{48}
w_{96}	$-2 e_{48}^{3}$	1	/
w_{144}	$-2 e_{48}^{4}$	1	1
w_{204}	$-2 d_{36}^{3} e_{48}^{3}$	1	1
w_{252}	$-2 d_{36}^{3} e_{48}^{4}$	1	1

There is no decomposition such as $\bar{T}=T_{1} T_{2}$ for $\bar{P}=w_{96}, w_{144}, w_{204}$ or w_{252}, for which $\left[x_{4}^{2}, \bar{P}\right]_{\mathrm{Iv}}$ is indecomposable.

For $\bar{P}=w_{48}, T_{1}=-e_{48}$ and $T_{2}=e_{48}$ is the only decomposition of $\bar{T}=-e_{48}^{2}$ except for $T_{1}=e_{48}$ and $T_{2}=-e_{48}$, and the decomposition (4.11) for $\left[x_{4}^{2}, w_{48}\right]_{\mathrm{lv}}$ turns out to be

$$
\begin{equation*}
\left[x_{4}^{2}, w_{48}\right]_{\mathrm{IV}}=-\left\{\left[x_{4}, u_{12}\right]_{\mathrm{IIV}}\right\}^{2}-\left(z_{32}, u_{12}^{2}\right)_{\mathrm{IV}} . \tag{4.13}
\end{equation*}
$$

We shall choose the cocycle $\left[x_{4}^{2}, w_{48}\right]_{\mathrm{IV}}=\partial^{4}\left(d_{28}^{2} e_{48}^{2}\right)$ to be indecomposable. Then the cocycle $\left(z_{32}, u_{12}^{2}\right)_{\mathrm{IV}}$ in (4.13) becomes decomposable and so does the cocycle $\left[z_{32}, u_{12}^{2}\right]_{\mathrm{IV}}=\partial^{4}\left(e_{40}^{2} d_{36}^{2}\right)$.

For \bar{P} other than $w_{i}\left(i=48,96,144,204\right.$ and 252) the cocycle $\left[x_{4}^{2}, \bar{P}\right]_{\mathrm{Iv}}$ is decomposable, since the cocycle of the form $\left(z_{32}, P\right)_{M}$ in (4.11) is with $P \neq u_{12}^{2}$
and thus is a cocycle that has been already studied.
Decomposability of the cocycles $\left[\bar{A}, u_{12}^{2}\right]_{\mathrm{IV}}=\partial^{4}\left(-\bar{E} d_{36}^{2}\right)$ is checked similarly : In order that they are decomposable, it is necessary and, this time, sufficient that \bar{E} be decomposed in a product $E_{1} E_{2}$ with $\partial^{4} E_{1}=\partial^{4} E_{2}=0$. We have a list similar to (4.12) and we have four indecomposable cocycles, namely, for $\bar{A}=z_{72}, z_{112}, z_{156}$ and z_{196}.

Thus we have shown that the following are all the indecomposable cocycles of the form $(A, P)_{\mathrm{IV}}$:

$$
\begin{array}{ll}
{[\bar{A}, \bar{P}]_{\mathrm{IV}}=\partial^{4}(\bar{E} \bar{T})} & \text { for each pair of } \bar{A} \text { and } \bar{P}, \tag{4.14}\\
{\left[x_{4}^{2}, \bar{P}\right]_{\mathrm{IV}}=\partial^{4}\left(-d_{28}^{2} \bar{T}\right)} & \text { for } \bar{P}=w_{48}, w_{96}, w_{144}, w_{204}, w_{252}, \\
{\left[\bar{A}, u_{12}^{2}\right]_{\mathrm{IV}}=\partial^{4}\left(-\bar{E} d_{36}^{2}\right)} & \text { for } \bar{A}=z_{72}, z_{122}, z_{156}, z_{196} .
\end{array}
$$

We have $15 \cdot 15+9=234$ cocycles here, all of which are in the ∂^{4}-image.
Proposition 4.15. We have 1002 indecomposable cocycles of mixed type, namely, 256 in each of (4.8), (4.9) and (4.10) and 234 in (4.14), all of which are in the ∂^{4}-image except $m_{52}=\left[x_{4}, u_{12}\right]_{\text {III }}$ in (4.10).

We have little interest in listing them up, but we can easily write them down in a polynomial form, if necessary, by mere calculations of ∂-image. (Recall that \bar{A} is a cocycle in V_{4} other than x_{4} and x_{200}, \bar{E} is the element in (3.5) such that $\partial^{4} \bar{E}=\bar{A}, \bar{P}$ is a cocycle in V_{12} other than u_{12} and u_{240} and \bar{T} is the element in (3.5)' such that $\partial^{4} \bar{T}=\bar{E}$. Recall also that $\operatorname{deg}[A, P]_{J}=\operatorname{deg} A+\operatorname{deg} P+12 j$ with $j=1,2,3,4$ according as $J=\mathrm{I}$, II, III, IV.)

Thus we have
Proposition 4.16. In V we have 1036 indecomposable cocycles, namely, 34 ones listed in (3.5) and (3.5)' and 1002 ones of mixed type in Proposition 4.15.

Remark 4.17. (1) The indecomposable cocycles in V are in the ∂^{4}-image except $x_{4}, x_{200}, u_{12}, u_{240}$ and m_{52};
(2) x_{4} and u_{12} are in the ∂^{3}-image, but not in the ∂^{4}-image;
(3) x_{200}, u_{240} and m_{52} are not in the ∂-image.

We have the following products in the ∂^{4}-image:

$$
\begin{array}{ll}
x_{4}^{2}=\partial^{4}\left(-d_{28}^{2}\right), \quad x_{12}^{2}=\partial^{4}\left(-d_{36}^{2}\right), & x_{4} u_{12}=\partial^{4}\left(-d_{28} d_{36}\right), \tag{4.18}\\
x_{4} m_{52}=\partial^{4}\left(-d_{28}^{2} e_{48}-2 e_{40}^{2} b_{24}\right), & u_{12} m_{52}=\partial^{4}\left(e_{40} d_{36}^{2}+2 b_{15} e_{48}^{2}\right), \\
m_{52}^{2}=\partial^{4}\left(-d_{28}^{2} e_{48}^{2}-2 e_{40}^{2} d_{36}^{2}+e_{40}^{2} b_{24} e_{48}\right) . &
\end{array}
$$

Therefore, monomials in cocycles are divided into three groups:
(4.19.1) A monomial in cocycles is in the ∂^{4}-image except the following;
(4.19.2) $x_{4} x_{200}^{k} u_{240}^{l}$ and $u_{12} x_{200}^{k} u_{240}^{l}$ which are in the ∂^{3}-image but not in the ∂^{4} image ;
(4.19.3) $x_{200}^{k} u_{240}^{l}$ and $m_{52} x_{200}^{k} u_{240}^{l}$ which are not in the ∂-image.

Finally we resume that
(4.20.1) A cocycle in V is in the ∂^{4}-image if and only if it has no term of the form $x_{4} x_{200}^{k} u_{240}^{l}, u_{12} x_{200}^{k} u_{240}^{l}, x_{200}^{k} u_{240}^{l}$ or $m_{52} x_{200}^{k} u_{240}^{l}$;
(4.20.2) A cocycle is in the ∂^{3}-image if and only if it has no term of the form $x_{200}^{k} u_{240}^{l}$ or $m_{52} x_{200}^{k} u_{240}^{l}$;
(4.20.3) A cocycle is not in the d-image if it has a term $x_{200}^{k} u_{240}^{l}$ or $m_{52} x_{200}^{k} u_{240}^{l}$.

In other words, we have
Remark 4.21. (1) A cocycle in the ∂-image is in the ∂^{3}-image;
(2) A cocycle is in the ∂^{3}-image or in the ∂^{4}-image if and only if each of its terms is in the image.

§ 5. Cocycles with elements of odd degree-I.

Next we shall determine cocycles with elements of odd degree, that is, with a_{13}, c_{25}, c_{37} and c_{49}.

First we study elements in the free tensor algebra $Z_{5}\left\{a_{13}, c_{25}, c_{37}, c_{49}\right\}$, where d is closed. Clearly the elements a_{13} and $y_{62}=\left[a_{13}, c_{49}\right]+2\left[c_{25}, c_{37}\right]$ are cocycles.

Let ξ be an element of the form $c_{25} \lambda+c_{37} \mu+c_{49} \nu$, where λ, μ, ν are elements in $\boldsymbol{Z}_{5}\left\{a_{13}, c_{25}, c_{37}, c_{49}\right\}$. By abuse of notation, we write, for example,

$$
\begin{aligned}
& \xi+\xi=\xi, \\
& \xi \cdot a_{13}=\xi, \\
& \xi \cdot c_{j}=\xi \quad \text { for } \quad j=25,37,49 .
\end{aligned}
$$

Then an element f_{l} in $\boldsymbol{Z}_{5}\left\{a_{13}, c_{25}, c_{37}, c_{49}\right\}$ of degree l can be written as follows:

Lemma 5.1.

$$
\begin{gathered}
f_{2 n}=d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+\alpha y_{62}^{n}, \\
f_{2 n+1}=d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n} y_{62}^{i} \xi+\alpha y_{62}^{n} a_{13},
\end{gathered}
$$

where α is a number in \boldsymbol{Z}_{5}.
Proof. We prove the lemma by induction on degree. Obviously f_{1} is of the above form. Suppose that the lemma is true up to degree $2 n-1$. Then an element $f_{2 n}$ of degree $2 n$ is expressible as a sum

$$
f_{2 n}=f_{2 n-1} a_{13}+f_{2 n-1}^{\prime} c_{25}+f_{2 n-1}^{\prime \prime} c_{37}+f_{2 n-1}^{\prime \prime \prime} c_{49},
$$

where $f_{2 n-1}, f_{2 n-1}^{\prime}, f_{2 n-1}^{\prime \prime}, f_{2 n-1}^{\prime \prime \prime}$ satisfy the lemma. So by the assumption we have

$$
\begin{aligned}
f_{2 n-1} a_{13} & =d\left(\sum_{i=0}^{n-2} y_{62}^{i} \xi a_{13}\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi a_{13}+\alpha y_{62}^{n-1} a_{13}^{2} \\
& =d\left(\sum_{i=1}^{n-2} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+d\left(\alpha y_{62}^{n-1} 2 c_{25}\right) \\
& =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi .
\end{aligned}
$$

Also we have

$$
\begin{aligned}
f_{2 n-1}^{\prime} c_{25}= & d\left(\sum_{i=0}^{n-2} y_{62}^{i} \xi\right) c_{25}+\sum_{i=0}^{n-1} y_{62}^{i} \xi c_{25}+\alpha y_{62}^{n-1} a_{13} c_{25} \\
= & d\left(\sum_{i=0}^{n-2} y_{62}^{i} \xi c_{25}\right)-\sum_{i=0}^{n-2} y_{62}^{i} \xi d c_{25}+\sum_{i=0}^{n-1} y_{62}^{i} \xi c_{25} \\
& +d\left(3 \alpha y_{62}^{n-1} c_{37}\right)-\alpha y_{62}^{n-1} c_{25} a_{13} \\
= & d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi .
\end{aligned}
$$

By a similar calculation, we have

$$
f_{2 n-1}^{\prime \prime} c_{37}=d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi,
$$

and

$$
\begin{aligned}
f_{22 n-1}^{\prime \prime \prime} c_{49}= & d\left(\sum_{i=0}^{n-2} y_{62}^{i} \xi\right) c_{49}+\sum_{i=0}^{n-1} y_{62}^{i} \xi c_{49}+\alpha y_{62}^{n-1} a_{13} c_{49} \\
= & d\left(\sum_{i=0}^{n-2} y_{62}^{i} \xi c_{49}\right)-\sum_{i=0}^{n-2} y_{62}^{i} \xi d c_{49}+\sum_{i=0}^{n-1} y_{62}^{i} \xi c_{49} \\
& +\alpha y_{62}^{n}-\alpha y_{62}^{n-1} c_{49} a_{13}+\alpha y_{62}^{n-1} 2\left[c_{25}, c_{37}\right] \\
= & d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+\alpha y_{62}^{n} .
\end{aligned}
$$

Thus, the sum $f_{2 n}$ is of the required form :

$$
d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+\alpha y_{62}^{n} \quad \text { with } \quad \alpha \in \boldsymbol{Z}_{5} .
$$

Quite similarly, an element $f_{2 n+1}$ of degree $2 n+1$ is expressible as a sum

$$
f_{2 n+1}=f_{2 n} a_{13}+f_{2 n}^{\prime} c_{25}+f_{2 n}^{\prime \prime} c_{37}+f_{2 n}^{\prime \prime \prime} c_{49},
$$

where

$$
\begin{aligned}
f_{2 n} a_{13} & =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right) a_{13}+\sum_{i=0}^{n-1} y_{62}^{i} \xi a_{13}+\alpha y_{62}^{n} a_{13} \\
& =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+\alpha y_{62}^{n} a_{13},
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
f_{2 n}^{\prime} c_{25} & =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right) c_{25}+\sum_{i=0}^{n-1} y_{62}^{i} \xi c_{25}+\alpha y_{62}^{n} c_{25} \\
& =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi c_{25}\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi d c_{25}+\sum_{i=0}^{n-1} y_{62}^{i} \xi+\alpha y_{62}^{n} c_{25} \\
& =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+\alpha y_{62}^{n} c_{25}, \\
f_{2 n}^{\prime \prime-} c_{37} & =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi c_{37}+\alpha y_{62}^{n} c_{37}, \\
f_{2 n}^{\prime \prime \prime} c_{49} & =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+\alpha y_{62}^{n} c_{49} .
\end{aligned}
\end{aligned}
$$

Therefore, as required, we have

$$
\begin{aligned}
f_{2 n+1} & =f_{2 n} a_{13}+f_{2 n}^{\prime} c_{25}+f_{2 n}^{\prime \prime} c_{37}+f_{2 n}^{\prime \prime \prime} c_{49} \\
& =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n-1} y_{62}^{i} \xi+y_{62}^{n}\left(\alpha a_{13}+\alpha^{\prime} c_{25}+\alpha^{\prime \prime} c_{37}+\alpha^{\prime \prime \prime} c_{49}\right) \\
& =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right)+\sum_{i=0}^{n} y_{62}^{i} \xi+\alpha y_{62}^{n} a_{13} \quad \text { with } \quad \alpha \in Z_{5} . \quad \text { q.e.d. }
\end{aligned}
$$

Suppose ξ is as above. Then

$$
\begin{aligned}
d \xi= & d\left(c_{25} \lambda+c_{37} \mu+c_{49} \nu\right) \\
= & 3 a_{13}^{2} \lambda+c_{25} d \lambda+2\left[a_{13}, c_{25}\right] \mu+c_{37} d \mu \\
& +\left(\left[a_{13}, c_{37}\right]-c_{25}^{2}\right) \nu+c_{49} d \nu \\
= & 3 a_{13}^{2} \lambda+2 a_{13} c_{25} \mu+a_{13} c_{37} \nu+c_{25} d \lambda-2 c_{25} a_{13} \mu \\
& +c_{37} d \mu-c_{37} a_{13} \nu-c_{25}^{2} \nu+c_{49} d \nu .
\end{aligned}
$$

We see that the first 3 terms are the only terms that begin with $a_{13}^{2}, a_{13} c_{25}$ and $a_{13} c_{37}$, respectively. Thus, $d \xi$ is 0 only if λ, μ and ν are 0 . The converse is obvious and so we have

$$
\begin{equation*}
d \xi=0 \quad \text { if and only if } \xi=0 . \tag{5.2}
\end{equation*}
$$

Note that $d \xi$ has no term ($y_{62} \times$ some other term).
Writing an element $f_{2 n}$ as in Lemma 5.1, we have

$$
d f_{2 n}=\sum_{i=0}^{n-1} y_{62}^{i} d \xi_{i},
$$

where ξ_{i} are elements of the same form as ξ. (The suffix i of ξ_{i} does not indicate its degree.) Therefore, $d f_{2 n}$ is 0 only if each $d \xi_{i}$ is 0 , that is, each ξ_{i} is 0 . Thus, the only cocycle of degree $2 n$ is αy_{62}^{n}.

Similarly, writing a polynomial $f_{2 n+1}$ as in Lemma 5.1, we have

$$
d f_{2 n+1}=\sum_{i=0}^{n} y_{62}^{i} d \xi_{i} .
$$

Therefore, $d f_{2 n+1}$ is 0 only if each $d \xi_{i}$ is 0 , that is, each ξ_{i} is 0 . Thus, $\alpha y_{62}^{n} a_{13}$ is the only cocycle of degree $2 n+1$.

Thus we have shown

Proposition 5.3. The elements a_{13} and y_{62} are all the indecomposable cocycles in $\boldsymbol{Z}_{5}\left\{a_{13}, c_{25}, c_{37}, c_{49}\right\}$.

§ 6. Cocycles with elements of odd degree-II.

Denote by F_{k} an element in \bar{W} of degree k with respect to a_{13} and c_{j} ($j=25,37,49$). The argument here is quite similar to that for f_{k}, though \bar{W} is not a free tensor algebra as $Z_{5}\left\{a_{13}, c_{25}, c_{37}, c_{49}\right\}$ is.

Lemma 6.1. F_{k} can be written as follows:

$$
\begin{gathered}
F_{2 n}=\sum_{i=0}^{n-1} y_{62}^{i}\left(c_{25} F_{2 n-2 i-1}+c_{37} F_{2 n-2 i-1}^{\prime}+c_{49} F_{2 n-2 i-1}^{\prime \prime}\right)+y_{62}^{n} P+(d-\text { image }), \\
F_{2 n+1}=\sum_{i=0}^{n-1} y_{62}^{i}\left(c_{25} F_{2 n-2 i}+c_{37} F_{2 n-2 i}^{\prime}+c_{49} F_{2 n-2 i}^{\prime \prime}\right) \\
\quad+y_{62}^{n}\left(a_{13} S+c_{25} R+c_{37} Q+c_{49} P\right)+(d \text {-image }),
\end{gathered}
$$

where $P, Q, R, S \in V$.
Proof. Using (2) of Lemma 3.1, we can put the elements of odd degree before elements in V. Thus each term of F_{k} is of the form $f_{k} P$, where f_{k} is as before and P is an element in V.

Writing $f_{2 n}$ as in Lemma 5.1, $f_{2 n} P$ can be written as

$$
\begin{aligned}
f_{2 n} P & =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi\right) P+\sum_{i=0}^{n-1} y_{62}^{i} \xi^{\prime} P+\alpha y_{62}^{n} P \\
& =d\left(\sum_{i=0}^{n-1} y_{62}^{i} \xi P\right)+\sum_{i=0}^{n-1} y_{62}^{i}\left(\xi d P+\xi^{\prime} P\right)+\alpha y_{62}^{n} P .
\end{aligned}
$$

Thus any element $F_{2 n}$ of degree $2 n$ is of the form

$$
F_{2 n}=\sum_{i=0}^{n-1} y_{62}^{i}\left(c_{25} F_{2 n-2 i-1}+c_{37} F_{2 n-2 i-1}^{\prime}+c_{49} F_{2 n-2 i-1}^{\prime \prime}\right)+y_{62}^{n} P+(d \text {-image }) .
$$

Similarly,

$$
\begin{aligned}
f_{2 n+1} P= & \sum_{i=0}^{n-1} y_{62}^{i}\left(-\xi d P+\xi^{\prime} P\right) \\
& +y_{62}^{n}\left(\alpha a_{13}+\alpha^{\prime} c_{25}+\alpha^{\prime \prime} c_{37}+\alpha^{\prime \prime \prime} c_{49}\right) P+(d \text {-image }),
\end{aligned}
$$

and any element $F_{2 n+1}$ of degree $2 n+1$ is of the form

$$
\begin{aligned}
& F_{2 n+1}=\sum_{i=0}^{n-1} y_{62}^{i}\left(c_{25} F_{2 n-2 i}+c_{37} F_{2 n-2 i}^{\prime}+c_{49} F_{2 n-2 i}^{\prime \prime}\right) \\
& \quad+y_{62}^{n}\left(a_{13} S+c_{25} R+c_{37} Q+c_{49} P\right)+(d \text {-image }),
\end{aligned}
$$

where $P, Q, R, S \in V$.
q.e.d.

By an argument similar to (5.2) we see that there is no term ($y_{62} \times$ some other term) in $d\left(c_{25} F_{k}+c_{37} F_{k}^{\prime}+c_{49} F_{k}^{\prime \prime}\right)$ and that $d\left(c_{25} F_{k}+c_{37} F_{k}^{\prime}+c_{49} F_{k}^{\prime \prime}\right)=0$ if and only if $c_{25} F_{k}+c_{37} F_{k}^{\prime}+c_{49} F_{k}^{\prime \prime}$ itself is 0 .

Lemma 6.2. (1) $d F_{2 n}=0$ if and only if $F_{2 n}$ is of the form

$$
F_{2 n}=y_{62}^{n} A \text { with } A \text { a cocycle in } V \text {; }
$$

(2) $d F_{2 n+1}=0$ if and only if $F_{2 n+1}$ is of the form

$$
F_{2 n+1}=y_{62}^{n}\left(a_{13} S-2 c_{25} \partial S+c_{37} \partial^{2} S-c_{49} \partial^{3} S\right)
$$

with $\partial^{4} S=0$.
Proof. (1) Writing $F_{2 n}$ as in Lemma 6.1, we have

$$
d F_{2 n}=\sum_{i=0}^{n-1} y_{62}^{i} d\left(c_{25} F_{2 n-2 i-1}+c_{37} F_{2 n-2 i-1}^{\prime}+c_{49} F_{2 n-2 i-1}^{\prime \prime}\right)+y_{62}^{n} d P .
$$

Since the term $y_{62}^{i} d\left(c_{25} F_{2 n-2 i-1}+\cdots\right)$ is the only term that begins with y_{62}^{i} but not with y_{62}^{i+1}, the relation $d F_{2 n}=0$ gives rise to $d\left(c_{25} F_{2 n-2 i-1}+\cdots\right)=0$ (for each i) and $d P=0$, and thus to $c_{25} F_{2 n-2 i-1}+\cdots=0$ (for each i) and $d P=0$. Therefore $d F_{2 n}=0$ only if $F_{2 n}$ is of the form $y_{62}^{n} A$ with A a cocycle. (2) Writing $F_{2 n+1}$ also as in Lemma 6.1, we have

$$
\begin{aligned}
d F_{2 n+1}= & \sum_{i=0}^{n-1} y_{62}^{i} d\left(c_{25} F_{2 n-2 i}+c_{37} F_{2 n-2 i}^{\prime}+c_{49} F_{2 n-2 i}^{\prime \prime}\right) \\
& +y_{62}^{n} d\left(a_{13} S+c_{25} R+c_{37} Q+c_{49} P\right),
\end{aligned}
$$

and $d F_{2 n+1}=0$ if and only if $c_{25} F_{2 n-2 i}+\cdots=0$ (for each i) and $d\left(a_{13} S+c_{25} R+c_{37} Q\right.$ $\left.+c_{49} P\right)=0$.

Now we have

$$
\begin{aligned}
d\left(a_{13} S\right. & \left.+c_{25} R+c_{37} Q+c_{49} P\right) \\
= & y_{62}\left(-\partial^{4} S\right)-2 a_{13}^{2}(R+2 \partial S)+2\left[a_{13}, c_{25}\right]\left(Q-\partial^{2} S\right) \\
& +\left[a_{13}, c_{25}\right]\left(P+\partial^{3} S\right)+c_{25} a_{13}\left(\partial R+2 \partial^{2} S\right)
\end{aligned}
$$

$$
\begin{aligned}
& -c_{25}^{2}\left(P+2 \partial^{2} R\right)+c_{25} c_{37}\left(\partial^{3} R+2 \partial^{4} S\right)-c_{25} c_{49} \partial^{4} R \\
& +c_{37} a_{13}\left(\partial Q-\partial^{3} S\right)+c_{37} c_{25}\left(-2 \partial^{2} Q+2 \partial^{4} S\right) \\
& +c_{37}^{2} \partial^{3} Q-c_{37} c_{49} \partial^{4} Q+c_{49} a_{13}\left(\partial P+\partial^{4} S\right) \\
& -2 c_{49} c_{25} \partial^{2} P+c_{49} c_{37} \partial^{3} P-c_{49}^{2} \partial^{4} P .
\end{aligned}
$$

Thus $d\left(a_{13} S+c_{25} R+c_{37} Q+c_{49} P\right)=0$ if and only if

$$
\partial^{4} S=0, \quad P=-\partial^{3} S, \quad Q=\partial^{2} S, \quad R=-2 \partial S .
$$

Therefore, $d F_{2 n+1}=0$ if and only if $F_{2 n+1}$ is of the form

$$
F_{2 n+1}=y_{62}^{n}\left(a_{13} S-2 c_{25} \partial S+c_{37} \partial^{2} S-c_{49} \partial^{3} S\right)
$$

with $\partial^{4} S=0$.
q. e. d.

We have now only to find cocycles of the form

$$
F_{1}=a_{13} S-2 c_{25} \partial S+c_{37} \partial^{2} S-c_{49} \partial^{3} S \quad \text { with } \quad \partial^{4} S=0
$$

We divide into the following four cases:
(i) If $\partial S=0$, then $F_{1}=a_{13} S$ with S a cocycle.
(ii) If $\partial^{2} S=0$, then $F_{1}=a_{13} S-2 c_{25} \partial S$ with ∂S a cocycle. If $\partial S^{\prime}=\partial S$, then the difference of two cocycles $F_{1}^{\prime}=a_{13} S^{\prime}-2 c_{25} \partial S$ and $F_{1}=a_{13} S-2 c_{25} \partial S$ is a cocycle $a_{13}\left(S^{\prime}-S\right)$, a cocycle in (i). Thus we may choose one S for a cocycle of the form ∂S.

Now, by Remark 4.21, a cocycle of the form ∂S is in the ∂^{3}-image, say $\partial^{3} T$. Choosing S to be $\partial^{2} T$, we have

$$
F_{1}=a_{13} \partial^{2} T-2 c_{25} \partial^{3} T=d(-\partial T) .
$$

(iii) If $\partial^{3} S=0$, then $F_{1}=a_{13} S-2 c_{25} \partial S+c_{37} \partial^{2} S$ with $\partial^{2} S$ a cocycle. Again, it is sufficient to choose one S for a cocycle of the form $\partial^{2} S$. Again by Remark 4.21, a cocycle in the ∂^{2}-image is of the form $\partial^{3} T$. Thus choosing $S=\partial T$, we have

$$
F_{1}=a_{13} \partial T-2 c_{25} \partial^{2} T+c_{37} \partial^{2} T=d(-T) .
$$

(iv) Finally, as $\partial^{4} S=0, \partial^{3} S$ is a cocycle. If $\partial^{3} S$ is $\partial^{4} U$ for some U, then choosing $S=\partial U$, we have $F_{1}=d(-U)$.

A cocycle of the form $\partial^{3} S$ but not in the ∂^{4}-image is, by (4.19.2), expressible as

$$
\sum \alpha(k, l) x_{4} x_{200}^{k} u_{240}^{l}+\sum \beta(k, l) u_{12} x_{200}^{k} u_{240}^{l}+\partial^{4} U,
$$

where $\alpha(k, l)$ and $\beta(k, l)$ are numbers in \boldsymbol{Z}_{5}.
In particular, for $x_{4}=\partial^{3} e_{40}$ and $u_{12}=\partial^{3} e_{48}$, we have

$$
y_{53}=a_{13} e_{40}+c_{25} d_{28}+c_{37} b_{16}+c_{49} a_{4}
$$

and

$$
y_{61}=a_{13} e_{48}+c_{25} d_{36}+c_{37} b_{24}+c_{49} a_{12} .
$$

For $\partial^{3} S=\Sigma \alpha(k, l) x_{4} x_{200}^{k} u_{240}^{l}+\sum \beta(k, l) u_{12} x_{200}^{k} u_{240}^{l}+\partial^{4} U$, we have a decomposable
cocycle

$$
F_{1}=\Sigma \alpha(k, l) y_{53} x_{200}^{k} u_{240}^{l}+\Sigma \beta(k, l) y_{61} x_{200}^{k} u_{240}^{l}+d(-U) .
$$

Thus we have
Proposition 6.3. The elements a_{13}, y_{62}, y_{53} and y_{61} are all the indecomposable cocycles with elements of odd degree.

For later use, we shall state a more concrete form of Lemma 6.2.
Lemma 6.4. (1) A cocycle of degree $2 n$ with respect to elements of odd degree is as in Lemma 6.2:

$$
y_{62}^{n} A \text { with } A \text { a cocycle in } V \text {; }
$$

(2) A cocycle of degree $2 n+1$ is

$$
y_{62}^{n} a_{13} A+\sum_{k, l} \alpha(k, l) y_{62}^{n} y_{53} x_{200}^{k} u_{240}^{l}+\sum_{k, l} \beta(k, l) y_{62}^{n} y_{61} x_{200}^{k} u_{240}^{l}
$$

with A a cocycle in V and $\alpha(k, l), \beta(k, l) \in \boldsymbol{Z}_{5}$.
Thus we have found all the indecomposable cocycles:
Theorem 6.5. All the indecomposable cocycles in \bar{W} are the 34 listed in (3.5) and (3.5)', the 1002 of mixed type and a_{13}, y_{62}, y_{53} and y_{61}.

§7. Commutativity of generators.

Now that we have found all the indecomposable cocycles, we shall check for commutativity and find relations among them.

Theorem 7.1. $H(\bar{W}: d)$ is commutative.
Proof. Since the cocycles in V satisfy $\partial P=0$, they commute with a_{13}, c_{25}, c_{37} and c_{49}, and hence with a_{13}, y_{62}, y_{53} and y_{61}.

We have

$$
\begin{aligned}
& {\left[a_{13}, y_{62}\right]=d\left(2\left[c_{25}, c_{49}\right]+c_{37}^{2}\right),} \\
& {\left[a_{13}, y_{63}\right]=d\left(-c_{25} e_{40}+c_{37} d_{28}-c_{49} b_{16}\right),} \\
& {\left[a_{13}, y_{61}\right]=d\left(-c_{25} e_{48}+c_{37} d_{36}-c_{49} b_{24}\right),} \\
& {\left[y_{53}, y_{61}\right]=d\left(c_{25} e_{40} e_{48}+c_{37}\left(d_{28} e_{48}-e_{40} d_{36}\right)\right.} \\
& \left.\quad-c_{49}\left(b_{16} e_{48}+d_{28} d_{36}-e_{40} b_{24}\right)\right), \\
& {\left[y_{53}, y_{62}\right]=d\left(2\left[c_{25}, c_{49}\right] e_{40}+c_{37}^{2} e_{40}-2\left[c_{37}, c_{49}\right] d_{28}+c_{49}^{2} b_{16}\right),} \\
& {\left[y_{61}, y_{62}\right]=d\left(2\left[c_{25}, c_{49}\right] e_{48}+c_{37}^{2} e_{48}-2\left[c_{37}, c_{49}\right] d_{36}+c_{49}^{2} b_{24}\right) .}
\end{aligned}
$$

Thus commutativity holds in $H(\bar{W}: d)$.
q.e.d.

Lemma 7.2. The following elements are non-trivial and they are linearly independent:

$$
\begin{array}{lll}
y_{62}^{i} x_{200}^{j} u_{240}^{k}, & y_{62}^{i} m_{52} x_{200}^{j} u_{240}^{k}, & y_{62}^{i} x_{4} x_{200}^{j} u_{240}^{k}, \\
y_{62}^{i} u_{12} x_{200}^{j} u_{240}^{k}, & y_{62}^{i} a_{13} x_{200}^{j} u_{240}^{k}, & y_{62}^{i} a_{13} m_{52} x_{200}^{j} u_{240}^{k}, \\
y_{62}^{i} y_{53} x_{200}^{j} u_{240}^{k}, & y_{62}^{i} y_{61} x_{200}^{j} u_{240}^{k}, &
\end{array}
$$

where i, j, k are non-negative integers.
Proof. Note first that the differential operator d augments the degree by 1 with respect to elements of odd degree. Thus $\Sigma F_{k} \in d$-image for different degrees k occurs only when each F_{k} is in the d-image.

Now, a cocycle $F_{2 n+1}$ of degree $2 n+1$ is, by Lemma 6.4, of the form:

$$
\begin{aligned}
& F_{2 n+1}= y_{62}^{n}\left(a_{13} A+\Sigma \alpha(i, j) y_{53} x_{200}^{i} u_{240}^{j}+\Sigma \beta(i, j) y_{61} x_{200}^{i} u_{240}^{j}\right) \\
&=y_{62}^{n}\left\{a_{13}\left(A+\Sigma \alpha(i, j) e_{40} x_{200}^{i} u_{240}^{j}+\sum \beta(i, j) e_{48} x_{200}^{i} u_{240}^{j}\right)\right. \\
&+c_{25}\left(\Sigma \alpha(i, j) d_{28} x_{200}^{i} u_{240}^{j}+\sum \beta(i, j) d_{36} x_{200}^{i} u_{240}^{j}\right) \\
&+c_{37}\left(\Sigma \alpha(i, j) b_{16} x_{200}^{i} u_{240}^{j}+\Sigma \beta(i, j) b_{24} x_{200}^{i} u_{240}^{j}\right) \\
&\left.+c_{49}\left(\Sigma \alpha(i, j) a_{4} x_{200}^{i} u_{240}^{j}+\Sigma \beta(i, j) a_{12} x_{200}^{i} u_{240}^{j}\right)\right\},
\end{aligned}
$$

where A is a cocycle in V and

$$
\sum \alpha(i, j) a_{4} x_{200}^{i} u_{240}^{j}+\sum \beta(i, j) a_{12} x_{200}^{i} u_{240}^{j}
$$

is not in the ∂^{4}-image by (4.20.1).
On the other hand any element $F_{2 n}$ of degree $2 n$ can be written as in Lemma 6.1 and its d-image is calculated as

$$
\begin{aligned}
d F_{2 n}= & \sum_{i=0}^{n-1} y_{62}^{i} d\left(c_{25} F_{2 n-2 i-1}+c_{37} F_{2 n-2 i-1}^{\prime}+c_{49} F_{2 n-2 i-1}^{\prime \prime}\right) \\
& +y_{62}^{n}\left(-a_{13} \partial P+2 c_{25} \partial^{2} P-c_{37} \partial^{3} P+c_{49} \partial^{4} P\right) .
\end{aligned}
$$

Comparing our cocycle $F_{2 n+1}$ with $d F_{2 n}$, we see that $F_{2 n+1}$ is not in the d-image so long as it has a term $y_{62}^{n} y_{53} x_{200}^{i} u_{240}^{j}$ or $y_{62}^{n} y_{61} x_{200}^{i} u_{240}^{j}$. That is to say, $y_{62}^{n} y_{53} x_{200}^{i} u_{240}^{j}$ and $y_{62}^{n} y_{61} x_{200}^{i} u_{240}^{j}$ are non-trivial, and they and $y_{62}^{n} a_{13} A$ (if it is not trivial) are linearly independent.

Comparing $y_{62}^{n} a_{13} A$ again with $d F_{2 n}$, we see that $y_{62}^{n} a_{13} A$ is in the d-image only when $A=-\partial P$ and $y_{62}^{n} a_{13} \partial(-P)=d\left(y_{62}^{n} P\right)$. Referring to (4.20.3) we see that $y_{62}^{n} a_{13} x_{200}^{i} u_{240}^{j}, y_{62}^{n} a_{13} m_{52} x_{200}^{i} u_{240}^{j}$ and their sum remain non-trivial.

Similarly, a cocycle of degree $2 n+2$ is, by Lemma 6.4, of the form $y_{62}^{n+1} A$ with A a cocycle in V. And any element $F_{2 n+1}$ of degree $2 n+1$ can be written
as in Lemma 6.1:

$$
\begin{aligned}
F_{2 n+1}= & \sum_{i=0}^{n-1} y_{62}^{i}\left(c_{25} F_{2 n-2 i}+c_{37} F_{2 n-2 i}^{\prime}+c_{49} F_{2 n-2 i}^{\prime \prime}\right) \\
& +y_{62}^{n}\left(a_{13} S+c_{25} R+c_{37} Q+c_{49} P\right)+(d \text {-image })
\end{aligned}
$$

whence we have

$$
\begin{aligned}
d F_{2 n+1}= & \sum_{i=0}^{n-1} y_{62}^{i} d\left(c_{25} F_{2 n-2 i}+c_{37} F_{2 n-2 i}^{\prime}+c_{49} F_{2 n-2 i}^{\prime \prime}\right) \\
& +y_{62}^{n} \times(\text { some terms })+y_{62}^{n+1}\left(-\partial^{4} S\right)
\end{aligned}
$$

where we observe that there is no term $y_{62}^{n+1} \times$ (some other term) except the last one.

Comparing $y_{62}^{n+1} A$ with $d F_{2 n+1}$, we see that $y_{62}^{n+1} A$ is in the d-image only when $A=\partial^{4} T$ for some T. And

$$
y_{62}^{n+1} \partial^{4} T=d\left(y_{62}^{n}\left(-a_{13} T+2 c_{25} \partial T-c_{37} \partial^{2} T+c_{49} \partial^{3} T\right)\right)
$$

By (4.20.1), we see that

$$
\begin{array}{ll}
y_{62}^{n+1} x_{200}^{i} u_{240}^{j}, & y_{62}^{n+1} m_{52} x_{200}^{i} u_{240}^{j}, \\
y_{62}^{n+1} x_{4} x_{200}^{i} u_{240}^{j}, & y_{62}^{n+1} u_{12} x_{200}^{i} u_{240}^{j}
\end{array}
$$

and their sum remain non-trivial.
q. e. d.

Lemma 7.3. A cocycle with elements of odd degree is either trivial or a linear combination of the cocycles in Lemma 7.2.

Proof. We have

$$
\begin{aligned}
& a_{13}^{2}=d\left(2 c_{25}\right), \\
& y_{53}^{2}=d\left(2 c_{25} e_{40}^{2}+c_{37} d_{28} e_{40}-c_{49}\left(b_{16} e_{40}-2 d_{28}^{2}\right)\right), \\
& y_{61}^{2}=d\left(2 c_{25} e_{48}^{2}+c_{37} d_{36} e_{48}-c_{49}\left(b_{24} e_{48}-2 d_{36}^{2}\right)\right), \\
& a_{13} y_{53}=d\left(2 c_{25} e_{40}+2 c_{37} d_{28}+c_{49} b_{16}\right)-y_{62} x_{4}, \\
& a_{13} y_{61}=d\left(2 c_{25} e_{48}+2 c_{37} d_{36}+c_{49} b_{24}\right)-y_{62} u_{12}, \\
& y_{53} y_{61}=d\left(-2 c_{25} e_{40} e_{48}-c_{37}\left(d_{28} e_{48}-2 e_{40} d_{36}\right)\right. \\
& \left.\quad-c_{49}\left(2 b_{16} e_{48}-2 d_{28} d_{36}-e_{40} b_{24}\right)\right)+y_{62} m_{52}
\end{aligned}
$$

Thus any monomial in cocycles is equivalent to a monomial in cocycles each term of which has at most one of a_{13}, y_{53} or y_{61}.

We have shown

$$
y_{62} \partial^{4} T=d\left(-a_{13} T+2 c_{25} \partial T-c_{37} \partial^{2} T+c_{49} \partial^{3} T\right)
$$

and $a_{13} \partial T=d(-T)$. In particular

$$
a_{13} \partial^{4} T=d\left(-\partial^{3} T\right), \quad a_{13} x_{4}=d\left(-b_{16}\right), \quad a_{13} u_{12}=d\left(-b_{24}\right)
$$

Finally we have the following d-images:

$$
\begin{aligned}
& y_{53} \partial^{4} T=d\left(-a_{4} T-\partial\left(b_{16} T\right)+2 \partial^{2}\left(d_{28} T\right)-\partial^{3}\left(e_{40} T\right)\right), \\
& y_{61} \partial^{4} T=d\left(-a_{12} T-\partial\left(b_{24} T\right)+2 \partial^{2}\left(d_{36} T\right)-\partial^{3}\left(e_{48} T\right)\right), \\
& y_{53} x_{4}=d\left(2 d_{28}^{2}-b_{16} e_{40}\right), \\
& y_{61} x_{4}+a_{13} m_{52}=d\left(-2 b_{16} e_{48}+2 d_{28} d_{36}+e_{40} b_{24}\right), \\
& y_{53} u_{12}-a_{13} m_{52}=d\left(b_{16} e_{48}+2 d_{28} d_{36}-2 e_{40} b_{24}\right), \\
& y_{61} u_{12}=d\left(2 d_{36}^{2}-b_{24} e_{48}\right), \\
& y_{53} m_{52}=d\left(\left(2 d_{28}^{2}-b_{16} e_{40}\right) e_{48}-2 d_{28} e_{40} d_{36}+e_{40}^{2} b_{24}\right), \\
& y_{61} m_{52}=d\left(-b_{16} e_{48}^{2}+2 d_{28} d_{36} e_{48}+e_{40}\left(-2 d_{36}^{2}+b_{24} e_{48}\right)\right),
\end{aligned}
$$

Using these relations we see that any monomial in cocycles is either trivial or equivalent to one of cocycles in Lemma 7.2.
q.e.d.

Theorem 7.4. $\operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right)$ with $A=H^{*}\left(X ; \boldsymbol{Z}_{5}\right)$ is generated as a commutative algebra by the elements in Proposition 4.16 and a_{13}, y_{62}, y_{53} and y_{61}, where

$$
\begin{aligned}
& y_{62}=\left[a_{13}, c_{49}\right]+2\left[c_{25}, c_{37}\right], \\
& y_{53}=a_{13} e_{40}+c_{25} d_{28}+c_{37} b_{16}+c_{49} a_{4}
\end{aligned}
$$

and

$$
y_{61}=a_{13} e_{48}+c_{25} d_{36}+c_{37} b_{24}+c_{49} a_{12} .
$$

The elements satisfy the relations

$$
\begin{aligned}
& a_{13}^{2}=0, \quad a_{13} y_{53}=-y_{62} x_{4}, \quad a_{13} y_{61}=-y_{62} u_{12}, \\
& y_{53}^{2}=0, \quad y_{61}^{2}=0, \quad y_{53} y_{61}=y_{62} m_{52}, \\
& a_{13} \partial^{4} T=0, \quad y_{53} \partial^{4} T=0, \quad y_{61}{ }^{4} T=0, \quad y_{62} \partial^{4} T=0, \\
& a_{13} x_{4}=0, \quad a_{13} u_{12}=0, \\
& y_{53} x_{4}=0, \quad y_{61} x_{4}=-a_{13} m_{52}, \\
& y_{53} u_{12}=a_{13} m_{52}, \quad y_{61} u_{12}=0, \\
& y_{53} m_{52}=0, \quad y_{61} m_{52}=0 .
\end{aligned}
$$

§ 8. Collapsing of the Eilenberg-Moore spectral sequence.

Consider the Eilenberg-Moore spectral sequence $\bmod 5\left\{E_{r}, d_{r}\right\}$ associated with $X \in\left\{E_{8}: 5\right\}$:

$$
\begin{aligned}
& E_{2} \cong \operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right) \quad \text { with } \quad A=H^{*}\left(X ; \boldsymbol{Z}_{5}\right), \\
& E_{\infty} \cong \mathcal{G}_{2} H^{*}\left(B X ; \boldsymbol{Z}_{5}\right) .
\end{aligned}
$$

To begin with we recall that the differential $d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1}(r \geqq 2)$ augments the total degree by 1 and the homological degree by r.

Obviously $d_{r} x_{4}=0$ for $r \geqq 2$, since there is no element of degree 5 .
There is no element of degree 14 or 54 , since any element of even degree and of degree less than 62 is of degree $4 n$ for some n. Thus $d_{r} a_{13}=0$ and $d_{r} y_{53}=0$ for $r \geqq 2$.

The element y_{62} is the only element of degree 62 , but y_{61} and y_{62} are of the same homological degree and hence y_{62} cannot be $d_{r} y_{61}$. Thus $d_{r} y_{61}=0$ for $r \geqq 2$.

As $d_{r} y_{62}$ is of odd degree, referring to Lemmas 7.2 and 7.3 , we see that $d_{r} y_{62}=0$ for $r \geqq 2$.

Referring again to Lemmas 7.2 and 7.3, we see that there is no element of degree 201 or 241 and hence $d_{r} x_{200}$ and $d_{r} u_{240}$ are also 0 for $r \geqq 2$.

Clearly a_{13} is the only element of degree 13 , but u_{12} and a_{13} are of the same homological degree, whence a_{13} cannot be $d_{r} u_{12}$. Thus $d_{r} u_{12}=0$ for $r \geqq 2$. Similarly $d_{r} m_{52}=0$ for $r \geqq 2$, since there is no element of degree 53 except y_{53}, but y_{53} is of the same homological degree as m_{52}.

We have shown that $a_{13}, y_{53}, y_{61}, y_{62}, x_{4}, u_{12}, m_{52}, x_{200}$ and u_{240} survive to E_{∞}. Remark that any other generators are in the ∂^{4}-image and of even degree.

Suppose that they all survive to E_{r}. Then we have $E_{r} \cong E_{2}$. The only possibility for their d_{r}-image Q is, by Lemmas 3.23 and 3.24 , a sum of $y_{62}^{i} a_{13} x_{200}^{j} u_{240}^{k}, y_{62}^{i} a_{13} m_{52} x_{200}^{j} u_{240}^{k}, y_{62}^{i} y_{53} x_{200}^{j} u_{240}^{k}$ and $y_{62}^{i} y_{61} x_{200}^{j} u_{240}^{k}$.

Suppose now that we have a possibility of the relation $d_{r} P=Q$, with $P \in \partial^{4}-$ image and Q as above. Multiply both sides by y_{62}. Then the right hand side is not 0 , since $y_{62} Q$ (with Q as above) is not 0 in E_{2} by Lemma 7.2, and hence in E_{r}. On the other hand, $y_{62} d_{r} P=d_{r}\left(y_{62} P\right)=0$, since, P being in the ∂^{4}-image, $y_{62} P$ is trivial in E_{2} by Theorem 7.4. Therefore there is no such possibility as $d_{r} P=Q$. Thus, all the generators survive to E_{r+1}.

Now by induction on r we can see that all the generators survive to E_{∞}.
Theorem 8.1. The Eilenberg-Moore spectral sequence $\bmod 5$ associated with X collapses for all $X \in\left\{E_{8}: 5\right\}$.

And
Theorem 3.2. As modules, for $X \in\left\{E_{8}: 5\right\}$,

$$
H^{*}\left(B X ; \boldsymbol{Z}_{5}\right) \cong \operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right) \quad \text { with } \quad A=H^{*}\left(X ; \boldsymbol{Z}_{5}\right)
$$

In particular we have
Corollary 8.3. As modules

$$
H^{*}\left(B E_{8} ; \boldsymbol{Z}_{5}\right) \cong \operatorname{Cotor}_{A}\left(\boldsymbol{Z}_{5}, \boldsymbol{Z}_{5}\right) \quad \text { with } \quad A=H^{*}\left(E_{8} ; \boldsymbol{Z}_{5}\right) .
$$

Institute of Mathematics
Yoshida College
Kyoto University;
School of Business Administration
Senshu University

References

[1] A. Iwai-N. Shimada, A remark on resolutions for Hopf algebras, Publ. RIMS of Kyoto Univ., 1 (1966), 187-198.
[2] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259-298.
[3] A. Kono-M. Mimura-N. Shimada, Cohomology of classifying space of certain associative H-spaces, J. Math. Kyoto Univ., 15 (1975), 607-617.
[4] M. Rothenberg-N. E. Steenrod, The cohomology of classifying spaces of H-spaces, Bull. AMS, 71 (1965), 872-875.
[5] N. Shimada-A. Iwai, On the cohomology of some Hopf algebra, Nagoya Math. J.. 30 (1971), 103-111.

