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§1. Introduction.

A principal bundle with structure group G is said to be universal if its
homotopy groups are all trivial. Such spaces exist for any compact Lie group
G. The base space BG of the universal bundle EG for G is called the classi-
fying space for G. Its importance is stated in the classification theorem that
the equivalence classes of G-bundles over B are in one-to-one correspondence
with the homotopy classes of maps f: B—BG. So each G-bundle over B has a
homomorphism f*: H*(BG ; R)»H*(B; R) called the characteristic map of the
bundle (R is a coefficient ring). The image of f* is the characteristic ring of
the bundle. For example, the Stiefel-Whitney classes are the image of f*:
H*¥BO(n); Z,)—»H*(B ; Z,) of the particular elements. Thus it is quite important
to determine the ring H*(BG ; R) of the universal characteristic classes for G-
bundles.

Now let G be a compact, 1-connected, simple Lie group. Then, as is well
known, it is classified as

classical type: Spin(n), SU(n), Sp(n),
exceptional type: G,, F,, E;, E,, E,.
Let us recall the Borel theorems:

(1) If HXG; Z,) is the exterior algebra generated by elements of odd degrees
(p: a prime), then

H¥BG; Z,)=Z,[y:, -, y.], [=rank G.
(2) If HXG; Z,) has a simple system of universally transgressive generators, then
HXBG; Z)=Z,[y1, **, ¥a].

The assumption of (1) is satisfied when H*(G ; Z) has no p-torsion, e.g.,
G=SU(n), Sp(n) for any p;
G=G,, Spin(n) for p>2;
G=F,, E,, E,, for p>3;
G=E; for p>5.
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The assumption of (2) is satisfied even when Hy(G ; Z) has 2-torsion, e. g.,
G=G,, F,, Spin(n) (7£n=9).

The cases not covered by Borel's results are

G=Spin(n), E,, E,, Es for p=2;
G=F,, E,, E,, E; for p=3;
G=E; for p=5.

Of these cases the following were already determined:
H*(B Spin(n) ; Z,) by Quillen;
H*(BF,; Z;) by Toda;
H*BE;; Z,), H¥(BE; Z;) by Kono-Mimura ;
H*(BE,; Z,) by Kono-Mimura-Shimada .

In this paper we will study the module structure of H*(BE;; Z;).

Let E,; be the compact, 1-connected, simple exceptional Lie group of rank 8.
Denote by {E,:5} the set {X:compact, associative H-space such that H*(X; Z;)
= H*(Ey; Z;5) as Hopf algebras}. As is well known, every Xe{E;:5} has the
classifying space BX.

The purpose of this paper is to determine the module structure of H*¥(BX ; Z;)

for any X< {E;:5}. The method is the Eilenberg-Moore spectral sequence mod
5 {E,, d,} associated with X:

E,=Cotor(Z,, Z;) with A=H*(X; Z;),
E.=o H¥BX; Z;).

In Section 2 we construct an injective resolution W=AQW of Z; over A (by
making use of the twisted tensor product) so that

H(W : d)=Cotor(Z,, Z).

In §§3 and 4 we determine all the indecomposable cocycles in the polynomial
subalgebra V of .

In 885 and 6 we determine all the indecomposable cocycles with elements
of odd degree. Thus we show that Cotor,(Z;, Z;) has 1040 (indecomposable)
algebra generators (Theorem 6.5).

In Section 7 we check the commutativity of these generators and prove that
Cotor(Z;, Z;) is commutative (Theorem 7.1).

In the last section, § 8, we show

Theorem 8.1. The Eilenberg-Moore spectral sequence mod 5 associated with
X collapses for all X {Es:5}.

In particular we have
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Corollary 8.3. As modules
H*(BEg; Zs)=Cotor4(Z;, Z;) with A=H*(E,; Z5).

§2. An injective resolution of Z; over H¥*(X; Z;).

Let Xe{F;:5}. First we recall from [2] the Hopf algebra structure of
H¥X; Z;):

2.1) H*X; Zs)zzsl:xm]/(x?z)®/1(xs; X11, X15, Xoa, Xar, Xasy X3gy X41),

where deg x;=1;

(2.2) #(x)=0 for i=3, 11, 12,
B(x)=x1:Q% ;12 for j=15, 23,
B(x1)=2x120% g 10+ x 2R X -2 for k=27, 35,

gi?(xl)=3x12®x,-12+3x%2®xl_24+xi’2®x1_“ Sfor 1=39, 47,

where @ 1is the reduced diagonal map induced from the multiplication on X.
Notation. A=H*X; Z) and A=H%X;Z).

We shall construct an injective resolution of Z; over A using the same
construction as that in §3 of [3].
Let L be a graded submodule of A generated by

2 3 4
{xs, X115, X12, X3, X35, Xts, X150 X23, Xo0, Xas, X3, X}

Let 6 : A—»L be the projection and ¢: L—A the injection such that ¢.f=1,.
We name the set of corresponding elements under the suspension s as

(2.3) sL={ay4, Q1 13, Cass Ca1, Cagy D16y D2y, Aag, dss, €40, €45} -

Define §: A—sL by §=s-6 and i: sL—A by i=¢es™’. Let T(sL) be the free
tensor algebra over sL with the natural product ¢. Consider the two sided ideal
I of T(sL) generated by Im (¢=(6®F)-g)(Ker §), where ¢ is the diagonal map of
A. Put W=T(sL)/I, that is, W=2Z;{ay, bj, d, 1, cn} (1=4, 12, 13; j=16, 24;
k=28, 36; =40, 48 ; m=25, 37, 49). It is easy to see that [/ is generated by
(2.4) [a, B] for all pairs (a, B) of generators a, B of T(sL) except

(ays, b)) and (cu, b;) for j=16, 24, m=25, 37,

(@15, di) and (cm, dp) for k=28, 36, m=25, 37,

(@, e;) and (cn, €) for =40, 48, m=25, 37,

(@13, Cm) f07’ m=25, 37, 49,

(Cm, Comr) for m, m’=25, 37, 49 (m#=m’);
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Lass, b1+ a1z,
Lees, biltcntjoia,
Cest, bil+casajoi for j=16, 24;
L@, del+2¢osbp-10Cara 24,
Leos, ded42¢s:bp-10FCao@r-s4,
Lesr, del42casbi-1e for k=28, 36;
[ais, e ]43cosdi-1243Csrbi 24 Caoly -3,
[ces, e 1+3¢s:d 10+ 3C10b1- 24,
[car, e ]+3csod - 1s for =40, 48,
where [a, fl=aB—~(—1)*Ba with *=deg a-deg .

Note that W contains the polynomial algebra
V=2Zilay, a1, b, bas, das, dse, €40, €45] -
Notation. V.,=Z[a,, by, das es] and Vi,=Z;[ays, bas, dsg €45
We define a map
d=—¢*(0Q6)pt: sL—T(sL)

and extend it naturally over T(sL) as a derivation. Since d{/)CI holds, d
induces a map W—W, which is again denoted by d: W—W by abuse of notation.
It is easy to check that ded=0 and so W is a differential algebra over Z.
Using the relation

do0+¢=(6R0)° =0

we can construct the twisted tensor product W=AQW with respect to § [5].
Namely, W is an A-comodule with a differential operator

d=1Qd+(1Q¢)-1QIRD)(sQ1) .

More explicitly, the differential operators d and d are given by

(25)  d(x:QD=1Rai+: for i=3, 11,12,
d(x:@D=1Qc25+2x1:Qa15 ,
d(x3:R1)=1®c5:+3x1:0¢05+3x2:Qays
d(x, Q1) =1Rc 4+ 4% 1:Rcs:+ x2:Rc25+4x1:Qa s,
d(x ;@D =1®bjs1+ 11:Qa;-11 for j=15, 23,
d(x @D=1@d 4 112%1:@bs -1+ x 1@ 4 -2 for k=27, 35,
d(x,@1)=1Re;+1+3x1:Qd ;- 11+3x5Qb; 25+ x3:Ra,_ss  for [=39, 47;
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(2.6) da;=0 for 1=4, 12, 13,
dcy=3al,,
dcs;=2[ais, C25],
deyw=[a1s, cs1]—C3s,
dbj=—a30;-1s for j=16, 24,
ddy=—2013bp 12— Co5Q k24 for k=28, 36,
de,=—3a3d;_ 15— 3Cosbi_ss—C3:a,_3s  for [=40, 48.

Now we define weight in W=AQW as follows:
(2'7) A : x3r xlb x127 x%z: X?z, x{Zr x15’ x23r x27) x35» xss: x47

W:ay, Qs Qs Cos, Cary Cagy bigy basy dos, g, €40, €4s

weight:0 0 1 2 3 4 2 2 6 6 12 12

(The weight of a monomial is the sum of the weights of each element.)

Define a filtration
(2.8) F,={x|weight x=r}.
Put EW=X F;/F;_;. Then it is easy to see that
EW=A(xs, X11, X15, X23, Xo1, X35, X9y X17)

QRZLay, iz, bie, by, dog, dys, €40, €] QC(Q(x12)),
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where C(Q(x:,)) is the cobar construction of Z;[x;,]/(x%,). The differential

formulae (2.5) and (2.6) imply that E,W is acyclic, and hence W is acyclic.

Theorem 2.9. W is an injective resolution of Z; over A=H*(X; Z;).

By the definition of Cotor we have

Corollary 2.10. H(W: d)=Ker d/Im d=Cotor «(Z;, Z).

§3. Cocycles in V, and Vi,.

We define an operator o by
0a;=0 for i=4, 12,
0b;j=aj;-,, for j=16, 24,
0dy=2by-, for k=28, 36,
0e,=3d;_1» for [=40, 48,

and extend it over V=Z,[ a4, Q13 bis, Das, d2s, dss, €40, €45] SO that it satisfies

O(P+Q)=0P+0Q and d(PQ)=0P-Q+PoQ
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for any polynomials P and Q of V.
Then we have

Lemma 3.1. For any polynomial P in V we have
(1) 0°P=0;
(2) [ais, Pl=—css0P—3c4;0*°P—440°P,

Ccas, P1=—c3,0P—3c4,0%P,

Cear, Pl=—cw0P;
(3) dP=—a,30P+2¢;;0*°P—3,0° P+cy,0*P.

Proof. (By induction.)

(1) Suppose that 0°P=0 holds for any polynomial P of degree up to /.
Then for a monomial xP of degree [+1, we have

*(xP)=0°x - P+ x0°P=0.

Thus 0°P=0 holds for any polynomial of degree /+1.
(2) Suppose that (2) holds for any polynomial P of degree up to /. Then for a
monomial xP of degree [+1, we have

Lays, xP1=[a.s, xJP+x[a.s, PJ
=(— C250X —3C30%x — €490° x) P+ x(— €350 P— 3¢ 3,0° P— ¢ 130° P)
=(— 250X —3C370°x — €450°x) P—(C95x + €470x 43¢ 450°x)O P
—3(C37x+ €450x)0*P—c 1gx0° P
=—y5(0x + P+ x0P)—3¢47(0%x - P+20x - 0P+ x02P)
—C49(0°x - P430%x - 0P+30x -0 P+ x0°P)
= — (350(x P)—3¢4,0%(x P)—¢440*(x P) .

Thus the first relation holds for any polynomial of degree [+1. The other two
relations are proved similarly.

(3) Suppose that the differential formula holds for any polynomial P of
degree up to /. Then for a monomial xP of degree /41, we have

d(xP)=dx-P+xdP
=(—a,30x+2¢550°x —3,0°x + C490*x) P
+ x(— @130 P+2¢2502 P— ¢3,0° P+ c450* P)
=(—a,50x+2C5502x —€3,0°x +€450* x) P
—(@13x+ 250X +3¢50%x 4 440°x )P
+2(co5x + C3,0x +3¢440%x)0% P
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—(Cgrx+€490%)0° P+cygx0*P
=—a,(0x+P+x0P)
+2¢45(0%x - P420x - 0P+ x0%P)
—C41(0x « P+-30%x - 0P+-30x - 0* P+ x0° P)
~+¢49(0%x - P—03*x - 0P4-0%x - 0*P—0x - 0° P+ x0*P)
=—a,30(x P)+2¢450*(x P)— ¢3,0°(x P)+¢440*(x P) .

Thus the differential formula holds for any polynomial of degree [+1. q.e.d.

Lemma 3.2. Let P be non-trivial in V. Then P is a non-trivial cocycle if
and only if 0P=0.

Proof. 1f P is a cocycle, dP=0. Then by the differential formula, we have
0P=0.

Conversely, if 0P=0, then 0?P, 0°P and 0'P are also 0 and we have dP=0.
Since P does not contain a,;, it is not in the d-image and hence P is a non-
trivial cocycle. q.e.d.

We shall find cocycles without elements of odd degree, namely those in V,
in the following manner. First, we shall find cocycles in V,=Z[a., b, dss, €40].
Cocycles in Vi,=Z;[a,s, bss, dse, ess] Will be obtained quite similarly and of the
same form, since by the differential formula (2.6) we see that both V, and V.
are closed under the operator @ and that they are of the same 0-structure. Then
in Section 4 we shall find cocycles of “mixed type”, the ones with both a, and
a,,. There are 1002 cocycles of mixed type, of which 1001 are in the o‘-image.
We have little interest in enumerating them, as we can easily write them down
in polynomial form by mere calculations of d-image if necessary.

We shall find cocycles with elements of odd degree in Sections 5 and 6.
Now we shall find cocycles in V,=Z[a,, b, dzs, €40

Apparently a, and b}, are the only indecomposable cocycles in Z;[ a4, by6].
A cocycle in Zi[a,, by, dss] of degree 1 with respect to da is of the form

P=Adyx—2B  with A, BEZ[a,, by].
The formula 0P=0A-d.+2Ab,s—20B=0 gives rise to
0A=0 and Ab,,=0B.

We obtain, for A=a,, a cocycle a,d,s—b%. It is not hard to see that there are
no more indecomposable cocycles in Z;[a,, by, dass] except di;. Thus we have 4
indecomposable cocycles in Z;[ay, bys, das]:

(3.3) X100=d53=0%d 540 ,

— Yy —27s
X4=0a4=0"€y,
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Yso=b3s=0"(—b1ed%s) ,
Z50=0,d5—b},=0"(—e%) .
A cocycle P; in Z;[ay, bis, das, e4] of degree i with respect to e, (1=1, 2, 3, 4)
is of the form ‘ ‘
P=Ae,+2B,
Py=Ae— Be,,—2C,
Py=Aej+ Bejo—Cey—2D,
P,=Ae}y—2Be},—2Ce}y+2Dey—E,
where A, B, C, D, E€Z[a;, by, dsy]. Now dP;=0 gives rise to
3.4) 0A=0 (for P\, P,, P;, P,),
Adw=0B  (for P, P,, Py, P,
Bdy=0C  (for P, P, P)),
Cdys=0D (for P, P,),
Ddy=0E  (for P,).

Since 0A=0, A is a cocycle in Z[a,, by, das], that is, in Z[ x40, X4, Yo, Z32],
for which we see if there exist B, C, D and E satisfying (3.4). If for some
cocycle A there exist B, C and D but no E, then there exist cocycles P;, P, and
P, but that there exists no such P, as beginning with Ae!,. Similarly, if there
exist B and C but no D, there exist P, and P,, but no P; or P,; and so on.
Although choice of B, C, D and E for a cocycle A is not unique, it is
sufficient to take one choice, if any, since the difference between two cocycles
that begin with the same term Aef, is a cocycle of lower degree with respect
to e40.
If there exist cocycles Pj=A’ely+ --- and P/=A"ei,+ --- for A’ and A”
respectively, we have
Pi+Pl=(A"+A")elo+ -
and
A'P{=(A"A")elot - .

Thus cocycle P; for A=A’+A” and A’A” exist but are decomposable (and so are
any cocycles for such A).

For A=x,,,=d3; or A=x,=a,, there is no B satisfying (3.4). Thus there is
no cocycle beginning with x,,el or with x,el, (i=1, 2, 3, 4). And we also see
that there is neither cocycle P; for A=x%,+A’ (k=1, 2, ---) nor for A=x,x%,+ A"
(k=0, 1, 2, ---) whatever cocycles A’ and A” may be.

For A=x2=0'(—d%) we have cocycles P;=0%—d%el,) (i=1,2, 3,4) and for
A=y5=03=0%(—bysd3s) we have P;=0%(—b.del) (=1, 2, 3, 4), all of which
are indecomposable.

For A=zyp=a.d.,s—b%=0'(—e},), we have B=b,,d}+(0-kernel) and C=2d4%
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-+ (other terms), but no D. Thus we have
Py=2zge40+2b16d 5 =0"(—2e},), say  Ziq,
Py=2zye%0— bisd3ses o+ dis=0"(—ely) say zugz,

but no P; or P, And we see also that there exists neither P, nor P, for
A=zypxt,+ A (=0, 1, 2, ---) whatever a cocycle A’ may be.

For A=1x,2;,=0%—2d}), we have P;=0%—2d}ele)=x4zs.8i0+ (i=1, 2, 3, 4).
However P, and P, are decomposable as their beginning terms are the same as
x4z, and x,z,, respectively. The cocycles P, and P, are indecomposable, since
there is no cocycle that begins with x,e, or with x,e2,.

For A=2z%,, we have P,=2zg,z;, P,=2%, Py=2:,z1;» and P,=2%,,, which are all
decomposable.

Now let A be a cocycle that has no term of the form x%,, x.x%, Or zsx%.
Then, each term of A having at least one of x2, yg, X423 OF 23, cocycles
P; (i=1, 2, 3, 4) for such A exist and are decomposable except the ones that
have been found and shown to be indecomposable.

And for such a cocycle as A=zg,x%,,+ A’ (=0, 1, 2, --) with A’ a cocycle
that has no term of the form x%, or x,x%, cocycles P, and P, exist and are
decomposable. (There exist no P; or P, as we have mentioned.) Thus we have
found all the indecomposable cocycles of degree 1, 2, 3 and 4 with respect to ey.

Finally, e, is the only indecomposable cocycle of degree 5 with respect to
e4. It is easy to see that there are no more indecomposable cocycles of degree
greater than 5.

Thus the following are all the indecomposable cocyclesin V,=Z;[ a,, bis, das, €40] :

3.5) X10=d3s=0"d sel0) ,
Xa00= €50,
X4=ay,
Xg=ajen+ - =0'(—d%seqn),
Xgg=ajes+ -+ =0'(—d3sedo),
Xig=ajedo+ - =0"(—d3selo),
Xig=ajedot - =0'(—d3el),

Veo=bis=0"(—b1ed3s) ,
Yizo=bsest - =0'(—bredisesn) ,
Yiee=bselot - =0'(—bisdiselo) ,
Yaoo=Dbisedot -+ =0"(—biedisedo) ,
Yeso=biselot - =0*(—biediselo) ,
Z3s=0,d 35— bl=0%(—e%),

272=(a4d 25— bls)es+ -+ =0"(—2¢e}y),
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21:=(a.d—bis)efot -+ =0'(—2el),
Z156=04(a4d 35— bis)edo+ -+ =0*(—2d}sels),
Z106= 04(@ sy — 2ot -+ =0 —2d3sels) .

Remark 3.6. (1) The generators in V,=Z [ay, by, dss, €] are in the o*-
image except x, and X0 ;
(2) =x,is in the 0°-image but not in the 0%image;
(3) X0 is not in the o0-image;
(4) We have x}=0%—d}%) and we see that a cocycle in V, is in the 0*image if
and only if it has no term of the form x,x%, or x%g,;
(5) A cocycle is in the 9°-image if it has no term of the form x%,;
(6) A cocycle is not in the 0-image if it has a term x%g.

In other words, we see that a sum A+ A’ is in the ¢*image or o0*image if
and only if both A and A’ are in the image.

Quite similarly one can see that the following are all the indecomposable
cocycles in Vie=2Zi[ays, bos, dses €4s]:

(3.5) Uig0=05,=0%(d scels) ,

b
Ugq0=€y4s,

U1p=0qy2,

Up=05eu+ - =0"(—d5sess),
Urpo=0a}efs+ - =0"(—d5sels),
Uige=ateefst -+ =0'(—disels),
Uge=akelst - =0'(—djsely) ,

V1s0=03=0%(—bs.d3s) ,

Vigg=b}1est - =04 —bssddcess),
Vare=05sel5+ - =0(—baudicels) ,
Vaga=b3sels+ -+ =0 (—brdisels) ,
Vsrn=b3sels+ -+ =0*(—baidicels)
Was=A12d 36— b} =0"(—e3s)
Woe=(a12d 36— b3)es+ -+ =0%(—2e),
Wyas=(a12d 55— bis)efs+ - =0"(—2els) ,
Wao0s=0a1o(A12d 56— b3s)e3s+ -+ =0%(—2d3els) ,
Woso=012(A12d 56— b3)eds+ - =0%(—2d3sels) .

Remark 3.6’. (1) The generators in V,=Z[ay,, bay, ds, €45] are in the o0*-
image except u;, and Uz ;
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(2) wu,, is in the @°-image but not in the 0‘-image;
(3) ua4 is not in the 0-image;
(4) We have u?,=0d*(—d%;) and we see that a cocycle in V,, is in the o*image
if and only if it has no term of the form wu,,ul,, or uly:
(5) A cocycle is in the 0%-image if it has no term of the form ul,:
(6) A cocycle is not in the d-image if it has a term ul,.
In other words, we see that a sum P+ P’ is in the @*-image or o*-image if
and only if both P and P’ are in the image.

§4. Cocycles of mixed type.

Throughout this section the letters A, B, C, D and E will be used for
elements in V,=Z[a,, by, dss, ¢so] and the letters P, Q, R, S and T will be
used for those in Vi,=Z [ a1, bsy, dss, 4.

Now we shall find cocycles of mixed type, that is, those in V=Z[a,, b,
dss, €10, @1z, Doy, dsg, €4s] with both a, and a,,. A polynomial f in V is of the
form fzg‘, A;P; where A;’s are polynomials in V, and P;s in V,,. We may

suppose that the A;'s and P;’s are all distinct and deg A,:n%in {deg A;}. The
condition for f to be a cocycle is 9f=0.
Now we have 0f=0A,- P,+ A,0P,+ _222(3A¢-P,~+AiaPi). Note that

deg 0A,=deg A,—12<deg A; (i=1),
P,#P; i1=2).

Thus, in order that of be 0, 04, must be 0, that is, A, is a cocycle.

If 0P,=0, then f=A,P, is a (decomposable) cocycle.

If 0P,#0, in order that of be 0, —dP, must be one of P;s (i=2), as A;+A;
(1=2). Let P,=—0P,, then A, must be 0A,. The element f is now of the form

f=0A, P,— A,0P,+ ZnAiPi with 0%24,=0
and

0f =— A,0°P,+ § (0A;- P+ A;0P) .

If 6°P,=0, then f=0A,-P,— A,0P, is a cocycle.
If 02P,#+0, then, in order that df be 0, 0P, must be, say, P; and A, must be

0A; so that
f=0%A,- P,—0A;-0P,+ A0°P,+ éAiPi

with 9°4;=0 and
0f =A,0°P,+ %(aAi'Pi‘l‘AiaPi) .

If 0°P,=0, f=0%A,- P,—0A;-0P,+ A,0%P, is a cocycle.
If 0°P,#0, then it must be, say, —P, and A, must be dA4,, so that

f=0"A, P.—0*A,-0P,+0A, - 0°P,— A,0°P,+ iE AP
25
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with 0*4,=0 and
3f=—A48“P1+ §_ (8A,P1+Ai8P,) .

If ¢'P,=0, then f=0*A,-P,— -~ —A,0°P, is a cocycle.
If 0'P,#0, then it must be, say, P; and A, must be 0A4;. This time, 0°P,
being 0,
f=0*A; P,—0°A;-0P,+0%A;-0°P,—0A;-0°P,+ A0 P,
is a cocycle.

Thus we have had 5 possible cases, which can be written as follows. The
first one AP is decomposable and is omitted.

4.1) (A, P1=AQ—BP,
(A, P)y=AR—BQ+CP,
(4, P)y=AS—BR+CQ—DP,
(A, P)y=AT—~BS+CR—-DQ+EP,

where A is a cocycle in V,=Zay, by, das, €] with A=0B, B=0oC, C=adD, D
=0F and P is a cocycle in Viy,=2Z[ ays, bay, dsg, €ss] with P=0Q, Q=0R, R=aS,
S=0T.

The notation (A, P); for J=I, II, II, IV will be used to denote some cocycle

of mixed type of the above form, as we shall study such cocycles for pairs of
cocycles A and P.

We have
4.2) (A, P);+(A', P)y=(A+ A", P);,
(A, P)y+(4A, P')y=(A, P+P");,
A(A, P)y=(A"A, P)y,
(A, P);P'=(A, PP"),;,
(4, P)y(A’, P)g=(AA’, PP").,

where J and K are 1, I, Il or IV, and L is Il if J=K=I, is lll if J=1 and K=1I
or if J=Il and K=I1, and is IV otherwise.

We see that there is a cocycle of the form (A4, P), if and only if both A
and P are in the o0’-image, where j=1, 2, 3,4 according as J=I, I, III, IV.
Thus by Remarks 3.6 and 3.6° we have

(4.3.1) There is no cocycle of the form (A, P); if A has a term of the form
xk0 o7 if P has a term of the form uly;

(4.3.2) There exists a cocycle of the form (A, P); for J=I, 1l and 1l if A has no
term of the form x%, and if P has no term of the form uls;

(4.3.3) There exists a cocycle of the form (A, P)y only if A has no term of the
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form xko or xyxke and only if P has no term of the form uby or UisUbe.

We see that, if A=0‘E (or P=0'T), cocycles in (4.1) can be written as
follows :
4.4 (A, P)=0"(EQ) (resp. 0*(—BT)),
(A, P)y=0%ER) (resp. 0%(CT)),
(A, P)u=0%ES) (resp. 04(—DT)),
(A, P)y=0%ET) if A=0‘F and P=0'T.

Although the choices of B, C, D, E for a cocycle A and Q, R, S, T for P,
if any, are not unique, we see

(4.5) The difference between two cocycles of the form (A, P); is a cocycle with
subscript less than | or a decomposable cocycle of the form A’P’.

Notation. [A, P], will be used to denote a cocycle of the form (A, P)s
chosen explicitly.

If follows from the relations (4.2) that

(4.6) If both A and P are indecomposable, then the chosen cocycle LA, Pl is also
indecomposable.
(The converse is not true.)

In the following, A will be an indecomposable cocycle in V, other than x,
and x4, for which E will be the element in (3.5) such that 3*E=A. Similarly,
P will be an indecomposable cocycle in Vi, other than u;, and u,s, for which
T will be the element in (3.5) such that 3*T=P.

Now we shall determine indecomposable cocycles of mixed type.

Remark that

“4.7) deg [A, P]l,=deg A+deg P+127,
where j=1, 2, 3 or 4 according as J=I, I, Ill or IV.

We choose [A, P]; for each pair of indecomposable cocycles A other than
X200 and P other than wu,, as follows:

(4.8) (x4 Ui i=a4boy—b16a1:=0"(—2¢e40d 36— d 55¢45) ,
[xy PU=0%—0b,T)  for each P,
[A, u;.hi=0%Ebsy) for each A,
[4, P1,=04Eo*T) for each pair of A and P,

all of which are in the 0‘*-image and are indecomposable by (4.6).

Any other (A4, P); is decomposable by (4.2) and (4.5). We have thus 16:16
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=256 indecomposable cocycles of the form (A, P).

Quite similarly, we obtain cocycles of the form (A, P), (J=II, Ill) for each
pair of indecomposable cocycles A other than x,, and P other than u,,, which
are all indecomposable :

4.9 [xs Uredn=0asdss—2b16bss+d25a,,=0*(—2e40043) ,

[xi Plu=0'(—2dsT)  for each P,

(A, uIu=0"(—2Eds)  for each A,

[A4, Pln=0%E"T) for each pair of A and P;
(4.10) (x4 Uselin=asessF2b16d s6—2d 35b2s— €40012

[x, Ply=0%(—eswT)  for each P,

(4, uplu=04Ees)  for each A,

[A, Ply=0%EaT) for each pair of A and P,

which are all in the 0*image except for [x,, uislur

The cocycle [x,, uy]m is not in the d-image. So we call it ms,:
Moo= Q41512016036 —2dpgbas— 400,12 .

There are 256 cocycles in (4.9) and 256 in (4.10), which are all the indecom-
posable cocycles of the form (A4, P)g and (A, P)y, respectively.

Finally, we shall determine indecomposable cocycles of the form (A, P)y.
Recall that there is no cocycle of the form (x,, Py or (A, ui)w.

We have

[4, Plw=0%ET) for each pair of A and P,
[x%, uldw=0"d3d30) ,
[x?, Ply=0(—d%T)  for each P,
[A, u%]w=0"(—Ed%)  for each 4,
and any other (A, P);y is decomposable, since each term in A has x} or A and
each term in P has u?%, or P by (4.3.3).
The cocycles [4, ﬁ]w are indecomposable by (4.6).
The cocycle [x2, u2,]iv can be shown by direct calculation to be decomposed
as —{[x, UnoJn} 2— 2255 W s
We have now to check decomposability of the cocycles [x2, ﬁ]w and
[A, u%z]lv-
If [x%, Pliy=x2T+ --- is ever decomposable, it is decomposed as

(x4Ty+ -+ )x,To+ --)+(other terms)

with x,7,+ --- and x,T,+ --- cocycles. Since there is no cocycle of the form
(x4, 0'Ty)y (i=1, 2), it is necessary that 9*T,=0'T,=0. And if T=T,T. with
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0‘T,=0'T,=0, then [x2, Ply=0%—d%T) is rewritten as

(411)  (a4T1=b160T1—2d50°T1—2400°T1) (a4 Tys— 10T s —2d 250> T, — €,00° T'2)
—{2a,dys—b3)0* T, T;—0T 0T+ T10°T>)
—(a4e40—b16d 25)(0° T T+ T,0°T,)
+(b1seso—d3)(0°T 0T 40T, 0°T,)
+2d34€40(0° T+ 0*T 40T - 0°T')+ €200° T, - 0° T3}

=(x4 0*T)g(xy, 0'Ty)1

—2(z39, 0™(0*T 1+ Ty—0T - 0T, +T10°T2))se ,

where k£ is such that 0*T,#0 and 0**'T,=0, K=I, II or Il according as k=1, 2
or 3; !/ and L, m and M are similar except that m can be 4 and then M is IV.
Actually, we have the following decomposition of T for P:

(4.12)

P T T, T,
Uigo dssels dssels (]
Unqg —dieeus —ds dssess
Uizo —dfeels —d sl dsseus
Uies —disels —dss dseels
Uszie —disels —dseefs dssels
Vizo0 —baudis —ds ba4d s
Vses —bsydicess —bsadis dselas
(230 —baudicels —baudis dssels
Ugea —badisels —bsydis dseels
Usis —bysdicels —beidisess dssels
W —el; —ey ey
Wye —2efs / /
Wi4g —2ejg / /

Wao4 —2disels / /
Wose —2d3sels / /

There is no decomposition such as 7=T,T, for P=1wg, Wi Wsos OF Wasa,
for which [x2, PJiy is indecomposable.

For I3=w48, T,=—e,; and T,=e, is the only decomposition of T=—eZ
except for Ty=e, and T,=—e,, and the decomposition (4.11) for [x2, wslv
turns out to be

(4.13) [x} wedv=—{[x4, Uiz} *—(Zs2, U1y -

We shall choose the cocycle [x2, wyliv=0%d%e2) to be indecomposable. Then
the cocycle (zs, u%)wy in (4.13) becomes decomposable and so does the cocycle
[ 22, u%z]lz':a4<eﬁod§s)- _

For P other than w; (=48, 96, 144, 204 and 252) the cocycle [x2, Pl is
decomposable, since the cocycle of the form (zs, P)y in (4.11) is with P#u?,
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and thus is a cocycle that has been already studied.

Decomposability of the cocycles [A, u%Jiwy=0%—Ed}) is checked similarly:
In order that they are decomposable, it is necessary and, this time, sufficient that
FE be decomposed in a product E,E, with 0‘E,=0*E,=0. We have a list similar
to (4.12) and we have four indecomposable cocycles, namely, for A=21, Zi1z, Zuss
and zg6.

Thus we have shown that the following are all the indecomposable cocycles
of the form (A, P)y: '

(4.14) (4, Ply=0%ET) for each pair of A and P,
[xd, F]IV=a4(_dgsT) Sor ﬁ:w“, Woey Widey W04, Wese
[A’ u%z]lv—_—a4(—Ed§s) for /_1=z,2, 2112, Z156> 2196 +

We have 15-154+9=234 cocycles here, all of which are in the 0'-image.

Proposition 4.15. We have 1002 indecomposable cocycles of mixed type,
namely, 256 in each of (4.8), (4.9) and (4.10) and 234 in (4.14), all of which are in
the o0*-tmage except mgp="[x;, Ul 1in (4.10).

We have little interest in listing them up, but we can easily write them
down in a polynomial form, if necessary, by mere calculations of d-image. (Recall
that A is a cocycle in V, other than x, and x., E is the element in (3.5) such
that 0*E=A, P is a cocycle in V,, other than u,, and u,, and 7T is the element
in (3.5 such that ¢‘7=E. Recall also that deg[A4, P],=deg A-+deg P+125
with j=1, 2, 3, 4 according as J=I, II, II[, IV.)

Thus we have

Proposition 4.16. In V we have 1036 indecomposable cocycles, namely, 34 ones
listed in (3.5) and (3.5)" and 1002 ones of mixed type in Proposition 4.15.

Remark 4.17. (1) The indecomposable cocycles in V are in the &'image
except X, Xago, Uis, Usso and g, ;
(2) x, and u,, are in the a*-image, but not in the 0*image;
(3) X200, U240 and m,, are not in the o-image.

We have the following products in the 0*image :

(4.18) x§i=0*(—d3), x,=0"(—d%), X 4U15=0%—d25dsg) ,
X 5o =0—d 35— 2e%byy) , UM =0%e40d 3+ 2b5e3) ,
mi=0*(—d3sets—2e2,d3s+ edobsseys)
Therefore, monomials in cocycles are divided into three groups:
(419.1) A monomial in cocycles is in the d*image except the following ;

(4.19.2) xyxfooulso and uypxkoeubs, which are in the 0°-image but not in the 6*-
image ;
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(4.19.3)  x%oubi and mgyxkooub,, which are not in the d-image.
Finally we resume that

(4.20.1) A cocycle in V is in the d*-image if and only if it has no term of the
form x,xkooubso, uiaxEootbio, XE0oUbio 07 Mazxbootidao;

(4.20.2) A cocycle is in the d°-image if and only if it has no term of the form
xhoolthso 07 MseXfoolthao ;

(4.20.3) A cocycle is not in the 3 -image if it has a term x%ulso 07 MsaXEootlso

In other words, we have

Remark 4.21. (1) A cocycle in the 0-image is in the ¢°-image;
(2) A cocycle is in the 0%image or in the d‘-image if and only if each of its
terms is in the image.

§5. Cocycles with elements of odd degree-I.

Next we shall determine cocycles with elements of odd degree, that is, with
@13, Co5, C37 and Cys.

First we study elements in the free tensor algebra Z;{a,s, ¢ss, Cs1, Cso}, Where
d is closed. Clearly the elements a;s and ye=[a1s, Csp]+2[css, cs;] are cocycles.

Let & be an element of the form csd4-copt+cov, Where 2, p, v are elements
in Zi{a,s, cs5, Cs1, C}. By abuse of notation, we write, for example,

§+£=¢,
§-a,,=¢,
E-c;=¢ for j=25, 37, 49.

Then an element f;, in Z;{a,s, Cus, Cs1, €15} 0f degree [ can be written as
follows :

Lemma 5.1.

fzn:d( :Z:E: y§2§)+ ::Z‘;: yib+ayd,

n-1 n
f2n+1:d< Z;) yézé)—l- ;}J’éze+aygza13 ’

where a is a number in Z.

Proof. We prove the lemma by induction on degree. Obviously f, is of the
above form. Suppose that the lemma is true up to degree 2n—1. Then an
element f,, of degree 2n is expressible as a sum

Son=Fan-1015FFon-1Ces S Hn-1C30+Fon-1Cs0

where fon_1, fon-1, flin-1, fi.-1 satisfy the lemma. So by the assumption we have
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n-2 n-1
fzn—law:d( i§o J’}szeals)'i' igo yézéam-i-ayé‘z“afs

Il

n-2 n-1
d( S k)t T vhb+dlasti2e)

3]
|

1

(S st + S it

i=0

Il

[

Also we have
, n-2 n-1
fzn—nczszd( igo yé25)525+ tgo Vb Costays 1a1sCas
n-2 i n-2 n-1
—'_—d( 2 yezsczs>" > yebdesst 2 ytissz:zs
1=0 i=0 1=0
+dBayd cs) — Ay Castys
=d(S yhl)+ T vht
i=o Yoz i=o Yoos
By a similar calculation, we have

n-1 n-1
fgn—lc.ﬂ:d( Eo y525)+ 123 yézé,

and
, n-2 n-1
flz/n—lcow:d< ;‘3 yézs)cm'*‘ igo Ve Cuot i aiscyy
n-2 n-2 n-1
:d( E y§25€49)'— E yebdcey+ Z YVicyy
=0 i=0 1=0
‘ayh—ayi ciaistayl 2 cas, Cor)
n-1 n-1
:d( > ytisz&)'l‘ 2 yebtaydh.
=0 i=0
Thus, the sum f,, is of the required form:
n-1 n-1 .
('S yue)+ T viuktayh  with acz,.
Quite similarly, an element f,,.; of degree 2n+41 is expressible as a sum

fone1=Son@is+SonCost S inCortfinCas s
where

n-1 n-1
fznaxazd( i‘z‘(’) yézf)als'l‘ igo yebatayhags

n-1 n-1
=d< p yézé)‘i‘ 2 Yebftaynas,
i=0 1=0
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n-1 n-1 .
fénczszd( 2 y325>czs+ Z y§2$¢'25+0fy(?2025
i=0 =0
n-1 n-1
= ( igo J’}széczs)'*‘ ;})yéz&dczs-l- i§o yézé-l-ayé‘zcz;

: n-1 :
k)T D vk tayhos,

3

-1

X n-1
P y}wE)"‘ g}) yézé-i-ayé‘zcw .

tnCio=d

- . n-1
fé’nCu:d( P J’éz&)’l‘ i;ﬂ yézECs*r'l‘ay?zCsm
Therefore, as required, we have

Sens1=f2n0 13+f;nczs+f§’,,c3,+fé”,,c49

n-1 n-1
:d( igo y§2$)+ igo Ykt yih(aas+a’ costa” ot a”cuy)

n-1 n 3 .
=d( 1‘?6 y22§>+ §0 Vbt aylhays with aeZ;. q.e.d.
Suppose & is as above. Then

dé=d(cosA+Carpt+Cisv)
=3a%A4CosdA+2[ays, Coslpttcadp
+(La1s, car]—cEs)v+cady
=3a%A+2a13Co50+ A15Cov+ Cosd A—2C250 131
+Card pt— 3719V —C3vF-Chpdy .
We see that the first 3 terms are the only terms that begin with a?;, a;sc.s and

@i3Cy7, respectively. Thus, d€ is 0 only if A, # and v are 0. The converse is
obvious and so we have

(5.2) dé=0 if and only if £€=0.

Note that d& has no term (4 X some other term).
Writing an element f,, as in Lemma 5.1, we have

n-1
dfen= 2—:‘6 VédEs,
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where &; are elements of the same form as & (The suffix ¢ of &; does not
indicate its degree.) Therefore, df,, is 0 only if each d&; is 0, that is, each &;
is 0. Thus, the only cocycle of degree 2n is ayd.

Similarly, writing a polynomial f,,+, as in Lemma 5.1, we have

df2n+1= i§o yézdfi .
Therefore, dfsn+: is O only if each d&; is 0, that is, each &; is 0. Thus, ay%ha,s

is the only cocycle of degree 2n-+1.
Thus we have shown

Proposition 5.3. The elements a,; and ye are all the indecomposable cocycles
n Zs{als, C25, Ca1y Cag)e

§6. Cocycles with elements of odd degree-II.

Denote by F, an element in W of degree %k with respect to a;; and Cj
(j=25, 37, 49). The argument here is quite similar to that for f,, though W is
not a free tensor algebra as Z;{a,s, Css5, Car, Cio} iS.

Lemma 6.1. F, can be written as follows:

n-1 .
Fon= iz=:0 yéz(czann-zi-x+csqFén-2i_1+649F£’n-zi-1)+yé‘zP-{-(d-zmage),

n-1
Fopgy= izo Véa(CosFon-git CarFon-2it CaoF in—2i)

4 y%(a 1S+ cos R+ ¢5:Q+ ¢y P)+(d-image),
where P, Q, R, Se€V.

Proof. Using (2) of Lemma 3.1, we can put the elements of odd degree
before elements in V. Thus each term of F, is of the form f,P, where f, is as
before and P is an element in V.

Writing f..» as in Lemma 5.1, f,,P can be written as

n-1 n-1
funP=d(E yul)P+ T it PayP

n-1 n-1
=d( ' yuEP)+ S yhEdPHE Pt ayP.
Thus any element F,, of degree 2n is of the form

n-1 .
Fon= g% yzz(cstzn-zi—l‘FCst;n—zi—l'l'CwFéln—zi—1)+ygzp+(d'lmage) .



Eilenberg-Moore spectral sequence 223

Similarly,
n-1
Sane:P= 2‘3 Yi(—EdP+E'P)

+y&laasta’costa” catacy) PH(d-image) ,

and any element F,,,; of degree 2n+1 is of the form
n-1
Foppi= igo yéz(cstzn—zt+Cs7Fén—zi+C49F§ln—2i)

+ 8@ 15S+ Cos R+ ¢5:Q +c4y P)+(d-image) ,
where P, Q, R, SeV. - q.e.d.
By an argument similar to (5.2) we see that there is no term (ygiX some
other term) in d(cysFrtcaFitcFY) and that d(c,sFr+csiFitciFi)=0 if and
only if ¢ysFir+caFrtcyFY itself is 0.
Lemma 6.2. (1) dF,,=0 if and only if F,, is of the form
Fon=3y%A with A a cocycle in V;
(2) dF3ns1=0 if and only if Fans, is of the form
an+x=yé‘z(amS—262535+637325—c49335)
with 0*S=0.
Proof. (1) Writing F,, as in Lemma 6.1, we have

n-1
dF;n= ,;; ytlszd(cstzn—zi—l"*‘Cs7Fén—zi—1+C4sF§/n—2i—x)+ygzdp~

Since the term y&d(casFan-si-1+ --+) is the only term that begins with yi,
but not with i, the relation dF,, =0 gives rise to d(c:sFon-2i-1+ -+)=0 (for
each 7) and dP=0, and thus to c¢s;Fsn-2i-1+ -+ =0 (for each 7) and dP=0.
Therefore dF,,=0 only if F,, is of the form y%A with A a cocycle.

(2) Writing F,,4+; also as in Lemma 6.1, we have

n-1
dFspi= ig% yézd(cstzn-zH‘CavFén—zi‘FCman—zi)

+ygzd(axas""CzsR‘l"037Q+549P) ,

and dF,,+,=0 if and only if cysFsn_2:i+ -+ =0 (for each 7) and d(a,sS+c2sR+¢4,Q
+c,P)=0.
Now we have

d(a;3S+cpsR+c5,Q+cisP)
= 5o(—0%S)—2a%5(R+20S5)+2[a,s, €251(Q—0%S)
+I:a13) Czs](P‘l'aaS)—i'C%alg(aR-l-ZazS)
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— c3(P+202R)+€35¢51(0° R+204S)— €45¢ 490 R
+€41013(0Q —0°S)+ 3725 — 20°Q+20*S)
+¢40°Q — 37€150' Q- C19a,3(0P+0*S)
—2C49C2502 P+ C49€3,0° P— 20 P
Thus d{(a,;sS+cesR+¢3:Q+c4pP)=0 if and only if
0'S=0, P=—-0S, Q=0"S, R=-20S.
Therefore, dFy,+,=0 if and only if F,,,, is of the form

Fonai=y&(a 185 —2¢4505+ €5,0°S — € 450°S)
with 04S=0. g.e.d.

We have now only to find cocycles of the form
Flz0135—262535""637828‘—649388 With a‘S"—‘O .

We divide into the following four cases:

(i) If 0S=0, then F,=a,;S with S a cocycle.

(ii) If 02.S=0, then F,=a,;S—2¢,0S with 0S a cocycle. If 05'=dS, then
the difference of two cocycles Fi=a,3S’—2¢,:0S and Fi=a,3S—2c,;0S is a cocycle

a5(8’—S), a cocycle in (i). Thus we may choose one S for a cocycle of the
form oS.

Now, by Remark 4.21, a cocycle of the form oS is in the o°-image, say 0°T.
Choosing S to be 0°T, we have

FlzalaazT_2C25a3T=d(_aT) .

(iii) If 0°S=0, then Fi=a,3S—2¢,;0S+¢5;0°S with 02S a cocycle. Again, it
is sufficient to choose one S for a cocycle of the form 02S. Again by Remark
421, a cocycle in the o%*image is of the form 6*T. Thus choosing S=0aT, we
have

F,=a,,0T—2¢,50°T +¢3,0°T=d(—T).
(iv) Finally, as 0*S=0, %S is a cocycle. If 9°S is 0'U for some U, then
choosing S=0U, we have F,=d(—U).

A cocycle of the form %S but not in the d*-image is, by (4.19.2), expressible
as

> alk, Dxxboubo+2 ﬁ(k; Duyexbooubsnt0U,

where a(k, /) and B(k, [) are numbers in Zj.
In particular, for x,=0%,, and u,,=0%,;, we have

J/Ba:alse4o+025d28+cs7ble+ Ca9Qy
and

Ve1=0 13843+ Cos 36+ CarbaatCisQ1a

For 0°S=2 a(k, )x.xbeoubn+2 ,B(k, Dugextoouto+0*U, we have a decomposable
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cocycle
Fi=% a(k, l)ysax’é'oouém'{‘z ,B(k, l)y61x500u540+d(_U) .

Thus we have

Proposition 6.3. The elements ais, Yoo, Y53 and Y1 are all the indecomposable
cocycles with elements of odd degree.

For later use, we shall state a more concrete form of Lemma 6.2.

Lemma 6.4. (1) A cocycle of degree 2n with respect to elements of odd
degree is as in Lemma 6.2:

y&A with A a cocycle in V;
(2) A cocycle of degree 2n+1 is
y5anAt X alk, Dydhysxiatiot 2 Bk, Dy8yeaxioube
with A a cocycle in 'V and a(k, 1), Bk, NEZ;.
Thus we have found all the indecomposable cocycles :

Theorem 6.5. All the indecomposable cocycles in W are the 34 listed in (3.5)
and (3.5), the 1002 of mixed type and ais, Voo, Vss and Yyei.

§7. Commutativity of generators.

Now that we have found all the indecomposable cocycles, we shall check for
commutativity and find relations among them.

Theorem 7.1. H(W:d) is commutative.

Proof. Since the cocycles in V satisfy dP=0, they commute with a;s, o5,
¢s; and ¢y, and hence with a,s, Y42, ¥ss and yer.
We have

Lais, Yeal=d(2Lcas, cos]tcha),

[a@1s, Yss]=d(— o540t C37d 25— Casbis)

[a1s, Yerl=d(—Cas4st Card 36— Cagbss) ,

[¥ss Verl=d(Cos€40€45 C37(d 2geis— €40 56)
—Cao(bisastd2sd 36— €a0b2d))

[C¥ssr Veel=d(2[Cs5, Cs91€s0tC3r040—2[ Car, Caold s+ Cisbis) s

Cyer, Yeel=d(2[css, Cislesgt Ciress—2[ Car, CagldsstClobad) .
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Thus commutativity holds in H(W: d). q.e.d.

Lemma 7.2. The following elements are non-trivial and they are linearly
independent :

i k i ik i k
yszxéoouzw PR YeeMsaXhooldSso Yiaxaxhoottbeo,

i k i i ok i ik
yezumx'goouuo ) YVer@1sX300U340 Yé2l 13152 X500 U540 5

i A i k
yszysaxgoouuo , yezyslxéooum »

where 1, j, k are non-negative integers.

Proof. Note first that the differential operator d augments the degree by 1
with respect to elements of odd degree. Thus 3 F,=d-image for different
degrees k occurs only when each F, is in the d-image.

Now, a cocycle F,,+; of degree 2n+1 is, by Lemma 6.4, of the form:

Fonn=y8(a1A+ 2 a(i, j)yssxboudot 2 BG, j)yexbotin)
=y5{a(A+Z ali, jlewxioulo+X B3, j)ewsxiootin)
+eos(Z all, J)dasxboottdnt 2 B, )dasxioottdeo)
F (X ali, Nbrexiooudnt 2 B, Nbaaxiootie)
teuw(X ali, Naxioubot 2 B, 7)axioui)}
where A is a cocycle in V and

> al, j)aqxéoou%m-l-z ‘B(l, j)a12x§00u£40

is not in the o0*image by (4.20.1).
On the other hand any element F,, of degree 2n can be written as in Lemma
6.1 and its d-image is calculated as

n-1
dFy,= izo Yead(CosFon—2ioitCorFan-aio1CooFin i)

+ygz('_a‘3aP+262582P"'03783P+C4984P) .

Comparing our cocycle Fy,4; with dF,,, we see that F,,., is not in the d-image
so long as it has a term y&Lyssxieolidso OF YHYVeiXieoliswn. That is to say,
Yo YssxbooUdso and Y% ysxhoois are non-trivial, and they and y%a,sA (if it is not
trivial) are linearly independent.

Comparing y%a,;;A again with dF,,, we see that y%a,sA is in the d-image
only when A=—0P and y}a,;;:0(—P)=d(y%P). Referring to (4.20.3) we see that
Y1 X500Uda0, YR 1sMssXieoUlse and their sum remain non-trivial.

Similarly, a cocycle of degree 2n+2 is, by Lemma 6.4, of the form y&fA
with A a cocycle in V. And any element F,,., of degree 2n-+1 can be written
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as in Lemma 6.1:

n-1
Fonsy= 1:20 Yé(CosFon-2it CsrFan-2it CooFino2:)

+ y8&(a13S+cos R+ c3:Q+ ¢y P)+-(d-image) ,
whence we have

n-1
dFons = ig% J'gzd(cstzn—zi‘l‘Cs7F;n-2i+C49F§/n-2t)

+y&X(some terms)+ ygr(—a'S),

where we observe that there is no term y&'™'X(some other term) except the
last one.

Comparing y%™A with dF,,+;, we see that y%™A is in the d-image only
when A=0'T for some T. And

y22+la4T=d(yg2(_axsT+2C256T_Cs7azT+ CqsasT)) .
By (4.20.1), we see that

yé'z“x;'oouéw ’ Y& Mg X koot
j i
yé‘z“xwéoou%m ’ y«’;lzﬂunxzoou’ziao
and their sum remain non-trivial. g.e.d.

Lemma 7.3. A cocycle with elements of odd degree is either trivial or
a linear combination of the cocycles in Lemma 7.2.

Proof. We have
ats=d(2¢ss) ,
yE=d(2¢s50%0+ Cord 25240— Cs9(b16€10—2d3s)) ,
V& =d(2¢s5e%57 Cord 36045 Cio(boseis—2d36))
@13Y53=d(2C25€40+2C37d 35 Cugb16)— Vo2 X4,
13V 61 =0(2C25€48+2C37d 56+ Ca9D2s) — Yoall12
VssYer=0d(—2C255045— C3:(d pg43—2€0d 35)

—C19(2b16€45—2d 350 36— 40024))+ VoaM52

Thus any monomial in cocycles is equivalent to a monomial in cocycles each
term of which has at most one of ai, Vs O ¥g.
We have shown

ysza‘T=d(—amT-I-ZCzsaT—63732T+C4933T) ’
and a,,0T=d(—T). In particular
013347‘:(1(-—337') » a13x=d(—by), A13U1p=d(—Dbsy) .
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Finally we have the following d-images:
9530° T=d(— a,T—0(b,sT)+20%(d 3sT)—0%(esT)) ,
9610'T=d(—a,,T—0(b:,T)+20%(d 3sT)— 0%(essT))
Vssx s, =d(2d3s—b1s40) ,
Vo1 X4t Q13Mse=d(—2b 5045+ 2d 25d 36+ €40b24) ,
Yssl1a— A13Ms=d(b1s€1s12d 25d 36— 2€40b24) ,
VerUh1o=d(2d3s—bsse4s)
Va5 =d((2d 3s—b16€40)€45— 20 35€40d 56+ €50b2s) ,
Ye1Mss=d(—bys3s+2d 35d 3645+ €40(—2d 36+ bosess)) ,
Using these relations we see that any monomial in cocycles is either trivial

or equivalent to one of cocycles in Lemma 7.2. q.e.d.

Theorem 7.4. Cotoru(Z;, Z;) with A=H*(X; Z;) is generated as a commutative
algebra by the elements in Proposition 4.16 and ais, Yes, ¥s: and ye, where

ycz':[am, Cas]+2[Ces, Cor],s

Yss=4a 13840 Casl gt CarbistCastly
and

Ve1=0 13815+ Cosd 36t CarboatCaolra

The elements satisfy the relations

ais=0, A13Y53—= " Ye2 X4, A13Y6e1= " VealUh12,
¥3:=0, ¥6:=0, YssYVe1= YeaMse

a;,0'T=0, yssa4T:0 ) ¥6a:0'T=0, Y620'T=0,
a13x,=0, ays1,=0,

Vssx5=0, Yo X4=—QA13sMsz ,

YVssUh12= A 13Ms2 , Yeal12=0,

VsalMse=0, Yerms=0.

§8. Collapsing of the Eilenberg-Moore spectral sequence.

Consider the Eilenberg-Moore spectral sequence mod5 {E,, d,} associated
with Xe{E;:5}:
E,=Cotor «(Z;, Z5) with A=H*X; Z;),
E.=g¢. H¥BX; Z;).
To begin with we recall that the differential d,: ES'—ES*™t-m+1 (y=2)
augments the total degree by 1 and the homological degree by r.
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Obviously d,x,=0 for r=2, since there is no element of degree 5.

There is no element of degree 14 or 54, since any element of even degree
and of degree less than 62 is of degree 4n for some n. Thus d,a,;=0 and
d,yss=0 for r=2.

The element y,, is the only element of degree 62, but y,; and y, are of
the same homological degree and hence y; cannot be d,ys. Thus d,.y.,=0 for
r=2.

As d,yq is of odd degree, referring to Lemmas 7.2 and 7.3, we see that
d,ye=0 for r=2.

Referring again to Lemmas 7.2 and 7.3, we see that there is no element of
degree 201 or 241 and hence d,xs0 and d,u,, are also 0 for r=2.

Clearly a,s is the only element of degree 13, but u,, and a,; are of the same
homological degree, whence a,; cannot be d,u;,. Thus d,u,,=0 for r=2.
Similarly d,m;=0 for r=2, since there is no element of degree 53 except s,
but y;; is of the same homological degree as m;,.

We have shown that ais, Vss, Vo1, Yeor X4y Urs, Ms2, Xz00 aNA Ugy SUrvive to E.
Remark that any other generators are in the d‘*image and of even degree.

Suppose that' they all survive to E,. Then we have E,=FE, The only
possibility for their d,-image Q 1is, by Lemmas 3.23 and 3.24, a sum of
y22alax%oou§40y y220137n52xé00u§40; yézyssx£oou§4o and yel;zymx%oou’éwo

Suppose now that we have a possibility of the relation d,P=Q, with Pe<o*-
image and Q as above. Multiply both sides by yg. Then the right hand side
is not 0, since ysQ (with Q as above) is not 0 in £, by Lemma 7.2, and hence
in E,. On the other hand, ye.d,P=d.(y:P)=0, since, P being in the d*image,
¥ P is trivial in E, by Theorem 7.4. Therefore there is no such possibility as
d,P=Q. Thus, all the generators survive to E,;.

Now by induction on r we can see that all the generators survive to E..

Theorem 8.1. The FEilenberg-Moore spectral sequence mod5 associated with
X collapses for all Xe {Es: 5}.

And
Theorem 3.2. As modules, for X {Es: 5},
H*BX; Zy)=Cotor«(Zs, Z;) with A=HXX; Zjy).
In particular we have
Corollary 8.3. As modules
H*(BEs; Zy)=Cotor(Zs, Z;)  with A=H*(Es; Z;).
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