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O . Introduction

L et M  be a  smooth d-dimensional connected Riemannian m anifo ld  and  d m

be th e  Laplace-Beltram i perator. L e t (X e , P,), E m  b e  the minimal diffusion pro-

cesses o n  M  generated by th e  operator —
2  

d m +b  w h e re  b  i s  a  sm ooth vector

f ie ld  o n  M .  F o r  a  given sm ooth curve 0=(çbt)o,tsr on M  s ta r tin g  a t 0(0)=q,
the  sojourn probability around 0 up to tim e T  is defined by

(0.1) ifi(0 )= -P q fp (X t, 0 e )<s , fo r  all tE[O,

w here p  is  th e  Riemannian distance.
Main aim  o f th e  present paper is to  obtain a n  asym ptotic form ula  for the

sojourn probability a s  s 1 0 and the result w e obtain  is th e  following.

Theorem.

(0.2) 1-4(95)= 12(0) D f i (x)d x e x p f  2
s
17:  - P,Ço

r L(Ot, dt+0(1)}

as s 0, w here L  is a function on the tangent bundle T M  defined by

1 1 1(0.3) L(p, — —
2  

1 v — b(P)1; —  —
2

div b(P)+ —
1 2

R (p ).

Here the notion and notations involved are as f o llow s. Let
eigensystem for the eigenvalue problem

{2k, f k} b e  the

—

2
ZIsdf +2f= 0 in  D =  { xER d : lx i<1}

f =0 o n  ap= fx  e Rd ; x i=_11

Thus 2, and f ,  in (0 2 )  i s  the minimal eigenvalue and the corresponding nor-
malized eigenfunction of the above eigenvalue problem. I  d e n o t e s  the Rieman-
nian norm  in the tangent space T p (M ) at p ,  div (b)(p) is the divergence of b at
p  and R (p ) is  the scalar curv ature at p.

T h is  problem  is related to som e problem  i n  physics such  a s  path-integral
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fo rm u la tio n s an d  th e  m o s t probable paths of diffusion processes (c.f. E ll  [2],
[4 ], [7 ]) : th e  function L  o f (0.3), ca lled  t h e  Onsager-Machlup function, is re-
garded a s  Lagrangian fo r  th e  most probable paths. In a probabilistic motivation,
S. W atanabe considered th e  above asymptotic formula to  obtain a  probabilistic
characterisation o f th e  symmetry (the reversibility) o f  th e  d if fu s io n  processes
(c.f. [ 3 ] ) .  Also, Stratonovich ([9]) considered a  similar problem and introduced
a notion of probability functional of diffusion p rocesses. T he  result in the form
o f th e  above theorem was conjectured fo r  a  fe w  y e a rs  a n d  verified to hold in
Einstein spaces by Y . Takahashi through probabilistic techniques such  a s  Gir-
sanov's form ula and stochastic Stokes' theorem . R ecently his idea w as further
extended by S. Watanabe to cover the general case (c.f. Takahashi-Watanabe [10]).

In  th is  paper, w e obtain th e  above theorem by a purely analytical approach :
w e first identify th e  probability [4(0) with the solutions of some heat equations
w ith sm all param eter e and  then carry  ou t their asym ptotic expansions.

T h e  authors express their hearty  thanks to  P rofessor S . W atanabe fo r  his
kind advices.

1 .  Preliminaries

In  th is  section, w e  sh a ll m a k e  so m e  p re p a ra tio n s  fro m  t h e  Riemannian
geometry which will be needed in  la te r discussions.

First of a ll, the  notion of norm al coordinates w ill p lay  a  fundamental role.
A s usual, a  norm al coordinate w ith center gE M  is determ ined by choosing an
orthonormal basis ( e l ,  e 2 ,  • • •  ,  ea) in  the  tangen t space T ,(M ):  fo r  p sufficiently
close to  g ,  i ts  normal coordinate (x 1 , x 2 , ••• , x d )  is defined by

p= exp (q, x k ek)

Here exp (q, X), X E T ,(M ), stands for the  exponential m ap, i. e. t —>exp(g, tX)
i s  t h e  geodesic c (t ) s u c h  th a t  c (0 )=q  a n d  e(0)--- X .  T h e  components of the
m etric tensor, its  inverse, the Schwarz-Christoffel symbols a n d  th e  Riemannian
curvature  tensor in  the  norm al coordinate a re  denoted by g i ,(p), e (p ) ,  1 (p ) ,

R „ . (p )  respectively.
Then w e have  the  following fundamental lemma. (c.f. [8])

Lemma 1.1. (E . Cartan)

(1.1) Rik.i/(9)x k x 1+ 0(ix  s )

1
(1.2) P:,(p)= -

3  
{Riuki(q)x u +R ki.;(q)xul +0(1 x 1 2 )

F o r la te r use, we shall introduce a  sy stem  o f  n o rm a l coordinates along a
curve 0 .  L et çb be  a  smooth curve and choose a n  orthonormal basis (e1, e2 ,  • • • ,

e d )  i n  T o ( a ) M .  D efine a  diffeomorphism 0  between some neighborhood U  in

[0, T ] x R d  o f th e  curve t —>(t, 0) and some neighborhood V  i n  [0, T ]x  M  of
th e  curve t (t , 9 5 (t)) by
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0(t, (x l, x 2 , ••• , x ))=-(t, exp (OW, x k e k (t))
where e k(t)(e k(0) -=e k) is obtained as the parallel translate of e k along the curve
0 .  It is clear that x = (xl, x 2 , ••• , xa) is a normal coordinate of p--0(t, (x 1 , x 2 ,
••• , x ä ) )  with center q =0 (t)  for each fixed tE [0, T ] .  The components of the
vector field b, the metric tensor, Christoffel symbol, etc, in this normal coordi-
nate 0 ( t ,  • )  fo r each fixed tE [0, T ], are denoted by b '(t, x ), g„(t, x )n ,(t, x ),
etc. For a differential operator a on V, we denote by 5 the differential operator
on U  transformed by the above diffeomorphism :

5f(t, x)=a(f00 - 1)(0(t, x )).

We shall calculate the operotors 5, 3, and 'a/a t  in the following lemma.

Lemma 1.2.
a5-=b i (t, x) .

ax t
a2

3 m = g ii( t, x )  a x i a x i g i j ( t ,  x ) r t ( t ,  x

5a  
{9i(t)+Ei(t, a

a 
at at xi

where ç.1)'(t)=lim W(u)—çbi(t) ( (u ) is the i-th  component o f 0 ( u )  in  th e  localu— t
coordinate 0 ( t , • ) .)  and s i (t, x ) is a smooth function satisfying

(1.3) max I ei(t, x)1 =0(1 x1 2 ) andOg T

ax k

(1.4) maxostT ax ks i ( t ,  x ) =0(1x1) fo r  any i  and k.

P ro o f. Define a  function x k (t, p )( tE [0 , T ], p E M ) by an equation

(1.5) exp (OW, x q t k(0)= 10  •

Then we have the i-th component of 5 in the base

=- 5(x j )1 t =to , , x , (xi : i-th coordinate function in  Rd)

=b(x j (i, 1))) I( P o = e x p  (OW, xe k(to)))

=b i (to , x o) (by the definition).
aHere it is evident that the -component of 5  is identically zero. The proofat

f o r  M  is similar to the above. Next set

a . a c(t, x)  a t d-cP(t, x ) .at axi

Then we see easily

a 
axk
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5ac(t, x )= (0= (0=1.at at
Moreover note

a (1.6) di(t, x )= . t=toat
a 
at (x '( tt p))1t=to (P = exP (95(t0), x k e k(to)))

In  the norm al coordinate 0(t 0, •), a  geodesic ( x (0 )  f ro m  (ai)  w ith  a  velocity
(p ') satisfies th e  following ordinary differential equations

d xi(u)
d u  —

d y u) =  1 1 1 (x(u))y k (u)y I

du (u)

xi(0)= a' , y '(0)= .

W e denote by x"(u, a ,  13) and y '(u , a, p) the above solutions. Then the equation
(1.5) is equivalent to th e  following

(1.8) y =  .L(1, qi(t), x k (t , P)e k(t))

O n the  other hand, e k (t) satisfies in  the norm al coordinate 0(t 0, •)

del(t) d g5m(t) 
= rim(95(t))0,(t)dt dt

eik (to)=

d e I(t) 
Idt t=t o = 0 .  Hence noting also eRto )e(t0)=ô , Oi (t 0)

= 0 and  x k(to , p)=x k, w e get

(1.9) 0= (1, 0, (x (t (1, 0, (x k)) p)aai ay
by differentiating both sides o f  (1.8) by  t  and setting t= t o . Since rwo(to)>=o,
it is easy to  deduce from  (1.7) that

ax ,  

(1.10) aa; (1, 0, (x k ))=55±0(1x1 2 )

axi . (1, o, (x k))=65+0(1 x 12)

Consequently
di(to, x)= — $(t0)+o( x1 2 ) ,

which implies (1.1). w e can see by tracing th e  above calculation carefully that
(1.2) is also valid.

(1.7) (u)

Since n(6(t0 ))=o , w e have
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2 .  A  reduction of the theorem

We now consider a  space-time process (t, X e ). Its generator is

+ b . Let u=inf (t, X e ) ,EE V }  and  (t Acr, 'Zt A,)=0 -1(tAcr, Xtno).
Lemma 1.2 the local generator of )Zt becomes

a 1 . a2 a 
at+ ' ag 'i(t x ) . +b

- ,

 (t, x ) where2 axzax.' xi

1(2.1) b k ( t , x )=P( t , x ) - -
2

g i i( t, x )rt i (t, x)— Sk(t)+st(t, x)

a 
a t  

+ 4

Then by

L et W(x)=exp (0(0), x k e k (0)) and ii ( x ) = P sb ( s ) I p ( x t ,  O t ) .- 6 ,  fo r  any tc[0, T ]} .
Then we have by a  property of normal coordinate

u , ( x ) . =  
13° '  fossliPTIX t I 6 1

where Po, x  is the distribution of k' t in  C([0, T ]x U )  starting from x  at time 0.
Let ugt, x ) be the solution of the following initial boundary problem :

a14 {

g
1

at
. a2i)(T— t, x ) a x i a x i  + ( T  t ,  x )  a

a
 i } u,1 o n  [0, T]X flx1612

ug(t, • ) I aiy=0, ug(0, x ) = 1  f o r  x e  {Ix I <e) —

Then, as is well known, the  hitting probability u,(x ) coincides with u(T , x ).
To prove the  theorem, it is therefore sufficient to see the convergence of

exp(
s  

)ug(T, 0) to f 1(0) f i (x )dx  exp(5 L(95t, S t ) d t )  a s  e 1 0 w here L  is
D 0

given by (0.3). The following transformation of ug makes it possible to remove
the  singularity of the drift coefficients. Namely set,

21t̂
1(t , X)= UM' ,  X) exp 9 + s  E bk(T—t, 0)X 11

k=1

Then ul is  a unique solution of an equation

aut, _  1(2.2) g il( T  t ,  e x )  & I I I  

at 2e2 ax'ax3

1  -+ — fbi(T —t, ex) — gii(T —t, sx)bi(T —t, 0)1 .
6 ax '

sx)bi(T— t, O)bi(T—t, 0)—ae i b1 (T— t, 0)bi(T— t, sx)

d   abkA i  — s E a t (T  t, 0 )x k + o n  [0, T ]x  D
k=1 

unaD=o , uf(0, x)=exp {s ki ,  b k (T, 0)xk} o n  D.

We denote by Lt" th e  differential operator defined by the  right-hand side.
Summing up the  above, we have
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Lemma 2 .1 . L e t W(x)=exp (0(0), x k ek ) and u,(x)=P0(x)Ip(X t, 0t) . 6, for
any t G [0, T 11. Define ul(t, x ) as a unique solution of

(2.3) autL ,,,
a t — u i

o n  [0, T ]x  D

d
ut(0, x)=expis E bk(T, 0)x ono n  D

k=1

uat, •) D=0.

Then we have an identity,

u(0) (= AO)) = u 1(T , 0) exp(— T ) .
6 2

Therefore w e can reduce our problem  to prove that ut(T , 0) converges to

f D f i(x)d x exp (1 o
r L(q5t, 9.5t )d t) a s  s .1 0. The m ain  difficulty here is that the

diffusion coefficients change as s  tends to  0, and we tackle this problem  in  the
nex t section.

3. C onvergence of ut

In  th is  section, w e first consider th e  co n v e rg en ce  o f  u t  i n  L 2 ([0, Tlx D)
a n d  th e n  u s in g  th is  L 2 -convergence, w e  sh o w  th e  pointwise convergence of
ut(T, 0) by averaging ut(T, x ) over the  un it sphere. Follow ing is a well-known
result in  th e  theory of partia l differential equations (c.f. [6 ] p . 238).

Lemma 3.1. L et { a i i(x), bi(x), c(x)}  be bounded functions o n  D  with a
bound K  and define an operator

a2

L -=a' 1 (x) +b(x ) 
 a  

-1 - c ( ,)

Then 11L4 - 1 u11L2(D) - constant 1,L2(D) for uECW (D) where this constant depends
only on K  and  4 '  the inverse of  Laplacian with the Dirichlet condition on
al) (i. e, ulaD=0).

Now we introduce uW , x ) as the  solution of the following equation

az4 
at s 2  2 o n  [0, T]x D

lap=0 , ugO, x)=exp {s ki i bk( T, 0)xkl

and consider (2.3) as a  pertu rba tion  o f the  ab o v e  eq u a tio n . S in ce  u t  satisfies
(2.3), w e see from  the  triv ia l identity

aul 1 /1
a t =  e l 2 4+21)ul

s
( 4-E-21)}u1'

that it can  be obtained as the unique solution of
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(3.1) ul(t, x)— uY t, x)= '
,:D 3(

t

2

s  
 , x, G4+2,)lut(s, y )dyds ,

where fi(t, x , y )=exp(21t)P(t, x , y ) and p(t, x , y ) is the fundamental solution of
au I.=  4 u  on D, u(t, • ) D= 0.at 2

we prove a  lemma which gives an asymptotic of solutions depending on a
small parameter e  under some conditions on the coefficients, which are satisfied

L ,,, __1 (1 4 _, .. 1)in the present case. Let Z t 's = be represented as
6 2 2

azaZ "=aii( t , x , e )  a x i a x , +bi(t, x , e) ±c(t, x , e).

Then it follows from Lemma 1.1. and 1.2. that

1(3.2) D a(aii(t, x , e))=D '(—  R ik p(T — t, 0) x l ) ± 0 ( s )

for e a c h  a (  al <2)
abix , E))=Da( (T  t, 0)x i)+0(e)ax 2

fo r each  a( a I 1 )

c(t, x, e)=— bk(T—t, 0) 2+0(0 ,
k=1

holds uniformly with respect to (t, x )E[0, 7]X  D as s 1 0.

Lemma 3 .2 .  The solution u t  o f (2.3) converges to u, in 1,2([0, T1X  D), where
u , is defined by the equation

(3.3)

Here

and

ui(t, x )=u 2(t, x)d- p f,(x)fi(Y )Z 8 .° u1(s, y)dyds

u 2(t, x)-= f f  i(x)d x ,
J D

1 02 abi .  az 2, z= - - 6-Ri0 i 1(T—t,0)x0xt  a x i a x ;  +   a x j  (T— t, 0)x-7
 a x i

1 a
- -  E bk(T— t, 0)2

k=1

P ro o f. For any smooth function f ,  let

GE f(t , x)=

and
Ç113( t , x , z )Z 3.tf(s, y)dyds

Gf(t, x )= Q .
 D  f  i(x)f i(Y )Z"f(s, y)dyds.
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Since th e  kernel /3 can be expanded by t h e  normalized eigenfunctions ff id  of
1— —
2

4 (see § O.). we have

1,(t, x, Y)=fi(x)fi(Y) - F exp (21 -2 o )t fo(x)fk(y) .

Therefore

(GE—G)f(t, x)= t
o D (Z 8 's — Z 3 '')*( f ,(y))f(s , y)dyds f i (x)

± ki 2 f k(X)Yo ex p  ( 21
6 2

2  k  ( t  s ) )d s .
D ( Z ) * f o (y)f(s, y)dy

=If (t, x )+IW , x ) .

First we estimate I .  Since f l  is sm ooth, noting t h e  estimate (3.2), we have
a s  6 1 0,

(Z s . s — Z")*R Y )=0 (6 ) uniformly i n  (s, y ) [ 0 ,  T ]x  D .

So it follows obviously that a s  e 10,

ll /1111,2E0. n.D)= 0(e) Ilf II L2 co, T1 x D) •

1O n the  other hand, f o  is  th e  eigenfunction of - - à- 4 corresponding to 2 k , we see

. D (Z s . €)*{fk(Y)} f(s, y)dy q , (Zs . ) *{4 - 1 4fk(Y)} f(s, y)dy

= - 2 k0k i ) Z i{(Z " ) * - l f  k(y)} f(s, y)dy

Setting

2 1 - 1 k   \e k(s)=-22kho,n(s) exP
/  

 6 2 s) '

gk(s)=I[o.n(s) ,ÇD {(Z s 's) * 4 - i fk(y)} f ( s ,  y)dy, ,

w e have

I gt , , C) = ki 2 f k(x)(e k* g k)(t)

where eo *g o  i s  th e  usual convolution of eo  a n d  g l,  o n  R .  T h e  orthonormality
o f  f f o l  in  L 2 (D ) implies

ll I  11-2 (CO, Tlx D) — E  Mek* gkIli.2(n) .k =2

Note an obvious estimate

1) Generally for a differential operator L, L* denotes the formal adjoint operator of L
with respect to Lebesgue measure.
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2e2 ( (  A l - 2 k
2 k _ 21 1  e x p  e   T ) )

where C, is a constant independent of k  and s. Introduce the operator H =
(Z ")*4 - 1 . Then from Lemma 3.1. and the estimate (3.2), it follows that there
exists a constant C, independent of s  and e  such that

111-1"11L2(D)-L2(D)-c2

Therefore we have

  

2
,p 113 .sf k(Y )f(s, y)dy

1,1̀ k(31)(11 ' .6)* f(s, Y )dY

 

ds E
JO k=2

2

d S  11(1 P f )11• L 2 (D)
0

=(Cz) 2 llf ri_2(CO, T3x

These relations show

1(1 21110  CO, T]xD) E k1121(R)11g ( R)
k=2

(C1) 2 e 4 A l l g k111.2 (R)

. (C1C2) 2 6 4 11f11I-_2(CO, T ix D )  •

Consequently we have

11(GE — G)f IlL2(co, T3x D) 0 (1 )1 ! t■ ,. L 2 ([0 .T ]xD )

and this implies the convergence of G ' to G  in  L 2 ([0, T]x D)-operator norm.
Obviously (I—G) - '  exists as a  bounded operator on L 2 ([0, T ]x  D ), and so does
(I G') 1 for sufficiently small e. Consequently (I—G') - '  converges to (I—G) - i
in the operator norm . Clearly we have

(3.4) u1=(/—G6)-'(uD a n d  u1=-(/—G)'(u2)•

It is not difficult to see that 24 converges to u, as e 0 in L 2 ([0, T ]x  D ) . Now
we can conclude that 24 —> u, in  L 2 ([0, T]x D).

In order to prove the convergence of 24(0), we discuss th e  equation (3.1)
using polar coordinates (r, 0 ) .  Let

(3.5) .f(x)=1,0f( xle)dO fo r  f  EC(D),

where c10 is  the normalized uniform measure on a D .  S in c e  I  is  rotation in-
variant, we can regard f  as a  function of radius r= I x I, which we denote by
the same notation f .  As is well-known (c.f. Spivak [81), if 4 M  is represented
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in  geodesic polar coordinates, the coefficient of

Therefore Z "  has th e  following form :

aZ"=A(t, r, 0 , e) ±Lb'r'Ed-C(t,r, 0, s),ar

w here  Lb' r '' is  a second order differential operator on  aD such  tha t Lb.r•E(1)=0.

Lemma 3.3. ut(t, 0) --> u i (t, 0) as s  0 fo r  any  0 < t_T .

Pro o f . Decompose Z "  into tw o parts;

a214-=A(t, r, 0, s) +C(t, r, 0, E)+(a r '')* (1)ar

D P= LP'  — (Lier
' ' )

*
( 1)

Further let

Gff(t, x)= U 1 , ( t ; s  x, y)(Df.lf(s, y)dyds ,

Gbf(t, x)= N f i ( t , x, y)(DP)f(s, y)dyds

fo r any smooth function f .  Then th e  equation (3.1) can  be  w ritten  as

(3.6) .

Step 1. For any smooth function f, Gbf(t, r)=0 identically.

Indeed,

Gb f(t, r)=f dt9/
ap

1t d 4 1  jo ( t -
2

s  ,  r '0 1,r0 )(D P f)(s ,r0 )r 'd rd 0
0 \  6

t— s 
= 1ot  c is .fliaDtaD f i (  2 ' r'0', r0)cl0 1}(DVf)(s, rO)rn -1-drde .

Since fi(t, x, y ) is  rotation invariant, 13( 
t - 9 s

r '0 ' ,  r O ) d 0 ' is independent of
ap 6"

8 .  Moreover, by th e  definition o f  th e  (*)-operation, we see

DVf(s, r0)d0= 1  Lier•cf(s, re)d0 (ar'e)*(1)f(s, r0)cl0=0 .
al) ED

Therefore w e have

Gbf(t, r)= .çtod s M a I D 13 ( t -E-2s ' r '0
1r0 )dO 'd0}1 D Db.Ef(s, r0)d0}-rn-idr

=0.
Let

2 )  *denotes the adjoint operator with respect to dO.
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1-
1 (0=1 if

=0 if 0 t < 1 ,

12 (0=0 if t 1

=1 if 0 t<1
and decompose G into

G e f ( t ,  x )= ) D i y (  t
 ; 2

s  ) f i (
t

 ; 2
'S x ,  y ) (W f ) (s ,  y )d y d s

f o r  i =1, 2.
Then we want to show

Step 2. There exists a constant Ca (independent o f s) such that

(3.7) 11G,;•.'11.7.2co. n.D-c(to.rixT))5Ca

holds. Also we have

(3.8) G,;-'̀ — G-'"  L2([0, T]xD)--.0 (CC), xi
-
J)

as e and s' tends to 0.

First note that fo r any m ulti-index a, there exists a constant Ca such that

(3.9) frfi(t, x , y )  - _Caf o r  a n y  (t, x, co)xDx.D.

(Recall fi(t, x, y)=exp 21t p(t, x ,  y ) . )  Indeed j3 can be expanded as

fi(t, x, y )=;AexP — (25 - 21)t f  k (x ) f  k (Y )  •

Sobolev's lemma implies that ID" f 5 (4 1  constant 2,7" holds f o r  some integer
m „ . T h is  together with 25 - 2 1 .0  shows (3.9). Therefore there exists a  con-
stant C, such that fo r any s> 0 , (x , y )E D X D  and t s_.0,

t—zs k p , . , ) * J t—z s x ,  y )
Ill

s ) e

holds, where * denotes th e  formal adjoint operator. From (3.10), (3.7) follows
immediately. T h e  proof o f (3.8) is similar so it is omitted.

Note also that we have estimates fo r any ( t ,  x ,  y )E (0 ,1 1 X D X D ,1 jd

(3.10)

(3.11) ap 
 ( t ' 'x  y )ax' 

<or (d +112) exp ( I x —y 12  

c 5 t
with some constant C, (c.f. [51), L et g(t, x, y ) be a G auss kernel in with
covariance C 2 1, namely

(3.12) g(t, x, y)=(27tC 5) - (4 /2 ) e x p (  x  Y  
■ C5t

and define a n  integral operator by
t t—sGsg f (t ,  x )=  1 .

2 ( )(t—s)-(112)d4 g(
t -

2

s  

,  X ,  y )f(s , y)d y
ez D E
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Step 3. There exists a constant C , such that f o r  any smooth nonnegative
function f  vanishing at aD
(3.13) r)1_-_C6eG'gf(t, r)

holds fo r  any e>0  and t (0.71.

Since f  vanishes at aD, we see

x )= ti  D I 2 (  t
2 ) (r4 . ) 413(  t  ,  X ,  y ) f ( s ,  y)dyds.

Moreover (3.11) and (3.12) imply

12 (   t 7 s   ) (1 4 ,  )*  h  t  2 .S

)   

 x  y )

E21 E
) ( t 2

s x, y)

with some constant C 7 f o r  any s, t s, (x , y ) .  From this estimate and the rota-
tion invariance of g, (3.13) follows easily.

Step 4. There exists some constant C, such that

27.(l , r)I C8f o r  any  (t, r) [0, T ]x [0, 1] .

First note an identity

Step 1 implies, averaging both sides in  0,

(3.14)

Since lu ll is a  bounded se t in  L 2 ([0. T ]x D ) , it follows from Step 2 that there
exists some constant C9 >0 such that

1,717-21- EC9H- G;..'ut.

By the positivity o f ul and Step 3, we have

(3.15)

Noting the positivity of the operator GE,„ w e  g e t b y  th e  N-times iteration of
(3.15)

(3.16)u (C 6 E G W (+ C 9 ) -E (C 6 E G O N -1 7 1 .
k= 0

Here, it is clear that there exists a constant C10 such that for any s>0

11Gsg ll CŒ O, nxT))-•C(CO, TD,J)) C IO  •

Let us fix s  such that sC6C1 0 < 1 . Then when we get

(3.17) lim (C6eG)NaT1=0 .
N

(3.16) and (3.17) imply



Onsager-Machlup fu n ction 127

(3.18) ..  11;un i o (C2sG'g ) k
( -2Z-FC2)

1 
11U24-C911CCEO,nx.1)) •1— sC,C,,

It is clear that 7,1. - - >  u ,  everywhere as s 1 0 boundedly. This and (3.18) con-
clude the assertion of Step 4.

Step 5. Combining above consideration, we can show the lemma. By (3.14),
for each fixed 5>0,

(3.19) 110.-711 IIC (LS. nx
-
b)

        

=1174
—

 I li  C (CB, T3x
-
15
.
 )+ (G .P s u i— G 's  742 c (Ea, T3xD)

-V II ut— Ili' 11 cca.nxE)

From Lemma 3.2. and Step 2 it follows that

for a n y  0<s' < s

(3.20) 11G.P̀ u I — u l' C T3x75)
=

 OM a s  s 1 0.

On the other hand, Step 4 and the inequality (3.13) imply

(3.21)1 G  u  II C ([3 , nx D ) C 6 C 8 C ioS  •

However it is easily seen that 74 ----> u 2 in C V , T] xr)), hence combining (3.20)
and (3.21), w e can conclude that at- i l  is Cauchy in C([5, 7 . ] x i))  for any 5>0.
Sinse converges t o  j  in  L 2 ([0 , T ]x D ) by Lemma 3.2., uf has the lim it 77,
in C([6, T ]x .15). Observing 741(t, 0)=u 1(t, 0) and (t, 0)-=u 1(t, 0) (See the defition
(3.5).), we can completete the proof.

4 .  A proof of the thorem

In view of Lemma 2.1. and Lemma 3.3, all w e need fo r th e  proof of the
theorem is to show that

u,(T , 0 )= f 1 (0) .Çp f 1 (x)dx exp(1: L(g5 t , q.52)d t).

By Lemma 3.2. u , satisfies the following equation,

u 1(t, x)=C f i (x) 4 j D f i (x )f i (y)(Zs.°)u 1 (s, y)dyds

where C = )
.

D . f i(y)d y ,

1 52 abi.   a0)x , xt  a x i a x ,  + (T—t, 0)x 5 a x ,

1  c i
0)2 and

G

1b k (t, x )= 0 (t, x )--
2

gi-1(t, x )rt(t, x )-9 .5k(t)+Ek(t, x)
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So w e can p u t u i (t, x )=C(Of ].(x ) fo r some function o f  t ,  and C(t) satisfies

(4.1) C(t)=C-1-ÇtC(s) f3.(y)(Z").f i(Y )dyds...0
D

In  order to calculate th e  right-hand side o f (4.1), w e p repare  the  following
identities

(4.2) 5D y if i(y )  fa iy( iy )   d y 2 1 5 i i

(4.3) 1Dykytfi(y)  aa 2
yf iia(Yy ),  d y _ 2

1  (ôikait + bitaki) ± a iiki

where { a i ikt} is  invariant under any perm utation of i, j, k , 1. Indeed (4 .2 ) is
easily obtained by th e  integration by parts and the boundary condition .filaD=0.
Similarly, we get

Ly ky v i (y )  a
a

2
yf i'a( Yy )

i   d y =  2
1 o i l, ap + 6 , 5 k.0y ,   a fai(yi ) a fa i? )   d y .

However f i  i s  ro ta tion  invarian t. So putting  f i (y )=f i (r)  w e have

Ç 0 ,1   afl(Y)1 ( Y )
ay i a y i  -̀'3' =) D Y

k

 Y  .fi(r) f ( y ) d
r

=constant 1 r n-1-ifar y ch.. oioiok e/do
0 ap

whish completes th e  proof o f (4.3).
W e return  to  th e  caluculation o f (4.1). First w e com pute  the second order

term  o f  Z 3, °:

—  R ik  Ji(T  — s, y i f i( y )  dy6 oy  oy '

1 ,

= - -
6

ic i k / ./ — s, u4-5ik5.7/..+__5i/v+doki
2 2

1= - -
1 2

R(O(T— s)).

H e r e  w e  h a v e  u s e d  t h e  definition o f  t h e  sc a la r  c u rv a tu re  R =R ik f ig n g k i

(=R i0 i1 3 " 5 "  in  th is  case) and the fa c t th a t R 10 i1=— R0i 3 1.
N ext w e proceed to th e  calculation o f th e  f irs t  o rd e r  te rm  o f  Z " .  From

Lemma 1.1 and  1.2 it follow s that

abi abi 1

( t  0)= ( t  0)- - { R I .  1(t)au l +Riki.(t)P i la k l .
ax , a x  i 6

Therefore by com bining this w ith (4.2), w e have

ab,  

ax , (T— s, 0) .f D y if 1(y )_'3 .6çY )

'

1 1= div (b)(0(T— s))+- R(95(T—s)).
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Finally, noting that î,"(t, 0)=b k (t, 0)--yik(t), the  0-th  order term becomes

—
1

b k ( t— s ,o )2 D f i (y)2dy=—  lb(O(T —s))—S(T s)1 ç6 CT — s) •2  k=1

129

Consequently, solving th e  equation (4.1), we get
T 1 1 1C(T)=C exp — —

2  
I b(Sb(s)) - - 9.5(s) .5(3)

—
 —

2  
div (b)(0(s))± j R(95(s))}ds .

Since u i (T , 0)=C(T)f 1 (0), we finish the proof o f th e  theorem.

5 .  A  remark

First we remark here that even very small perturbation of the Riemannian
metric p  changes the exponent L  of the right-hand s id e .  Namely, let C (p) be
a  smooth real valued function fo r each e>0 o n  M, satisfying

C,(p)=1-Fa(p)6 2 +0(6 3) a s  s I 0

uniformly o n  each com pact set in  M  including every its derivative o f  at least
second order. Then we have  the  following asymptotic behavior ;

Pq IP(Xt, çbt) eQ ç b t )  fo r a n y  t < 0 , T J I

=1.1(0) D fi(Y )dy exp 2 1: 2 + T  t( 3 , S 8 )ds+0(1)) a s  r 1 0 ,

where "L(p, v)=1, (P, 0+221a(P).
T h is  can be proved by th e  same method a s  in  th e  c a se  o f  a(p)=- 0, i f  we

1 1use  the  fundamental solution for t y —s2a(g5(T-0)}4 in  p lace  o f that of
V,(9) If, in particular, C(x ) is chosen so that V  (p )  = 1 + 0 (0  at each point

-
j p, q

, 
M, where V,(x) denotes th e  Riemannian v o lu m e  o f th e  ball around x  with

radius sC,(x), then a(p)--  1
6 d ( d + 1 )

 R (p). Therefore this procedure cannot

make th e  scalar ourvature term vanish.
Finally, we remark that if  X , starts with a smooth initial distribution )2(x)dx

(dx : th e  Riemannian measure o f  M), th e  following estimate holds
T 2,T

tq(0)--- sa Yi(g5(0)){ D fi(y)dy}
2

 exp (f o L (03 , k cIt)ex p( c 2  ) .

T his estimate is also easily obtained by th e  same method.
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