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0. Introduction

Let M be a smooth d-dimensional connected Riemannian manifold and 4,
be the Laplace-Beltrami perator. Let (X;, Pp)yex be the minimal diffusion pro-

1 .
cesses on M generated by the operator 74 »+b where b is a smooth vector

field on M. For a given smooth curve ¢=(g;)os:sr On M starting at ¢(0)=g,
the sojourn probability around ¢ up to time T is defined by

0.1) pi(@)=P,tp(X,, d)<e, for all te[0, T

where p is the Riemannian distance.
Main aim of the present paper is to obtain an asymptotic formula for the
sojourn probability as ¢ | 0 and the result we obtain is the following.

Theorem.

02 w@=r.0| sindx exp{~ -+ ("Lig, godr+om)}

as ¢ |0, where L is a function on the tangent bundle TM defined by
©.3) L(p, v)=— = |v—b(p)| 3= =div b(p)+ 5 R(p)
. pv v)= 2 v p p 2 p 12 p .

Here the notion and notations involved are as follows. Let {4, fi} be the
eigensystem for the eigenvalue problem

%Agdf—l-lf:O in D={xeR?: |x|<1}
f=0 on dD={xeR?; |x|=1}

Thus 2, and f, in (0.2) is the minimal eigenvalue and the corresponding nor-
malized eigenfunction of the above eigenvalue problem. | |, denotes the Rieman-
nian norm in the tangent space T ,(M) at p, div (b)(p) is the divergence of b at
p and R(p) is the scalar curvature at p.

This problem is related to some problem in physics such as path-integral
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formulations and the most probable paths of diffusion processes (c.f. [1], [2],
[4], [7]): the function L of (0.3), called the Onsager-Machlup function, is re-
garded as Lagrangian for the most probable paths. In a probabilistic motivation,
S. Watanabe considered the above asymptotic formula to obtain a probabilistic
characterisation of the symmetry (the reversibility) of the diffusion processes
(c.f. [3]). Also, Stratonovich ([9]) considered a similar problem and introduced
a notion of probability functional of diffusion processes. The result in the form
of the above theorem was conjectured for a few years and verified to hold in
Einstein spaces by Y. Takahashi through probabilistic techniques such as Gir-
sanov’s formula and stochastic Stokes’ theorem. Recently his idea was further
extended by S. Watanabe to cover the general case (c.f. Takahashi-Watanabe [10]).

In this paper, we obtain the above theorem by a purely analytical approach :
we first identify the probability p%(¢) with the solutions of some heat equations
with small parameter ¢ and then carry out their asymptotic expansions.

The authors express their hearty thanks to Professor S. Watanabe for his
kind advices.

1. Preliminaries

In this section, we shall make some preparations from the Riemannian
geometry which will be needed in later discussions.

First of all, the notion of normal coordinates will play a fundamental role.
As usual, a normal coordinate with center g M is determined by choosing an
orthonormal basis (e;, es, -, ¢4) in the tangent space T, (M): for p sufficiently
close to g, its normal coordinate (x?, x%, ---, x%) is defined by

p=exp (g, x*es)

Here exp (g, X), XeT (M), stands for the exponential map, i.e. t —exp (g, tX)
is the geodesic c(f) such that ¢(0)=¢ and ¢(0)=X. The components of the
metric tensor, its inverse, the Schwarz-Christoffel symbols and the Riemannian
curvature tensor in the normal coordinate are denoted by g:i(p), g“(p), I'4(p),
Rijri(p) respectively.

Then we have the following fundamental lemma. (c.f. [8])

Lemma 1.1. (E. Cartan)

1
(L.1) gij(p)=5ij+§Run(q)x”x’+0(lx|3)

(1.2) TH(0)= 5 {Reunf@r*+ Rusus @5} +0(|x19

For later use, we shall introduce a system of normal coordinates along a
curve ¢. Let ¢ be a smooth curve and choose an orthonormal basis (s, e, -+,
eq) in TyyM. Define a diffeomorphism @ between some neighborhood U in
[0, TIX R¢ of the curve ¢ — (¢, 0) and some neighborhood V in [0, TIXM of
the curve t — (¢, ¢(t)) by
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O, (x7, x%, -+, x))=(, exp ($(t), x*e(?))

where ¢,(t) (¢,(0)=e,) is obtained as the parallel translate of ¢, along the curve
¢é. It is clear that x=(x?, x%, -+, x%) is a normal coordinate of p=0(, (x?, x?,
-+, x%)) with center g=¢() for each fixed t[0, T]. The components of the
vector field b, the metric tensor, Christoffel symbol, etc, in this normal coordi-
nate @(t, -) for each fixed t<[0, T, are denoted by b'(t, x), gi;(t, x)4(t, x),
etc. For a differential operator @ on V, we denote by § the differential operator
on U transformed by the above diffeomorphism :

oft, x)=0(f- NP, x)).
We shall calculate the operotors b, 4,, and 4/6¢ in the following lemma.
Lemma 1.2.

5=bi(l‘, x)%,

1 ij, 0 ij k 0
dy=g"(t, X)~3W—g i, O, X)ax—,,,
o 0 ‘i i 0
ot - ot - {¢ (t)+5 (t, JC)} oxt

ji(l‘%fi(_t)(qsi(u) is the i-th component of ¢(u) in the local

where ¢'>i(t)=lirr‘1

coordinate @(t, -).) and €'t, x) is a smooth function satisfying

(1.3) max |ei(¢, x)|=0(|x|?) and
0stsT
(1.4) {)r:ztig(r P ei(t, x)|=0(lx|) for any i and k.

Proof. Define a function x*(t, p)¢<[0, T], pEM) by an equation
(1.5) exp (§(), x*(t, plex))=p.
Then we have the 7-th component of b in the base ¥

=b(x"| 1zt 2=z,  (x': i-th coordinate function in R?)
=b(x*(t, P lt=tg.p=p,  (Do=eXP ($(1), xbes(to)))
=b(t,, xo) (by the definition).
Here it is evident that the %—component of b is identically zero. The proof
for 4, is similar to the above. Next set
Dt i,

Then we see easily
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bl 0
c(t, x)—w(f)— —at—(l‘)—l .
Moreover note

1.6) 4, )= ()l

=0 (x5, Plemty (p=exp (B, 2hex(t).

In the normal coordinate @(f,, +), a geodesic (x%(¥)) from (a®) with a velocity
(BY) satisfles the following ordinary differential equations

. 22 iy
D Py wyiw

x¥0)=a?, y'(0)=p".

We denote by x%(u, @, B) and y*(u, @, B) the above solutions. Then the equation
(1.5) is equivalent to the following

(1.8) pi=x'1, @), x*t, plexd).

On the other hand, e,(¢) satisfies in the normal coordinate @(t,, -)

LD __ringorein 4270
eito)=0}
deit)

Since I'in(6(,))=0, we have T l:=:,=0. Hence noting also ei(t,)=08}, ¢*(t.)

=0 and x*(,, p)zx” we get

(1.9) 0= a 5 (1 0, (x NG t)+ =77 (1 0, (xMN#(ts, p)

aﬁ
by differentiating both sides of (1.8) by ¢ and setting t=t,. Since I'}(¢(t,)=0,
it is easy to deduce from (1.7) that

(L.10) %a, 0, (x*)=81+0( |
=

S5 (L 0, G )=ajH0C] 1Y
Consequently

di(ty, x)=—4't)+0(|x]%),
which implies (1.1). we can see by tracing the above calculation carefully that
(1.2) is also valid.
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2. A reduction of the theorem

We now consider a space-time process (t, X;). Its generator is %—l—%—du

+b. Let o=inf{t=0: (¢, X,)&V} and (tAo, )?M,):(D"(t/\o, Xins). Then by
Lemma 1.2 the local generator of X, becomes

0 1 0? - 0
W"'?g”(t, X)W +bi(t, X)W where
2.1) bH(t, x)=b*(t, x)—%g”(t, O, x)— O +e, x)

Let ¥(x)=exp (4(0), x*e4(0)) and u.(x)=Py {p(X:, g)=<e, for any t€[0, T}.
Then we have by a property of normal coordinate

u(x)=P, . {sup | X,|<e¢}.
0stsT

where 130,, is the distribution of X . in C([0, TIXU) starting from x at time O.
Let ui(f, x) be the solution of the following initial boundary problem :

dus (1, * ., 5\ .
8 {F 8T —t, D) BT —t, ) us on [0, TIX {|x|<e)
ust, )ap=0, us0, x)=1 for xe{|x|<e}..

Then, as is well known, the hitting probability u.(x) coincides with u§(T, x).
To prove the theorem, it is therefore sufficient to see the convergence of
T .
exp(.%l)ug(T’ 0 to fl(O)SD fi(x)dx exp(SoL(qSt, godt) as €10 where L is

given by (0.3). The following transformation of u§ makes it possible to remove
the singularity of the drift coefficients. Namely set,

th

62

d
uit, x)=ul(t, ex) exp{ +e k}iB"(T——t, O)x”}

Then u§ is a unique solution of an equation

0%us
ox*0x?

ou§
ot 2¢?

(2.2) g (T—t, ex)

ous

+%{51(T—t, ex)— g (T —t, ex)b(T—t, ) -

+{%g”(T—t, ex)b (T —t, 0)bX(T —t, 0)—0:,61(T—t, 0)6/(T—t, ex)
k=1

k
—eE—a;—t—(T—t, 0)x"+j—;}ui on [0, TIxD

wilop=0,  us(0, x)=exp{ekZZ)15”(T,0)xk} on D.

We denote by L*¢ the differential operator defined by the right-hand side.
Summing up the above, we have
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Lemma 2.1. Let ¥(x)=exp ($(0), x*er) and u.(x)=Py {p(X:, g)<e, for
any t€[0, T}, Define ui(t, x) as a unique solution of
ous

(2.3) o

=L"ys on [0, TIXD

u3(0, x)=exp{e§)lb”(7", O)x”} on D
ui(t, )lap=0.

Then we have an identity,
A
u.(0) (= (@) =ui(T, ) exp(— - T).

Therefore we can reduce our problem to prove that uj(T, 0) converges to
T .
fl(O)SDfl(x)dx exp (SOL(¢" ¢¢)dt) as ¢ | 0. The main difficulty here is that the

diffusion coefficients change as ¢ tends to 0, and we tackle this problem in the
next section.

3. Convergence of u}

In this section, we first consider the convergence of wu${ in L%*[0, TIXD)
and then using this L2-convergence, we show the pointwise convergence of
ui(T, 0) by averaging ui(T, x) over the unit sphere. Following is a well-known
result in the theory of partial differential equations (c.f. [6] p. 238).

Lemma 3.1. Let {a¥(x), b'(x), c(x)} be bounded functions on D with a
bound K and define an operator

» 0? ; 0
= tJ A A i g -
L=a"(x) 5 a5 b (x)— 5 +elx)
Then || LA~ ulp2cpy Sconstant |u ey for ueC3(D) where this constant depends
only on K and 47! is the inverse of Laplacian with the Dirichlet condition on

0D (i.e, ulsp=0).
Now we introduce u§(t, x) as the solution of the following equation

ous

ot

- %(—;—A—Hl)u; on [0, T]xD

uglp=0, ui(0, x)=exp {s £ BX(T, 0)x*}

and consider (2.3) as a perturbation of the above equation. Since u} satisfies
(2.3), we see from the trivial identity

R R

that it can be obtained as the unique solution of
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6D i, v-ust, 0={'{ H(5 %, y){Le= S5 4+ uits, yvas,

where p(t, x, y)=exp (A,1)p(t, x, y) and p(t, x, y) is the fundamental solution of
ou 1
—at——idu on D, u(t, ')|ap—0.

we prove a lemma which gives an asymptotic of solutions depending on a

small parameter ¢ under some conditions on the coefficients, which are satisfied

in the present case. Let Z"E:L"S—elz(%d—l—,h) be represented as

Zhe=a¥(t, x, €) =—=— PP o

57 +bit, x, s)a ~+clt, x, ).

Then it follows from Lemma 1.1. and 1.2. that
3.2) De(a¥t, x, )= D*(— g RusaT—t, 0)x*x')+-0(e)

for each a(|a|=2)

1
6

De(bi(t, x, e))=D“( ab

(T, O)xf)+0(e)
for each a(ja|=1)

t, x, == 5 BONT—1, 0F+0(e),

bof =

holds uniformly with respect to (¢, x)e[0, T1XD as ¢ |0.

Lemma 3.2. The solution u$ of (2.3) converges to u,in L¥[0, T1X D), where
u, 1s defined by the equation

3.3 wtt, D=ult, D+ | AEOADZ s, y)dvds
Here '

us(t, x)=f1(x)SDf1(x)dx )
and

1 2 i
Zt'oz—-—6-Rikﬂ(T—t, O)x”x a aia 7 + gbj (T t O)X a

1 g, .
-5 S b¥(T —t, 0)?
k=1
Proof. For any smooth function f, let
t¢ ./ t—s
G, x)=SOSDP(5—2, x, z)Z"‘f(s, y)dyds
and

Gf, x)=S:SDfl(x)fl(y)Z”f(S, y)dyds.



122 T. Fujita and S. Kotani
Since the kernel p can be expanded by the normalized eigenfunctions {f,} of

——;—A (see §0.). we have

B, %, )=FDAHG)+ T exp =20t faDf4().
Therefore
(G=G)ft, )=\ [ (@~ Z* Y £NGs, dyds fi(x)
+ & 1) [l exp (LM —9)ds( (229410ss, )y
=13t D)+, ©).

First we estimate Ii. Since f; is smooth, noting the estimate (3.2), we have
as ¢|0,

(Z55=2Z%%*f1(y)=0(¢e) uniformly in (s, y)€[0, T1XD.
So it follows obviously that as ¢ 0,
1751l z2cco. 735 2> =0(E)| fll 2 cco, T35 0> -

On the other hand, f, is the eigenfunction of —%A corresponding to A;, we see
[, @0 irson s, ndy={ (z =250 s, )

=—22kSD (Z5 A F )} fGs, 9)dy

Setting

A—A
e3(5)=20aTn,r3) exp (),

&)= k)| (24 £ 1G5, 9y,
we have

i(t, 0= 3 fax)es*gn)t)

where ¢,*g, is the usual convolution of ¢, and g, on R. The orthonormality
of {f:} in L*D) implies

-]
175 22co, 7ax 2> = ijzllek*gklI f2m -

Note an obvious estimate

1) Generally for a differential operator L, L* denotes the formal adjoint operator of L
with respect to Lebesgue measure.
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lewlLrcm= 7%(1—6Xp (L:%T))
<C,¢?

where C; is a constant independent of 42 and e. Introduce the operator H®¢=
(Z*#)*4-*, Then from Lemma 3.1. and the estimate (3.2), it follows that there
exists a constant C, independent of s and ¢ such that

| H* |l 2crr2emy =C
Therefore we have

Sigdtaw= 5 as| | 710016, 9ds|

S:ds 22

[, sy fis, ydy|

T
<[ asirors, s

=(C*l f L2co. 7321
These relations show

-]
151 22cco. 7ax 0 = ?:‘2 leelZicmllgell22cas

=(Cyre* ’;:)ankuium

Z(C.Co)%e!l fll Faco, TaxDy -
Consequently we have

(G —=G)fll 2o, 73x 2y S0 fll L2cco. 71400

and this implies the convergence of G° to G in L*[0, T]X D)-operator norm.
Obviously (/—G)~! exists as a bounded operator on L*[0, T]X D), and so does
(I—G*9! for sufficiently small e. Consequently (I—G*)™! converges to (/—G)™!
in the operator norm. Clearly we have

(3.4) wi=I—G N us) and wu;=J—G) (u,).

It is not difficult to see that u§ converges to u,as e | 0in L%[0, T]XD). Now
we can conclude that u§{— u, in L*[0, T1XD).

In order to prove the convergence of u{(0), we discuss the equation (3.1)
using polar coordinates (», ). Let

3.5) f(x)=San(lxl0)d0 for feC(D),

where d@ is the normalized uniform measure on 9D. Since f is rotation in-
variant, we can regard f as a function of radius »=|x|, which we denote by
the same notation 7. As is well-known (c.f. Spivak [8]), if 4, is represented



124 T. Fujita and S. Kotani
. . . . o
in geodesic polar coordinates, the coefficient of a1 equal to that of 4=4zd.

Therefore Z*¢ has the following form:
Zbe=AQ, 7, 0, e)%—i—Lé“—l—C(t, r, 0, ¢,
where Lg™¢ is a second order differential operator on D such that Lj™¢(1)=0.
Lemma 3.3. ui(t, 0) —> u,(¢, 0) as ¢ | 0 for any 0<t=T.
Proof. Decompose Z%* into two parts;
Di=At, 7, 0, e)%Jrca, 7, 0, &)+(Lim*(1)

Diye=Lime—(Lm(1).
Further let

Gefte, = [ p(- %, 9)DEISCs, y)dvds,

t—s

Gift x)=S‘S B(—=—, x, »)(Dyfs, ydyds

6. ) o)p 52 » Xy Y [4 y y)ay

for any smooth function f. Then the equation (3.1) can be written as
(3.6) ui=us+Giu+Ghus .

Step 1. For any smooth function f, Ggf(t, r)=0 identically.

Indeed,
G, n=_ao/(as(|_s(-=, ro", r0)DisXs, royn-rdrds

:S:dsS:SaD{SaD[J< t_zs 70", 70)d0’}Dy*f)s, rO)r*-drdo .

. " . . . . / 1—s ..
Since p(¢, x, y) is rotation invariant, San‘b(a_z’ r'e’, rﬁ)dﬁ’ is independent of

8. Moreover, by the definition of the (*)-operation, we see
SaDDé‘f(s, ra)dezgaDLé""f(s, n9)d0—SGD(Lgf»E)*(l)f(s, r6)d0=0.
Therefore we have
—_ t 1 . t—
Giftt, r)=SodsSoS{SaDSODp( —, r’ﬁ’rﬁ)dB’dﬁ}{SaDDé'Ef(s, r0)do}r-dr

=0.

Let

2) xdenotes the adjoint operator with respect to d@.
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L=1 if =1
=0 if 0=i<1,
IL,H=0 if t=1

=1 if 0=t<1
and decompose G: into

Goft, =] J () )0 s, s

3

for /=1, 2.
Then we want to show

Step 2. There exists a constant C; (independent of €) such that
3.7) 1 G#ll Lecco, rxp-ccto. 135> SCs
holds. Also we have
(3.8) G — G | Lecto. 11 pr~c 00, 7350 —> 0
as € and ¢’ tends to 0.
First note that for any multi-index «, there exists a constant C, such that
(3.9 |D*p(t, x, y)|=C,  for any (¢, x, y)€[1, c0)xDXD.

(Recall p(t, x, y)=exp At p(, x, y).) Indeed p can be expanded as

B, x, )= B exp—(a— At Fa(D)0) -

Sobolev’s lemma implies that |D*f,(x)| <constant A;* holds for some integer
mq. This together with 1,—2,=0 shows (3.9). Therefore there exists a con-
stant C, such that for any ¢>0, (x, y)€DXD and t=s5=0,

1= N, psovgnf 1S
(3.10) () ra(-

62

) X, y)‘é&

holds, where * denotes the formal adjoint operator. From (3.10), (3.7) follows
immediately. The proof of (3.8) is similar so it is omitted.
Note also that we have estimates for any (¢, x, y)e(0, 1]JxDxD, 1=;<d

_a_P_ 54-(d+1/2) _ |x—y |?
3.11) PP @ x, y)|=C% exp( —Ci ),

with some constant C; (c.f. [5]), Let g(t, x, y) be a Gauss kernel in R¢ with
covariance C,;I, namely

(3.12) glt, %, 3)=@2riC) @ exp(— L2

and define an integral operator G by

11—

S N
e?

)(t—s)“””dsgpg( t; , X, y)f(s, ydy

Giftt, 0={ 1
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Step 3. There exists a constant C, such that for any smooth nonnegative
function f vanishing at 0D

(3.13) |G, )| =Coe Gy f, 1)
holds for any ¢>0 and t<(0. T].
Since f vanishes at 0D, we see

t

Gueft, = { 1(- ) yp(F5 x 9) s, 3)dyds.

Moreover (3.11) and (3.12) imply

—S
e?

e R | e A G R I ).

g’ ¢’

with some constant C, for any e, t=s, (x, y). From this estimate and the rota-
tion invariance of g, (3.13) follows easily.

Step 4. There exists some constant Cg such that
|%i(t, )| =Cs  for any (¢, r)e[0, TIX[O, 1].
First note an identity
ui=ui+Groui+Grrui+Goui.

Step 1 implies, averaging both sides in 8,

@.14) ‘ wi=us+Grui+Grus

Since {u¢} is a bounded set in L%([0. T]x D), it follows from Step 2 that there
exists some constant C,>0 such that

uiSus+Cot-GFoul.
By the positivity of u{ and Step 3, we have
(3.15) Ui Sus+CotCoe G5(ul) .

Noting the positivity of the operator G4, we get by the N-times iteration of
(3.15)

N — —
3.16) ui= go(ccst)”(u§+Cs)+(Ceer)Nui .

Here, it is clear that there exists a constant C;, such that for any ¢>0

1GSlle o r1xBy—c o 71 x5y =Cio

Let us fix ¢ such that ¢CiC;,<1. Then when we get

(3.17) k’}\_'.n (CoeGHY¥ui=0.

(3.16) and (3.17) imply
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3.18) w=Tm 2 (CoeGo i+Cy)

1 —
= 1—eCsCro llu5+Colle o, 143> -

It is clear that u§ —> u, everywhere as ¢ | 0 boundedly. This and (3.18) con-
clude the assertion of Step 4.

Step 5. Combining above consideration, we can show the lemma. By (3.14),
for each fixed 6>0,

(3.19) les—us llo s, rx
= us—us loas, 1+ |G ui—Gr ug e s, 1145
+HIGE U —GF us oo 114> for any 0<e'<e.
From Lemma 3.2. and Step 2 it follows that
(3.20) IGFui—Grui leas.rm=01) as 0.
On the other hand, Step 4 and the inequality (3.13) imply
(3.21) G uill oo, 7335y SCeCsCrok .

However it is easily seen that ui — u, in C([5, T1x D), hence combining (3.20)
and (3.21), we can conclude that {u%} is Cauchy in C([d, T1x D) for any §>0.
Sinse u; converges to u, in L% [0, TIx D) by Lemma 3.2, uf has the limit u,
in C([6, T1x D). Observing ui(t, 0)=u,(t, 0) and u,(t, 0)=u,(t, 0) (See the defition
(35).), we can completete the proof.

4. A proof of the thorem

In view of Lemma 2.1. and Lemma 3.3, all we need for the proof of the
theorem is to show that

u(T, 0=0 fi0dx exo(] Lige, dodr).

By Lemma 3.2. u, satisfies the following equation,
t
0

utt, D=CHEO+ ]| ADAGEZusls, y)dyds

where c=SD Ay,

s,o—_i Nz k LL 3_5’_ — J 9
VAR 6 R‘Lk]l<T S, O)X x oxtox’ + ox? (T t O)X oxt
—%éﬁw—a 0 and

br@¢, x)=b*(s, x)—le-g”(t, )4, x)—qé”(t)-l—e"(t, x).
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So we can put u;(t, x)=C()f(x) for some function of ¢, and C(¢) satisfies
t

@ co=C+{co| £ @ )dyds.
- D

In order to calculate the right-hand side of (4.1), we prepare the following
identities :

.2 [yt >af‘(y) dy=— 509
4.3) S yHf(y) fl‘;yz _ (51k51!+5115k1)+011kl

where {a'/*!} is invariant under any permutation of 7, j, k, /. Indeed (4.2) is
easily obtained by the integration by parts and the boundary condition f;|sp=0.
Similarly, we get

1 b . . ofi of.
S ’f(y) fla(ya dy= (51k511+5115k1)_s kyl J;J()ZV) .5;3’)

However f, is rotation invariant. So putting f,(y)=f(r) we have

0f(y) 9f AN APV o
SDy"y’ g;y) g;y) d —S y”y’fl(r>y7fl(y)y7dy

:constantS:r"“ f{(r)zdrSaDﬁ"ﬁfﬁ”H’dﬁ ,

whish completes the proof of (4.3).
We return to the caluculation of (4.1). First we compute the second order
term of Z%°:

1 1
—gRikﬂ(T—S Sykylf(y) fla(i) d

1 1 s . )
=5 Rou(T—s, 0f 3805714 2 3107+ a'341}

1
=— ER(q&(T—s)) .

Here we have used the definition of the scalar curvature R=R;.;g'g"’
(=R;:;0"0% in this case) and the fact that R;p;=—Rij.

Next we proceed to the calculation of the first order term of Z%° From
Lemma 1.1 and 1.2 it follows that

ab b

O, 0=-22 1, O (R0 o059} 5%.

Therefore by combining this with (4.2), we have

-ab‘l.T—s,mS %(y)—af‘—(yl dy

= — 2 iV OXHT— )+ ¢ RGT—s)).
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Finally, noting that b*(t, 0)=b*(t, 0)—¢3"(t), the 0-th order term becomes
1 4., 1 ;
— 5 B0k, 0¢] o) dy=—5 16T =N =T =) Jar-or .
Consequently, solving the equation (4.1), we get
T 1 s, 1 1
C(T)=Cexp (So{— 5 [b(@()—P($)| Feor— 7dw ) p(sH+ ﬁR(sb(S))}dS .

Since u,(T, 0)=C(T)f:(0), we finish the proof of the theorem.

5. A remark

First we remark here that even very small perturbation of the Riemannian
metric p changes the exponent L of the right-hand side. Namely, let C.(p) be
a smooth real valued function for each ¢>0 on M, satisfying

Cp)y=1+a(p)e’+0(e®) as |0

uniformly on each compact set in M including every its derivative of at least
second order. Then we have the following asymptotic behavior;

Py{p(X:, p.)=eC.(¢)) for any t€[0, T]}

LT
52

+[ L(gu godstom) as e 10,

=HO) fi(»)dy exp (~

where L(p, v)=L(p, v)+24:a(p).
This can be proved by the same method as in the case of a(p)=0, if we

1
?A.

=140(¢®) at each point¥p, ¢

use the fundamental solution for {%—sza(qf'(T—t))}A in place of that of
Vg
V(p)
€M, where V. (x) denotes the Riemannian volume of the ball around x with

1
6d(d+1)
make the scalar ourvature term vanish.
Finally, we remark that if X, starts with a smooth initial distribution 5(x)dx
(dx : the Riemannian measure of M), the following estimate holds
AT
&’ )

If, in particular, C.(x) is chosen so that

radius eC.(x), then a(p)= R(p). Therefore this procedure cannot

w)=s70O{( iy} exp ([T L dodnyexn (-

This estimate is also easily obtained by the same method.
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