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§1. Introduction

The stepping stone model was first proposed by M. Kimura in 1953 for the
purpose of investigation of local differentiation in geographically structured po-
pulation [6]. Since then, many biologists have extensively studied this model.
They have mainly discussed the genetic correlation of gene frequencies between
colonies, the probability of identity and the rate of convergence to the stationary
state. We refer to Sawyer [14] for mathematical treatment. But most studies
have been made for the discrete time model. On the other hand the continuous
time model was defined as an infinite dimensional diffusion process, which is
more tractable for analysis of stationary states and limiting behaviors [15][16].

From a viewpoint of probability theory we are interested in the continuous
time model since it provides a concrete and analyzable example of infinite
dimesional diffusion processes. Also we can regard the continuous time stepping
stone model as a diffusion-type model in the theory of infinitely interacting
systems.

Let us consider a multi-allelic locus with A,, ---, A; where d is a positive
integer =2. Let S be a countable set. Each element k2 of S corresponds to a
subpopulation, which is called a colony. Denote by (x}, ---, x¢) the gene fre-
quencies of the A,, .-+, A4 at colony k, thatis x}=0, ---, x£=0, x}+ -+ +xf=1.
Usually we suppose that the change of gene frequencies is caused by random
sampling drift, mutation, selection and migration among colonies.

Let Xo={x={x%}; x%=0, x}+ - +x£=1 for all keS}, which is equipped
with the product topology. We consider a time evolution of gene frequencies
as a diffusion process on Xg.

Let
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d
Ellq,,zo for all 1=¢=d, {sp}ispsa is a real d-vector, and {¢;i}; ies is a matrix
5=
on SXS satisfying ¢;;=0(j#7) and X ¢;;=0 for all 7 S.
Jjes

Genetically {1,p}, {sp} and {g;;} stand for the intensities of mutation, selec-
tion and migration respectively.

Let C(X;) be the set of all continuous functions on X,; which is a Banach
space with the uniform norm, and let C}X,) be the set of all such feC(X,)
that depend only on finitely many coordinates and are twice continuously dif-
ferentiable.

We assume

(1.2) sup |gu| <—+oo.
ies

Then it will be shown in §2 that there exists a unique strongly continuous
contraction semi-group {T'#} on C(X,;) such that

(1.3) T#f=0 for any feC(X,;) with f=0, and T¢l=1,
and
1.4 T;’f—f:S:TgAdfds for any feCHXq).

Furthermore {T¢} defines a diffusion process (2, &, P,, {Z.} ; x(t)) on X, which
we call a continuous time stepping stone model with d alleles.

Let @(X,) be the set of all probability measures on X, equipped with the
topology of weak convergence. Since X, is compact P(X,) also is compact.
Denote by {T¢*} the adjoint semi-group on P(X;) induced by {T¢} and denote
by S. the set of all stationary states, i.e. Sg={peP(X,); Ti*u=p for all
t=0}. Then S, is a non-empty compact and convex set. (Sg)e,: denotes the
set of all extremal elements of S;.

In the previous paper [15] we studied diallelic models. In particular we
obtained a complete description of extremal stationary states and some ergodic
theorems. In the present paper we shall be concerned with multi-allelic models.

In §2 we shall construct a class of infinite dimensional diffusion processes
including infinite-allelic stepping stone models. It should be noted that Ethier
also constructed such processes by making use of the semi-group method [1].

In §3 results on diallelic models will be summarized for the subsequent
need. In §4 we shall present a complete description of extremal stationary
states for multi-allelic models with mutation.

In the last two sections we shall study the scaling limit of the fluctuation
processes of stepping stone models. Let (2, &, P, {F} ; x()={(xi(®), ---, xf@O)})
be a multi-allelic stepping stone model without mutation and selection. Let S
—=Z77: the r-dimensional integer lattice space. Then x(¢) is regarded as a
vector-valued measure process on R” such as

(1.5) kg‘ér(x/‘z(t%E[x}e(t)l o, 2R (O—ELxE®D)-im
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where 0, stands for the point-mass at x€R”. In §5 it will be shown that
taking a scaling limit

(1.6) A rane keEZr(xi(lzt)—E[xi(lzt)], o 2f (A= ELx (A1) 0uer 2o

it converges as 1 — +oco to a é)s’(RT)-valued Ornstein-Uhlenbeck process NV,=
(N}, -+, N#) defined by

an Y dNz= i}aquW‘H—LN?dt p=1, -, d,
=
d
with a suitably chosen initial condition N, where (W}, ---, W) is a @ S(R")-

valued standard Wiener process, {agp}isq psa iS @ constant dXd-matrix and L
is an elliptic differential operator determined by {g;;}. In §6 we shall present
some variations of scaling limits.

For such problem of scaling limits we refer to Holley-Stroock [4], [5], who
discussed on infinitely many branching Brownian particles and various kinds of
infinitely ineracting systems. We also refer to a recent work by H. Tanaka
[19], who presented a rigorous proof on a scaling limit of the fluctuation pro-
cess for Kac’s one-dimensional model of Maxwellian molecules in statistical
mechanics.

§2. Constraction of stepping stone models
In this section we shall construct infinite-allelic models. Let X.={x=
(%%} 1. p1; 2520 and ilxqgl for each i€S}, and let Xo={xe X.; 3 x3=1
p= »=1

for each 7S}, which are equipped with the topology of the component-wise
convergence. Then X. is compact but X. is not so.
Let us consider the following differential operator on X,

21) A= 3 3 x8Bpe—xDDs pDi o+ D S 0%0)D:,  DA®=CH(X.),

1€ES p=1g=1 t€S p=1

where D; ,= and Cj(X..) denotes the set of all C%-functions on X.. depend-

0x®
ing only on finitely many coordinates.

In order to construct a A>=-diffusion process on X. we shall consider a
martingale problem. Let 2=C([0, o), X..) be the set of all X.-valued continuous
functions defined on [0, c0). For each t=0 we define x(1); 2 — X. by x(t: w)
=o(t), and let F (F,) be the o-field generated by {x(s:w); s=0}({x(s: w); 0=
S<i}).

Let xeX.. A probability measure P on (2, &) is called a solution of the
(Xw, Aw, X)-martingale problem, if

2.2) P[x(0)=x]=1, and
23  ( f(x(t))—S:A”f(x(s))ds, {@.}) is a P-martingale for any feCX(X.).
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Condition [A]

2.4) sup sup 3 [b2(x)| < +oo,

€S rEX o P=1
(2.5) b3(x)=0 if xeX. and x3=0 (€S, p=1),
(2.6) there exist positive constants {C;} satisfying

| ilbli(x)lécill—— ‘%1”' for any xeX., and i€S.
p= p=

0

Let J={a={a®; a?€Z,, la|=3 T ai<+co}, and for each ac ] we
i€S p=1
Y4

denote f,(x)= le'[ ﬁ(x’%)“i.

1€S p=1
Condition [B]

b’i(x)zﬁZJlAﬂi(ﬂ)fﬁ(x) (b2(B)E R)), which satisfy

2.7 supsup ¥ |6%(B)| <400,

ieS pz1 ped
and there exists a positive integer k such that
(2.8) b2(B)=0 for any BE] with |B|=x.

Then, we obtain the following.

Theorem 2.1. Let x& X.. Under the conditions [A] and [B] the (X., A%, x)-
martingale problem has a unique solution.

As to existence of a solution it suffices to show that there exists a solu-
tion of the following stochastic differential equation,

2.9) AxT(0= 2 apxO)d BO+ (D)t
x50)=x%,

with a subsidiary condition

(2.10) x2(t)=0 and glx’i(t)zl GeSs, p=1),

where {B2(f)}ics. pz1 18 an independent system of one-dimensional standard
Brownian motions and {a,,(x,)} are continuous functions defined on {(xi, -
x8); x1=0, -+, x3=0, x}{+ - +x7=1} satisfying

’

@.11) ’ﬁi’am(xi)aqr(xi):xe(am— ) (p q=D).

However by the same argument as Theorem 3.1 of [16] we can show that
(2.9) has a solution satisfying

(2.12) Plx(t)e X.. for all t=0]=1.
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So, it is sufficient to see
(2.13) Plx(t)e X.. for all t=0]=1.

For this, let z;,(t)= ilxli(t). It follows from (2.6) and (2.9) that
=

@.14) E[l—zi(t)]éCiS:E[l—zi(s)]ds GeS).
Also, since it is easy to check that z(t) is continuous in ¢ P-a.e., we obtain
(2.15) P[z;(t)=1 for all t=0]=1

For the proof of uniqueness we modify the Feynman-Kac theorem.

Lemma 2.1. Let I be a countable set, Q={qi;}i.je; be a matrix on IXI
satisfying ¢:;=0(@+#7) and X qi;=0 for any i€l, h(i) be a function on I, and
JEI

u(t, 7) be a function defined on [0, c0)XI. Suppose that
(i) u(, ), Qu, ))= X qi;ult, j) and h@Du(t, i) are bounded on [0, c0)X I,
jer

(ii) the minimal Markov chain on I generated by Q is conservative which
is denoted by (2, B, P;; &)ier,
(iii) there exists a positive number t, such that

(2.16) Ei[exp(S:°h+(Eu)du)]<—|—oo for any iel, and

(iv) u(t, #) is C'-function of t€[0, c0) for each i€l and satisfies the follow-
ing equation,

(2.17) 7dt—u(t, D=Qu(t, )+h@)ult, i), iel.
Then for any 0=t<t, and any t,=0
2.18) u(t+t, 0= utts, &) exp([ hedu) |

holds for any i€l. Thus, {u(t, )} is uniquely determined for given Q, h, and
u(0, -).

Proof. It suffices to show (2.18) for t,=0. Setting u;(z’)zS:e‘“u(t, 0)dt
for each 21>0, it follows from (2.17) that

(2.19) Au (D) —u(0, )= 2 qisu ANFh@Qua@), el
Je

Let {I,} be a sequence of finite subsets of I satisfying I, I and set

h(7) if el,,
(2.20) h(i)=
0 otherwise .

Then for any 41>0

1) h*(i) =max{h (i), 0}.
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(2.21) (A= Q—ha)u()=u(0, )+wiG),

where w?(@)=(h—h,)@)u (). Since u(0, 7), h,(#) and w}() are bounded on I, it
holds by the Feynman-Kac theorem (cf. Lemma 2.3 in [17]) that for any A>||A}|.

2.2 wi= e B w0, £+ wie exp ([ ha@ndu)]ar
=T B w0, e exp ([ hatendu) |at

-I—S:e““(S:Ei[wn(t—s, £,)exp (S:hn(fu)du)]ds)dt ,

where w,(t, )=(h—h,)@)u(t, 7). Accordingly we have by the uniqueness of the
Laplace transformation

2.23) u(t, i):E,-[u(o, £.) exp (S:hn@u)du)]

+S:Ei[“’ﬂ<f—sr §:) exp (S:hn(én)d u)]ds

for any 7€l and t>0. Noting that {w,(t, 7)} are uniformly bounded and
1im w,(t, 1)=0 for each (¢, /)e[0, o)X I, it follows from the assumption (iii) and

-0

Lebesgue’s convergence theorem that

(2.24) limS:Ei[wn(t—s, £,)exp (S:hn(fu)du)]ds=0

n—0c0

for any t<t, and 7=/. Hence, we get

t
@25 z'):Ei[u(O, £,) exp (Soh(eu)du)] for any t<t, and icl.
Therefore the proof of Lemma 2.1 is completed.

For each a<J let us denote by @ a copy of @« with |&@|=|«al|, and define
(@=a. Let J={a; acJ} and J*=JUJ. For ac] we define fa(x)=—fa(x).
If a?=0 ((J, ¢)#(@, p)) and af=1 we denote a by &?.

Let ¢ (0<c<1) be fixed and set @.(x)=c'*'f,(x) for each a=J*. Then we
can easily see the following.

Lemma 2.2.

(i) A°°¢a(x)=ﬁeZJ‘Qa,p¢p(x)+h(a)¢a(x) for each acJ*,

where for ac]

2) lIkllo=suplh ()]
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ca¥al—1), if B=a—e},
afe bRy, if f=a—eitr,
Qu.p={ ake™"bY (1), if f=a—eit7,
— 3 Beatar-1)—3 Sar i nbul, if f=a

0, otherwise,

nay=— 5 (Se7)((Zar)-1)+e g 3 akar—D

i8S p=1 €8 p=1

+ 3 S ar X bag)l,
i1€ES p= TEJ

p=1

and for a€] Qz s=Q..3 and h(@)=h(a).
(ii) There exists a positive constant C satisfying hMa)=C|a| for any ac J*.

Let (2, B, P,; a,, t<{) be the minimal Markov chain on J* generated by
Q=1{Q..5}, where { is the explosion time. Then, it is not hard to see that
P, [{=+0o0]=1 holds for any a<J*. Furthermore we have

Lemma 2.3. There exists a positive number t, such that
(2.26) Ea[exp(S:°h+(au)du]<+oo for any acJ*.

Proof. Let us introduce a conservative Markov chain (2, @, P,: N,) on
N={], 2, 3, ---} generated by the following infinitesimal matrix

nL if m=n+s,
(2.27) Ry m={ —nL if m=n,
0 otherwise,

where L=sup sup 3 ¢'"'"'|5%(7)|. Then, by making use of a coupling process
eSS pzl red

and Lemma 2.2 we see
(2.28) Ea[exp(S:h*'(au)d u)] < Ea[exp(CS: | du )] <, [N,

On the other hand it is easy to calculate the transition matrix of this Markov
chain.
n(n+k) - (n+(m—1)k)

m!lg™

(2.29) P,[N=r]=

e-nLt(l_e—th)m

it r=n+me,
=0 otherwise.
Hence for sufficiently small ¢,>0 we obtain

(2.30) Elexp (Cty-N,J]<+oc.

3) b*=max{b, 0}, b-=—min{b, 0}.
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Noting that (N,, P,) is a continuous time branching process, it holds that
(2.31) E.lexpCto-N;)]<+co  holds for any neN.
Thus we complete the proof of Lemma 2.3.
Proof of Theorem 2.1.

Let P be a solution of the (X., A, x)-martingale problem. For the proof
it is sufficient to show that {E¥[@.(x(t))]}ses is uniquely determined. Let

u(t, @)= EP[$a(x(t))] for each acJ* Since (¢a(x(t))—S:A""q&a(x(s))ds, (F)) is

a P-martingale, it follows from Lemma 2.2 that

dt
Also, noting that u(t, a), ,gEEJ.Q“'ﬁu(t’ B) and h(a)u(t, @) are bounded on [0, oo)

(2.32) —d—u(t, a)=p§,‘Qa_ﬁu(t, B)+h(a)u(t, a) for any aej*.

X J*, the assumptions of Lemma 2.1 are verified, and {u(t, @)} is uniquely
determined. Therefore we complete the proof of Theorem 2.1.

Example. Let b3(x)= ci},2‘,,,Jc?—|-x’£(sp— équ‘%)-I-quﬁx?, where {435} q. p21
is a real matrix on NXN ;atisfying A¢p=0 (qqqt ), pﬁ:}llquo and gg?qg [Agn| <
400, {sp} pz2 iS a real vector on N satisfying p; |sp| <4co, and {g;i} ;. ics is a
matrix on SXS satisfying ¢;;=0(j+1), ]_z_l;qji=0 and 21;3 |gss| <+oo. Then,

the conditions [A] and [B] are satisfied.
Genetically, this model is an infinite allelic stepping stone model with muta-
tion, selection, and migration.

Remark. Let d be an integer =2. Suppose that 1,,=0 if ¢=d and p>d.

Then, for any xeX;={xeX.; élx’;:l for all /€S}, the solution P of the
=

(X, A”, x)-martingale problem satisfies P[x(t)e X, for all t=0]J=1. Then the

diffusion process associated with the solution P is a d-allelic stepping stone model.

Corollary 2.1. Assume the same condition as Theorem 2.1. Then there exists
a unique strongly continuous contraction semigroup {T7} on CyXw) such that
(1) T?f=0 for any feCyXw) with =0, and T.1=1, and

(i) T?f—fzS:T?A‘”fds for any feCy(X.).

Proof. For any xe X, denote by P, the unique solution of the (X, A%, x)-
martingale problem. Then, {P.} is weakly continuous in x& X... In fact, assume
that lim x,=x (x,, x€X.). Then we can easily see that {P,} is tight. Fur-

n-oo

4) Cy(X.) denotes the Banach space of all bounded continuous functions defined on X,
with the uniform norm.
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theremore it follows from the uniqueness of the (X., A®, x)-martingale problem
that lim P.,=P.. Hence setting T7f(x)=EP=[f(x(t))] for each feCyX.), we

have T7feCyX.). Also it is obvious that {T7} satisfies (i) and (ii).
Finally uniqueness of semi-group follows immediately from the uniqueness
of the (X., A®, x)-martingale problem.

§ 3. Diallelic models

For the subsequent sections we shall summarize the results on diallelic
stepping stone models which was obtained in [15].

Let S be a countable set that is the set of colonies. Assuming that there
are two alleles A, and A, at each colony, we denote by x; and 1—x; the gene
frequencies of the A,-allele and the A,-allele at colony ;€S respectively.

Let X=[0, 115={x={x}ies; 0=x;=<1 for all /€S}. Let us consider the
following differential operator,

i€ES

3.1 A=3 xi(l—xi)D%Jrg9 (jeZ; g5ix5)D;

where DF%, and it is assumed that {g;;} satisfies the conditions of (1.1)

and (1.2). Then it is known that there exists a unique strongly continuous
contraction semi-group {7;} on C(X) such that

(3.2) T.f/=0 for any feC(X) with f=0, and T,1=1,
and
3.3) Tof— f:S:TsAfds for any feC¥X),

where C(X) is the Banach space of all continuous functions on X with the uni-
form norm and C}(X) denotes the set of all C*-functions on X depending only
on finitely many coordinates.

A diffusion process on X, which is associated with {T',}, is called a con-
tinuous time diallelic stepping stone model without mutation and selection.

Let @(X) be the set of all probability measures on X equipped with the
topology of weak convergence. Let {T}} be the adjoint semi-group on P(X)
induced by {7,}. We denote by S the set all stationary states of {T,}, i.e.
S={peP(X); T¥p=p for all t=0}. S is a non-empty, compact and convex
set and we denote by S..: the set of all extremal elements.

For Q=/{g;i}, P.=e'?" is well-defined for all =0 and it is a transition pro-
bability of a continuous time Markov chain on S.

Throughout this paper we shall assume that Q=/{g¢;;} is irreducible. Let
(X:=(X}, X?), P;);csxs be the continuous time irreducible Markov chain on SXS
which is defined by

5) @Q* is the transposed matrix of Q.
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3.4) P.QP, DN=P(y, j1)Pils, 12) for each i=(i1, 7s)
and _;:(jly ]2)ESXS .

In order to describe S.;; let us introduce the space of @Q*-harmonic func-
tions 4 and a sub-class 4* of 4.

(3.5) H=1{h; defined on S, 0=h=1 and Q*h=0},
3.6) H*={hed; %Lm h(X})=£i_.m h(X%=0 or 1 P;-a.s. on Q™
for any /€S xS}, where
Qo= ("L (Xdi=+eo| and di={i=(y iDESXS; ir=is.

We regard each he4 as an element of X. Then we obtained

Theorem 3.1 ([15])
(i) For each hedl there exists a vy P(X) satisfying that }im T¥or=vn

exists, where 0, stands for the point mass at h.
(ii) SXxivh(dx)=h(z’) for any hesr and i<S.
(ili)  Sem={va; hEeH*},

Theorem 3.2 ([15]) Let peP(X) and hedt*. Then Itim T¥p=v, if and
only if
3.7 ltiggx(jezs PG, Nx;—h@)Pp(dx)=0  for all ieS.

Let us consider the following classification by the migration rate {g;:}.

Case I P;[Q®]=1 for all i€SXS.
Case I P,[Q®W]=0 for all i€SXS.
Case III 0<P;[RM]I<L]1 for all i€SXS.

Since Q is irreducible these three cases exhaust all posibilities. It follows
from Theorem 3.1 that S.z;.= {0, ;) holds for Case [ and Seze={vn; hE}
holds for Case II. For Case Il we notice that 4., S 94*S 4 holds, where 4.,
denotes the set of all extemal elements of 4.

Further we obtained

Theorem 3.3 ([15]) Assume Case I. Let pe P X). Then, ltim T¥up exists if
and only if ltim ESP,(z', j)SXx,y(dx) exists for each i€S. Moreover, if this con-

dition is satisfied ltimj‘ésPt(z', j)SXxjy(dx)=Z is independent of i€ S, and

3.8 km T¥p=20,+(1—2)d, .
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Let us introduce a mapping p, from X onto itself defined by
3.9 (p,x)izj%)gl’,(z’, Nx; for each 7€S.
We denote by p,¢ the image measure of peP(X), i.e.
(3.10) oty fo=Xp, fop>  for any feC(X).

Then by modifying the proof of the above theorems we obtain

Theorem 3.4. Assume Case II. Let peP(X). T¥p converges as t— oo if
and only if p;u converges as t—oo. Moreover, if this condition is satisfied, sett-
ing y"":tligl o, it holds that

(3.11) plo]=1, and

(3.12) lim T;“y=§£vh p=(dh) .

§4. Multi-allelic models

This section will be devoted to a description of extremal stationary states
of multi-allelic stepping stone model with mutation.

Let d=2 be a positive integer and X;= {x={x%} ; x%=0, x}+ -+ +x¢=1
for all ;= S}.

A continuous time multi-allelic stepping stone model with mutation is a dif-
fusion process on X, with the following infinitesimal generator,
1) A= 3 3 28— xDDspDug

i€S p=1g=1

+ 3 3 (2 At X gsxDDey
ies p=1 ¢g=1 JjES

where {1,,} and {¢;;} satisfy the conditions of (1.1) and (1.2). Then it follows

from Theorem 2.1 that for any x&X, the (X4, A%, x)-martingale problem has

a unique solution. Accordingly there exists a unique strongly continuous con-

traction semi-group {T¢} on C(X,) satisfying that

4.2) T¢f=0 for any feC(X.) with f=0, and T¢l=1,
and
4.3) T?f—f:S:T;’Adfds for any feCHXy).

Denote by (2, &, P.; x(t)).ex, the diffusion process on X, associated with {T'¢}
and we use the same notations @(X,), {T¢'}, Sq and (Sa)ez: as § 1.

Let us introduce a classification of I={1, 2, ---, d} according to the muta-
tion rate {A,}. If 1,,>0 we denote ¢ > p. If there exists a chain [po=q, p1,
«o, pr=p]1 of I satisfying pr.1> p, for any 1=<k=r, we denote ¢ — p. In
particular, if either g=p or both ¢ — p and p — ¢ hold we denote p < q. Then
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“«” defines an equivalence relation on I. An equivalence class R is said
recurrent if ¢ — p does not hold for any g R and for any pe& R.

Setting A= {4,,} and A,=e'/, it is well-known from the theory of finite
Markov chains that for any recurrent class R there exists a strictly positive
vector {z{} such that for any g€R

z® if peR
(4.4) lim 4,(q, p)=
tme 0 otherwise,
and for any non-recurrent class C
(4.5) }im Alg, p)=0 for any g¢<I and any peC.

Denote by R, :--, R, all recurrent classes.
Let dy={h=(hy, -+, h,); ho€I* for 1=a=r, hy+--+h,=1}. For hes¥,
ph)ye X, is defined by
TP h @) if pe R, for some 1<a<r,
(4.6) p(h)2=

otherwise, where n{¥=rgfa,

Our main result in this section is

Theorem 4.1.

(i) For each h=(hy, -+, h,) EXF there exists a vaeP(X,) such that
limTfi'(;p(h):lJl..

(ii) Sxxliv,,(dx):p(h)’{ for all i€S and 1=p=d.

(iii) (Sadezt={va; hey}}.
We assume R,\UR,\U---UR,={l, 2, ---, e}CI. Let J be the set of all non-
negative integer-valued functions a= {a%} defined on SX {1, 2, -+, ¢} satisfying

lal=2 i}a’i<+00. If a3=0 for (j, ¢)#(, p) and a%=1, a is denoted by &2,

i€S p=1

Define {7} i5pse DY
(%)) mp=ny”  for pER,.

e e .
For each a€], set ¢ (x)=c'*' TI TI x3/ I (x,)'*"', where ¢ is a fixed constant
i€S p=1 p=1

satisfying 0<c¢< min z,, and |a?|= 3 a3.
1spse ie8

Let X®={xeX,; i > x2=1 for all ;€S}. Then we see
a=1 pERg

Lemma 4.1. For any x€ X® and a<],

4.7) Ad¢a(x):ﬂ§JRa,ﬂ¢ﬂ(x)—<a>¢a(x)

where
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Cadar—1) if B=a—el,
y4
all pq if B=a—eitel (p+9),
Dy ] —a—ebP 2 (7 y
4.8) Ras= a?qj; if PB=a—eiteh ((#)),
€ -
- Car@i—+ 3 1a? | Tppt 3 lailgu
i=8 p=1 TL'p p=1 i1€ES
if f=a,
0 otherwise,
e
(4.9) @=3 lail(la;] =)= T 3 ——at(ai—1),
i1€ES i1€S p=1 71.'p

- e
Apa="glep/Tp, and |a;|= pz;,‘la’i .

Let R={R. g}a pes. Then e‘® is well-defined, which is a transition matrix
on J. We denote by (2, 8, P,; a(t))ses the continuous time Markov chain on
J associated with e'®, Then by making use of the Feynman-Kac formula we
obtain

Lemma 4.2. For any xeX®,
(4.10) T{‘q&a(x):Ea[ngam(x) exp(—Si(a(u))du)] for any ac].

For each 1=<a=<r let us define a mapping ¢,; Xa — X by

(4.11) (Pox)i= 2 x% for each &S.

PERg

Then we have

Lemma 4.3. For any feC(X) and x X®,
4.12) T [ )X)=T f(Pox).

Proof. It follows immediately from

(4.13) A4 fopa)=(Af)epo on X®  for any feCHX).

Lemma 4.4.

(i) For any peSy, p[X®]=1.

(i) ¢olS4dCS.

(iil) Pal(Sa)ezt]TSezte

Proof. (i); For any fixed xeX,, set m2¢)=FE.[x3()]. Then it follows
from (4.3) that

d a
(4.14) —ar D= 2 Aepmit)+ %‘é g;:m5(@) .

So we get
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4.15) mi= 3 z Aq, PP, Hm0).
je =1

Since, noting (4.4), ltirn m2()=0 holds for any pe& R,\JR,\UJ--UR, and /€S, ()

follows from this. (ii) is trivial by (i) and Lemma 4.3. Let g&(Sadez:. Suppose
that for some vy, and v,eS8

1
(4.16) (/)u[l=—2—(l)1+1)2) .

Since v, and v, are absolutely continuus with respect to ¢,u, we denote by
£(2) and &.(z) their densities. Define y, and g€ P(X,) by

(4.17) p(dx)=&(pax)p(dx) (=1, 2).
Then we see
. 1
(4.18) Pai=y; (=1, 2) and p=o(ptpn).
We claim that
N L .
4.19) 1213’1"—1‘;80’]‘s wds=p for =1, 2.

tn . . .
Suppose that limlg0 T¢uds=f, (i=1, 2) exists for some sequence {¢;} tending
n-eo [ p 1

to +oo. Noting that 7, €Sy, F.€Sq, #E(Sa)er: and y=7(ﬁ1+ﬂ2), we get ;=

fZ,=p. Hence (4.19) holds. Finally by (4.18), (4.19) and Lemma 4.3 we obtain
vi=v,=¢. . Thus we see P,pES,z:.

Let us consider another continuous time Markov chain (2, &, P, ; a(t)) on J,
generated the following infinitesimal matrix R= {ﬁa,,g}

ablp, if B=a—eB+el(p+9)
o a?qj; if B=a—el+e5(@+#))
=l .
D . e i —
;lla Il,,p-i-%}qlazlqu if f=a

0 otherwise.

(4.20) R. ,9_1

Notice that this Markov chain is identified with the direct product Markov
process of |a| number of P,®/,-Markov chains on SX {1, 2, ---, ¢}.

Lemma 4.5. For any pe(Sa)ez: and a<], set gla)=<p, ¢o>. Then there
exists a h=(hy, -+, h,)EXF such that

(i) SX X2 dX)=7DhaG)  if pERe with some 1<a<r,
d

and

(ii) ltl_‘rg E.[glat)]=dp()) holds for any a<].

Proof. Since ¢t E€ Sese holds by Lemma 4.4, it follows from Theorem 3.2
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that there exists a h=(hy, ---, h,)E4F such that for any 1Za=r
. .. B h e _
@.21) tim  (ZPA 5 5~ he@Ppld)=0.
Noting
4.22) ltim Ap, @)=r{® for any p and qeR, (1=<a=<r),
we get
2
(4.23) > 2 PG DAL, @ At BUEN ho(?) as t— +oo
JES qER, 7Tq

in probability with respect to ¢ for any peR, and /€S. Hence

{4.24) E [Jawr(x)] —> da(p(h)) in probability w.r.t. p.

In particular the integration of (4.24) by p yields (ii). If a=e% for some pER,,

Eszlz[g(a(t))]:Esz;.[g(a(t))]:g(s’{) holds. Therefore (i) follows immediately.
Lemma 4.6. Let g be a function defined on J. Suppose that g is bounded

on Jy={acs]; |a|=N} for each N>0, and ltimEa[g(a(t))] exists (which we

denote by h(a)) for each as]. Then ltimEa[g(a(t))exp(—S;<a(u)>du)] exists

for each a€ ], and moreover this limit is determined by {A(a)}.

Proof. Let d={ae]; |a;|=2 for some ;€S}. Let us define some stopping
times. {=inf{t=0; |a@®)|<|a(0)|}, {,=Inf{t=0; |a®)| =k}, o,=inf{t=0; a@)
ed}y, ri=inf{t=0o,; a@®)ed and |a®t)|=|a)|}, -+, co=Inf {t=7s_1; a)ed}
and r,=inf{i=0c,; a@®)ed, |a@)|=|a(0)|}. We note that for some constant
K>0

(4.25) Kig|0li|(|0!i|—1)§<a>§gslail(|ai|—1)-
Let"a& 4. Since (a(troy), P.) and (altns:), P.) have the identical probability law,
(4.26 lim E.Lg(a®) exp (—| (atu)du); o1=+00]
=lim E.[g(a(®); o,=-+co]=lim E.[g(a(t)); o1=-+00]
=h(a)—E.[h(a(s)); 0,<+].

Noting [{=+oo]N[o,<+co for all n]C[S:<a(u)>du=+00] P,—a.s. we see

.21 lim E.[g(a(®) exp (— | <a(uiddu); (=+co7

n

53 lim EuLg(a() exp ([ <atuddu); ea< 00, gu=+00]

1t

= 5 E.Thiazn) exp (= | "Ca@)du); en< +0)

n=

-
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where 7 (@)=h(a)—E.[i(aley); o6,.<+o0]. So we get
(4.28) lim E.Lg(a(t) exp (— | Caw)du)]

la)

= 3 Bl exp (— [ a@pdu); Gu<+oo]

k=1
where ia)= 3 E[h(a(za) exp (—| "Ca)du); 74 <+c0].

Theorem 4.2. Let h=(h,, .-+, hy)ed¥. Suppose that pesP(X,) satisfies
p[X®]=1. Then }im T&u=vy if and only if

(4.29) limS (X PG, 2 xH)—ha(@)u(dx)=0
tso) X g JES DPERg

for any 1=<a=r and i€S.

Proof. Suppose that ltim T#p=ys. For any feC(X)
(4.30) {fava £y=lim TH fogo)p(r)=1im T:f (o p(h)

=lim Tof(ha)=n,. [ -

So by using Lemma 4.3 we have
(4.31) Egol Tf(ﬁba#):p_g’l ¢a(Tii‘ﬁ)=¢th=Vha .

Hence (4.29) follows from Theorem 3.2 and (4.31).
Conversely assume that (4.29) is fulfilled for any 1<a=<r and /S. In the
same way as the proof of Lemma 4.5, we obtain

(4.32) ggrg E.[gla®))]1=¢.(p(h)) where gla)=<py, ¢y .
Accordingly by Lemma 4.2 and Lemma 4.6,

4.33) lim <T#p1, $ad=lim EaLg(a(®) exp (| <at)du)]

=lim B[ paco(pth)) exp (—| <atwddu]=lim T¢gu(oh)

=k Par

Also, it follows from Lemma 4.4 (i) that
(4.34) llimSX TEudx)=0 if p&R\U-~UR,. (S)
o, d

(4.33) and (4.34) imply that lle (T¥p, f>=<vs, f> holds for any feC(X,) and

we conclude lim T¢" u=yvs.
t—oo

Proof of Theorem 4.1.
Let h=(h,, -, hy)ex¥. It is easy to see that
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(4.35) E[Pacr(pM)]=da(p(h)) .

Hence (i) follows from Lemma 4.2 and Lemma 4.6. (ii) also is trivial. For (iii)
let p=(Sq)es: and set {g, o>=g(a). By Lemma 4.5 and Lemma 4.6 there exists
a h=(hy, -, h,)ed¥ satisfying

(4.36) lim E.[g(a®)]=@a(o(h))  for any a&/,
and
4.37) g(@)=E.[g(a) exp (| au)du)]

=lim Eo[gaco(p(h) exp (| <atw)>du)]
:%LI};I <T?.5p(h)y ¢a>:<vhy ¢a> .

Thus we see p=v,. Furthermore notice that the converse is an immediate
result of Theorem 4.2. Therefore we complete the proof of Theorem 4.1.

Corollary 4.1. Suppose that there is only one recurrent class. Then {T#}
is ergodic in the sense that there exists a unique stationary state v such that

(4.38) ,}im T¢u=y for any peP(X,y).

Proof. Let R be the unique recurrent class. By the above theorms we
have a unique stationary measure v and moreover if peP(X,) satisfies [ X®]
=1, then lim T# p=v.

t—co

Next, it holds by the proof of Lemma 4.4 (i) that there are some constants
K>0 and >0 such that if pe&R

(4.39) E.[x3@)]<Ke T for any xe€Xy4, /€S and t>0.

Then any peP(X,y) be fixed. For each ac], set u(t, a)=<(T¥py, ¢.>. Then
it follows easily

(4.40) s = 3 Reult, H—<eoult, +ult, o)

_ gy € por.a
where w(t, a)—%‘é IER %‘,Raelqp = E,,[x,(t)¢a_sz;.(x(t))];1(dx). By (4.39) we have
some constant K;>0 satisfying :

(4.41) lw, a)| =K;|ale ™, ac].

Also, since {u(t, a)} is a solution of (4.40), it is represented

(4.42) u(t-+to, @)= E,[ulto, a(®) exp (— | <a(u)ddu)]

+S:Ea[w(to+s, alt—s)) exp (—S:‘,’<a(u)>du)]ds .
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For each xe X, let us define X=X by

S x4 if peR
(4.43) xl;:{o |R|q P

otherwise .

For pe®(X,), # denotes the image measure by the mapping x—Xx. Let
u(t, a)=<T?‘/x, ¢.>. Then using (4.39) it is easy to check that for some K,>0

(4.44) lu(t, a)—a(t, a)| =K, |ale .

So, it follows from (4.42) that for some K;>0

(@45)  ult+t, @)= EoLat, a) exp (=] atuddu)| SKylale
Since T¢ ,u[X"”] 1 we obtain

(4.46) lt'?glu(t—l—to, a)—<y, o> | K,lale T for any aes]

and any £,>0. Consequently this implies }im TEu=y.

Corollary 4.2. For each 1<a=<r there exists a v'*>E(Sq)ez: Such that
4.47) Eim T u=y@® for any peP(X,4) satisfying
y[xeXd, E x2=1 for all ieS]=1.

Proof. It is immediate from Theorem 4.2.

Corollary 4.3. Assume the condition of Case I of §3. Let peP(Xq). Then
1,123 Tu exists if and only if ligjéPt(i, j)Spgeaxep(dx) exists for any 1=a<r.
Moreover if this condition is fulfilled, PJB JégP,(i, j)SpeZ};ax’iy(dx)=1a is indepen-
dent of i€S, and
(4.48) lim T¢p= 5 2,0

Corollary 4.4. Assume the condition of Case II. Let pne®P(X,y) and he k.
Then T¢u converges to vy as t — +co if and only if
d
4.49) tim (3P, )3 63+ 3t —ha@) p(dx)=0

t—o0,

for any 1=a=r and i€ S, where 7r(a>— 2 lim A(qg, p) for e+1=p=d.

Rg t-soo
We will omit the proof since it can be shown by using the above theorems and
a similar argument to Corollary 4.1.

§5. Scaling limit (T)

Form now on we shall consider the case S=Z7(r-dimensional integer lattice
space). Regarding the d-alleles stepping stone model x(t)= {x%()}iczr 1spsa @S
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a d-vector-measure-valued process on R” (.EZS(th), e, x8(1)-01), we shall discuss

a scaling limit of the fluctuation process of this process,
Ni=2-072 3 ()2 — ELx 4], -+, xHRDELx$A*)])-0urn
ieS

as A— +4oo. Since the limiting process, if exists, no longer vector-measure-
valued process, we shall discuss the convergence of S’-processes.
After [4] we prepare some facts on &’-processes. Let

er(x)=(v2m 2% )" V¥(—1)*e*2Dte"**  (k=0, 1, -+, xERY).

Setting eq(x)=eq,(x1) - eq (x,) for each a€Z} and x=(xy, -+, xa) ER", {ea} is
a complete orthonormal system of L%R"). e, is called the Hermite function of
index a.

Let S(R") be the space of all rapidly decreasing C>-functions on R, which
is equipped with the usual topology, and let S’(R™) be the space of tempered
distributions. For ¢E€S(R"), set |¢]|%m= S@lal+n™, e4)32 for m>0. Denote

by Smy(R") the completion of S(R”) with respect to | | m). Let

Ilqbllm=(|m25‘,mIID§¢II2)”2 and [¢l=lgl,
is the L% R7)-norm. It is known that for some constant A, >0

6. [l n=2Anldlcm> -
For each NeS(R"), |[Nl¢-m> and |IITLN|.m, are defined by

(.2) INIeemy =2 @l a]47)""Nlea)*
(5.3) IIH#NII%-m:m%n(ZIaI-I-r)‘"‘N(ea)z-

Let Scmy(RN={N€S'(R"); |N|c-my<+oo}. It is obvious that Sc.m.,(R") is a
separable Hilbert space and it is imbedded continuously into S’/(R").

d
For each integer d=2 we denote é}S(RT)=S(RT)><m><S(R’) and @ S’(R")
=8(R)X - X S'(R"Y

Let C([0, o), S'(R™) (C([0, o), é)&’(R’)), C([0, o), RY)) be the spaces of

S'(R")-valued (és'(}?’)-valued, R'-valued) continuous functions defined on [0, o),
which is equipped with the compact uniform topology. For peC([0, o), S'(R"),
denote the t-coordinate by 7,. We shall use the following criterion of tightness
on C([0, o0), S(R").

Lemma 5.1. Let {P?%} ., be a family of probability measures on C([0, oo),
S'(R™). Suppose that

(i) for any fixed ¢=S(R") the family of probability distributions on
C([0, o0), R*) induced by (n/¢), P*) is tight, and that

(ii) for some positive integer n,
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L{En sup P*[ogxtlspTIIH%nm||(—no>>e]=0 for any >0 and T>0.
Then {P*} ;4 is tight.

Proof. See [4] §1 and appendix.

Remark. Suppose that the following condition is satisfied for some n>0.
For any T>0 we have some constant C;>0 satisfying that

(6.4 EPZ[OE?SDTO%(@)Z]§CT”¢”% for any $S(R") and 2121.

Then, the condition (ii) of Lemma 5.1 is verified by (5.1).

Here we define a S’(R")-valued standard Wiener process. A sample con-
tinuous S’(R7)-valued process W={W} ., is called a standard Wiener process
if the following conditions are satisfied.

(i) W,=0,
(ii) W, has independent increments, and

(iii) E[ein<¢>]=eXp(—%||¢||2) for all geS(R).

Let us consider a multi-allelic stepping stone model without mutation and

selection (2, F, P, {F,} ; x()={x%()} iczr.1spsa) Which is a diffusion process on
X4 generated by

(5.5) At= 2 5 5 28%6,—xDs pDsg

1€2ZT p=1¢=1

d
1

p=17

+ X 2 q5ix5)Dip .
iezr ezr

We assume the following.

Condition [C]
(1) gji=qj-i,(=q;-:) for any i and j€Z7,
(i) ¢:=0G@+0, X ¢:=0, X ¢;:7=0 and X ¢:|i|*< o0, and
iezr iezr i€zr
(iii) an additive group generated by {i€Z"; q;#0} coincides with Z7.

Let Q={g;;} and set P,=e'® and R,=P,P¥. Then under the condition [C]
R, is a symmetric and spatially homogenuous transition probability on Z”. We
denote by (2, 8, P;, z.)icz- the continuous time Markov chain on Z” associated
with R,.

It is well-known that if »=3 this Markov chain is transient. Moreover,
assuming that {g;} is finitely supported, then the potential matrix G(, j)=

SNRt(z‘, 7)dt satisfies that for some constant C>0
0

(5.6) G@, NECAA+i—j)™ 4, jeZ".

(We find this estimate in [18] p. 339 for the descrete time case. But the con-
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tinuous time case is easily reduced to the discrete one.) So it is easy to see
that for some constant C>0

6.7 Plow<+oo]=CU+|il)y ™ ieZ",

whereo, stands for the hitting time for {0}.
For any 1=1, 1=p=d and ¢&S(R") define

G NEA@=1or 5 o) ELaan), p=1, -, d.
i€z’

d
Then N{={N}?, -, N®*} is a ® S'(R")-valued continuous process. Then we
obtain

Theorem 5.1. Let r=3. Suppose that the initial distribution p, of {x(t)}
is Z7-shift invariant and satisfies

(5.9) S |[ustdn)at—mpat—m,) | <+o0  a=psa),
ez’

and

(5.10) S‘uo(dx)xﬁ’xfx‘} x} converges to mim?

if all of 7|, |71, |k, li—J|, |j—Fk]| and |k—i]| tend to +oo for all 1<p, ¢=d
where mp=gyo(dx)x’3. Then, N} converges to a és'(RT)-valued Ornstein-Uhlen-
beck process N, as A — +oo, in the sense of the probability measures on the path
space C([0, o0), és’(R’)), where N, is defined by the following stochastic integral

equation,

G0  NuUp= ZaW i+ | NULGs  pesRY, p=1, -, d,

where

(i) W, ={Wi, -, W2} is an independent system of S’(R")-valued standard
Wiener processes

(ii) {apgtisp.esa 7S a constant d X d-matrix satisfying

(5.12) (aa*) pg=2pmp(0 pg—my) ,
and
- (1 G=0)
p:E‘,,[exp(—ZSoIm,(zu)du)]>0, where I(o,(z)z{ 0 G0).
and
(5.13) L= z gawDuD,, With Quw= 3 Giiuis.

ez’
Next, we will consider the case that the initial distribution is a stationary

state of the stepping stone model associated with (5.5). If =3, we know by
Theorem 4.1.
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(5.14) (Sadezt={vm; m=(my, -+, mg) € RY, mi+ -+ +mg=1}.
Under an additional condition that {¢;} is finitely supported we obtain

Theorem 5.2. Let r=3 and vmE(Sa)ers. Suppose that the initial condition
{x(0)} s vm-distributed. Then, any finite dimensional distribution of {N# con-

d
verges as A— +oo to that of a ®S'(R")-valued stationary Ornstein-Uhlenbeck
process N, defined by the following stochastic integral equation,

d t
(5.15) NIG=NY@+ 3 asV @)+ | NULGds  gesR),
p=1, -+, d where o, L and W, are the same as Theorem 5.1, and N, is a

és’(R’)-valued Gaussian random variable independent of W, satisfying that for
d

any (¢1, -, pa)E QS(R")

(5.16) Elexp (INi(¢)+ -+ +iN§(¢a))]

=exp<—§p§l qé M p(0 pg— MG Pp, ¢q)1_z) ,

where
I'(r/2—1)

= 2Ty 12| A

(5.17) G(x) (A%, xy with A= {@uo} 15w, vsr >

|Al=det 4 and Gg(x)={_G(g(x—)dy.

Corollary 5.1. Let vmE(Sy)ezt, and let E={(&}, -, EH}iezr be a vm-distri-
buted random field. Define a generalized random field N*=(N*2, ..., N©%) by

Np.2(¢)=]‘(r+2)/2 > ¢(—3—)(§€—771p) for ¢S(R™), p=1, -, d.
ez’

Then the distribution of N* converges as A — 4o to that of N, defined by (5.16).

For simplicity we will prove the above theorems for a dialelic model. Let
R, F, P; x(t)={x:1)}sezr) be the diffusion process on [0, 1]%" generated by
(5.18) A= 32 x(1=x)Di+ 2 (jEZ g% D; .
[ T

ez’ ezr

Here it is assumed that {¢;;} satisfies the condition [C].
For any ¢=S(R") and A=1, set

(.19) Ni=2onit 5 g )@= ELx (0]

ez’

Hereafter we will prove the following theorems instead of the above.

Theorem 5.1’. Let ¥=3. Suppose that the initial distribution p, of {x(t)}
is Z -shift invariant and satisfies
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3.9y )} Syowxxxo—mxxi—m) < o0,
iezr

and

(5.10)’ S;e&dx)x%x’%x%x% —> mm}

if all of 17, 171, |k, li—jl, |j—k| and |k—i| tend to +oo for p, q=1, 2, where
xi=x4 xi=1—x,, m=Sp0(dx)xo, my=m and my=1—m. Then, {Nf} converges to

a S'(R")-valued Ornstein-Uhlenbeck process N, as 2 — +oo, in the sense of the
probability distributions on the path space C[0, o), S’(R")), where N, is defined
by the following stochastic integral equation,

.11y Ny(g)= x/me(l—m)-WL(¢)+S:NS(L¢)ds e SR,

where W, is a S’'(R")-valued standard Wiener process, and L and p are the same
as Theorem 5.1.

Theorem 5.2°. Let r=3 and yvnESen. Suppose that the initial condition
{x(0)} is vn-distributed. Then, any finite dimensional distribution of N} converges
as A— +oo to that of a S’'(R")-valued stationary Ownstein-Uhlenbeck process N,
defined by the following stochastic integral equation,

G.15)  N(P=Nl@)+vZom—m W@+ | N(Lgpids  pesRr),

where W,, L and p are the same as Theorem 5.1, and N, is a S'(R")-valued
Gaussian random variable independent of W, satisfying that for any ¢=S(R")

(.16 E[e* 19 J=exp(— £ m1—m)(G$, P)z),
where G is of (5.17).

For the proof of the above theorems we list a series of lemmas. For 1=1
and ¢=S(R"), we denote ¢;(i)=¢(/2) and ngﬁ(z’):lzizz qi-;92(7). C¥R™)
(=yA

denotes the set of all C*-functions with compact support defined on R™.

Let M{(¢)=N§(¢)—S:R‘“+”’2iezzrQ;¢(i)xi(22u)du. Then, we have

Lemma 5.2. For any feC¥R")

(i) A 2 PO x ) —m)— S 2 ( 2 qu¢(1))x1(u)f’( E @) (x(u)—m))du—
S E ng(z)2 t(u)(l x4 (u))f"( 2 ¢(z)(x1(u)—m))du is a martmgale

(11) FINK S~ S “rimn 2 Q1) x(2u)f (Ni($)du— ‘2 ’ 2 P20 x (Au)
(1—x22u)f"(Ni(@)du is a martmgale, and

(iii) f(Mf(qS))—S:Z"igr¢1(z')2xi(lzu)(l——xi(22u)) "(MY(@)du also is a mar-
tingale.
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Proof. These are immediate results from the fact that the distribution of
(2, F, P; x@)) is a solution of the (X, A)-martingale problem with the initial
condition x(0).

Lemma 5.3. For some constant C,>0, it holds that
(1) 277 X gak=Cl 1P +22117) ,

kEZT
(ii) l“’kEZ)ZT(ngﬁ(k))ZéCr(ll¢ll%+2"2ll¢l|?+e), and
(iii) &{Ig2"keZz)r(Qx¢(k)—(L¢)x(k))2=0-

Proof. (i) is easy. For (ii), we introduce {us} by ur=1 for |k|=1, u,=
—27, and u,=0 otherwise. If {g:}={u:} (ii) is easy. For a general {q+},
denoting $(n)= X e'<k7>¢(k) for a summable function ¢, it is not hard to see

kEZT

that for some C>0
(5.20) g =Cla(np| for any pER".
So, using Parseval’s equality we get

R’TkEZZT(Qz¢(k))z=1"“keEZT(Q*sﬁz(k))z
=comst- 27| 1a(mdaCn)I*dy

§const-2"“gt_’r - () a(p)|2dy .

Thus, we can reduce it to the case of {gs}={u,}. For (iii), we use the Pois-
son formula,

(5.21) Sa(np)=4" kZZ Fd(An+2ni-k)
ezr
where F¢(n)= SRTe‘<“i>¢(x)dx. Then it follows that for any ¢>0 and g€ S(R")

(5.22) tim 2 16:0p—2Fg(n)tdy=0.

Also, we note that for any >0 there exists a positive number J satisfying
(5.23) iD= 2, T awnuml selnl® it 171=0.

Hence it follows from (5.22) and (5.23) that

G24)  TmaT 3 (Qup()— (L)’

z: audDuDu) (7)1 2d 7

1

—Yim -7 -r 257 _
=Tm 27| 124a(n)

[-m u
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=Tm 27@n) | 21— 2 awnenl*1F6Gn) 1y

[-x
< 2 iy J7+4 4 2
=eTm | Iylaganlidy

+const. [im XT“S [Fd(An)|2dn=e®llgll;.
A—oco 17120

Thus we obtain (iii).

Lemma 5.4.
Gi) Elx(t))=m for all t=0 and 1€ 8S.

(ii) Z;r | EL(xo()—m)(x;)—m)]| Sv+t,

where v= 3 “/,eo(dx)(xo—m)(xj—m) .
jezrld
Proof. (i) is trivial. Setting E[(x;@)—m)Xx(t)—m)]=h(, j), it follows
from Lemma 5.2 that

d .. . .
(5.25) ——h(i, = 2 guih(l, B)+ X qrihlk, j)+0:;a()
dt rezr rezr

where a()=2E[x,(t)(1—x4t))]. Hence, using the transition matrix P,=e'¢,
h.(Z, j) is represented such as

(5.26) h(i, )= 2 2 Pi, R)P(j, m)hiok, m)

kEZT mez’

+S‘ 3 Pouli, B)Pi-i(j, B)a(s)ds .

0 rezr

Noting that {P,(7, j)} is spatially homogeneous, (ii) follows immediately from this.

Lemma 5.5. For any T >0 there exists a constant Cp>0 such that
(1) ELAr 3 g@eB0-m)1< 27 2 0H(Fr+t),

i€z" i€ezr
(ii) E[sup (NUGWISCrA™ 3 .60+ 3 (Qug),

and
(ili) ELINH@)—NANI=Crllglz+22Pll2s) [t —s] 0=s,t=T.

Proof. (i); E[(A~"*»72 3 ¢(i)(xy(A°)—m))F]1=
iezr

IS4

3T 6P B hanl DISAT S 66 +t).-
jezr €z
(ii); Using Lemma 5.2 and a maximal inequality for martingales we see

(5.27) EL Sup (N I=2EL Sup (Mi(g)4]

+2EL sup (O] 5 Qu9(0)x(As)ds)]
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§8E[(M%~(¢))2]+2TS:E[(Z“’””2 g;rQ1¢(i)(xi(125)—m))2]ds

é16E[(N‘r(¢))2:|+18TSOTE[(2‘”””2 > Qg x(22s)—m))*]ds .
ez’
Thus, (ii) follows from (i). (iii); Applying Lemma 5.2 for f(x)==x? we have

(6.28)  ELNU$)—NUp)r1=2E B:Z“'“’ /2 EEZJ Q29 (xi(Xu)—m)Ni(¢)

—NigNdud+2E| [ 37 B gi@rGr—r@udu] .
$ i€z"
Hence (iii) follows easily from (i), (5.28) and Lemma 5.3.

Lemma 5.6. For any t>0,
(1) lim E[2~ ZZ) 2P x (A1 —x(22))]=pl gl*,
—oo iezr

(ii) lim E[(2™" AGEZT P20 x A1 —x(2°)— pl $1*)*]=0,

where szo[exp(—:zS:Im,<zu)du)] >0.

In order to show this lemma we introduce auxiliary Markov chains which
were proved to be useful in [15].

Let I be the set of all non-negative integer-valued summable functions on
Z7, ie. I={a={aiticzr; ai€Z4, lal= 2 a;<+}. If a;=1 and a;=0(j+17),

iezr
acl denoted by a=e’. Set fo(x)= II x¢t for each a<l, and f,=1. Let us
1€z
define two infinitesimal matrices R={R,, s} and ﬁz{ﬁa,ﬂ} on IXI by

aiﬁji if ﬁ:a—ei—l-efel (lr,":]),
[ai(ai—l) if B=a—c'el,
(5.29) Ra = ‘
1 > aiqii— X afa;—1) if f=a,
ez’ iezr
0 otherwise,
and
aigji it B=a—citeiel G+j),
(5.30) Bop={ = aigu if B=a,
€ezr
0 otherwise.

Denote by {a:, P.}«er and {ay, f’a} «e7 the continuous time Markov chains on
I generated by R and B. Then we have by Lemma 3.1 of [15]

(5.31) ELfa(x®))]=Ed[{tto, fa,y]  for any a€el.

Let us introduce some stopping times. Let d={a el ; a;=2 for some ;€ Z"}.

6) (uf>= Sf(x) p(dx).
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C=inf #=0; |a.|<|aol}, Le=inf {t=0; |a,| <k} for £=0, r,=inf{{=0; a,cI\4
and |a:|=|a,l}, o:=inf{t=1,; a,€4} and {r., 0.} are defined inductively by
Thn=0n-1+710,,_,) and op,=t,+0(0,), where {f,} is the shift operator.

We may assume that there exists another I-valued process {@; defined on
the same probaility space as {a;, P.}, such that {a, P,} has the identical pro-
bability law with {«,, P.} and

(5.32) a; =@, and a,=a, for t={ P,-a.e. for any ael

where a<a& means that a;<a; for all ;€Z". For Lemma 5.5, it suffices [to
show that

(6.33) lim EL(27" 35 () x (X)) 1= lgll*m*,

(6.39) 121210 E[z-fiegr 2D x (A ]= gl (m—m(1—m)p),
and

(5.35) l;iilo E[( PR 2@ (2200 1= gl (m—m(1—m)p)* .

It follows from the assumption of Theorem 5.1’ that there exists a constant
M>0 satisfying

(5.36) [<pto, far—m'* | <e if |a|=4 and d(a)>M,
0 if asd,
where d(a)z{
min{|i—j|; a;>0, a;>0, i#j} otherwise.
By (5.31)
(5.37) [EL(A™" ieZ‘,Zr 925/1(2')%(221‘"))2]—mz(l'riEZZ)ngSa(i)z)2 |
=7 _EZZ)T jgrﬁsl(i)zgsl(j)”Eei+ei[</«50y Sezeo—m*]l.

Noting (5.36) and
| Eerves[{tto, fapl—m?|
SE... <, fap—m?|; dla)SM]+e+P.iy.iLo,<+0]
= 2 PG PG, m)+e+P; fog<+o]—e as |i—jl— +oo,

we obtain

(5.38) Im 272" 3 3 620G | Ecires({tto, fazop—m*1=Zellgl*.
-0 €27 jeZT

Thus we obtain (5.33). Next, we have by Theorem 3.2.

(5.39) }im THpo=vm .

So,

(5.40) ltgm E[xo(t)2]=gx%vm(a’x)=Euo[?ﬂ“"”']

=mPy.o[{< +00]+m? Py o[{=-+0o0].
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Also, we can show
(5.41) Pyo[t=+o0]=Eexp(—2{ Tu(z)du)]=p.

We will omit the proof of this equality since it needs an elementary but tedious
calculation. Thus we have }im E[x(t)*J=m—m(l—m)p and (5.34) holds. Finally

we shall show (3.35). Note that

(5.42) |ELAT 2 PP x L1V I—(ELXT 5 $a)*x 20D
=y 2 (91(17°G2(5) | Encivaes{tto, faz2,>]
—Eyil[{to, fayo 011 Eoeil{tto, faz2,001,
(5.43) | Eseivacil{tto fa,21—E2ei @ Esei[{tto, fay+8,0]1

<4P,is.il0,<+00]=4P; o0 <+0o0],
and by (5.36) and (5.32)
(5.44) | E>ei @ Eoeil o, fay+801— E2ei Q@ Eoesi[{tro, fa><pto, 5,211
<3e+P,.i Q Pyl d(a:+ B)=M]
=36+ Poeiszesld(a)=M]
§35-|—2|MIZSIM R0, m)+4|m|§§‘,MRL(z', j+m).

From these estimates it follows

(5.45) im 2 3 3 200010 Ezetsocsl{tto, fazo,2]

A0 i€z’ jezr
"‘Ezsi[</lo; fa22t>:|E2£j[<,u01 fa12t>jl §33”¢”4 .

Therefore (5.35) holds, and we complete Lemma 5.6.

Lemma 5.7. Let 0<0<2/(r+2) be fixed. For any T>0 there exists a
constant Cr>0 satisfying that

(5.46) E[|IN ¢)—N¥g)|**I=Crllgllz- [t—s]|"*°
holds for any ¢€S(R™), =1 and 0=s, t<T, where
Iglla=(2"" 33 $2@y+(A" 5 Qg )+
AT B 18D S Qb))
Proof. 1°. First we claim that for some constant Cz>0

(5.47) E[I277" 3 Qadli)xi2)|**]

=0T P (Qz¢(i))2)”5+(2"iezzir RO O 2, (Q290))).
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Set ¢.()= jeEZTPt(j, 0)@(j) for each t=0 and define L{:igrqﬁr_t(i)(x,-(t)—m)
for 0<t<T. Using Lemma 5.2, it is easy to see that for any feC}R') and
0<t<T f(L{)—-S: 3 $r-uxu)l—x ()" (LDdu is a martingale. Accord-
ingly, applying for f(x)=x? and f(x)=|x|**?%, we have
(5.48) E[(LzT)Z:IéE[(LE)z}Fti};T ¢(i)2§(v+t)iEZZ)T @),
and

(5.49)  E[ILTI=¥1=E[| LE|*?14C| Sr-uiELxiu)1—x:(u))

|LEPIdus( 2 160 PELLDIHC]( B, dr-u D ELLD T
Setting T'=t, we get
(5.50) ET| ieEZT () x4(t)—m | 2+%]

§U(i§r [ ()] )25(i§r #)*)+Cv+tX ig".;r G

Here we used the following inequality ;

(5.51) .e}jzr|¢t(i)[1’§i§rl¢(i)lp for any p=1.
Hence
(5.52) E[] z-<r+2>/2i ezzr Q1) x(2%)|2+%7]

=ELj ™ 2 Qg (x (22t)—m) |**+*]

ST ARy EEZT 1 Q28 .ET(Q“ZS(i))Z)

v 1+3 -r V)2)1+
+C(r+) AT 3 Qg
The first term A~ +2a+d 24 1125 .Z;T|¢x(i)|)2"(.ZZ)r(Qz¢(i))2)
=const. l"(l"iEEZT [@a(0) )22 ~§r(Q‘¢(i))2) ,

where y=(r+2)(14+0)—46—2rd—r>0 and |q|= tZZ)rlqil. Thus, we obtain (5.47).

2°. It follows from Lemma 5.2 (iii) that for any feCi(R!)

f(Mf(¢)—M§(¢))—S:1" EZ; @202 x (22U )1 — x4(R2u)) [ (M p)— MU p))d u
is a martingale for t=s. Taking f(x)=x? and f(x)=x*, we have

E[(Mf(¢)—M§(¢))2]§2"iEZZlT @207 [t—sl,

and



30 T. Shiga
E[(Mf(sﬁ)—M§(¢))“]§2(1'rié§r G20 —s).

Accordingly by Hoélder’s inequality we get

(5.53) E[IMi(¢)—Mi(g)|****]<const. Tz G2t —s |1+,

Also, it follows from (5.47)

(5.54) B[ [La-ervore T Qug(i)xdAu)du 2]

<it—s| o[ ELI 0 3 Quginn)|+]du
s ez
Zconst.|t—s| 2P 2 (Q 14
i€z
+const. (A7 2 [$)NPAT X (Qap)?).
iezr i€z’
Therefore, combining these estimates we obtain (5.46).

Now, we are in position to prove Theorem 5.1’. If m=1 or 0 the proof is
trivial. So we assume 0<m<1. Let P? be the probability distribution on
C([0, o), S/(R™) induced by N? By Lemma 5.3, Lemma 55 and Lemma 5.7
the condition of Lemma 5.1 are fulfilled. Accordingly the family {P?%} ;. is
tight.

Let {1,} be any sequence, tending to oo, so that {P?*} converges to
some limit P*. We claim that for any feC¥R")

(5.55) 1) = 7 L) 7 i pnds— ol gl 1 ru@ds
is a P~-martingale, and moreover

(5.56) P<[p,=0]=1.

By Lemma 5.5 (i)

5.57) E T @) I=lim ELNY$)11=0.

Thus we get (5.56). Next, we notice by Lemma 5.2 that for any f=C3¥R?)

(5.58) fN §(¢))—S:2"’“” : iEEZ" Qg x{(Xs)f (N(g)ds

[ B a1 x ) (N UG

is a martingale. Hence (5.55) follows easily from (5.58), Lemma 5.3, Lemma 5.5
and Lemma 5.6.

On the other hand it is known that the uniqueness holds for the martingale
problem (5.55) with (5.56), (cf. [4] Theorem 1.4). Therefore P> is uniquely
determined and this implies that P? converges to P* as 1 — oo,
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Also, denoting W,(¢)=\/2pm(%m)(m(¢)—S:ns(L;b)ds), it is easy to see

that W, is a S’(R7")-valued standard Wiener process. Thus, we complete the
proof of Theorem 5.1’.

Next, we proceed to the proof of Theorem 5.2’. If m=0 or 1, it is trivial.
Let go=vn, with 0<m<1. Then {x(¢)} is a [0, 1]%"-valued stationary Markov
process. Accordingly, {N?%} also is S’(R7)-valued stationary process for each 1=1.

For any ¢=S(R"), set <¢>=SRTSRT%dedy. Then we have

Lemma 5.8. Let p>r be fixed. For any T >0 there are some constants
C:>0, C,>0 and Cy>0 such that

(1) ELNI@NI=Cil@lipen,
(i) m EC(N$)*]=C.< 8>,

and
(iii) E E[(N¥X§)— NI @)V I1=Cr(l@l2+ < L$p>)|t—s]|

for any ¢=S(R"), 0=t—s=T and A1=1.
Proof. By (5.31) and Theorem 3.1
(5.59) ELfo(x(O)]=Cvm, 5= lim Tefolm)=lim E,Lm'*01],

and

(5.60) ELN@II=A"" 2 3 $2()6:(DELx0)—m)x0)—m)]
=273 X ¢a(0@a(Nim Eiy Lm' et ]—m?)
i€ezr jezr t—oo
gz-*-zigr jeEzrlm(z')I |$2()] Peiv[E< +00m(1—m)

Further we notice by (5.7)

(5.61) Psi+sj[C<+°°]§Pei+sf[0'1<+O°:|:P£—j[0m)<+O°:|

<t
= A+li—=jly-e

Also, it is not hard to check that

(5.62) & (x)(1+ | x l“’)éC’WZs)pllx“D‘9¢||2§C”ll¢ll%p+r> .
1B1s7

Here the second inequality is found in appendix of [4]. By making use of the
above estimates we obtain (i). (ii) is immediate from (5.60) and (5.61). (iii); For
any feC)R')
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SOMHG — AN~ 17 5, s xRt 5 o) f (MU~ MG
is a martingale for {=s. So it follows
(5.63) E[(Mf(sﬁ)—M§(¢))2]§1"igr¢x(i)2 [t—sl.
Noting (5.60), (5.61) and the stationarity, we see
(5.64) E[([ x5 Qugiyrruwdu) |
é(t—8)21"'2E([ie§ZJTQz¢(i)(xi(0)—171))2]

29-7-2 ; . c
<=7 3, 3 1Qu0Qud) | 575

Since {¢;} is finitely supported, we have some constant ¢>0 satisfying
(5.65) qi=0 for any i€ Z" with [i|>c.

By making use of the Taylor expansion it holds

(5.66) 1Q19@)— (L) ()|
oo, i+x 7
<303 Bliid s | D.Dg(F5)-DDg(7)]

Accordingly, (ii) follows easily from (5.63), (5.64) and (5.66).

Lemma 5.9.

(i) lim E[(l'"*2”2t§er¢(i)xi(0)—Né(L¢))2]=0.

(i) lim E[A7" 35 ¢2(0)*x(0X1—x:(0)— pllgl*)?*1=0.

Proof. (1); We note by (5.59) and (5.61) that
(5.67) ETCe0)—mX O m)S iy -
So, by (5.66)

lim ELQ-7*" 32 Qug()x(0)~ N L))
<lim 27 5, 3 1Qu90—(Les) Q0L sy
=0.
(ii);
E[O 5 65OV I=A 2, 3 a0 ga0) Bactaflm =]

Since
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| Eycigoes[m' = ]— By i[m' e ]E,[m'*="]|

§4Pi—j[0(o»<+°°:| —0 as |i—j|—+oo,
we get

(5.68) }1:2 E [(Z“Tiezzrqi (@7 x4(0)°)* 1=l g||I* Ezeolm'*='1)" .
In the same way we have

(5.69) }ILIB E [(2"ié7_,z‘r¢z(i)2xi(0))2]= lgll¢m*.
Hence (ii) follows from (5.68) and (5.69).

Proof of Theorem 5.2.

In order to show the convergence of finite dimensional distributions we shall
adopt Tanaka’s method in [19]. Let m=1 and 0=¢t,<t,< -+ <t, be fixed. We
will claim that the distribution of (N?, N%,, ---, N{ ) converges as 2—4co to
the corresponding joint distribution of the Ornstein-Uhlenbeck process defined
by the stochastic integral equation (5.15). We assume that ¢; is of the form
ti=k2°L (k=0,1,2,.-, L=1,2,---). Once this case is proved the general case
can be easily driven by noticing Lemma 5.8 (iii).

Define a S’(R7)-valued continuous process N by

(5.70) N3 E=2H(th, —ONY+2H—thNly | for th<t<th,.

Then it follows from Lemma 5.8 (i) that
(5.71) EL sup (N PHNI=CHIB N sm

and
(5.72) ELN?H@)—NE X I=CH @ll%psn t—s|*  for 0<t—s<T,

where C£>0 is a constant depending on L and T. So, denoting by P} the pro-
bability distribution on C([0, o), S’(R") induced by N#7Z, it follows from Lemma
5.1 that the family {P}} ;s is tight for each L.

Now, let {1,} be any sequence, tending to +oo, along which the distribution

of (N{n, Nip, ---, Nin) converges to some distribution g on &S’(RT). We will
prove that p agrees with the corresponding distribution of N, defined by (5.15).
By the diagonal method we can choose a subsequence {4} so that for each L
Pfln converges to some probability distribution P§ on C([0, o), S/(R")). It follows
from Lemma 5.8 (iii) that if 0<t—s<T

(5.73) EPI[ (@) — (@) I1=Cr(l >+ < Lg>)[t—s].

Denote by 9 the space of all S’(R")-valued functions defined on [0, o) and
denote by B(9%) the usual o-field on 9. Let us define the projection I7,: 9—
C([0, o), S'(R") by

(5.74) (HLE)t:zL(t}€'+l'_t)Et£'+2L(t_t )Et#_’_l for tE<t=<tf,.
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Then, making use of (5.73) and the Kolmogorov extension theorem, we can easily
see that the family {P.} - ... determines a unique probability measure P> on
(W, B(9)) such that

(5.75) Il P*>=P% for each L=1,

and

(5.76) EPT[(E(P) =N I=Cr(l 1P+ < Lp>)[t—s|  (0<t—s<T).
Furthermore, by Lemma 5.8 (ii) we have

(.77 EFTLE()*1=Ck >,

Also, by reducing to a finite dimensional case, we can show that the process

(&;, P~) has a progressively measurable and separable modification, which we

denote by {£,}. Here notice that (§;, P*) is a S’(R")-valued stationary process.
Next, we claim that for any g=S(R") and any feC§(R")

(5.78) JEUpN—| 1 EUBNELAds—pl g1 fEueNds

is a P»-martingale. Denote

t
REP= (N K@)~ NEHLOS (NEH@Nds—plgl*| f/(NFHgds

— Vi) — | NULOS NE@Nds—pl gl f N @)ds .
It follows from Lemma 5.8 and Lemma 5.9 that

(5.79) lim lim sup E[|R#*|]=0 for any T>0.

Lo 2—c0 0stsT

For any @, ¢s, ~, ¢x€S(R"), any g€Cy(R*) and 0=<s,< -+ <5, <s<?
B (FEUP) —E—| fE@NEL)du
—plgl [ Eutpna g, -, o]
=lim lim B[ (/N2 H@)— NI K@) = f NI Hg)IN L HLg)du
— ol gl N H @ dgNET Hg), -, NI Hg) |
=lim lim E[(/VI™ (@)~ (NI @)= 7/ (Vim @IN I (Lp)du
[\ 3 i ma—x G Vi @)du

+RIM A RI DN ($), +, NIF(@a)]|=0 (by (579) and Lemma 5.9)
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Thus, we obtain (5.78). It is known that the martingale problem (5.78) is uni-
quely solvable if the distribution of the initial condition &, is uniquely deter-
mined, (cf. [4] Theorem 1.4).

L generates a unique strongly continuous contraction semi-group on C.(R7),
which we denote by {S:}.:0. Also, S; is self-adjoint and contractive on L% R"),
and satisfies

(5.80) ["swpndi=Go={_ c(igtx—ydy

where G(x) is defined by (5.17). It is not hard to see that S,¢=S(R") holds for
any ¢=S(R"), and denoting ¢,=S.¢, for any feCi(R")

(5.81) f(fz(¢r-e))—S:Ilsﬁr-ullzf"(éu(sf)r-u))du
is a P*-martingale for 0=¢t<T. Taking f(x)=e'%, we have

E*"[exp (i€(pr))]=E""[exp (€(pr))]— pS:II $r-ull*EF"Lexp (i€u(@r-u))1du

0=t=T),
and this implies

- - t
(5.82) E*"[exp (i€ (¢r-1)]=E""[exp (o(pr)] exp (— pSo|I¢T-u||2d u) .
Setting T=t, and taking account of the stationarity of &,, we see

(.83 ErTexp (Eg)]1=E"Texp (€] exp (—p| Igul® du)

for any ¢=0.
On the other hand since A is positive definite it follows from (5.77) and (5.17)

(5.84) EFLE(@NI=Ck 9> =Co(G @1, |p)r2car -
Accordingly, we obthin

lim EFC(Ew(¢)’1=Cs im (GSiI$1, Sel g Drecan

=Culim ({7 sulg1du, 191)=0.

Hence, letting {—-+oco in (5.83), we have

(6.85)  E”Texp () 1=exp (—p| ISugltdu)=exp (— £ (G, Prrcan).

Thus the distribution of &, is uniquely determined. Therefore the distribution
of (€;, P*) coincides with that of the stationary Ornstein-Uhlenbeck process
defined by (5.15)’. This completes the proof of Theorem 5.2’.

8) Cw(R7") denotes the Banach space of all continuous functions defined on R” vanishing
at oo with the uniform norm.
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§6. Scaling limit (II)

In the preceding section we studied the limiting process by scaling both in
time and space. In this section we shall discuss another type of scaling limit,
that is, only in space.

Let X=[0, 17%". Let us consider the following stochastic differential equa-

tion,
6.1 dx)=a(x,@)dBy(t)+ ig;rqﬁxj(t)d N CI=VA
x(0)={x (0} eX,

where {B;(t)} ez is an independent system of one-dimensional standard Brownian
motions defined on a probability space (2, &, P, {Z,}) and x(0) is F,-measutable.
Furthermore we assume

6.2) a(x) is a 1/2 Hélder continuous function defined on [0, 1]
and satisfies a(0)=a(1)=0,
and

(6.2)  q;i=@j-1.0 (=q;-1) for any j and i€Z", ;=20 (i+0) and ~ezzrq’:0‘

Then it is known that (6.1) has a unique X-valued strong solution and
(R, F, P, {F,};: x@) is a diffusion process on X, (cf. [16]). Denoting M#(¢#)
=277 3 () (x:(t)— E[x4(t)]) for each g€ S(R"), M, is a S’(R")-valued continuous

=4

process. Then we obtain
Theorem 6.1. Let r=1. Suppose that {x(0)}iczr are independent and identi-
cally distributed. Then M} converges as A—+co to a S'(R")-valued Gaussian

process M,, which is defined below, in the sense of probability distributions on
C([0, 00), S'(R™).

(6.4) M(§=Myp)+| Va®dWL(§)  for any g SR,

where W, is a S'(R")-valued standard Wiener process, M,y is a S'(R")-valued Gaus-
stan random variable independent of W, satisfying

(6.5) E[e* o ]=exp (—%ugan) where m=E[x,0)]
and v=E[(x,(0)—m)*], and
(6.6) gt)=ELa(xo())].

Outline of the proof.

1°. Denoting by P? the probability distribution on C([0, c0), S’(R")) induced
by M?, we can show by the same argument as Theorem 5.1’ that the family
{P%*} ;.. is tight.

2°. It is easy to see 11111; E[etM¥@)]=exp (—vl@l?/2).
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3°. For any t>0 the distribution of {x;(¢)}:czr is Z7-shift invariant and
mixing with respect to Z"-shift.
In fact, for any finite subset V of Z’, denote by {x¥(¢)} the solution of the fol-
lowing stochastic differential equation.

6.7) x:)=0  for iV,
* D=0+ aledNABU)+| 2 guxfe)ds  for ieV.
Then it is known that
(6.8) ;1”2 E[|x¥()—x:®)11=0 for any i€Z" and t>0 cf. [16]).
2ZT

Notice that {x;{)—x}(t)}ier and {x;()—xY**({)} jev+r have the same distribution
and that {x¥(*)}:er and {x7**(t)} jev+r are independent if VAV+k=¢. So, us-
ing (6.8) we can show the mixing property at any fixed ¢>0.

4°. For any ¢=S(R") and feC¥RY)

OGN~ f M) 5277 35 qusdalidxd)ds

- %S:f”<M§(¢))i§2J'T¢1(1')20(36i(s))zds

is a martingale.
5°. It follows from 3° that

(6.9) lim E[( 3 A77¢2()*a(x:0)* — @ 41*)*1=0

for any ¢>0.

6°. By making use of the Poisson formula on Fourier transform, it is easy
to see

H -r )2 —
(6.10) 11111010 2 ieZZ)r (g*@1())*=0.
Notice that Lemma 5.4 also is true in the present case. So, we see

(6.11) tim E[ [ 7MH) 5,7 3 0upi(ixdds)]

<const. lim 127 EL( 3 ¢*¢a(i)(x(s)—m)*]ds
< i -r 1))2 =
<const. 1}22 ieZZr(q*gSz(z)) 0.

7°. For any limiting point P* of {P?%} as 1—-oo,

6.12) S )= 3191 g gnds

7) qxp (i) =jEZ:ZTQj—i¢(j)-
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is a P»-martingale for any ¢g=S(R") and feC¥R*). Also, it follows from 2°
that (,, P*) has the same distribution as M, of (6.5). Therefore we obtain the
conclusion since the martingale problem (6.12) has a unique solution.

Corollary 6.1. Let V,=[—n, nJX - X[—n, n]CZ" and define z,(t)=
(2n—|—1)'”2EZV) (x:()—E[x:(1)]). Then under the same assumption of Theorem 6.1,

zn(t) converges as n—-+o0o to a real Gaussian process z(t), which is defined below,
in the sense of probability distributions on C([0, o), R?).

6.13) z(t):z(0)+52v@d3(s) ,

where B(t) is a one-demensional standard Brownian motion, and z(0) is a Gaussian
random variable independent of B(t) with the mean 0 and the variance v.

Theorem 6.1 asserts that the scaling limit process of the above type does
not involve the migration rate {g;;} explicitly. But it should be noted that g(¢)
depends on {g;}.

On the other hand when {g;;} is replaced by {A%;} the limiting process
also is an S’(R")-valued Ornstein-Uhlenbeck process, of which drift term is deter-
mined by {g;i}.

Denote by (2, F, P; x*(t)={x%(t)}) the diffusion process defined by the
stochastic differential equation,

(6.13) dxi)=a(x{t)d B+ P2 gsuxj(t)dt
x*(0)={x:(0)} tezr€ X

where {B;(t)}:czr is an independent system of one-dimensional standard Brownian
motions on (2, &, P, {F,}) and x(0) is F,-measurable.
We assume the condition [C] of §5 and (6.2). Denoting

Kf(¢)=1_”ziér¢x(i)(x§(t)—E[x§(t)]) for each ¢eS(R"),

K} is a S'(R")-valued continuous process for each 2>0. Then we obtain the
following.

Theorem 6.2. Let r=1. Suppose that {x:(0)}iczr is independent and identi-
cally distributed. Then K} converges as A—+oo to a S'(R7)-valued Ornstein-
Uhlenbeck process K,, which is defined below, in the sense of probability distri-
butions on C([0, o), S'(R7)).

6.14) K,(¢)=Ko(¢)—}-a(m)W,(;zS)+S:Ks(L¢)ds for any $ES(R,

where W, is a S’'(R")-valued standard Wiener process, and K, is a S’(R")-valued
Gaussian random variable independent of W, satisfying

(6.15) E[ei¥o®J=exp (—%[|¢||2) with v=E[(x0)—m)*]
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and m=E[x,0)], and L is of (5.13).

Outline of the proof.

1°. Denoting by P? the probability distribution on C([0, o), S’(R")) induced
by K7, we can show by the same argument as the proof of Theorem 5.1’ that
the family {P?%};.; is tight.

2°. llim E[(x¥t)—m)*]=0  for any i€ Z" and t>0.

In fact, denoting h%(t; 7, )=E[(x¥)—m)(x%t)—m)], it follows by using, Ito’s
formula that

L Ape s N2 At . 2 g s N 2
gr V@ DEE T quah it m, A2 3 qmih (5 i, m)+0i;ELalx)].
Noting the independence of {x;(0)}:czr, We have

(6.16) At 4, )= jEZ)ZrP,m(i, JPEL(x6(0)—m)?]

+{0 3 P, 7 ELatele—s)2ds

Here notice that !im .&ZZrPt(i, 7)?=0 for all 7€Z", because P,P¥ is a spatially
-0 j

homogeneuos transition probability on Z7. Hence we obtain llim hA(t; i, D)=
llim E[(x}t)—m)*]=0 for any ¢>0.

3°. For any feCiRY)

FEKE) = 377 3 Qi) —mf (K ig)ds

“%S:”Z;eré1(z'>2a<xé<s>>2f"(Ké<¢>>ds

is a martihgale.
4°, It follows from 2° that

(6.17) tim B[({] S 476,00 aGio)r (Kigds

A-o0

—a(m gl | r( gndsr|=0.
5. B|([77 2, Qus()is)—m)f (K@) )ds — | KILA)F (K ¥9)) ds]
<t715( 27 2, 2 (Qigi—(LPNQip) (LR (s i, ds
<t£/1227 3 (Qag)—(LgL@| sup 3 1hiGs3i, lds

—>0 as A—-+co by Lemma 5.3.
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6°. For any limiting point of P* of {P%} as A—+oo,

SN~ 7 L) @ds— 5 atmPI 1| 7 s

is a P~-martingale for any ¢ €S(R") and f€C}(R*). Also, it follows that (1., P*)

has

the same distribution as M, of (6.5). Hence we complete the proof of Theo-

rem 6.2 since the martingale problem of 6° has a unique solution.
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