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1. Let A denote a Noetherian ring. The purpose of this note is to estab-
lish a kind of vanishing theorem on Exti(M, A) over Gorenstein rings. Our
result is

Theorem 1. The following conditions are equivalent.

(1) A is a Gorenstein ring.
(2) For every finitely generated A-module M there exists an integer n depending
on M such that
Exti(M, A)=(0)
for all i=n.

In case A has finite Krull-dimension, say d, it is well-known by Bass [2]
that A is a Gorenstein ring if and only if Exti(M, A)=(0) for every finitely
generated A-module M and for every integer i>d. This doesn’t make sense if
A has infinite Krull-dimension and of course our theorem remains valid even in
this case.

In their lecture [1] Auslander and Bridger introduced the concept of Goren-
stein-dimension of finitely generated modules and gave a characterization of
Gorenstein local rings (and hence of Gorenstein rings with finite Krull-dimension)
in terms of Gorenstein-dimension. By virtue of Theorem 1 we can easily extend
their result to an assertion about arbitrary Noetherian rings:

Corollary 2. A is a Gorenstein ring if and only if every finitely generated
A-module has finite Gorenstein-dimension.

As a direct consequence of this fact we have the following

Corollary 3. A is a regular ring if and only if every finitely generated
A-module has finite projective dimension.

2. First we note

Lemma 4. Let

00— M — M, —> M, —>0
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be an exact sequence of finitely generated A-modules. Assume that the assertion
(2) of Theorem 1 holds for two of the A-modules M,y M, and M,. Then this
holds also for the rest of them.

Proof. This assertion comes from the long exact sequence

- —> Exti(M,, A) — Exti(M,, A) —> Exti(M,, A) —> -

of extensions.

Lemma 5. Suppose that A is a Gorenstein local ring. Let M be a Cohen-
Macaulay A-module. Then

Exti(M, A)=(0) for all i>0
if dimgM=dim A.

Proof. See, e.g., [3], Korollar 6.8.

Proof of Theorem 1.

(2)=>(1) Let p be a prime ideal of A. Then, as Ext4(A/p, A)=(0) for every
sufficiently large integer 7/, we see that A, is a local Gorenstein ring (c.f. [2]).
Hence by definition A is a Gorenstein ring.

()>(2) By virtue of induction on the number of generators of M together
with Lemma 4 we may reduce our problem to the case where M is cyclic.
Assume that our assertion fails to hold for M=A/I and choose the ideal I to
be maximal among such counterexamples. Notice that [ is a primary ideal.
For it suffices to show that I is an irreducible ideal. Let J and K be ideals of
A with J=JNK and assume that J#I and K=I. Consider the following exact
sequence

00— A/l — A/JDA/K — A/J+ K —0

and we find by Lemma 4 and by the maximality of I that the assertion (2) of
Theorem 1 holds for M=A/I. Of course this is impossible and so I must be
an irreducible ideal of A.

Claim. I is a prime ideal of A.

For we put p=+/1. Assume that p+J and choose an element f of A so
that p=1I: f. Consider the exact sequence

0—> A/p — A/l — A/I+fA—0

and we get by Lemma 4 and by the maximality of / that M=A/I satisfies the
condition (2) of Theorem 1. This contradicts the choice of I and hence [ is a
prime ideal.

Let f be an element of A not contained in I. Clearly f is regular on A/[
and so there is an exact sequence

0——>A/Ii>A/I—>A/I+fA——>O



Vanishing of Exti(M, A) 483

of A-modules. Using this sequence and the fact that the A-module A/I+fA
satisfies the condition (2) of Theorem 1 we find that there must be an integer
n such that for every i=n the element f acts on the A-module Ext%(A4/I, A)
bijectively, i.e., the canonical map

Exti(A/I, A) —> Exth (A;/1A;, Ay)=A,QExti(A/I, A)
A

is an isomorphism. To get a contradiction this fact allows us to localize the
ring A freely by a single element f not contained in /.

We put r=ht,/, the height of I. Recall that r=grade;A as A is a Cohen-
Macaulay ring and we see that [ contains an A-regular sequence a;, a,, -+, a,
of length r. We put J=(a,, @, -+, a,) and A=A/J. Then it is well-known
that for every integer ; and for every finitely generated A-module N there is a
natural isomorphism

Exti(N, A)=Extir"(N, A).

Therefore, after passing through A, we may assume »=0, i.e., ] is a minimal
prime ideal of A. Let Min A denote the set of all the minimal prime ideals of

A. Suppose that #Min A=2 and choose an element f of M(\A , p not contained
PEMin A1}

in I. Then as Min A;={lA;} we may assume that Min A={J} after passing
through A,;. Now let us choose an integer n>0 so that /”#(0) and I"*'=(0).
Then as A/I is an integral domain we can find a suitable element f of A not
contained in I so that I*A,/I**'A; is a free A;/IA;-module for every 1=i=n.
Therefore we may assume further that I?/I**! is a free A/I-module. In this
situation we obtain

Claim. A/I is a Cohen-Macaulay ring.

In fact let p be a prime ideal of A and put ¢t=depth A,/IA,. Notice that
depth,,I*A,/I"*'A,=t because I‘A,/I'*'A, is a free A,/IA,-module. Consider
the exact sequences

0—> 1A, /I A, —> A,/I A, —> A, /[T A, —> 0

(I=i=n) of Ap-modules and we have by induction on i/ that depth A,/I[*A,=t
for every 1=/=<n-1. In particular depth A,=t as I"*'A,=(0) by our choice of
n, which implies that A,/IA, is a Cohen-Macaulay local ring.

Now we are in position to finish the proof of Theorem 1. Let p be a
prime ideal of A. Then by the above claim A,/IA, is a Cohen-Macaulay
Ap-module with dim A,/IA,=dim A,. From this it follows by Lemma 5 that
Extﬁp(A,,/IAp, Ap)=(0) for all 7>0. Therefore

Exti(A/I, A)=(0)

for every integer :>0. This is the final contradiction and we have completed
the proof of Theorem 1.
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