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Introduction

Let M and M' be connected paracompact C'-manifolds and x (M ) and x(M')
the Lie algebras of all C'-vector fields with compact support on M  and M' respec-
tively. A  well-known theorem of Purse11-Shanks [10] may be stated as follows.

Theorem. There ex ists a L ie  algebra isom orphism  0  of  x(M ) onto x (M ) if
and only  if  there ex ists a  Cœ-diffeomorphism cp of  M  onto M ' such that d9=0.

The above result still holds for Lie algebras of all infinitesimal automorphisms
o f several geometric structures on manifolds. Indeed, Omori [9] proved the
corresponding result in case of volume structures, symplectic structures, contact
structures and fibering structures with compact fibers. The case of complex struc-
tures was proved by Amemiya [1]. Koriyama [8] proved that this is still true for
submanifolds regarding a submanifold as a geometric structure. Furthermore the
first author [6] has proved the corresponding result in case of Lie algebras of G-
invariant C'-vector fields with compact support on paracompact, connected, free
G-manifolds when G is a compact connected semi-simple Lie group such that the
automorphism group of its Lie algebra is connected. The corresponding result is
no longer true when the automorphism group of its Lie algebra is not connected,
G is not semi-simple or G does not act freely.

Let (M , ,F) be a  foliated manifold and x(M, g") (resp. x (M ,  g")) be the Lie
algebra of all foliation preserving (resp. leaf preserving) C'-vector fields with compact
support on M. Then we have the following theorem, due to Amemiya [1], which
can be also proved by using the methods of Pursell-Shanks [10] and Omori [9].

Theorem A .  T here ex ists a L ie  algebra isom orphism  0  of  x2 (M, onto
xs ,(M ', .9 ') if  and only  if  there exists a foliation preserv ing diffeomorphismcp of
M onto M ' such that 4 )= 0 .

Theorem A implies that if x2 ,(M, F) is algebraically isomorphic to x(M%
then x(M, g") is algebraically isomorphic to x(M', g''). Conversely, does x(M,
characterize ke,(M, g")?

The purpose of this paper is to prove Pursell-Shanks type theorem for certain
foliated manifolds.
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W e call g compact Hausdorff if all leaves of g" are compact and its leaf space
is H ausdorff. Then we have the following theorem.

Theorem B .  L et ,F  and be com pact Hausdorf f  foliations on M  an d  M'
respectiv ely . T hen there ex ists a L ie  algebra isom orphism  0 of  x(M, .5, 7 )  onto
x(M', if  and only  if  there ex ists a  C '-foliation preserving diffeomorphism
of  (M , ") onto (M ', ..F') such that dcp=0.

This result is an extension of the corresponding result in case of fibering stru-
ctures with compact fibers due to Omori [9].

Next we consider codimension one foliations.

Theorem C (Theorem 5.5). L e t (M, an d  (M ', .F ')  be generalized Reeb
foliated m anifolds (see §5 f o r def inition). I f  0: x(M, g")— +x(M', .F') i s  a L ie
algebra isom orphism , then there ex ists a f o liation  preserving diffeomorphism
(P: (M, <F) - 0 1 ',

Furthermore we have the following theorem.

Theorem D (Theorem 6.4). L et .F  and be f oliations without holonoiny
on closed m anifolds M  and M ' respectiv ely . I f  0: x(M , .97') is a Lie
algebra isom orphism , then there ex ists a f o liation  preserving dif feomorphisin
(P: (M , g . ) --+ (M /,  9 1 .

The key to the proofs of our theorems is to find and characterize maximal ideals
of x(M , g). In  §2, we find and characterize maximal ideals of x(M /g) which is the
quotient Lie algebra x(M, g")/x . r (M , g " ) . This section is an equivariant version of
§2 in Koriyama [8].

In  §3, for g - compact Hausdorff foliation, we find and characterize maximal
ideals of x(M, g") using the facts given in  §2. In  §4, we prove Theorem B .  In §5,
§6, we prove Theorems C, D respectively.

§ 1 .  Preliminaries

Let M be a paracompact connected Cm-manifold without boundary of dimension
n and g" a Cm-foliation of M of codimension g.

Definition 1.1. A  vector field X  o n  M  is called a foliation preserving (resp.
leaf preserving) vector field if transformations {c/} generated by X  are foliation
preserving (resp. leaf preserving) diffeomorphisms (cf. Fukui [5]).

We denote by x(M, .g") (resp. x s ,(M, g")) the Lie algebra o f  all Cm-foliation
preserving (resp. leaf preserving) vector fields on M with compact support.

Remark 1 .2 .  7cy (M , ,F) is an ideal of x(M, g).

We denote by x(M/g) the quotient Lie algebra x(M, g )/x y (M , g ). T hen  w e
have an exact sequence of Lie algebras ;
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0 — 4  3ey (M, ,F) x(M, <F) x(M /.F )-->0

where each map is a Lie algebra homomorphism.

Definition 1 .3 .  . ‘" ;  is called a compact foliation if all leaves of are compact.

Let n: M— >M/, be the map which identifies each leaf to a point and let M/,F"
have the quotient topology.

Definition 1 .4 . A compact foliation is called Hausdorff if M/,97  is a Hausdorff
space.

Remark 1 .5 .  The example due to Sullivan [12] says that all compact foliations
are not Hausdorff.

Remark 1 .6 .  For g = 1, every compact foliation is Hausdorff. Indeed, M/.F
is  a manifold with boundary o r without boundary. For q = 2 ,  every compact
foliation on a compact manifold is also  Hausdorff. (see Epstein [3 ], Edwards,
Millett and Sullivan [ 2 ] ) .  Furthermore Edwards, Millett and Sullivan in [2] showed
that in the presence of a certain homological assumption, every compact foliation on
a compact manifold is Hausdorff for 3.

For compact Hausdorff foliations, Epstein [3 ] proved the following theorem.

Theorem 1 .7 .  Let be a compact Hausdorff  C'-foliation o n  M . Then there
is a "generic leaf" L o  w ith the property  that there is an open dense subset of  M,
where all the leaves have triv ial holonomy and are all diffeomorphic to L o . Given
a leaf L, we can describe a neighborhood U(L) of L, together with the foliation on
the neighborhood as f ollow s. T here is a f inite group G, of  0 (g ). G L acts freely
on Lo on the right and L o IGL ' ' L .  Let Dq be the unit g-disk. W e foliate Lo x Dq
with leaves of the form L o  x { pt} . T his foliation is preserved by the diagonal action
of GL , defined by g(x, y)=(x • g  •  y )  f or g e  G ,, x  L o  an d  y eD q. So we have
a foliation induced on U =L o xDq • T h e  leaf corresponding to y=0 eDq is L o /GL .

GL

Then there is a  C'-imbedding 4): U—)M with O (U )=U (L ), which preserves leaves
and 0(L 0 IG,)= L.

Definition 1 .8 .  A leaf L is called singular if G, is not trivial.

Definition 1 .9 .  A singular leaf L is called isolated if the action of GL  has only
the origin of Dq as fixed points.

Remark 1 .1 0 .  Let Fix (G L )  denote the fixed point set of the action of GL .

If GE  is a cyclic group, the action is semifree.

Now, consider what is a standard coordinate of such compact Hausdorff foliation
F .  This is a local coordinate (U ; xq, y',..., yr) (g + n) such that for any
fixed xq, a local coordinate of the leaf is given by yr. For such local
coordinate, every X e s(M , ,F) is described as follows;
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0  a i ( x ', . . . ,  x q  
o x t

) .  + xq, y 1,..., y r) „
i=1 

where a i and bi j - r )  are C'-functions on U.

Lemma 1 . 1 1 .  I f  X  e x(M, satisfies X (p)00  (p a  M ), then there is a local
coordinate (U; x 1,..., xq, y 1,..., yr) at p such that

0  1) X = on a neighborhood of p , orOxl

2) x.  a   + f.(xi
"  x q  

O x '
)   a .  with f i (0,..., 0) =

0Y1i = i  

where the origin of  the coordinate corresponds to  th e  p o in t p . Especially, when
p  is contained in some isolated singular leaf , 1) does not occur.

Pro o f . Easy computations.

Let G be a  finite subgroup of the orthogonal group 0 ( q ) .  G acts linearly on
R q .  We denote by  x ( R )  the Lie algebra of all C'-vector fields on Rq with compact
support.

Definition 1 .1 2 .  A  vector field X  e x ( R )  is called G-invariant if TgoX =
for all g e G, where Tg is the tangent of g: R"— R". W e  c a ll  X  a  G-vector field.

Remark 1 .1 3 .  Since the map g  is linear, the tangent m ap Tg is equal to the
map g.

The set x ,(Rq)= { X  e x ( R )  I X  is  G-invariant} is  a  L ie  subalgebra o f  x(Rq).

Definition 1 .1 4 .  Two (G-)vector fields X , Y  are (G-)equivalent at the origin if
there exist an open neighborhood U(n 0) and  a  Cc- (G-) diffeomorphism h of Rq
such that Yh- 1 (p) = Dh - l(p) • X (p) for pa U.

Theorem 1.15 (Equiv ariant linearization theorem).
If  a G-vector f ield X  is equivalent at the origin to a G-linear vector field Y by a

Cœ -dif feomorphism  h such that Dh(0) is equal to the unit m atrix , then X  and Y
are also G-equivalent at the origin.

Pro o f . From the assumption, there exist an open neighborhood LI( n 0) and a

ff-diffeomorphism h such that Y1 -1 (p)=D h - l(p)• X (p). Put fi- 1 = E g.h - ' •
IG1 g .G

where I GI denotes the order of G .  Since Dh(0) is equal to the unit matrix, it is easy
to see that h  is a  G-diffeomorphism in  some neighborhood V( c  U )  of the origin.
Since Y is G-linear, for p a V

n r i T 1 ( P ) ) - 1 7 (iGi  1 g . 1 2 - 1 . g - 1 ( 1 ) ) )c c 

1
= TGT gc,ir(g'11-1*9-1(13))
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= glcc g  i r ( 1 1 - 1 .  g  ( P) )

1= --j- D e ' (g-1(p)) (p )) (because X  and Y are
equivalent)

1
= ( G gDh - '(g - 1 (p))g - ix (p) (X  is G-invariant)

= ' D(9-11-1•g-1)(p)x(p)
g G  

Dii - '(p)X (p).

This completes the proof.

Remark 1 .1 6 .  For X  e xG (Rq), X— E gX g - i is equal to X.

Remark 1 .1 7 .  For X  ex(Rq), X = ib- 1 E  gX g - 1  is G-invariant. Furthermore

if jk(X )(0)= 0  for all k . 1 ,  then jk (X ) (0 )  G-60  for all 1 , where jk (X )(0) (resp.
jk(X )(0)) denotes the k-jet of X  (resp. X ) at O.

§ 2 .  Characterization of maximal ideals of x(11//.56 )

Let G be a finite subgroup of the orthogonal group 0 ( g ) .  G acts linearly on Rq.
We denote by x ( R )  the Lie algebra of all Coe-vector fields on R q with compact
support and x0 (R q)={ X  ex(R q)I X  is G-invariant} is a  L ie  subalgebra of x(Rq).
We assume that the action of G is semifree.

Lemma 2 . 1 .  If  X  ex G (Rq) does not vanish at p (0 Fix  (G)) in Rq, then f o r any
Z ex 0 (Rq) there exist a  neighborhood U  o f  p  in  I?" and  a vector f ie ld  Ye xG (Rq)
such that [X , Y ]=Z  on U.

Pro o f . We consider the orbit map h: Rq— >IV IG. Then Ill R q _
F  i x ( G )  

is a  finite
covering. The differential dh  maps any element Z  of x ( R )  to some element Z
in x(Rq —Fix (G )IG ). Let V be a neighborhood of p in Rq such that h I v  is hoemo-
m orphic . Put /5 = h(p), V  = h(V ). Since :Y(j3) o ,  it is easy to see that there exists
a local coordinate (U; x 1 ,..., x") (U. I V ) at /3 such that X = L. o n  V. By the

usual argument (see Koriyama [ 8 ]  Lemma 2.1.) there exist a  lo ca l coordinate
(U; x 1 ,..., x ") (UcV ) at /3 and a vector field Y on U such that [X , Y ]=Z  on U.
Let U be a component of h 1(U) which contains p .  We can easily lift the vector field
Y to a G-invariant vector field Y on R q .  Then [X , Y ]=Z  on U .  This completes
the proof.

Lemma 2.2. F o r each p o in t p e  R q  su ch  th at p  F ix ( G ) ,  w e s e t  Cirp =

{X E IG(R q )  I X (P)= 0 , l k (X )(P)= 0  f o r all 11. Then for each point pe R q,
is an ideal of xG(Rq).
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Pro o f . Easy computation.

Lemma 2 .3 .  Let p(0 Fix (G)) in R q be a given p o in t. I f  5  i s  an ideal of
x (R )  and X (p)=0 for all X  E 5 ,  then p.

P ro o f . Since p  F ix ( G ) ,  there exists a local coordinate (U; x '..... x )  a t  p
such  tha t U  nFix (G )=0  and g i Un g 2 U = 0  fo r  any distinct g 1 , g 2 e G .  Hence

0appropriate extensions of  , . (i =1,..., q) are contained in xG( R ) .  We also denoteox' • 0th e  extended vector fields b y  th e  sam e le tte rs. F o r  a n y  X =  E a' .  eox '
[   a i =6 a i 6   for a ll j= 1 ,..., q. As is a n  ideal, r  6 X 1  E

_ i= 1  e X i  a X i 'ax iOa From the assumption for st, a x ;  ( p ) =  0  f o r  a l l  i, j = q. B y induction
on k , we have fk(X )(p)= 0 for all k I .  T h e r e f o r e  .5 "  •flp• T h is  completes the
proof.

The next lemma is well known.

Lemma 2 .4 .  Let A be an arb itrary  L ie  algebra. If  a  and b are ideals of A
such that a  h .  Then (A /b)/(a/b):#' A/a.

Now from Lemma 2.5 till Theorem 2.12, we assume that the action of G has
only the origin of Rq as fixed points.

Lemma 2 .5 .  The subset xY R q)={ X  e x G ( W 0 1 , 1 1 ( X ) ( 0 ) = 0 }  i s  a n  id e al  of

s
(Rq).

P ro o f . Easy computations.

Let 7r: xG(R(1).->sG (Rq)lxURq)L'gI G(q, R ) be the natural projection which is a
Lie algebra homomorphism, where gl,(q, R ) denotes the set of G-invariant endmor-
phisms of R q .  We denote by {g A} " ,  the set of maximal ideals of g10 (q , R ) . Then
for a n y  E A, 7r (g )  is a maximal ideal of xG(Rq).

Proposition 2 .6 .  I f  in  is  a maximal ideal of x 0 ( R )  su ch  th at in =x (R q ),
then there is a 10( E A ) such that in =n -1 (g

P ro o f . Let in x,(Rq) be a maximal ideal such that irt x(Rg). B y Lem m a
2.4, i n / x ( R )  is  a  proper ideal of x0 (Rq)lxh(Rq)-g1 0 (q , R ) . From the maximality
of in, i n / x ( R )  is a maximal ideal of gIG(q, R). Hence i n / x ( R )  should be equal to
g 0 for some /10 E A .  This completes the proof.

We set xo(Rq)= {X E x (R q)i X (0)=0}  and

xG°(Rq)= {X e x ( R )  I i k (X )(0) =  0  for all k  1} .

Lemma 2 .7 .  I f  lit  is  a  m ax im al ideal of x ( R )  such that inD *(R q), then
P(m)(0) is a proper ideal of  gl,(q, R ), w here P(m )(0) is the image of 111 under the
natural projection:
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xa(R q ) - - - - * xa(R q )PcUR9'—'9 1G(47, R ).

Pro o f . Assume j 1 (m )(0)=g1 0 (g ,  R ).  Take a  vector field X E 111 such that
P (X )(0 ) is the unit matrix. Then by Sternberg's linearization theorem [11], there
exists a local coordinate (U; x q )  at 0 such that X  is equivalent at the origin to

•E xa n

a
. v ia  a  C '-d iffeom orphism  h  such that Dh(0) is the  un it m atrix. Then

ox ' '
by Theorem 1.15, the G-vector field X e x 0 ( R )  is G-equivalent at the origin to the

G-vector field E xi n
a

;vx. '
On the other hand, by the same argument as in Lemma 2.10 of Koriyama [6],

we have tha t fo r any Z e xb(Rq), there exists a  vector fie ld  Ye x 0 ( R )  such that
Z — [X , 11 ex,T(Rq).

Now consider the vector f ie ld  
I  

 E  g(Z— [X , Y])g - i w h ic h  is  G-invariant
geG

and is contained in  34(Rq) from Remark 1.17.

G-invariant, it is equal to Z iGi

rG (Rq), we obtain [X , E m .  So Z e in,1 

position 2.6, in =7E-1 (GA) for some /1, E A .  Then we have  P (m )(0 ) g1G (q, R), con-
tradicting the assumption. This completes the proof.

Proposition 2 .8 .  I f  in  is a  m ax im al ideal of  2c6 (Rq) and in D*D(Rq), then m =
K- 1 (g 0 ) for some il o e A.

Pro o f . From Lemma 2.7, P(m)(0) is a  proper maximal ideal o f  glG (q, R).
Thus P (m)(0) g,t o  f o r  some ,1, 0  e A .  Then we have in c n- 1 (g A 0 ). By the maxi-
mality of ni, rn = n- 1 (g 2 0 ). This completes the proof.

Lemma 2 .9 .  If  in is a m ax im al ideal of  x 0 ( R )  and I n  3tr6D(Rq), then j 1(m )(0 )=
gIG (g, R).

Pro o f . Assume that P (m)(0) is a  proper ideal of gIG (g, R). Since P(m)(0)
is a maximal ideal of g IG (g , R ), P (m )(0 )=  g  for some )L E A .  Then in =n - qg ,)=
x'aRq), contradicting the assumption. Hence P(m) (0) = g 1,(q, R ). This completes
the proof.

Lemma 2 .1 0 .  L e t m  b e  a  m ax im al ideal of  x 0 ( R )  s u c h  th at  fl(m )(0 )=
gIG (g ,  R ) .  If  for any  point p( 00)e Rq, there ex ists a vector f ield Ye nt such that
Y(p) 0, then itt :* (R q ).

Pro o f . We set 5 = {X e f6)(Rq)Isupp X00}.
Firstly we prove that D m . L e t X be an arbitrary element of Since supp X

is compact, there a r e  X e J  a n d  lo c a l  coordinates (Vi ; x7 ) (i=1 , r)
such that X = X i + +X r , supp X ,  Vi a n d  g 1 Vi 1i g 2 Vi ---- 0 (i =1, r) for any
distinct g l , g 2  E  G.

If we want to prove that X e in, it suffices to prove that X i e in for each i. From
the assumption, for each Vi (i = 1, 2,..., r ), there is a  vector field Yi e in such that

a= o n  1 6 . Because the argument is local, we may delete the indices. By the
ax)

Furthermore since X  and Z are

Since X E in and in is an ideal of

hence xb(Rq)c m. By Pro-
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same argument as in Lemma 2.1, we can prove that there exists a  vector field Z e
x 0 ( R )  such that supp Zc V and [X , Z ] = X  on V. Therefore we have X e tn, hence

c m.
N ow  w e continue the proof o f  Lemma 2.10. Since P(m)(0)=gl 0 (q, R )  by

Theorem 1.15, there are a vector field X e m and a local coordinate (U ; x ' . . . . .  x )
q .  a at 0 such that X = E  x i •  on U .  By the same argument as in the last part of thei=i X

proof of Lemma 1.13 in [8], we see that for any Z E * ( R q ) ,  there exist a vector field
YE x 0 ( R )  and  an  open  neighborhood W( c U ) o f 0  such that [X , Y] =Z on W.
Since X  and Z are G-invariant, for Y— E gYg - ' Ex,(Rq), w e have [X , Y] =

1 geG
 E g[X, Y]g - ' — E  gZg - ' = Z  on W.1G geG IGI geG

Since [X , -Y]E in  and supp (Z — [X , Y])00, Z— [X , Y ] e f c r n ,  hence Z em.
Therefore we have 2*(Rq)OE in. This completes the proof.

Proposition 2 .1 1 .  Let m  be a maximal ideal of
 x ( R )  such  tha t m7)*(Rq).

Then there exists a point pe Rq such that p 0 0 ,  = J r ,  and the o rb it o f p by G is
unique.

P ro o f.  By Lemma 2.9, f l (m ) (0 )= g1 0 (q , R ) .  By Lemma 2.10, there exists a
point p(00) e Rq such that X(p)— 0 for all X E in  B y  L em m a 2 .3 , m  ti p •  Since
in is a m axim al ideal, in=f. From  the maximality of in, G•p is uniquely determined.
This completes the proof.

Theorem 2 .1 2 .  A ny m axim a l idea l of
 x 0 ( R )  should be equal to one of the

following ideals;
.1,, =7(-1 ( g A) :  ideal with finite codimension a n d  corresponding to 0 e Rq,

(ii) .4 :  ideal with infinite codimension and corresponding to G. p ,  p  0.

P ro o f.  The result is a n  immediate consequence of Propositions 2.8 and 2.11.

Now we consider the case of dim Fix (G) .> I.

Lemma 2 .1 3 .  For any ideal in of xG (Rq), there exists a point p E Rq such that
X(p)=0 fo r  a ll X e m.

P ro o f.  We assume that for any point p e Rq, there is a vector field X e in such
that X(p)0 O. Then applying Remark 1.17 to Lemma 3.1 of [8], we easily prove
tha t fo r any Z e r G (R q ), there exist a  vector field Ye x 0 ( R )  and a nieghborhood
U  of p  such that [X , Y] =Z on U .  Hence by the method which was used to prove

in in Lemma 2.10, we have m=x 0 (Rq). This completes the proof.

The following two lemmas are easily proved.

m  be an  ideal of
 x 6 ( R )  a n d  p e R q  be a point such that

Then for piffix(G)we have jk(X)(p)=0 for a ll For

xs, xq) be a  lo ca l coord ina te  a t p  such that
0

• = xq = 0 } . Then f o r  a n y  X =  E f i(x ) .Fx -i n t ,  w e  have

, q; r> 1;1< ii< s).

Lemma 2 .1 4 .  Let

X(p)=0 for a ll X e nt.
pEF ix(G ), le t (U ; x '

U n F ix (G)= [xs+ 1 = • •
r f ( p ) - - .- 0 (i 1

x  • • •  x
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Lemma 2.15. L et m be an  ideal of  x 0 ( R )  such  that X(p)=0 f o r all X e in
at a point p E R " .  Then p0Fix(G) if  and only  if in does not contain Ker r,, where

x6 (Rq)-4x(Fix(G)) is th e  L ie  alg e b ra homomorphism induced  f rom  the
restriction m ap r: Rq--*Fix(G).

Theorem 2.16. A ny  m ax im al ideal of  x,(Rq) should be equal to one of  the
following ideals;
(i) ti p :  ideal corresponding to G  p (p0Fix(G)),
(ii) r,- 1 .4 :  ideal corresponding to p (pe Fix(G)),
where is the m ax im al ideal of  x(Fix(G)) corresponding to p.

P ro o f . Let t it  be a  maximal ideal of xG (Rq). By Lemma 2.13 there is a point
pe Rq such that X(p)=0 for all X E m . If p is not contained in  Fix (G), then by
Lemma 2.14 we have in c f .  Since in is maximal, m =.sfp  a n d  th e  orbit G- p is
uniquely determined. If  p is contained in  Fix (G), then by Lemma 2.14 we have
r*(m )e,fi r  S in c e  m is maximal, m = r-,-,1.1p  and the point p is uniquely determined.
This completes the proof. •

Corollary 2.17. Let F  b e  a com pact Hausdorff f oliation o n  M .  Then any
m axim al ideal of x(MI.9") should be equal to one of the following ideals;
( i) ideal w ith f inite codimension and corresponding to an isolated singular leaf,
(ii) ideal with infinite codimension and corresponding to a non-isolated singular

leaf,
(iii) ideal w ith inf inite codimension and correspondeing to  a  non-singular leaf.

Pro o f . The result is a n  immediate consequence o f Theorems 2.12 and 2.16
since  it is  su ffic ien t to  p rove  the  cases th a t  th e  a c t io n s  o f  th e  g roups in
Theorem 1.7 are semifree.

§ 3 .  Characterization of maximal ideals of x(M, 5r)

In this section we assume that g  is a compact Hausdorff foliation.
Let x.2,(M, .9") be a Lie subalgebra of x(M , g) whose elements are tangent to

leaves of F . Then w e know  that x.2,(M, g") is an ideal of x(M, g - ) and we have the
following exact sequence:

0 ---* x(M ) x(M, So- ) x(M/g) O.

Then it is easy to see the following.

Lemma 3.1. L et in  b e  a m ax im al ideal o f  x (M , ,F ). I f  dn(in)Ox(M1.),
then dir(m) is a m axim al ideal of  x(MIF).

Lemma 3.2. L et in  b e  a m ax im al ideal o f  x(M, I f  dn(m)=x(MIg"),
then there are an isolated singular leaf  L and a point peL  such that for all X e
X(p)=0.

P ro o f . Assume that for any point p in isolated singular leaves, there exists a
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vector field X e nt with X(p)0 O.
First we prove that x ( M ) i i i .  L e t  {Li }i e ,  be the set of all isolated singular

leaves of . .6" .  From Theorem 1.7, N is a countable s e t .  Thus we may consider N  as
the set of natural numbers or its finite subset. Take neighborhoods U(L i)('L' L i x Do),

G,
U 113 (L 1) L i x Dq(1/3)) o f an  isolated singular leaf L i f o r  each i E N such that

Go

U(L i ) n u(L1)=0 for any i, j (i0  j), where D ( 1 / 3 )  is  the disk of radius 1/3. Set
V = n {M -  u 113 (4)}, w hich is a n  o p e n  se t  o f  M . L e t  h: [0 , 1 ]-4 0 , 1 ] b e  a

ieN
Cr-function such that

{1 (0 < t <  2
1 )

h (t)=

0 ( - 1  t  1 )

a n d  p : .1)(1— R  b e  a  C '-function defined  by  p (x ',..., x ‘)=h ((x 1) 2 + • • • + (x )2) .

W e define a  C'-function U (Li).' L i x Dq—>R b y  ).;(p, x' xq)= p(xl,..., xq)
Gi

for p e L i , (x 1,..., xq) E D . F o r  any YE x (M ), we set Yi =)Li Y (i E N). S in c e  supp Y
is compact, we may assume that there is i, e N  such that Yi = 0 for i >  I .
I f  w e  s e t  Y, Y— Y, — Y 2  — • • • — th e n  w e  h a v e  t h a t  Y= Y, + Y1 + .. • +
supp Yi U ( L i) for each i e N  and supp Y0  c V.

Hence if we want to prove that YE in, it suffices to prove that (i) Y, E in  and
(ii) Y1 ern for i =1, 2,..., i 0 .

(i) From &TO -0 =  x (M / ) , for each point p in  V. there is a  vector field Xe in
with X (p )0 0 .  So by Lem m a 1.11, th e re  is  a  lo c a l coordinate (U; x',..., xq,

y',..., yr) at p such that X =  a x
a on  U .  Thus by the usual argum ent (cf. Lemma

2.1), we can easily prove that Y, e in.
(ii) We shall prove that y e M .  Take a point p in the isolated singular leaf

L i and a  vector field X  with X(p)0 O. B y  L em m a 1.11, there is a local coordinate
(U ; x ',..., xq, y ',..., yr) a t  p  s u c h  th a t  X —

y ' "+  E  f . (x ' x  axiq)  witha 
.f(0 ,..., 0 )= 0 ( j= 1, 2,..., q) on U .  With respect to this coordinate, Yi is expressed
as Y, = t  g  .(xl,..., xq, y'..... ) on U .  We consider the following system of

=1 ay i
differen

J

tial equations on U :

• f
k  

Oh;( j  - = -  1, r).
a y i k = i f  a x k

These can be solved on some neighborhood V(Œ U) for given g i  ( j=  1, r). If

we set Z= h . ay'a. then [X , Z ]=  Y 1 o n  V. Performing the same argument for
=1

local coordin
J

ates at other points in L i , we can prove that Yi E m.
Next, we prove that in= x(M, From chr(m)= x(M/F), for any X E x(M,

there exists a vector field Z e in such that chr(X )=d7r(Z ). Therefore X —Z E xs ,( M).
Since .t (M ) i i i  and ZEI11, w e  have tha t X  e in, hence in = x(M, „F). This is  a
contradiction. This completes the proof.
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From Lemmas 3.1 and 3.2, we have the following.

Theorem 3.3. A ny  m ax im al ideal of  x (M , g )  should be equal to one of  the
following ideals;

( i )  m r,--=d7r- 1 .9 15: ideal corresponding to Lemma 3.1, where . f r,  is  the maxi-
m al ideal of x (M Ig) corresponding to a point /5 E

f :  ideal corresponding to L em m a 3.2, where p  is a point of  an isolated
singular leaf.

Remark 3.4. We can characterize the ideal r y (M , g"). This is given by the
intersection of all maximal ideals of type (i).

Rem ark 3.5. Let (U : x ',..., x q, y )  be  a  local coord inate  a t p  in an
isolated singular leaf. Then by the similar way as in the proof o f  Lemma 2.3, we
can prove that any element of 91ip  as above vanishes at p with all of its derivatives with
respect to yr.

Proposition 3.6. L et (M ,  F )  and  (M ', ..F') be m anifolds w ith compact
Hausdorf f  f o liat io n . I f  0 :  x(M, g " ')  is  a L ie  algebra isomorphism,
then .1)(tnp ) =m 1,-. and 40(91„)=2t,, where 13, p' are points of  A l / F ,  M 'I g ' respec-
tively and p, p ' are points of isolated singular leaves of g ,  g '  respectively.

P ro o f . We consider the following exact sequences:

0 z (M ) x(M, --+ x (M 1 327 ) 0
uft

x Km) n 91ip9 1 p chr(s/lp)

Then there is a Lie algebra homomorphism

: x2 (M)/x .9,(M )n 9lpx ( m ,  F ) / 2 t .

Clearly e  is injective. Furthermore, since x(M/g).--- cin(91;) we can prove that c
is surjective. Hence x(M, " . )191-p 2 X y(M)112(4) n 91p . Let (U ; x ',..., x q, y 1 ..... y ')
be a  local coordinate at p. Then the form al Taylar expansion of X  e x. F (M)
at p with respect to y ',..., y r is a homomorphism of x . ,,(M) onto the product of the
rings of formal power series and its kernel is exactly x(M) n 21p . T herefore

x(M, g")/917x,,(M)/kAM)n 21 p

xa)[[y',..., yr]] x •• • x C "(x ',..., x q )[[y ',..., yr]]

where xq) is the ring of the germs of C'-functions a t p  and the algebraic
structure on the right hand is induced from the algebraic structure on the left hand.
On the other hand, we can easily prove that

x(M,
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R [[x l xq]] x • • • x R[[xl xq]]
if p is contained in non-singular leaves,

x s]] x  • x  R [[x ' xs]] (s < q)
if p is contained in non-isolated singular leaves (see Lemma 2.14),

glG (q, R )Ig (for some A.)
if p is contained in isolated singular leaves.

Comparing their commutative Lie subalgebras, we have that any  9fr  inp a re  not
isomorphic to ntr,',, 9tp . respectively. This completes the proof.

Corollary 3.7. Under the assumption of Proposition 3.6, we have 0(x y (M ))=
x.r(A4 ').

Pro o f . This is an immediate consequence of Remark 3.4 and Proposition 3.6.

§4. Proof of Theorem B

To begin with, we state the following theorem due to Amemiya [1].

Theorem 4 . 1 .  Let (NI, .54") and (M % .F') be foliated manifolds which are not
necessarily  compact H ausdorf f . I f  0 : xy (M, g)-4x 9 (M', i s  a Lie algebra
isomorphism, then there is a foliation preserving diffeomorphism
9: (M , (A T , F') s u c h  th a t  4 =0 .

Remark 4 .2 .  Amemiya proved this theorem by characterizing maximal sub-
algebras in  x ( M , g )  of finite codimension. We can also prove this theorem by
characterizing maximal ideals of x2 (M, g ) .

Proof of Theorem B .  From Corollary 3.7 and Theorem 4.1, there is a foliation
preserving diffeomorphism (M, .F)—(M% a?"- ')  such that dcp = 0  on x (M , g ).
Therefore we prove that d9= .1) on x (M , g ).  Let S , S ' be the sets of all singular
leaves of g ,  g '  respectively. T h e n  the map 7C M  --S -+ M — S I ,F  is  a  pro-
jection of a fiber bundle with compact fiber. B y  the same argument as in [9, §X.7],
we see that for any point pe M— S, there are local coordinates(U ; x' xq, yr)
at p and (V ; 5?q, , . . . ,  j7r )  at gq(p).= e M' such that for any

X =  ±  f i (x) + g si (x , y) .  e x(M, g ) ,
i=1 OX' j= 1 ay,

ar a 
C . i n = ( f i ° 9 - 1 )   ( g 1 ° 9 - 1 )  - on V,

i=1 j= i a y i

and moreover xq, yr)= xi for i = 1, 2,..., q and
g a r ax4,y 1 ,..., y r)=y i for j = 1, r.  Hence for any X = f i i +

ai = i  u x .J=1 ° Y
o n  U , w e have dcp(X )= + (g  9 - 1 ) o n  V. Since p  is an

.1=1 oY
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arbitrary point in M— S, for any X  e x(M, dcp(X )= 0(X ) on M' — S'. From the
continuity o f vector fields, dcp(X )(p')=0(X )(p') for any p' e S'. Hence 4 = 0 .
This completes the proof.

§ 5 .  Generalized Reeb foliations

In §5 and §6, we consider codimension one foliations.

Definition 5.1. A compact foliated manifold (M, .F) (OM 0 0) is called a gener-
alized Reeb component if the following three conditions are satisfied:
(1) all leaves in Int M are non-compact and proper,
(2) the holonomy groups of all leaves in Int A/I are trivial and
( 3 )  each of the elements of the holonomy group o f  each compact leaf o f  g -  can
be represented by a local diffeomorphism o f  R , = [0, oo), leaving fixed 0 , which
is C'-tangent to identity at 0  and whose second derived function is non-negative
or non-positive in some neighborhood of O.

Definition 5.2. g is called a  generalized Reeb foliation on a closed oriented
manifold M  if there is a  decomposition of (M, g") such that (M , ,F)=  j  (M,, <F,),

i =1
where each (M i , „FI) denotes a generalized Reeb component.

Then applying Lemma 1.9 o f  [5 ]  to  transformations { } generated by any
X E X(M, 9 . ) ,  we have the following.

Proposition 5.3. Let (M, .97 )  be a generalized R eeb foliated m anifold with k
generaliz ed R eeb com ponents. T hen x (M IS ) is a k -dim ensional triv ial L ie
algebra.

Proposition 5.4. L e t (M , .F)  b e  a s  ab o v e . T h e n  an y  m ax im al id e al of
x (M , F) should be equal to one of the following ideals;
(i) ut2 =d7r - 1 (g A): ideal w ith codim ension one, w here  g  is  a  m ax im al ideal of

Rk.
(ii) 91p :  ideal with infinite codimension and chr(91f p ) Rk, where p is a point of  a

compact leaf.

Pro o f . The proof is sim ilar to those o f  Lemmas 3.1 a n d  3.2 and omitted.

Theorem 5.5. L e t  ( M , .F )  an d  ( M ',  F ')  be generaliz ed R eeb f oliated
m anifolds. If  0: x (M , .F ')  is  a L ie  algebra isom orphism , then there
is a foliation preserving diffeomorphism (M,

P ro o f . From Proposition 5.4, the ideal x. F (M , "") is given by the intersection
of all maximal ideals of type (i). Thus this isomorphism of x(M, ,F ) to  x(M',
induces an isomorphism of x2 ,(M, ..F) to x2 ,(M ',  .F ') .  Hence by Theorem 4.1, we
have the result.



698 Kazuhiko Fukui and Naoto Tomita

§ 6. Foliations without holonomy

Proposition 6.1. (see Theorem 1.2 and Proposition 5.3 of  Im anishi [7]). L et
M  be a com pact C"-m anifold and F  a  transversely orientable codimension one
foliation without holonomy of  c lass C . T hen  one  of the followings occurs:
(i) the leaves of g" are fibers of a fibration of  M  onto S ',
(ii) all leaves of ,5"." are everywhere dense in M.

Proposition 6 . 2 .  L et (M , ,F) be as above, of  type (ii). Then x se (M, .54 - )  is  of
finite codimension in x(M, I, hence dim x(M/g- ) 1 .

P ro o f . Let (U; x, y "- ')  be a local coordinate o f  M  for any fixed x , a
local coordinate o f the  leaf is given by y " -1 . F o r  such local coordinate,
every X E X ( M ,  g )  is described as follows:

an - 1
X =f (x ) +  Eax

Let T g .  be  the subbundle of zA1—>IVI determined by the foliation F. s z (M , ..F ) is
the space of sections of T g - 0 4 .  By the canonical projection of TM onto TM/TF,
x (M , g ) defines a  subspace S of f(TM/Tg- ). Let iL : L -04  be an inclusion. We
see that if X e it(S) is such that X (p)=0 for some pe L, then there exists a  neigh-
borhood V of p in L such that X Iv  a--  O. S in c e  L is connected, X  O. This implies

dim WAS» = dim fit,(S) p l 1.

Since L =M , X , Ye S are equal if and only if it(X )= Y ) .  This completes the
proof.

Proposition 6 .3 .  Let (M, be as above, of type (ii). If  dim x(M/F)= 1, then
x _ (M , ,)  is a unique m ax im al ideal of x(M,

Proo f . F ro m  t h e  a ssu m p tio n , w e  h a v e  a  follow ing e x a c t sequence:
0—*x_r (M, g- )—>.x(M, g. )--424R—>0. Let 111 be a maximal ideal of x (M , g "). Suppose
that dit(m )= R. T h e n  w e  p ro v e  th a t  xy (M , g -) c in. F r o m  the assumption of
d7r(m)=R, there are a local coordinate (U; x, y ' ..... y " ')  an d  a  vector field XE 111

a such that X  =
a
 o n  U .  Then by the usual argument (cf. Lemma 2.1), we can provex

that for any YE I y ( M ,  g ) ,  there exists a vector field Z E I y ( M ,  g )  such that [X , Z ]=
Y on U .  Hence k r (M , F )c : m.

Next we prove that in = x(M, g- ). Since dir(m)=R, for any X  e x(M, g"), there
is  a  vector field Ye m  such  tha t dn(X )=d7r(Y ). Therefore X— Ye xy (M,
Since xs ,(M , g ) c  in a n d  Ye In ,  we have X e lit, hence in = x(M, This is  a
contradiction. This completes the proof.

Theorem 6 . 4 .  Let F  and be transv ersely  orientable foliations without
holonomy on closed manifolds M and M ' respectively. If 0: x(M, ,F)— >x(M',
is a L ie algebra isom orphism , then there is a foliation preserving diffeomorphism
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49 : (M, .F) — > (A4 ', •F').

Pro o f . Let nt be a  maximal ideal of x(M , ..F ). If g -  is a foliation of type (i)
in Proposition 6.1, then nt is of infinite codimension in x(M , g- )  and x(M, .5,7 )/in
lq [x ]] (see Proposition 3.6). If g -  is  a foliation of type (ii) in Proposition 6.1 and
dim x(M/.F)= 1, in is equal to x4 ,(M, g") and is of finite codimension in x(M , g- ).

If  g - i s  a foliation of type (ii) in Proposition 6.1 and  dim x(M/g- ) =0, then
x_r (M , g- ) = x(M , F ), thus in  is a maximal ideal of xs ,(M , g- ) and xy (M, g')/in

y" - 1 ] (see Proposition 3.6). Therefore if  ,F  is  a foliation of type
(i), must be of type (i). In this case, Omori [9] proved this theorem. If g -  i s  a
foliation of type (ii) and dim x(M/g)= 1, ,F"' must be of type (ii) and dim x(M 7g- ')
= 1 .  Hence xs,(M ', g - ' )  is a lso  a unique maximal ideal o f  x (M ', g " ) , which is
isomorphic to 3 F ) . By Theorem 4.1, there exists a  foliation preserving dif-
feomorphism of (M , g - ) to (M', If g -  is a foliation of type (ii) and dim x(M /g- )
=0, g"' must be of type (ii) and dim x(M' O. H ence  x ( M ,  g - ) is isomorphic
to x , ( M ',  " . ') .  This completes the proof.
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