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1. Introduction

We are concerned with local solvability of the partial differential operators.
The notion of local solvability in the distribution’s sense was introduced by L.
Hoérmander. Let Q be a domain of R" and P be a partial differential operator with
smooth coefficients in Q.

Definition 1. We say that P is locally solvable at the point x € Q if and only if
there exists a neighborhood U of x such that for every fe C§(U), there exists u e
2'(U) which satisfies Pu=fin 2'(U).

Let I be ainterval [— T, T], D,= T—Q—, and D“=—l.———‘zli|——,

i Ot * 0 Oxyre-0x%n
(oy,...,0,)eN", and N=(0, 1, 2,...). In this paper we shall consider the local
solvability of the operator

where a=

(1) L=D,+P(x,1,D,) (x,)eQxI

, where P(x,t, D))= > a,x,t)D%, and ayx,)eC®(Q2x1). When m=1,
local solvability of L 1s|§lmost completely decided. (L. Nirenberg and F. Treves
[17]). So we consider the case m>2. In this case, L becomes non-kowalewskian
operator. In non-degenerate case, hypoellipticity of parabolic system has been
proved by S. Mizohata. In degenerate case, hypoellipticity and well-posedness for
Cauchy problem is considered by many people. Some of their works give us some
information for Lto be locally solvable. But we have little knowledge of necessary
condition for L to be locally solvable. For example, Y. Kannai has showed that

L,=D,+itD?

is hypoelliptic but not locally solvable at the origin, and R. Rubinstein has showed
that

L,=D,—it"D2+it"D, (n; even)
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1
+ T = m+l’
The purpose of this paper is to seek necessary or sufficient conditions for L

to be locally solvable. As a corollary we can show that the sufficient condition of
theorem 2 in [7] is also necessary condition for hypoellipticity without an additional
assumption that the coefficients of the operator depend only on t. Moreover, we
can decide completely local solvability of the operator

is not locally solvable at the origin if ——

Ly=D,+at'D7+ bt*D! (m>n,xeR,and a, beC)

if a, beiR.

The outline of this paper is as follows. In §2, we shall state the main results.
In §3~§6, we shall give their proofs. In §7, we shall give some results about an
influence of real part of P(x, t, D,) on the solvability of L. In §8, we shall investigate
the solvability of L, as example. In the last section, we shall give some remarks
on semi-local solvability.

2. Statement of the results

Let Lbe an operator given by
L=D,+ ¥ ajx. 1, D,)
i=1
, where aj(x, t, D)= 3 a,(x, )Di. We assume that Q contains the origin and
lal=Jj

agx, t, Dy)=thdyx, t, Dx)+it‘fl;-(x, t,D,)
, where d;(x,t, D)= z aa(x, D2 and by(x, D, = z Ba(x D2, Here dx, 1)

and b(x, t) are real- valued smooth functions in QxI such that either d,(x, 0)
[b,(x, 0)] is not identically zero in any neighborhood of the origin or d,(x, ) [b(x, D]
is identically zero in Q x I.

Now we introduce an important quantity which is effective when we treat a
degenerate operator whether it is kowalewskian or non-kowalewskian operator.

(See [1], [12], [18],...) Let us define

j
V= max
jeo IJ+1

, where o={j;3a such that |a|=j, b,(x, 0) is not identically zero}. We also define
¢’ by

o' ={j;3a such that |x|=j, d,(x, 0) is not identically zero}.

Let ao={jea, - =v}, and jo=maxj. Then we have
i+1

Jjeao

Theorem 1. Suppose that maxkf_.i_1 <v. If l;; is odd and there exists
Jjea’ Kj
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Mo €S™! such that BJO(O, 0, 170) <0, then L* is not locally solvable at the origin.
(Here L* is a formal adjoint of L.)

Corollary 1. Under the same assumption as theorem 1, L is not hypoelliptic.

This corollary follows from the fact that if Lis hypoelliptic in G, then L* is locally
solvable at every point of Q. (See [24].)

Remark 1. By this corolllary, we can remove the additional assumption that
the coefficients depend only on t of the necessary part of theorem 2 in [7].

On the other hand, if me o, and b,(0, 0, 7)#0, then the sufficient part is also
obtained. In fact, we have

Theorem 2. Suppose that max 2 J+1 <v, meag, and b,(0,0, &)=0 if £x0.
Jjea’ J
Then, Lis locally solvable at the origin if one of the following two conditions holds;
a) |, is even,

b) 1, is odd and for every ne S" !, b,(0, 0, n)<O.

Remark 2. For the case that m is even, this theorem is obtained as corollary of
the theorems for hypoellipticity of L. (See [7], [8], [11],...)

If we drop the hypothesis 5,,(0, 0, £)%0 in theorem 2, some conditions ensure
the hypoellipticity of L. (See [2], [10]) But, in this paper we do not enter in this
direction. Instead of it, we look at the hypothesis m e o, in theorem 2. If this
assumption is dropped, the situation becomes more complicated.

Hereafter we assume that meo,. First we note that theorem 1 contains also
some result in this case but does not cover completely it. To give light on this case,
we must introduce another scale p instead of v. Let

m'=max j, and p= max M—(>O).

jeao jje>a):,o lj—lm'
We denote the set {jea\ao,j>m’; p= I_JLI”L} u{m}byé. Let
JT e

Hy(x, t, &)=i Zat“f)j(x, 0, ¢).

Then Hy(x, t, &)=|&|PT4Hy(x, 7, ), where t=|&?, n=¢/|é|leSP! and d=
—p(l;+1)+j (>0) for Yjed. If Hy(x, 7, n)#0 for any (x, 7, 7) € Q x (R\0) x S"~1,
then the situation is essentially same as the case that meag,. But if H{(x, 1, 1)
has a null point 7, which differs from 0, then the situation is quite different from the
case m € oy.

For simplicity we assume that for every j, d,(x, t, £) and b i(x, t, £) are indepen-
dent of t. Then Hy(x, 7, n) becomes polinomials in t with smooth coefficients.
Let D={—p(k;+1)+j, —p(l;+1)+j for jed', g, respectively}

Then D consists of a finite number of elements which we denote by d, (1=0, 1, 2,...,
q). Especially, we denote d by d,. Here we remark that if for every jeg’,
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—I(k;+1)+j<d, then for every I=1, 2,..., q, we have d,<d. Let
Hy(x, 1, &)= Z thid (x, O)+i 3 thby(x, &)

jear

, where o,={jeo; —p(lj+1)+j=d,}, and oj={jeo’; —p(k;+1)+j=d}.
Then by definition we have

Hy(x, t, =[P4 H(x, 7, )

, where t=¢|{]?, and n=¢/|&|e S,
Here we assume that for each I,

(A=) H(x, 7, |)={t—7o(x, M}™gix, 7, n), g(x, T, M=0 if (x,7,MeQxIxV

, where J={1eR; |[T—14(x, n)|<d<1)}, Vis an open subset of S"~1, g(x, 7, n)e
C®(QxJx V), and 7o(x, n) € C*(Q x V). Then we have

Theorem 3. Under the assumption (A-1), if mqis odd, Im g(x, t, 1)<0 for
(x, 7, n)eRxJIxV,and for 1=1, 2,...,q,

d, dy  _ 1
Al S me+1 2

then L* is not locally solvable at the origin. Moreover, if t1o(x, n) does not depend
do I d,
b 0

on x, then we can replace the condition o+ 1 < - by P <1, and if
H(x, n) does not depend on both x and n, then we can drop the condition " -(l)-l
0
e
5

Remark 3. If 7,=0, then this theorem has intersection with theorem 1.

Next, we consider the sufficient condition. We assume that for each I,

(A-2) Hi(x, 7 )= T (=700 o, )

, where 7;(x, n)and h(x, 7, 1) are smooth in Q x Rx S"~1,
T(x, M) <To(x, P) < <TAX, 1) and Im hy(x, T, n) =0,
h(x, 7, n)=0 if (x,7,7)eQxRxS"!,

Then we have

Theorem 4. Under the assumption (A-2) and that for j, —p(k;+1)+j<d,,

d dy

< = foreverylandj, and minj> max j, if either i) for ever
m}+1 m?+1 f Y 1 ]EG’J Jjea’ Ua\o'] f )f y
Jj, m§ is even or ii) for some jo, m% is odd, for jx jo, m? is even and Im hy(x, 7, )<

0, then Lis locally solvable at the origin. Moreover, iffor any j, t{(x, ) does not
% by —2%— <1, and if
1

d
m?+1 <7

depend on x, then we can replace the assumption

0+1 0+1

for any j, Hi(x, n) is constant, then we can drop the assumption
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Remark 4. If r=1 and t,(x, #)=0, then this theorem has intersection with
theorem A in [14].

3. Proof of theorem 1.

First we state a fundamental lemma which is given in [3].

Lemma 3.1. If Lis locally solvable at the origin, then there exists a neighbor-
hood of the origin U such that for some constants C and positive integers M, N
3.1) |{ £, Cx, naxa| < cLriulzeoly
for all f,ve C®(U). Here lulyy= Y sup|D2Diu(x, 1)|.

la|+j<M

We shall prove theorem 1 by contradiction. Namely, under the assumption

of the theorem we shall construct functions f, ve C¥(U) which never satisfy (3.1)

for any U. Before doing so, we begin with some definitions. Let WcQx I x
(R"\0) be a open conic set.

Definition 3.2. f(x, t, £) e C*(W) belongs to S¥y(W) if and only if for any
J> o B,

|D2DI D f(x, t, E)I<C, 5, j|E|MHivrlBI+0]a]
Definition 3.3. For u(x, 1, ) e S}¥;*(w) and uy(x, t, &) e S¥ 47 (w)

ux, t, &~ 3 ujx, 1,8  if and only if
=

u(x, 1, = % ufx, 1, Yy (W) forany NeN.
P2

Lemma 3.4. Suppose that 0<p<d<1. Let {M;}*_,€R be a sequence such
that M;— —o0 as j—oo. If uyx,t, é)eSﬁ"g'V(W), then there exists u(x,t, &)e
SMo:¥(W) such that

u(x. t, &)~ 120 u(x. 1, &).

This lemma is proved by a standard method as the symbol class of the pseudo-
differential operator. So we omit its proof.
First we want to seek an approximate null solution u(x, t, &) of the equation

(3.2) L[u(x, t, e'*£]=0

in the form u(x, t, )~ i uyx, t, &), where u; ‘belongs to SMev (W)(M;— — o0
Jj=0 ’

as j—o0.)
If f(x, t, &) e C°(2 x I x (R\0)), we have

(33) P(feixt)=ei=t 5 oL P@(x, 1, ODLf(x. 1. O
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, where P®)(x, t, £)=0¢P(x, t, é)=6g{| IZ a(x, Hé'}. In (3.3), we expand P()(x,
al<m
t, ) as Taylor series with respect to t. Then we have
e” ¥ L(fe*)={(D,+ Lo)+L,+---+L;+---}f

, where Li(x, t, £, D,) whose coefficients are polinomials in ¢ with smooth coefficients
satisfies

Lix, t, & D)=|E|"Lyx, s, n, D)(mg>m;>-->m>-).
Here we recall that s=1t|&|Y, n=¢/|E| e S*~1. Especially, mq=v, and
Lo(x, 1, &) =Ag(x, t, ) +iBo(x, 1, {)
Ag(x, 1, &)= 3 tdy(x, 0, &)

J€ag

BO(X, t C)= Z t,jl;j(xs 0‘ é)

J€ao

vt b b and g die vari

, where gy {j, 3y v}, and g, {1, I v}. In s-variable,
D'+L0(x7 t’ é)=|€|v{Ds+L0(X’ s* ’1)} M

Let us define uy(x, t, &) by

(Dy+ Lo)ug=0, ug(x, 0, £)=0; i.e.,

uo(x, t, &)=exp l:— i S; L o(x, s, n)ds’}

s=t|g|v

Then by virtue of the hypothesis of theorem I, we have for any N, jeN and «, fe
N, there exists constant Cy ; , 5 such that

(3.4 I(1+[t1E[*DVDIDEDEuo(x, t, £o) | < Cujapl&l1P1*IY
for (x, HeR2x1 and || > 1

. where &, =1,l|¢|, and nq is given in the condition of theorem I. Here we have used
the fact that s¥e™s is bounded if s>0. (YN>0). We remark that from (3.4) it
follows that uy(x, 1, &) € S$: (W), where W={(x, t, &); (x, ) e 2x 1, [£/|¢|—nol<e
(e is sufficiently small), |£|>1}.

As for j> 1, we define u; by inductively

(D;+Loyu;= —(Lyu;_y+---+Ljug)
ugx, 0, &)=0 iie.,
uy(x, t, &)= —m-v[go iug(x. SIEI, ugi(x, 5'1E1", 1)
x {|&ImLy(x, s', Mu;_ (x, s'I¢]7Y, n)+--

+1&IML(x, s', nuo(x, s'IE]7, n)}dS,]’ =rlglv
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Since 5=rr}in (mj—m;,)>0, by induction we can show that
(3.5 1A+t DVDIDIDiu(x, t, E) < Cy,japl€l 772718 if (x, 8, ) e W.
Therefore we have u(x, t, £)e S;%*(W). By definition,
(3.6) L[é0 ul=Lyuy+Ly(uy_ +uy)+ --~+LN(Jﬁ::1 up)+(L— éo L) (éou,-)-

Since m;=m;—mo+v< —jé+v, the first N-terms of the right hand side of (3.6)
belongs to STQ+V%+¥.»(W). On the other hand,

N
L— Y Li= % culx, ¢t &)D;
Jj=0 |a|<m
|DIDEDlc,(x, 1, E)| < C; 4l E[7NFDEH =18
if (x, ¢, &) e Q@ xIx {|¢|>1}.

Therefore the last term of the right hand side of (3.6) also belongs to S;f{,"*l)"“v"’( W).
In conclusion, we have L[ Z u;Je STV (W),

By lemma 3.4, there ex1sts u(x, t, &) e SY:3(W) such that
u(xa ta §)~ 'ZO uj(x’ t’ 6)‘
i=

Then Lu e a) D yW)=S"2(W), where S™(W)={f(x, t, {) € C®(W); for any j, N,
a, ID{DZ f(x, 1, O Cj o nlEI7V if (x, 1, &) e W}. In fact, we have
N N
Lu=L[ Y u;]+L[u— X uy].
j=0 i=0
The former term belongs to S7Q*V%+*:v as we mentioned before. The latter term
N
also belongs to STQ+D%+v> since u— Y. u; e STHTV4(W).
i=0
Now let us define v(x, 7) and f(x, t) by
S, =F(&x, 1&]'*1)
v(x, y=x(x, t) Se"’”gu(x, t, ©€)g(r)dt
, where F(y, s)e C®(R™*1) is determined later, x(x, t)e C3(QxI) with sufficiently
small compact support has value 1 identically in some neighborhood of the origin
and g(t) e CP(R*). Then
(3.7) Lo=y(x, ) | e bun(x, 1, cg(o)de
+Dax, 1) (etutx, 1, g

+7(x, DO, 1, Dx)g eixeeu(x, 1, 1E)g(1)dt
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. where ug(x, t, £)e ST®(W), j(x, 1)=0 if |x|<e (¢ is sufficiently small, and Q(x, t,
D, is a partial differential operator with degree at most m — 1 with smooth coefficient.
Let us denote each term in the right hand side of (3.7) by I,, I, I;, respectively.
Then it is obvious that for any N there exists a constant C such that

il <CIITY (j=1,2) if E=noldl, [&I>1.

In fact for j=1, this follows from the fact Lu e S=°(W), and for j=2, this follows
from the fact that for sufficiently small ¢, D,y(x, 1)=0 and (3.4), (3.5). Let us look
at I,. We integrate by part to obtain

L=j(x. 1) gemf £ 0W(x, 1, 1) D3u(x, 1, 1E)g(1)de

|a|<m—

=705 ) | gy Y DMY S (@D (v, . E)g (D)

Then we have

|31 < Cpg pIEIMHEm=INif E=nplE], 11> 1.
since u e SO:3(W). In conclusion, we have

(3.8) [Lojy <Cywl¢I™  forany N if &=nolél, [¢[>1.
On the other hand,

[ 7. o0x, taxar

=gty SF(.V, s)O(IE17 2y, 171 s )dyds’,
v(I€172p, [EI717vs ) = (1172w, [E]717s7)
><Se'fy"'*""zu(lél‘z,l’, 1EI717s", &g (n)dr.
Then, on the support of F(y, s’) and g(1), u;(I£|72y, |&|717vs’, &) uniformly tends to
1if j=0and to 0if j> 1, respectively. Therefore if we choose F(y, s’) and g(z) such
that
SF(y, s)dyds' =0 and Sg(t)dtﬁso,

then for some positive constant C.

’Sf(x, H)o(x, t)dxdt| > ClE[n+i+y

if £=nel|é| and || is sufficiently large. This is in contradiction with (3.1) since
(3.8) and

|f 1l < CIEIB3M,
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This completes the proof of theorem I.

4, Proof of theorem 3.

In theorem 1, the most dominant terms in essentially one. But in theorem 3,
the most dominant terms are more than or equal to 2. In other words, the operator
L has terms which have interaction with each other to lead L to no-solvability, in
this case. Therefore a slight different treatment is necessary for the proof of theorem
3.

First we have
Lemma 4.1. For any jeo\d,
di=—pll;+ D+j<d=—p(l+1)+k
, where Ykeg.

Proof. Letjea\G. Then we have three possibility;
a) jead\opand j<m’,

b) jeo\(goUd), j>m', and LM <p,

1, =1,
c) jeog and j<m'.
At first we note that p<v. In fact,
. m k=m m'(l,+1)-k(l,+1)
VRS T T I, T U DGty 0

since I, —1,,>0if keg.
When a) holds,

d—d;= ( 1:1. :lj,. —p> (y —1;)>0.

For, if I, <I ,#lf— <0, and if l,,> 1},
m Tt
m—=j __ mUi+)—j, +1)
lm' _Ij ! (lm' __lj)(lm' + [) >0.

When b) holds,

d—dj=< j=m —p>(lj_—l,,,.)>_0 since  [j>1,.

When c) holds, - .
d—d;=(=p+v)(l,,—1)>0  since [, —[;>0. ~ Q.E.D.

In theorem 3, we shall also construct an approximate null solution u(x, t, &)
of the equation L{uei**¢]=0. In §3, we localized u(x, t, £)in (x, t) sapce, but in
this section we shall localize it in (x, ) space, where t=t|£|? because of d>0.
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First we recall that
q
L=Dt+ z H,(X, t, Dx)
1=0

H(x, 1, )=[S|**PH((x, 1, ).
Taking account of (3.3), we define uy(x, t, &) by
{D;+ H(0, 1, O)}uo(x, t, £)=0
ug(x, 7o(0, MIE|7#, &) =e tIxI-1eI?,

Namely,

T

uoCx, 1, &y =exp| ~#{  Ho(0.7', mgiea' = (1xI-1e1o)?]|

t0(0, 1 =t|&|P

., where ¢ is a positive number determined later. Hereafter, we denote 14(0, 1) by
1, for simplicity.
Let

W={(x, t, §) € 2x I x(R"0); |t|¢|P — 0| <co, ¢/I¢] € V'and |¢]> 1}

where ¢, is sufficiently small number such that |t — 14| < ¢, is contained in J.
Then we have

Proposition 4.2. If (x, t, £)e W, then

(4.3)  |DEDEDiug(x, 1, &)< C, 5. ;1€|01e1-(1-g57) 181+ (o+i)

for all o, B, ],
where k=m.

Proof. By the hypothesis of theorem 3.

Im S‘ Hy(0, 7', n)dt’'=Im g: (' —10)*9(0, 7', n)dt’
70(0, 1) T0

4

< T k+1

(1—10)k"(c>0).
If (x, 7, n) € @ x J x V, then for t=t|{|?,n=E[|&|
|D20D![ " ot v/, mae' || < (r= o)k 1-ti=1g1mi 1o
0 -

, where (), =max(/, 0). It is easily seen that these two inequalities and Leipniz’
rule yield to (4.3) since X"eX is bounded if X >0 for any N>0. Q.E.D.

Let us define u(x, t, &) by

(44) (D4 HoO. 1 DJus(x. 1, )= = 3 Pyix, 1, & DJuyy(x, 1.9,
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uj(x’ Tolél_,” é)=0
, where we denote by P;(x, t, ¢, D,)

Pp(at & D)= T o3 HI(x o, O3 A@(x, 1, DY)

157" -1

Here H(x, t, &)=Hy(x, t, &)= Hy(0, t, &). The solution of (4.4) is given by

@5)  ujx.t, H=—ilel S

ug(x, t|&|7", Eug'(x, T'|€7*, &)
j
X(= % Pyt )5 VI DT emrigre
=
Then we have

Proposition 4.3. Let 6= k—:{-—l +0. If(x, t, &)e Wand d' issufficiently small
positive number, then there exist €>0 such that
; d
(4.6) | DEDADLu;(x. 1, O < Cypp1, 11 Ie+31xI=01=0 181 (o p )1,

Proof. By (A-1), if we expand 1,(x, n) as Taylor series with respect to x, we have

k .
H(X, T, ")= ]Z:O (T—fo(0~ "))k~" hj(x’ 7, '1)

H(x, t,n)= _ZO (t—10(0, M)y™ =7 hi(x, T, )
=
, where h; and h} are smooth in Q xJ x V and satisfy

ho=0(Ix]), h;=0(Ixl)) ~ (j=1....., k)

hi=0(|x|¥) (I=1,...,q9,and j=1,..., m)
Let ¢ =max<——d— _ 4 5’>>0. Then if (x, t, ) e W
TN EHT O om0 e ’

‘ : : Sr ( ’ I’ )|C| dt"uo( ¢, T, "[) ‘
I: To ‘ X
< a, B 1‘6‘ ertdle|-( ‘s)|ﬁ|+-k-——dlj+ s

| D20 [ Hx, v mldan uotx, x|

d .
g - —(1- +-4
<('a,ﬂ,j,l|§| e1+dlal-(1-8)B| +TI P

, where t=1|¢|? and n=¢/|€|]. Here we have used the fact that X Ne=X is bounded if
X >0 for any N>0.

Leteg,=1 —25. Then if & is sufficiently small positive number, ¢,>0. When
| >0, we also have the following estimates.
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DLDLD: [S

T

UO(X, T, ’7)“61 (xv 'L'/. n)H(“’(x, T_,’ ’7)|6|d_|a'D§ Uo(x, T”i’?)dtlj“
o

K CJE|melal+alyI=(1=0) B+ gy 1+p

| 220801 [ [ (e, = mu!(x. #s HI . ', DIEI=171D3 w7, mae ||
L C|E|~earealal+oly[=(1-8)|p]+ ,,+,J+o.

Therefore, let e=min (¢, &;), then (4.6) follows from these estimates and Leipniz’
rule. Q.E.D.

This proposition means that u(x, t, {)e ST, ’,,"3* #+17)(W). Therefore by Lemma
3.4, there eixsts u(x, t, &) € SO ‘fj',kTT’(W) such that

0
u(x, t, &)~ Zo ui(x, 1, ¢).
J:

By the same way as §3, we have Lu e S~ ®(W).
Now let us define v(x, 1), f(x, t) by

J(x, =F(I&lx, [E[M+74(t = 1E] 7o)
v(x )=y (x2(1E1P 1 —To)e* u(x, ¢, &)

, where F(y, s)e CF(R"*') is determined later, y,(x) e CP(Q') equals to 1 identically
in some neighborhood of the origin, where Q' is any small neighborhood of the

origin in ©, and y,(s) e CF(R) has a support contained in {lsl <-.])—~c} and equals to

1 identically in a neighborhood of o; {Isl <71( c}. Here we recall that cisa constant

which appears in the definition of W. We note that if |¢|—oc0, the support of
x2(I€|7t —1,)) is contained in any neighborhood of the origin.

Lo=y,(x)x2(1¢|Pt —10)e*tu(x, t, &)
+X|(x)D,X2(|é|”t—To)ei"gu(,\‘, ti ‘E)
+ 71201811 = 10)Q(x, 1, D, )ei~Su(x, t, &)

, where uq(x, 1, $)e ST(W), 7,(x)=0 if x is sufficiently small, and Q(x, 1, D,) is a
partial differential operator with degree at most m — | with smooth coefficients. On
the support of D,x, (|&|°t—1,) or of 7,(x), by definition '

|D2Djuq(x, 1, E)|<C,;plEI™N  for any a, j and N>0.
Therefore, we have
4.7 [Lo|p < Cpp nlEI7Y for any N>O0if /|| € V and [¢|> 0.

On the other hand,
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S FCx. 05(x, Ddxdt
= 187774 Oy, 960817 v, 16721215+ 2o))dys,

(€171, 1E177(1€17 1745 +70))
= X1 (€17 (17 ~4s)e u(IE]~  y, 1E177(1E17 s + o), ) -

Since |t—1o|<c|é[717 if (y, s, n)esupp F(y, s)x V, uo(I&]~ y, 177(I¢I7 s + 10),
¢) tends to 1 uniformly as |{|—»o0, neV on the support of F, and u;(|¢[™'y,
[€]=P(J€|7 795+ 10), &) tends to O uniformly as |é|—o0,neV on suppF (j=1).
Therefore if we choose F such that

SF(y, s)e"¥1dyds =0, then

‘S F(x, 0B(x, 1)dxdt | >Clel1-r4 (C>0)

for sufficiently large |£] such that n=¢&/|£|e V. This is in contradiction with (3.1)
since | f|y < Cp|E|(1PTDM and (4.7).
This completes the proof of the first part of theorem 3. If 7y(x, ) is indepen-

Y 1. d
dent of x, then let =4’ such thate;=1 T

valid for e=min (¢, &;). If H,(x, ) is independent of both x and #, then let =4’
such that ¢,=1—0">0. Then proposition 4.3 is also valid for e=min(g,, &,).
In the above both case, the subsequent reasoning is also valid. So we have finished
the proof of theorem 3.

—3'>0. Then proposition 4.3 is

5. The proof of theorem 2

As we have mentioned before, the essential part of theorem 2 is obtained from
the results of hypoellipticity of L* ([7]), [8], [11]). But to make this paper self-
contained as much as possible, we give its proof. (See also [23]).

By hypothesis, on each connected component of S"~1, b,(0, 0, £) has the same
sign. So let us define T(¢) e C*(R"\0) by

T(¢)=—T if a)isvalid and b,(0, 0, £)<O0,
5.1 =+T if a)is valid and 5,,(0, 0, £)>0,
=0 if b)is valid.

We define a sequence K (x, &, t, s) by

(5.2) Kolx, & 1, s)=exp [ —i S' P(x, 1, g)ch] ,

Kix &t 9==i| Kx &t 5 Lpoe o opik, . & = s

. .
s =1 |a|=k
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, where P(x, t, &)= X aj(x, t, &).
j<m
Lemma 5.1. If the diameters of Q and I are sufficiently small, we have
[S' b (x, T, E)dt| > Cltm* 1 — s 1| |Em  (C>0) if (x, 1, 5)eQxTx].

M N

Lemma 5.2. ([12]) Ifk+1 >ﬁl_

and M >N, then

lt—sl max (1!, |s|)[|V < C{|ek+! — s+ [EMPNM) - for 1|, |s|<1.

Lemma 5.3. Let k(t, s) be a measurable function defined on a measurable set
E such that

‘S K(t, syt |, ‘S Kt $)ds| <C.
E E
Then the operator K which is defined by

Kf= SE k(t, $)f(s)ds

is a bounded operator on L*(E) with norm<C.

Hereafter we assume that Q and I are sufficiently small such that lemma 5.1
holds.
Let us define the operator K(x, &) by

K(x. &)f= S'kaj(x, &1, 9)f(s)ds  for feCe().
Then

Proposition 5.4. For each (x, &), K/(x, {) is a bounded opeator on L*(I) such
that

(5.3) [IDIDEK (x, O Coplll™ =101 for (x, &) eQx(R"\0O) N {|¢|>1}.
, where we denote the norm of the bounded operator on L*(I) by | - ||.
Proof. First by virtue of lemma 5.2, we have
lg'llmaj(x, T, f)ldr'scX(f/"') j=1,....,m—1,
, where X =|tlm+1 —glm*1| |£|m Moreover,
(' 1DsDta tx, 7, Olde| <exumigin =1, m.

m=—1
Then (5.1), lemma 5.1, and lemma 5.3 yield (5.3) since X" exp(—CoX + Zo c;X%)
=
(0<d;<1) is bounded for any N>0. (Cy,>0) Q.E.D.
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By this proposition, K(x, &) is a vector-valued pseudo-differential operator
which has been used in [23], etc.....
Let us define the operator Q by

0f= ke bo(x) { e0(8) 3 K)(x, O], e
(271')" o . =0 J 4 2

for f(x, 1)eC(Q; LA(I))

, where N is sufficiently large positive integer, ¥o(x) € CF(Q) identically equal to 1
in some neighborhood Q' of the origin, and ¢(£)e C*(R") vanish on {|¢|<1}.
Let ,(x)e CP(Q) identically equals to 1 on the support of o(x). Then

Ly, Q=yo(Id+R+(p(D,)—Id)),

. N+1 N
Rf= g [0S, £ Pk, O)D3K e ioi(x, OF (& e,
(2m) k=1 |af<k %-
If N is sufficiently large, R'=R+¢(D,)—1Id has a continuous kernel;

Rf={ kx,y, 1. 9S00, dsdy
T(&)
, where k(x, y, t, s)e CO(Qx Qx I x1). Therefore by virtue of lemma 5.3, if Q and
I are sufficiently small, R’ becomes a bounded operator on L2(Q x I) with norm<

%. So (Id +yoR')"! exists. Let us define u(x, t)e L2(Q x I) by

u(x, D=y, 0d+y,RY ' f for felL?(QxI).
Then we have

Lu=f in 2(Q xI). Q.E.D.

6. The proof of theorem 4

We assume that ii) hols. In the case i), we can prove theorem 4 essentially in
the same way as ii). So we omit it.
Let us define ki(x, &, t, s) by

Ko, & 1, s)=exp[—i S:Ho(x, s, é)ds'],

( B =t 1 & (@ ,
ki &t ) ==il ko &0 L E h S HE(x, 5, D2

j’=0 |a|=j-1-j"

+ “I_Hg)ﬂ)(x, sla é)Dg] kj’(x9 és S', s)dsl'

1817~ B!
Let us define also the operator K(x, ¢) by
t

K(x, &) f= S ky(x, & 1, $) f(s)ds

Tio(x,m)|&]~°
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for fe C3(I).
Then we have

Proposition 6.1. For each (x, £)e Q x(R"0), K (x, &) is a bounded operator

on L2(I) such that for some ¢>0 and —é— >0>0,

(6.1) ID2DEK ((x, E)I < Cypp,|E|72I+8121=0=01B1 if |&] is large.

Proof. Let t=t|¢|?, and 7' =s|éP. Then

(Kj(x, HNHEIE)= Iil"’g " ki(x, &, <l&l=2, IEI7P)f (1€~

t
Tio(x,

T
P

ko(x, & tlélr. w1e-n=exp [ | = iHo(x, v n) E1ear |
We denote ko(x, &, t|€|77, T'|E|7?) by ko(x, & 1, ') and minm; by m,. Then we
i J
obtain
_d =1 —d
(6.2) |D:D2E0(x, é’ T, T/)lgc‘él mo+1 Ja|—(1 mo+1 ) 181

if 1>1'>1;(x, n) or 1<t <7 (x, ).
To see this, we divided R, into r+1 intervals:

J,={teR; 1<1,(x,n)},
Ji={teR: 1_(x, )<t<T(xX, N)} (k=2,...,r),
Jooi={teR; 1(x, n)<1}.

Hereafter we always assume that t<7'<7; or 1, <t'<t. If |[t—1[>¢g
(co>0), then by (A-2) and ii) we have

Re{—igt H(x, 1", n)dt"} < —-C,.
If 7, 7 eJ, and |t—1,| +|t' — 7| is sufficiently small, then we have
Re {-i&’ Hy(x, 7", n)dt"} < — Gyl [t = |mi* —[r—ymet1]
for I=k, k—1.
If 1, 7'eJ, or J,,, |[t—7| is sufficiently small, and || is sufficiently large, then
we have
Re {—igt, Ho(x, 1, n)d‘r"}< —Cslt—1'| |7/,

where =max I, In the above estimates, C; (j=1, 2, 3) is some positive number.
jea

Now lJet us investigate each cases more in detial. If the first case holds, it is

obvious that (6.2) is valid since for any N >0, |¢[Y exp {—iSt Hy(x, 7, n)dt"lél"}
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is bounded as |£|»>00. If the second case holds, since |t] and |t’| are bounded, we
have

T
‘DiD’:’S Hy(x, ", n)|&|*dt”
T
T
<l =z marige
.
M+1 d _
<Clr—v'|max (|t — 7|, |t/ — g, |M)[&| mrt [g|mT (IHIED7IA

M+1 d _
SClIT = gm+t = o=y g4y et | T (TR

where M =(m;—|a|—|Bl), and I=k or k+ 1. If this combine with above estimate,
we have (6.2) since XVe~X is bounded if X>0. If the last case holds,

D2DE " Ho(x, v, n) 814d"| < Cle— ' el11g]o-19.

Therefore we have also (6.2).
For j>1, we have

(6.3) |DEDEK(x, &, T, ©)| < CIE|=8I* g 121 =01 gy 1al
L - - - : d d
"y — p p p s 1
R wt;ere kix, &, 1, ) =&7Pky(x, &, t[&]7P, T'|&|7?).  In fact, since o < T
<5 let us define ¢ by
. s my+1 ) _(_ 2d
e=min(e,, &), where ¢, rrjuln (a’ w1 d,) and ¢g,=1 praem

Then since |[D2D{H(x, ", n)| <|t" — 1, [M&|£|4~18], in the second case,

D08 (| Fox. & 7. ¥)lel#r-WHI(x, o, ))DIko(x, €. 7, e’

Mi+1 d _ _
<C{||t'_rk|mk+l_|.C_Tk|mk+1”€|d} T €] ¥ U2l +18D “"I’él (rl+1)e

, where Mi=(m}—|a|—|B|). and ML=(mL—|a|—|B|—I|y|)+. This estimate and
similar estimate for H§"(x, t”, ) in place of H{*(x, ", ) which has a change such
that |£|7171¢ instead of |¢|~U?I*1D2 combine with Leipniz’'rule yield (6.3). In the
first and third cases, by the same way as above, we have also (6.3).

If we return to the variable ¢, s, then (6.1) follows from (6.2), (6.3), and lemma
5.3. Q.E.D.

Remark 6.2. If for any j, t,(x, n) is independent of x, then it is easily seen that
proposition 6.1 also holds for

=min(1— ¢
a—mm(l m0+181>'
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If for any j, Hi(x, ) is independent of both x and #, then proposition 6.1 is valid
for e=¢, and 6=0.

Let us define the operator Q by

0f= e [ 50 % Ky OF (&
for fe CP(Q; L*(1))

, where @(&) e C*°(R") identically equals to 0 if |&|<M, to 1 if |¢|>2M and N is
large positive number determined later. Here M is a sufficiently large positive
number such that

[Tuls I < 2T i 1E>M

, where T appear in the definition of I=[—T, T].

Let ¢o(x) € CF(Q) be a function which identically equals to 1 on the support of
¢,(x) e CZ(Q) which identically equals to 1 in some neighborhood of the origin
V=Q. Then we have

LooQo,f =¢1f+ ®oRf+Rf,
Ritx, )= b fesp@ 3 5 8 Lm0 9D3Ky- (01 D,
and
Rf(x, )= SQK(x, X, 0f(x', ndx' for feCE(RxI)
, where K(x, x', t)e CJ(R" x R" x I), and s’lclgp KcQxQ.

Let N be a positive number such that m—eN < —(n+1). Then by virtue of
proposition 6.1, we have

RSz < L0141 rppyeer 100" Dz

<C'| f(x, Ol 12axr), Where R=@oR+R'.

By this inequality, we have

||Rf||1.2(9><1)< C’(volume of Q) 2] f(x, 1) lL2oxny < ||f(x Dl L2eox 1y

if Q is sufficiently small. Therefore (Id —@oR — R’)™! exists and becomes a bounded
operator on L2(QxI). Let

u=0o0¢,(Id—poR—R)"'f  for fel*(QxI).
Then

ue L(Qx1), and Lu=f in 2'(VxI).
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This complete the proof of the first part of theorem 4. For the second part of
theorem 4, by virtue of remark 6.2, the same reasoning as above is also valid.
Q.E.D.

Remark 6.3. If H(x,t, {)=0(l=1, 2,...,q) and Hy(x, t, &) is independent of
x, it is seen that for any fe L?(R" x I), there exists u € L2(R" x I) such that Lu=f
since a perturbation terms do not exist.

7. On a perturbation of L by a operator 4(¢, D) with real coefficients.

In this section we shall investigate more carefully the influence of the real part
of P(x, t, &) on the solvability property of L. We note that its influence on the
regularity property is vital. (See [13]).

Let

AL D)= % A0DS

, where A,(?) is real-valued function which belongs to C¥(/). In this section we
assume that the coefficients belong to #(R"x[I) and have compact support with
respect to .

Let us consider the operator B which is given by

Bf = (2; . Se"« exp{—iS;A(r, é)dr} 7 0dE for feCE(R"XI).

Then
7.1 {L+ A(t, D.)}Bf=B{L}f.

Definition 7.1. L is solvable in L%(R"x I) if and only if for any fe L2(R"xI)
there exists u € L2(R" x I) such that Lu=f.

Theorem 7.2. L is solvable in L%(R" x I) if and only if L+ A(t, D,) is solvable
in L2 (R* x I).

Proof. By Lemma 5.3, B is a bounded operator on L2(R" xI). Let us define
B! by

B-if= U}r)_ Seixé exp {i S; Az, é)d‘c} 7(&, e

Then we have B-1B=BB~!. This equality and (7.1) yield the desired result.
Q.E.D.

Remark 7.3. In theorem 2, if the coefficients of L depend only on ¢ and ¢’ U o\
o,=¢, then Lis solvable in L2(R" x I).

If the coefficients of L depend only on ¢, then the more precise result for
necessary part than this theorem.
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Theorem 7.4. Suppose that the coefficients of L depend only on t and L
satisfies the hypothesis of theorem 1. Let

A(t, D)= ¥ t=A(f)D2

a€ET 4

, Where Aoa(t) is real-valued smooth function in I with A;(O)#O. If for every
aED,

then L*+ A(t, D) is not locally solvable at the origin.

Proof. Let
otx, =15, Dfertutt, W9z,
and

fGx, =F(I&1x, [£]**D)

, where y(x, t), g(z), and F(y, s) are the same functions as §3, and

u(t, &)=exp [SO [EMAG, &)+ P, )t .
Then taking account of
W+ )+ <1

for any o € g, it is easy to see that the same reasoning as §3 is valid. Q.E.D.

8. Example

In this section, to illustrate the result of the previous section we consider the
operator given by

L=D,+at*D"+bt'D" on R? (m>n>=1)

, where a, b, C and k, are non-negative integers. We then want to seek a necessary
and sufficient condition on a, b, k, I, m and n for Lto be locally solvable at the
origin. To do so, let us investigate Lin various cases.
m n

- > ——_— .
D i1 27 2da&R

In this case, by theorem 1 and 2, the necessary and sufficient condition for L
to be locally solvable at the origin is

either k is even or

k is odd, m is even and Im (a) <O.
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2) ,a€eR and b&R.

m n
P2 S
In this case, by theorem 1, 2, 7.2 and remark 7.3, the necessary and sufficient
condition for Lto be solvable in L2(R x I) is

either [ is even or

I is odd, n is even and Im (b) <O.

Moreover, if —— k'_’:_ 7= I-FLI’ then this condition is also the necessary and sufficient
condition for Lto be locally solvable at the origin.
3) aand beR.

In this case, by theorem 7.2, Lis locally solvable at the origin.
m n
4) Y < T a&R, and beR.
In this case, the necessary and sufficient condition for Lto be solvable in L2(R x I)
is the one which is obtained by replacing /, n and b by k, m and a, respectively in

the condition in the case 2). Morevoer, if ——— 7 Mk s o then this condition is

also the necessary and sufficient condition for Lto be locally solvable at the origin.
m

5) gy < l+1 , both a and beiR.

In this case, Lis locally solvable at the origin if and only if the one of the follow-
ing conditions holds.
i) lisodd, kis odd, m and n are even, and

Im(a) and Im(b)<O,
ii) lis even, k is odd, m is even, and
Im(a)<0,

and
iii) [is even, k is even, m+n is even, and

Im (a) Im (b)>0.

In fact, by theorem 3 and 4 (also theorem 1), the necessary and sufficient condition
for Lto be locally solvable at the origin is

for n=+1, lm( t"“n'"+ l-?—l t'“n") does not any minimal value in R,.

Here we remark that if the above function has a minimal value at t=0, then the non-
solvability result follows from theorem 1 or 3.

m
6) m<l+1 ,aeR and b&R.

In this case, by theorem 1, 2, 7.2, and remark 7.3, the necessary and sufficient
condition for L to be locally solvable at the origin is the same one as the case 2).

Remark 8.1. When a e R or b e R, the above result is improved by theorem 7.4.
Especially, if n=1, then we can replace ‘solvable in L?(R xI)’ by ‘locally solvable
at the origin’ in the case 2) and 4).
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9. Final remark

In this section we shall introduce a notion semi-local solvability in order to
make a difference between theorem 1 and 3 more clear.
Let us first begin with a definition.

Definition 9.1. L is semi-locally solvable at the origin with respect to >0
(t<0) if and only if there exists a neighborhood of the origin V such that for any
feCR(V)(CP(V.)) there exists ue 2'(V,)(2'(V_)) such that Lu=f, where
Vo=V n{t>0} (V_=V n{t<0}).

Then we have the following theorems.

Theorem 8.1. Suppose that Lsatisfies the conditions of theorem 1 and m € a,.
Then L is semi-locally solvable at the origin with respect to both t>0 and t<O0.

Thjorem 8.2. Suppose that L satisfies the conditions of theorem 3 and
1o(x, n)%0. Then L* is not semi-locally solvable at the origin with respect to

(to/I7o))t>0.

The proofs of these theorem follows from the proofs of theorem 2 and 4 if we
replace I by I, or I_(I,=1n{t>0}, I_=1In{t<0}.) Here we note that for semi-
local solvability, the similar lemma as lemma 3.1 is also valid if we replace U by
U,orU._.

For theorem 4, we have a variant of this theorem.

Theorem 8.3. Suppose that (A-2) holds in 120 (1<0) instead of TeR, every
1; (j=1,..., r) is non-negative (non-positive) and the other all conditions of theorem
4 are satisfied. Then L is semi-locally solvable at the origin with respect to t>0
(t<0).

Example 1. (Lewy’s operator).
D,+iD,—2i(t+ix)D, (on R3)
is not semi-locally solvable at the origin with respect to both >0 and ¢ <0.
Example 2 (Mizohata’s operator).
D,+it*D,  (on R?)
is semi-locally solvable at the origin with respect to both >0 and ¢ <O0.
Example 3.

. . 4 2

D4 mpn2 . . 2
D,—it"D%+itmD2 (n, even, m; odd, T T < ——m+1>(on R?)

is semi-locally solvable at the origin with respect to t>0 but is not semi-locally
solvable at the origin with respect to 1t <0.
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