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1. Introduction

We are concerned with local solvability of the partial differential operators.
The notion of local solvability in  the  distribution's sense was introduced by L.
H firm ander. Let Q be a domain of R" and P be a partial differential operator with
smooth coefficients in Q.

Definition 1. We say that P is locally solvable at the point x e Q if and only if
there exists a  neighborhood U of x  such that for every fe  C ( U ) ,  there exists u E
g w )  which satisfies Pu = f in 9 '(U ).

1  aI  a m
Let I be a interval [— T, T], Dr = a n d  Dœ - where a=i at ' - i ax I '

( a l" - ,  ; ) e  N ", and N=(0 , 1 , 2,...). I n  this paper w e shall consider the local
solvability of the operator

(1 ) L= D f +P(x, t, Dx) (x , t)eQ x I

,  where P(x, t, D x ) = aOE(x, t)Dyc , a n d  aŒ(x, t) e C'(52 x I). When m = 1,

local solvability of L  is almost completely decided. (L. Nirenberg and F. Treves
[1 7 ]) . So we consider the case m > 2. In  this case, L becomes non-kowalewskian
opera to r. I n  non-degenerate case, hypoellipticity of parabolic system has been
proved by S . M izohata. In  degenerate case, hypoellipticity and well-posedness for
Cauchy problem is considered by many p eo p le . Some of their works give us some
information for L to be locally solvable. But we have little knowledge of necessary
condition for L to be locally solvable . For example, Y. Kannai has showed that

L I =/),+it.W ,

is hypoelliptic but not locally solvable at the origin, and R. Rubinstein has showed
that

L2 =1), — +itmD„ (n; even)
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is not locally solvable at the origin if  2 1 
n+1 m  +1'

The purpose of this paper is to seek necessary or sufficient conditions for L
to be locally solvable. As a corollary we can show that the sufficient condition of
theorem 2 in [7] is also necessary condition for hypoellipticity without an additional
assumption that the coefficients of the operator depend only on t. Moreover, we
can decide completely local solvability of the operator

L3 =D f +atIDT+btkl: (m> n, xe R, and a, b e C)

if a, b eiR.
The outline of this paper is as follows. In §2, we shall state the main results.

In § 3  § 6 , we shall give their proofs. In §7, we shall give some results about an
influence of real part of P(x, t, D,) on the solvability of L .  In §8, we shall investigate
the solvability of L3 as exam ple. In the last section, we shall give some remarks
on semi-local solvability.

2. Statement of the results

Let L be an operator given by

L  D, + aj(x, t, D,)
.1=1

,  where af (x, t, D,c )=  E ac c(x, t)D,c . We assume that Q  contains the origin and
aH i

a i (x, t, D x )=tkiii i (x, t, Dx )+ it'd bi (x, t, D x )

,  where ezi (x, t, Dx )-= E dOE(x, t)D", and b i (x, x =  E tiOE( x ,  t ) D . Here c°4 x ,  t)

and bOE(x , 0 are real-valued smooth functions in  52 x I such that either á 2(x, 0)
[b c,(x, 0)] is not identically zero in any neighborhood of the origin or ei,c(x, t) [ (x, t)]
is identically zero in Q x I.

Now we introduce an important quantity which is effective when we treat a
degenerate operator whether it is kowalewskian o r non-kowalewskian operator.

(See [1], [12], [18],...)  Let us define

v = max  . /  
i e ,

, where o- = f j; 3 oc such that locl = i ,  b,c(x, 0) is not identically zero}. We also define
a' by

o-' = {j; 3 ot such that loci =j, 6,c(x, 0) is not identically zero}.

Let o-
o j  o- ,  / i f+. —  v } , and j o = max j. Then we have

Theorem 1. Suppose th a t  max  < v. I f
 1 i

 i s  o d d  and there ex ists
J E  k ;+ 1
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7/0 E S" - 1  such  that bi o (0, 0, n o)<O, then L * is not locally  solv able at the origin.
(Here L* is a form al adjoint of  L.)

Corollary 1. Under the same assumption as theorem 1, L is not hypoelliptic.

This corollary follows from the fact that if Lis hypoelliptic in then L* is locally
solvable at every point of O .  (See [24].)

Remark 1. By this corolllary, we can remove the additional assumption that
the coefficients depend only on t of the necessary part of theorem 2 in [7].

On the other hand, if in e a, andO ,  0 #  0, then the sufficient part is also
obtained. In fact, we have

Theorem 2. Suppose that max  j  v ' m e o-
o , and  bm (0, 0, 0= 0 if 0.

Jc k + 1 
Then, L is locally  solvable at the origin if one of the following two conditions holds:

a) 1m  is even,
b) lm  is odd and for every  17 e s" - 1 6„,(0, 0, n)< O.

Remark 2. For the case that m is even, this theorem is obtained as corollary of
the theorems for hypoellipticity of L . (See [7], [8], [11],...)

If we drop the hypothesis 6,n (0, 0, 0 in theorem 2, some conditions ensure
the hypoellipticity of L . (See  [2], [10]) B u t, in  this paper we do not enter in this
direction. Instead of it, we look at the hypothesis m e a , in  theorem 2. If this
assumption is dropped, the situation becomes more complicated.

Hereafter we assume that m 1;t c o . F irs t w e  note that theorem 1 contains also
some result in this case but does not cover completely it. To give light on this case,
we must introduce another scale p instead of v. Let

m' = max j ,  a n d  p =  m ax ( >0)., )f ; ,,cr0,Ea()

•

We denote the set if  e o- \o-
o , j > m' ; p— } U {m'} by -cf. Let

Hax, t, E 0,

T h e n  H (x , t, ia '"H a x , t, 11), where T = 0' , 11= e S" - 1  a n d  d =
— p(1;  + 1)+ j (>0) for vj e a. If H (x , T ,  n)o 0 for any (x, T , n) e Q x (R\0) x ,
then the situation is essentially same as the case that in e o-

0 . But if H (x , -r, n)
has a null point To which differs from 0, then the situation is quite different from the
case m e c o .

For simplicity we assume that for every j, t, and bi (x, t, are indepen-
dent of t. Then H (x , T ,  n) becomes polinomials in  T  with smooth coefficients.

Let D=1— p(k i  +1)+j, —  p(l i +1)+j fo r  j e a, respectively}
Then D consists of a finite number of elements which we denote by d, (1=0, 1, 2,...,
q). Especially, we denote d  by d o . H ere  w e rem ark  that if  fo r every j e o-',
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-1(k i +1 )+j<d , then for every 1=1, 2,..., g, we have di < d .  Let

111(x , t, (;)= E tkieqx, i  Z eiv x ,
j e o l _feat

, where o = { j e - p ( l i +1 ) +j=d ,} ,  a n d  o- ={ j e a'; - p ( k i +1)+j=d,}  .
Then by definition we have

H,(x, t, T, ri)

, where T = and n=
Here we assume that for each 1,

(A-1) T, 17)=  - - c o (x, n)lmig i(x, T, q), g i(x , T, ri) 4  0  if (x, T , ri) e Q x f x  V

,  where J = {T E R ; -To(x, 01<6<1)}, V is an open subset of S" - 1 , g i(x , T, q)E
C"(Qx  J x V), and To (x , /De Cx'(S2 x V ) .  Then we have

Theorem 3. Under the  assum ption (A-1), if  m o  is odd, Im  g(x , T, g)<0 f or
(x , 2 , n)e .S2xJx  V , and for 1=1, 2,...,g,

d ,  <  d o  < 1
m 1 +1 ,n0  + l 2

then L* is not locally solvable at the  orig in . Moreover, if  t o (x, 17) does not depend
o n  x , then w e can replace the condition  d

° < 1  b y  
d

° < 1 ,  a n d  i f
mo+ 12 mo + 1 d o  H i (x , I]) does not depend on both x and q, then we can drop the condition

m0- 1
1
2

Remark 3. If To =0, then this theorem has intersection with theorem 1.

Next, we consider the sufficient condition. We assume that for each I,

(A-2) Hi(x, T, ri) = (t - Ti (x, n)) h1(x , T, q)
J=1

, where Ti (x, ri)and h,(x, T, q) are smooth in 52x R x Sn- ',
Ti (x, n)<T 2 (x, <  • • • <  Tr (x, and Im ho(X, 0,

T, ri) 4 0 i f  (x, T, ii)eQ xR x S" - 1 .
Then we have

Theorem 4. Under the assum ption (A-2) and that f o r j, -  p (k i +1)+j <d o ,
07 d  Id i < < for every  land j, and min j >  m ax  j ,  if  either i) f o r everymi +1 my +1 ;ca. fe u ' U alir

j ,  1 1 4  is even or ii) f or some j o , n i odd, for j  J o '  my is even and Im h o (x , T, q)<
0, then L is locally  solvable at the  orig in . Moreover, if  for any j, T i (x, n) does not

dodepend on x , then we can replace the assumption m
i  + mi <  1 b y   0 < 1 ,  and if1 2

d
+ 1

do1f or any  j, Hi (x , n) is constant, then we can drop the assumption
m g+ 1  < 2 'J
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Remark 4. If r= 1 and Ti (x, q)= 0, then this theorem has intersection with
theorem A in [14].

3. Proof of theorem 1.

First we state a fundamental lemma which is given in [3].

Lemma 3 . 1 .  If  L is locally  solvable at the origin, then there exists a neighbor-
hood of  the origin U  such that f o r some constants C  and positive integers M , N

(3.1) 11f(x, t)i3(x , t)dxdt <cif ImIL*vIN

f or all f , v E C W (U ). Here u l m = sup11)A u (x , 0 1 .

We shall prove theorem 1  by contradiction. Namely, under the assumption
of the theorem we shall construct functions f , v  E  C ( U )  which never satisfy (3.1)
for any  U .  Before doing so, we begin with some definitions. L et Wc 52 x I x
(R" \O) be a open conic set.

Definition 3 .2 . f ( x ,  t ,  ) e  C '(W ) belongs to S M (W ) if and only if for any

t,

Definition 3 .3 .  For u(x, t, ) e  S m ( w )  an d  u f ( x ,  t ,  ) e v (w)

u(x ,  t, u/(x , t,
p=-1

if and only if

U (X , t, E u i (x, t, ) e  S r i , v(W) for any N e N.
i=o

Lemma 3 .4 .  Suppose that 0 .< p  <6  <1 . L et {M ./ }7=0 e R  be a sequence such
t h a t  4 — co  as j— >co. I f  us/(x , t, E S pm r( W ) , then  there  ex ists  u(x, t, e
S v(W) such thatp,6

CO

u(x, t, E tq x ,  t,

This lemma is proved by a standard method as the symbol class of the pseudo-
differential operator. So we omit its proof.

First we want to seek an approximate null solution u(x , t, of the equation

(3.2) L [u(x , t, )e ]=0

in the form  u(x , t, E u.(x t where u • belongs to Smi , v — co, P.6

as j— cc.)
If f ( x ,  t ,  ) E  C'(5.2 x I x (R \0)), we have

1(3.3) P(f eix 4)=eix 4 E  -7 P(Œ)(x, t, )130;f (x , t ,

j=0
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,  where P( 2 )(x , t, )= .-(3'4c1)(x , t, 0= 01{ E tg } .  In  (3.3), we expand P( 2 )(x,
lal<m

t, as Taylor series with respect to t. Then we have

e - ix4 L (feix 4 )= {(D,+L 0 ) +1, 1 +  • ••  +  Li + • • •} f

, where Li (x, t, D x ) whose coefficients are polinomials in t with smooth coefficients
satisfies

Li(x, t, Dx ) =11"JL i (x, s, Dx )(m o > in i > • • • > m,.> • • .) .

Here we recall that s= =  /11e Sn - 1 . Especially, mo = v, and

Lo (x, t, (;)=A 0 (x, t, i130(x, t,

Ao (x, t, E  tk ie(x , 0, )
E a ;

B o (x , t, '()= ttib i (x, 0,
ten

, where  = ;  i c j
i
± 1 = 4 ,  and (To = if ;   — 14 . In s-variable,

Dt + Lo (x, t, {ps+ s, 11)} •

Let us define u o (x, t, by

(Di + Lo )u 0 =0, u o (x, 0, )= O  i .e . ,

uo(x, t, ) = e x p  [ S
o  

L o(x, s',
s=t141"

Then by virtue of the hypothesis of theorem 1, we have for any N , j eN  and a, e
N n , there exists constant CN, L Œ , f l  such that

(3.4) 1(1 + t, iz))1 <CN,J,s,a1 -1 1 6 1 4 1 .ly

for (x, 0E52 x / and I I l

, w here  c1=1/1;g l ,  and no is given in the condition of theorem 1. Here we have used
the fact that s e_  is bounded if  s> O. (vN > 0). W e remark that from (3.4) it
follows that uo(x, 1, (;) e ST:6(W), where W= 1(x, t, ); (x, x  1, 1111 — tiol < e
(e  is sufficiently small), 11>1}.

As for j > 1 , we define u i  by inductively

(D,+ L o )u i = —(L i u _  i + • • • +Li u o )

u i (x, 0 , 0 = 0  ;i.e.,

u i ( x ,  t ,  )= [
o  

iuo(x, n)u1(x, n)

x s ', ri)u i _ 1 (x, 17)+•••

+1(flmiLi(x, s', n)uo(x,
s=tI41'
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S ince = min (rni  —  m 1 ) > 0, by induction we can show that

(3.5) 1(1+ ItivI)NDOp f ie j (x, t, < c,, ,i,Œ,fi gi - i 6 - 1fil+r ,  i f  (x, t, E W.

Therefore we have ui (x , t ,  )e  Si; 6
0J, v(W ) .  By definition,

(3 .6 ) L [ E  u.,]=L i uN +L 2 (uN _ ,+u N ) +•••+L N ( E  u; )+(L —  E  Li ) ( E  to.
j =0 J=1 i=0 i =0

Since mi = mj  — mo + y< — j6+y, the first N-terms of the right hand side o f  (3.6)
belongs to ST.(6v+ 1)6+v ,v ( V .) On the other hand,

L—  E  L 1 =  E  c c,(x, t, 41);:
j= 0 lal< rn

ID( M D IC OE (X , t, )1 ‹-Cf,a,131fl
— ( N + 1 ) 6 + j v — I P I

if ( x ,  t ,  ) e  x Ix WI> O.

Therefore the last term of the right hand side of (3.6) also belongs to S1V 1 ) 6 +  v ( W ).

In conclusion, we have L [ E STV+1)6+v,v(W).
j=0

By lemma 3.4, there exists u (x , t, )e  S(
i
) :6(W) such that

u(x, t, u f (x, t,
i=o

CO

Then L U E  sç : 6(w)=s - ce(w), where S "(W )=  If (x, t, )e C°D(W ); fo r any j, N ,
r= 0

(=)I <Cia,z sgl - N  if  (x, t, ) e  W I . In fact, we have

L u = L [ E  ui ]+L [u—  E u i ].
j '=-0 j=0

The former term belongs to Si!Ov+' ) a+v'v as we mentioned before. The latter term
E  •also belongs to Si,o( N ± ' ) 6 + v, v since u—u E  s 

1
-(N-Flos,v(w)

.,ot=o
Now let us define v(x, t) and f (x , t ) by

f (x , t )= V + "

v(x, )((x, t) e qi(x, t, T )g(r)dr

, where F(y, s) e M R n + i) is determined later, z(x, t) E C(52 x I )  with sufficiently
small compact support has value 1 identically in some neighborhood of the origin
and g ( 'r ) e  C (R ) .  Then

(3.7) Lv= z(x, t) e ix t 4 u.(x , t, T )g (r)d r

+ D t x(x, t) t, TOg('r)d-r

+5 (x , t)Q(x, t, D x ) eixt 4 u(x , t, T)g(t)d-c
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, where uco (x, t, (;) e S '(W ) , t)=0 if lx1 < E  (e is sufficiently small, and Q(x, t,
D, is a partial differential operator with degree at most m —1 with smooth coefficient.
Let us denote each term in the right hand side of (3.7) by 1,, 12, / 3 ,  respectively.
Then it is obvious that for any N there exists a constant C such that

(j = 1 , 2) if 1I 1.

In fact for j=1, this follows from the fact Lu E  S - c ° ( W ) ,  and for j =2, this follows
from the fact that for sufficiently small t, D ix(x, t)= 0 and (3.4), (3.5). Let us look
at 1 3 . We integrate by part to obtain

13 = 2(x, t) 5 eix=4 E  Q ( a ) ( x ,  t ,  T )D p 4 (x , t , T )g (r )d c

= I " e
ixr( )Ara/rNi E ( - N c t )Mu)(x, t, T )g  (t)d z .( ix t0 i<ff1-1

Then we have

1/31m<Cm,NlIm+m- "  if

since u e S ?:6 (W ). In conclusion, we have

(3.8) ILvIter<Cm,NI for a n y  N  if 1.
On the other hand,

f(x, t)t5(x, t)dxdt

=  I - 2 n - 1 - v  , , f y ,1'1 s') 5 (1 1- 2 ,1', 11- 1 - v s')dyds',

s')=X(11 - 2 Y, s')

•=411412
ux1e-IY 11-1-vS%

Then, on the support of F(y, s') and g( t), u1(gH2 Y, (;) uniformly tends to
1 if j=  0 and to 0 if j,>. 1, respectively. Therefore if we choose F(y, s') and g (r) such
that

F(y, s')dyds' #0 and g(t)d-r# 0,

then for some positive constant C.

f(x, t)b(x, Odxdt1

if -- 11 a n d  11 is sufficiently la rge . T h is is  in contradiction with (3.1) since
(3.8) and

If Im<C1V3+v)".
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This completes the proof of theorem 1.

4 .  Proof of theorem 3.

In theorem 1, the most dominant terms in essentially o n e . B u t in  theorem 3,
the most dominant terms are more than or equal to  2 . In other words, the operator
L has terms which have interaction with each other to lead L to no-solvability, in
this c a s e . Therefore a slight different treatment is necessary for the proof of theorem
3.

First we have

Lemma 4 .1 .  For any  je

dj = —p(11 + 1)+j <d= — p(I k + 1)+ k

, where vk e er".

Pro o f . Let j e cr\if . Then we have three possibility ;
a) j e u\o- 0  and j<  m',

b) E 0- \(0 . 0 U if), j>  m ', and

c )  j e cro , and j <m'
At first we note that p < v .  In fact,

k— m' m'(1 +1)— k(1„, , +1)k > 0
— (lm, ± 1)(lk —  ine)

since /k — /m .> 0 if kE Fr.
When a) holds,

 

d— d,— _p )(1 „,_1 ; ) >0.

jFor, if 1m'm ' —j  <0, and if 1„,.>

— j  _  _  m'(1 1 +1)—j(1„, , ±1)0 .
—1

;  
v+  1 )

When b) holds,

since n' •

When c) holds,

d—c1; =(— p + v)(1„,, — 0 sin ce  / m . — > O. Q. E. D.

In  theorem 3, we shall also construct an  approximate null solution u(x, t,
of the equation L[ue ] =O. In §3, we localized u(x, t, in (x, t) sapce, but in
this section we shall localize it in (x, t )  space, where t =  tl(;IP because of d> 0.
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First we recall that

L=D t+  E Hi(x, t, Dx)i=o

111(x, t, T5 ?1).

Taking account of (3.3), we define uo (x, t, by

{Do- H 0 (0, t, )}tt o (x, t,

uo (x, T0(0,
( ) =  e - - ( 1 x 1 . 1 4 1 6 ) 2 .

Namely,

uo (x ,  t ,  ) =exp [— i H0(0,T% (IXI' V ) 2 1 1
ro(0,q) r=tI W

, where (5 is a positive number determined later. Hereafter, we denote r (0 , n) by
tO for simplicity.

Let

W= {(x, t, S2> < I x(R"\0); lticlP — t o i < c o , E Vand i >1}

where co is sufficiently small number such that it —To l <c o is contained in J .
Then we have

Proposition 4 .2 . If  (x , t, )e  W, then

(4.3) )1 ‹ COE,fid0121-(1- 1131+ (p+111--F i) i

f o r  a ll a , I3, j,

w h ere k=m 0 .

P r o o f .  B y  the hypothesis of theorem 3.

1m
5t

H0(0, T', ti)cte =lm er' --co )kg(0, T', n)(11- 'r o ( 0 , 0 )  
to

< — k±1 (-r — 7. 0 )k±l(c >0).

If ( X ,  T, ti)e Qx./ x V, then for T = t10 ' ,11=  /11

DV, P4D ! H 0 ( X ,  2 ' ,  ri)ctell < c 'er — T ok+i--1.1-01-J)*

, where (0 + = max (1, 0). It is easily seen that these two inequalities and Leipniz'
rule yield to (4.3) since XNex is bounded if X > 0 for any N> 0. Q. E. D.

Let us define ui (x, t, by

(4.4) {I), + H0 (0, t, )}14 .;(x, t, — E
P=1

Pi ,(x, t, ( ; ,  Dx )u i _ f (x, t,
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uj (x, 0 = 0
, where we denote by Pr (x, t, 1;0 )

p r (x , t, D x ) = M.)(x, t, )./31+F-1(a)(x, t, )/;i}

Here 1-1(x , t, )= 11 0(x, t, t, (;). The solution of (4.4) is given by

(4.5) ui(x , t, (.)= uo(x, tkfl - ", )u V (x ,
ro

j)(X , IP 9 „ C i t ' a=t1W'•

Then we have

d  Proposition 4 .3 .  Let 6—
 k+1  + 6 ' •  If (x, t, (;)e W  and 6' is sufficiently small

positive number, then there exist e >0  such that

(4.6) D P I g u i( x ,  t ,C 8 k ± 141) 1 .

P roo f. By (A-1), if we expand so (x, ti) as Taylor series with respect to x, we have

MX, T ,  ri) = E r o (0, -r,

111(x , T ,  1'0= (t —T0 (0, T,

, where hi  and hi are smooth in O x J x  V and satisfy

h0 =0(1x1), hi = 0(1x1 i ) k)

hi =O (x i) (I q, and m)

d d  -Let el _max
( 
 k +1 m , +  ,  6 ') > 0 .  Then if (x, t, (;)e W ,1

DWI D il[. 1 7 (x , 2 ',  )7)11d de • uo(x, T9Li ro

- C„,13,j1 WE11-6181—(1--.311/31+ .i+P,

D D D  II H A X ,  T ',  q)10 d t' •  u o (x , T,

Ca j , g1 — '1 + 6 1 8 1 — ( 1 - 6 ) 1 1 3 1 +  k-(F1 .1 + P

, where t = t I  a n d  q = l l a  Here we have used the fact that XNe- x is bounded if
X > 0 for any N >O.

Let e, = I — 26. Then if 5' is sufficiently small positive n u m b er, e , > 0. W h e n
>0, we also have the following estimates.
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D D D uo(x, T , 0 1 -6 1 ( X ,  T ' , O H ( a ) (X , T ' , h) P 1 - 1 1 ID ,, u  x,  t ' ,
L  to

<CII—E 21Œ 1-1-61v1— (1 -6 )01+ '+P,

D D f lA [ S u o (x, 01-61(X, T ' , ri)F1 (
1" ) (x , T ' , Uo(X, 2', r i)d t'll

TO

< 0 0 —, 1—E2k1+ 6 1Y1—( 1- 6 )1#1+ /4 1  i+P .

Therefore, let e= min (E. 1 , v2 ) ,  then (4.6) follows from these estimates and Leipniz'
rule. Q. E. D.

This proposition means that uj (x, t, (;)e Sï_l.,(,P,+)-,11+- f ) ( W ). Therefore by Lemma
3.4, there eixsts u(x, t, e )(W) such that

u(x, t, E x, t,

By the same way as §3, we have Lu e S (W ) .
Now let us define v(x, t),.f(x, t) by

f  ( x ,1 ) -- F(11x> . 1- 1"- P±d(t PT 0))

v(x, 0= xi(x)x2(I& t — Toeix4t1(x, t,

, where F(y, s)e C (R "+ 1 ) is determined later, z i (x)e C(S2') equals to 1 identically
in  some neighborhood of the origin, where SY is any small neighborhood of the
origin in S2, and x2 (s)e C (R )  has a support contained in  {Is' <

1

— c} and equals to2
1 identically in a neighborhood of o: c l .  Here we recall that c is a constant4

1 

which appears in  the definition o f  W . We note tha t if co , the support of
Z2(l1 P t - - "co))

L v= Z t(x )X 2 (P t — to)e i x 4 u .(x , I, 0

Z1(X)DtZ2(1I P t t o )e i x4 u(x, t,

+ ii(x)X2(4 P  — To)Q(x, t, D x )eixu(x, t,

, where tt,,,,,(x, t, (;)e S " (  W), i 1 (x)=0 if x is sufficiently small, and Q(x, t, Dx )  is a
partial differential operator with degree at most m — 1 with smooth coefficients. O n
the support of D1z 2 (IInt—r o ) or of i 1(x), by definition

ID P ./(40(x, t, Coe,i,ng r y for any a, j  and N>0.

Therefore, we have

(4.7) ILvIm<Cm,N1 fo r  a n y  N >0 if E  -V a n d  I  —> co.

On the other hand,

is contained in any neighborhood of the origin.
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1f(x, t)f(x, t)dxdt

0 3 0 - 1 Y,

v(4 - 1 Y, ii - P (1 1- 1 - d s+ -c0))

=X1(4 - 1 .0X2(4 - 1 - d s)elY n u(11- 1 Y, gl - q 4 - 1 - d s+To),

Since IT —To l <cg1 - 1 - d  i f  ( y ,  s, q)Esupp F(y, s)x V, ti0 ( 4 -  I Y, 4 - P ( 4 - 1 - d s+To),
tends t o  1 uniformly a s  1(;I— co, n e V o n  th e  su p p o rt o f  F , and  it; (1 1- 'y,

II L' s+ t 0 ) ,  ç )  tends t o  0  uniformly as -+ ,00, E V o n  supp F
Therefore if we choose F such that

5F(y, s)e - iYudyds 0, then

t)dxdtl,>- (C>0)

for sufficiently large I I  such  tha t ti = e V. This is in contradiction with (3.1)
since I f i m  -.<.,Cm 10 1 + p + d ) M  and (4.7).

This completes the proof of the first part of theorem 3 .  If To (x, 11) is indepen-
dent o f  x, then let 6=6 ' such that g3=1

k
 6 '  > 0 .  Then proposition 4.3 is+ 1

valid for g= min (6,, es). If H i (x, n) is independent of both x and then let 6=6'
such that 64 =1-6' > O .  Then proposition 4.3 is  a lso  va lid  fo r  E= min (e i , 64 ).
In the above both case, the subsequent reasoning is also valid. So we have finished
the proof of theorem 3.

5. The proof of theorem 2

As we have mentioned before, the essential part of theorem 2 is obtained from
the results of hypoellipticity of L* ([7]), [8], [11]). But to make this paper self-
contained as much as possible, we give its proof. (See also [23]).

By hypothesis, on each connected component of Sn- 1 , b„,(0, 0, has the same
s ig n . So let us define T( ) e C°(R"\0) by

T( )= —T i f  a )  is valid and b„,(0, 0, )<O,

(5.1) = + T i f  a )  is valid and b„,(0, 0, (;)>O,

=0 if b) is valid.

We define a sequence K i (x, t, s) by

(5.2) K o (x, t, s)=exp L— i 1t P(x, T, OC/T1,

1t, s)= Ko(x, t, E  E P ( œ ) ( X , Skit.
Js k=1 Isl=k Œ •
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, where P (x , t, )= t,
.1‹,n

Lemma 5 .1 .  If  the diameters of Q and I are sufficiently small, we have
t p

T i ' b r,„(X , T , OdT >CIt'rn+ 1 — s1 - + 1 11(TH (C > 0 )  if (x, t, s)e S2 x / x /.

Lemma 5 .2 .  ([12])
k +1 1+1a n d  M>,. N, then

It—si max WI', Is m i N  co rk+ t _ s k-f im) f o r  I tl isI'( l.

Lemma 5 .3 .  Let k(t, s) be a measurable function defined on a measurable set
E such that

SE
 k(t, s)dt k(t, s)ds ‹ c.

Then the operator K which is defined by

Kf= E k(t, s)f(s)ds

is a bounded operator on L 2 (E) with norm<C.

Hereafter we assume that D and I  are sufficiently small such that lemma 5.1
holds.

Let us define the operator K i (x, by

K i (x ,  ) f= (;, t, s)f(s)ds f o r  fe  Q (1 ).

Then

Proposition 5 .4 .  For each (x, K i (x, (;) is a  bounded opeator on L 2 (I ) such
that

(5.3) I lD p 1 K ; (x, f o r  (x, (;)eQx(R"\O)n {1 1 1}.

, where we denote the norm  of  the bounded operator on L 2 (I ) by II • 11.

P ro o f . First by virtue of lemma 5.2, we have

s: 11m a (x a d r  ...<cX( ihn ) m - 1 ,

, where X = lem+i_sim+i I Moreover,

Et
T, )1CIT ..< ,c,C ti/m ql - 1■6 1 m.

m-1
Then (5.1), lemma 5.1, and lemma 5.3 yield (5.3) since XN exp (— Co X +  E  c i x 6 i )

.J =0
(0<5 i < i)  is bounded for any N >O. ( C 0 > O) Q. E. D.
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B y this proposition, K i (x, is  a  vector-valued pseudo-differential operator
which has been used in [23], etc.....

Let us define the operator Q by

Qf —  1I l i c i ( x ) elx 4(p (0 t)cg
J=o

f o r  f (x , t)E q)(52; L 2 (/))

, where N  is sufficiently large positive integer, 00(X) G C (Q )  identically equal to 1
in  some neighborhood ST of the orig in , and 9(0 e Cœ (R n) vanish o n  N I <11.

L et tki (x )e  C (Q ) identically equals to 1  o n  th e  su p p o rt o f  tii,(x). Then

Ltli , Q=1110 (Id + R+(cp(D x ) — Id)),

R  f  ( 2 n'  1 e i x 4 9 ( 0 E P(Œ)(x, t)(g.
k=1  IŒ k k •

If N  is sufficiently large, R' = R +(p(D,)— Id has a  continuous kernel;

Rif= k(x, y , t, s)f (y , s)dsdy
Tto

, where k(x, y , t, s)E 0 4 2  x f2 x / x  1 ) . Therefore by virtue of lemma 5.3, if Q and
I are sufficiently small, 1//0 R' becomes a bounded operator on L2 (S2 x 1 )  with norm <
1 So (Id +11i0 R ) - 1  exists. Let us define u(x, t)e L 2 (S2 x I) by
2

u(x , t)=01Q(id+tlioR ') - 1  f f o r  f  E L 2 (0  X

Then we have 

L u =f in 9 '( f 2 ' x /). Q. E. D.

6. The proof of theorem 4

We assume that ii) hols. In the case i), we can prove theorem 4 essentially in
the same way as ii). So we omit it.

Let us define k i (x, t, s) by

k o (x, t, s)= exp [ Ho(x, s',

J-1
k i (x, t, s )= k0(x, t, s')

F = 0
E E

•
M a )(x , s',

1=-1

+ E infl)(x, s',
fi

)1:111] k i t(x, s ', s)ds '.

Let us define also the operator K i (x , 0  by

K j (x, ) f = k i ( x ,  t ,  s ) f ( s ) d s
Tio(x,g)141-P
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for f e
Then we have

Proposition 6 . 1 .  For each (x, )E  52 x (R" \0), K i (x, is  a  bounded operator

on L2 (I) such that for some s> 0 and —

1 
> (5> 0,2

(6.1) ‹C«,fi,J11-'1+61œl-t —6)1fil1 1  is large.

Pro o f . L e t  = tic;IP, and t ' = s i . T h e n

(K i (x, 4>)./. / (T1 = ki(x,
, io (x,n )

_
ko (x, c;, .r11 - n, -r'l l- P)=exP[ - iH o (x, T" , ri)Ifl d dT"

We denote ko (x, (, "r11', T'll - P) by fi 0 (x , , T, T') and min m;  b y  mo . Then we
i

obtain

(6.2) IM Dgo(x, t ')C I m o 1 la I (1 m o + 1  ) Ifil

if r>  >  T i o (X, n) or T Tio(X, 17).
To see this, we divided R , into r + 1 intervals;

J ,--fte R ; T<T 1(x, 01 ,

Jk =  {T 6  R ; T k - 1(x, n)<T <T k (x, ti)} (k =2,. . . „

J r + 1 =  { 2  E  R ; T r (X ,  0 < t } .

Hereafter we always assume th a t  -r<t' <Ti t ,  o r  Tin  <T' < T . I f  IT — I >CO
(Co >0), then by (A-2) and ii) we have

Re i Ho(X, T" , n)dT " }  <  c l •

If T , tE J k  and IT- t i l ±  IT' — is sufficiently small, then we have

Re j -  i 5T  H O ( X ,  t " ,  )d-r"} - C 2 1 It' -  IT -T/1"4 + 1 1

for 1= k, k -1.
If  2, T' E J , o r J r+  1 , - - e l  is  sufficiently small, and  1-ri is sufficiently large, then
we have

Re i 5 H o (x , T", n)del < - C 3 1-r - I TI 1,

where l =max 1.. I n  the above estimates, Ci  (j=1, 2, 3) is some positive number.
J ea

Now let us investigate each cases more in detial. If the first case holds, it is

obvious that (6.2) is valid since for any N>0, IIN exp j_ i5 H0 (x, T" , OdT " IV I }
r'
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is bounded as 11-*oo. If the second case holds, since Ill and 1-0  are bounded, we
have

ti)1W dr"

C 1 r" r i lm dr"10 - 1fii

M+1 d (1a1+1R1)-101‹ C e t ( i t - it' T1114)11 m+1

M +1 
In u + 1

d  
IT mi+1

where M=(m,- -1/31) + and  /=k  or k + 1. If this combine with above estimate,
we have (6.2) since XNe- x is bounded if X > 0 . If the last case holds,

IDP1 5v

'

 HO(X, t " ,  n) VdT "

T

Therefore we have also (6.2).
For j 1, we have

< r'l

(6.3) 1Dplk1(x, T,

, where IZ T,
< —

1
, let us define E by2

mod+ 1  12 1 (1 d  
m o + i

TI P, 1-"P). In fact, since 
d  

+1
d  

Fl

=min(e,, E 2 ), where Ei = min (d -  d a n d  c2 -  I -  
111 • +

Then since 1/) D1H1(x, "r" , 0.4 in the second case,

11Y,̀ ,D1 1zT ,  T " )I ld '-1/11 M Y ) (X, T", ti)Mrko (x, t " ,  2 ' )CPC" 1
T .

RIC" d
< C { il T '  t k l m k + 1 T k i m k ± l U l d }  m k + 1  1 1

, where M i= (m i - l a l - 1 / 3 1 ) +
 a n d  )1.4- 1=(mi - lal - 1/3 1- 1Y1)+. This estimate and

similar estimate for H,V ) (x, n )  in place of M Y ) (X, n) which has a change such
tha t 4 - IYle instead of 11- (1 ' 14-1)E, combine with Leipniz'rule yield (6.3). In the
first and third cases, by the same way as above, we have also (6.3).

If we return to the variable t, s, then (6.1) follows from (6.2), (6.3), and lemma
5.3. Q. E. D.

Remark 6 . 2 .  If for any j, Ti (x, n) is independent of x , then it is easily seen that
proposition 6.1 also holds for

E =  min (1 -  d  
)  •m o +!

mo+ 1 •

r n k
+1(icti+ifii) — ifili 1— (11.1 -1- 1)T
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If for any j ,  H i (x , n) is independent of both x and n, then proposition 6.1 is valid
for 8= E l  and 6=0.

Let us define the operator Q by

Qf —  (2 7 r
1

) „  e i x 9 ( )

 o  K ; (x , t).1
=

for f e  C ( 0 ; L 2 (I))

,  where 9 (0  e C (R " )  identically equals to 0 if I < M ,  t o  1  if  1 1  2 M  and N  is
large positive number determined later. H ere  M  is  a  sufficiently large positive
number such that

Iti o (x, 4 — P< T if 11>M

, where T appear in the definition of I= [— T, T ].
Let 9 0 (x)e CT(Q) be a function which identically equals to 1 on the support of

9 1(x) e C7:7(Q) which identically equals to 1 in  some neighborhood of the origin
V c Q . Then w e have

L9 0 Q 9  = + (Po R f  + R f ,

1 Rf(x, 1)— e ix .4 9 () ( x ,  t ,  ) . 1) QX N - .;( 4 9 1 ) ( ,  cg,"(2rc)n i=ot=11a1=.1.4•

and

R t  ( x ,  t ) = ,r2K(x, x', t)f  (x ' , t)dx ' fo r  f  e q ( R "  x 1)

, where K (x , x ', t) e Q°(Rn x R n x i), and supp K  Q  x O.

Let N  be a positive number such that m —EN< — (n+ 1). T h e n  b y  v ir tu e  of
proposition 6.1, we have

I f  111,2(1) < C E19(0 I + 1]  11( 9 1 f r 011L2(/)d

C t) ilL2(.0x/), where 17Z = 9 0 R + R'.

By this inequality, we have

111/V11/.2(0.o C'(volume of t2)4  f  (x ,  t )  II L2(0.1) f (x , 011
 L2("Dc /)

if Q is sufficiently small. Therefore (Id— 9 0 R— R') - '  exists and becomes a bounded
operator on L 2 (52 x I). Let

u = goo Qgo,(Id— 9 0 R— R') - lf fo r  f  e L 2 (52 x I) .

Then

u e L 2 (S2 x I), a n d  Lu = f in 9 ' (V  x  I ).
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This complete the proof of the first part of theorem 4. For the second part of
theorem 4, by virtue of remark 6.2, the same reasoning as above is also valid.

Q. E. D.

Remark 6.3. If H i (x, t, 0 (I = 1, q) and H o(x, t, (;) is independent of
x, it is seen that for any f e  L 2 (Rn x I), there exists u e L2 (R" x I )  such that L u =f
since a perturbation terms do not exist.

7. On a perturbation of L  by a operator A (t, D J with real coefficients.

In this section we shall investigate more carefully the influence of the real part
of P(x, t, on the solvability property of L . W e  note tha t its influence on the
regularity property is vital. (See [13]).

Let

A(t, D x ) =  E  A (t)I4
I i<M

, where A Œ(t) is real-valued function which belongs to C ( i ) .  In  th is  section we
assume tha t the coefficients belong to .q(Rn x I )  and have compact support with
respect to t.

Let us consider the operator B which is given by

Bf —  ( 2
1
7

)

, e x p  j— i A(T, )(1-c} t)tg for f  e  C (R " x  I).

Then

(7.1) {L + A(t, D x )}Bf=B{L} f.

Definition 7 .1 . L  is solvable in L 2 (Rn x I)  if and only if for any fE L 2 (R" X I)
there exists u e L2 (Rn x I) such that Lu =f.

Theorem 7.2. L is solvable in L 2 (R "x  I) if  and only if  L+ A (t, D x ) is solvable
in L 2 (1?" x I).

P ro o f .  By Lemma 5.3, B  is a bounded operator on L 2 (R" x I). Let us define
by

=  ( 2
1
76,,e x p A(T, t).(g.

Then we have 13- 1 13= BB - i. This equality and (7.1) yield the desired result.
Q. E. D.

Remark 7 .3 .  In theorem 2, if the coefficients of L depend only on t and a' u a\
ao =0, then Lis solvable in L 2 (Rn x i).

If the coefficients of L depend only on t ,  then the more precise result for
necessary part than this theorem.
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Theorem 7.4. S uppose th at  the coef f icients of  L depend only  o n  t  an d  L
satisfies the hypothesis of theorem  1. Let

A (t, D „)= E t'-21„(t)Dc,:
GCE( r A

,  w here 41(t) is real-valued sm ooth function in  I  w ith  4oe(0)= O. I f  f o r every
Œ G  A

1 +1  .10(1— 
11

'
0 + 1  

Jo<1,

then L*+A (t, D x) is not locally  solvable at the origin.

P ro o f . Let

v(x, t) =x(x , 1)1eixt4t(t, r)g(r)dr,

and

f (x , t)=F(g1
2 x ,  V + v t )

, where x(x, t), g(T), and F(y, s) are the same functions as §3, and

u ( t ,  ) =exp I { ,4 -(T, ) +P(r, Oldri .

Then taking account of

—v(/,,±1)+ <1

for any a e crA , it is easy to see that the same reasoning as §3 is valid. Q. E. D.

8 .  Example

In this section, to illustrate the result of the previous section we consider the
operator given by

L =Di + atkDnx'+ o n  R2(m > n ..> „ .1 )

, where a, b, C and k , are non-negative integers. We then want to seek a necessary
and sufficient condition on a, b, k , I, m  and n  for L to be locally solvable at the
orig in . To do so, let us investigate Lin various cases.

1) a n d  a  R .k +1 1+1

In this case, by theorem 1 and 2, the necessary and sufficient condition for L
to be locally solvable at the origin is

either k is even or
k is odd, m is even and Tm (a)<0.
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2)
k + 1 1 + 1

, a e R  and

In  this case, by theorem 1, 2, 7.2 and remark 7.3, the necessary and sufficient
condition for L to be solvable in L2(R x /) is

either 1 is even or
/ is odd, n is even and lm (b)< 0.

Moreover ' k +1if  n z —   1+
n t h e n  t h i s  condition is also the necessary and sufficient

1 '
condition for L to be locally solvable at the origin.
3) a and b e R.

In this case, by theorem 7.2, Lis locally solvable at the origin.

4)
k 1 ' a e R ,  and b e R.

+ 1 + 1  
In this case, the necessary and sufficient condition for Lto be solvable in L2 (R x I)

is the one which is obtained by replacing 1, n and b  by k, in and a, respectively in
the condition in the case 2). M orevoer ' k +

if  I n
 — '

nt h e n  t h i s  condition is
1 1+ 1  

also the necessary and sufficient condition for L to be locally solvable at the origin.

5) k +1 , both a and b e iR .1 + 1  

In this case, Lis locally solvable at the origin if and only if the one of the follow-
ing conditions holds.

i) 1 is odd, k is odd, in and n are even, and

Im ( a )  and lm  (b)<0,

ii) 1 is even, k is odd, m  is even, and

lm (a)<O,

and
iii) 1 is even, k is even, m + n is even, and

Im (a) Im (b)> 0.

In fact, by theorem 3 and 4 (also theorem 1), the necessary and sufficient condition
for L to be locally solvable at the origin is

for n=  + 1 ,1m (
k  +  1

a   tk+i r  t'+'n") does not any minimal value in R .1+1
Here we remark that if the above function has a minimal value at t = 0, then the non-
solvability result follows from theorem 1 or 3.
6) k +1 , a e R  and 13E R.

I+  1
In this case, by theorem 1, 2, 7.2, and remark 7.3, the necessary and sufficient

condition for L to be locally solvable at the origin is the same one as the case 2).

Remark 8.1. When a e R or b e R, the above result is improved by theorem 7.4.
Especially, if n = 1, then we can replace 'solvable in  L2 (R x i)' by 'locally solvable
at the origin' in the case 2) and 4).
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9. Final remark

In  this section we shall introduce a notion semi-local solvability in  order to
make a difference between theorem 1 and 3 more clear.

Let us first begin with a definition.

Definition 9.1. L is semi-locally solvable a t  th e  origin with respect to  t> 0
(t< 0) if and only if there exists a  neighborhood of the origin V such that for any
fe  Q (V + )(C(1/_)) there exists u e 3 '(V ÷ )( g ' ( 7_ ) )  s u c h  th a t  Lu  = f, where
V, = V n ft>ol(V_ = V n ft<01).

Then we have the following theorems.

Theorem 8.1. Suppose that L satisfies the conditions of theorem 1 and m e
Then L is semi-locally solvable at the origin w ith respect to both t>0 and t<0.

Thjorem 8.2. Suppose th a t L  satisfies th e  c o n d itio n s  o f theorem 3  and
To (x , n ) +0 . Then L*  is not sem i-locally solvable a t the orig in  w ith respect to

(ToliTop 1 > 0 .

The proofs of these theorem follows from the proofs of theorem 2 and 4 if we
replace / by / ,  or /_(/, =/ n {t>0}, I_  =/ n { t< 0} .) Here we note that for semi-
local solvability, the similar lemma as lemma 3.1 is also valid if we replace U by
U , or U .

For theorem 4, we have a variant of this theorem.

Theorem 8.3. Suppose that (A-2) holds in  2,>-0 (T 0 )  instead of T E R , every

Ti  (j=1,..., r) is non-negative (non-positive) and the other all conditions of theorem

4 are satisfied. T h e n  L is semi-locally solvable at the origin w ith respect to t>0

(t<0).

Example 1. (Lewy's operator).

D r + iDx -2i(t+ ix)D,, ( o n  R 3 )

is not semi-locally solvable at the origin with respect to both t > 0 and t<0.

Example 2 (M izohata's operator).

D1 + itkDx ( o n  R 2)

is semi-locally solvable at the origin with respect to both t > 0 and t <O.

Example 3.

4   
(n; even, ni; odd, (

n + 1 m2+ 1)
on R2)

is semi-locally solvable at the  origin with respect to  t> 0  but is not semi-locally
solvable at the origin with respect to 1<0.
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