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1. Introduction

Let r, s be arbitrary positive integers. The Veronese variety V ,„ over a field k

is the projective variety in P r i ,  N  = (
r  +  s  — 1 )

,  whose homogeneous coordinate ringr —1
is generated by the N  monomials of degree s in r indeterminates. By a projection of
v,,s we understand a projective variety in Pr", d > 1, whose homogeneous coordinate
ring is generated by N —  d +1 such m onom ials. In [5] G r6bner showed that the
defining prime idea l of is perfect, i.e ., th e  homogeneous coordinate ring of
1(,.,s i s  Cohen-Macaulay, but certain projections of V,.,s  in  P Z - 2  h a v e  imperfect
defining prime ideals. From this phenomenon he then posed the problem of classify-
ing projections of Veronese varieties.

There were first some efforts of Renschuch to solve this problem in [9], [10].
But the first important result is due to Schenzel, who showed in [12] which projec-
tions of 17,.,s in PZ - 2  have Cohen-Macaulay or Buchsbaum local rings at the vertex
of their affine c o n e s . Note that the homogeneous coordinate ring of a projective
variety is Cohen-Macaulay if and only if the local ring at the vertex of its affine cone
is Cohen-Macaulay (see e.g. [8, Proposition 4.10]), and that a local ring A is called
Buchsbaum if for all ideals q generated by a system of parameters of A the difference
1(A lq)— e(q; A) between length and multiplicity is an invariant i(A ) of A; hence A is
Cohen-Macaulay if and only if A  is Buchsbaum with i(A )=0  (see [13], [14] for
further inform ations). However, Schenzel's method doesn't work for the  classi-
fication of the projections of V  in P r d  d> 2 [12, p. 396].

In  this paper we shall give a  complete classification of the projections of
in PZ - 3  (double projections) under the same aspect by using some results on the
Cohen-Macaulay or Buchsbaum property of affine semigroup rings.

Let t 1 ,..., tr be  r indeterminates over k. If H  is an additive semigroup in N r ,
one can define the semigroup ring k [H ] of H over k  to be the subring of k[t i ,..., t,.]
generated by all monomials tp. • •t"- with (a 1 ,..., e  . Thus, i f  H  is a  finitely
generated additive semigroup with zero in N r, k [H ] is an affine ring, hence we call
H an affine semigroup. Notice th a t  k[H \ {O}] may be considered as an  ideal of
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k [H], which we shall denote by m i f . Then, by definition, the homogeneous coordi-
nate ring of a projection of Vr in P r '  is isomorphic to the semigroup ring k [H] of
an affine semigroup H  in  /V" generated by a  N—d + 1  element subset of the set
t(a 1 ,..., a r ) e Nr ; a, + • +1,,=.51, and the local ring at the vertex of its affine cone is
just k[H],„k i .

In  [3 , Chapter III, §3 ] and  [4 , 3 ] G o to  and  Watanabe have already found
general criteria for an affine semigroup H  to  have Cohen-Macaulay or Buchsbaum
k[H]„, H . But these criteria are rather complicated and hence not proper for the
classification of the double projections of Veronese varieties. Hence, in Section 2,
we will first prepare simpler criteria for some classes of affine semigroups which
contain the associated affine semigroups of the double projections of V .  In order
to  check whether a  such affine semigroup satisfies the conditions of a criterion we
shall study, in Section 3, sum representations of elements of the set t(a 1 ,..., a r ) e Nr ;
Œ1 + • • • + ar = sl. F in a l ly ,  in Section 4, using results of the preceding sections we
shall give a table from which one can see which double projections of h a v e  Cohen-
Macaulay or Buchsbaum local rings at the vertex of their affine cones.

2. On affine semigroup rings

Let H  be an affine semigroup in Nr . We shall denote by G(H) the additive
subgroup of Zr generated by H and by H the set te e G(H); me e H for some positive
integer ml.

Further, if E and F are two sets in Nr , we shall denote by E +F and E —F the sets
{ e+f ; ee E and f  e F} and {e— f; e e E and f  e F1, respectively. If F = {f} for some
f  e N r , we shall replace E + F and E— F by E +f  and E —f.

Then the results on affine semigroup rings which we shall use in the classifica-
tion of the double projections of Veronese varieties are the following lemmas:

Lemma 1. k[H] is Cohen-M acaulay  if  H= H.

Lemma 2 .  A ssume that there exist elements e„ in H such that
(i) e 1 ,..., e,, are  linearly independent over Q,
(ii) m H  is contained in the af f ine sem igroup in N r  generated by e„

f or some positive integer n).
S et H i =f e e rl; e +e i e H  an d  e +e i e l l  an d  e +e i e H  f o r some

Then k[H] is Cohen-M acaulay  if  and only  if  H, =H.

Lemma 3 .  L et H  be of  the type as in Lemma 2 with 2. Set 112 = le e H
e+ 2e; e H and e +2e i  e H for some j Then k[H]„i H  is a Buchsbaum
ring if  and only  if  (H\{ 0} )+H 2 cH .

Lemma 4 .  Let rank, G(H)_2. A ssm e that there ex ists an elem ent f eN r\H
w ith 2f eH  such that k [K ] and k [H]lk [(H— f) n H ] are  Cohen-M acaulay  rings,
where K denotes the affine semigroup in Nr; generated by  H  an d  f .  Then k[H]

m
„

is  a Cohen-M acaulay  or non-Cohen-M acaulay  B uchsbaum  rin g  if  an d  only  if
dim k[H]/k(H— f) n rank, G(H)— 1 or (H\{ 0} )+fc H, respectively.
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Lemma 1 is a  result of Hochster [7, Theorem 1]. As a consequence, since H
is also an affine semigroup in N r; with 171=H  (cf. the proof of [7 , Proposition 1]),
k [R ] is always a Cohen-Macaulay ring.

Lemma 2  is  a  modified version o f  a  result o f  Goto, Suzuki, and  Watanabe
[2, Theorem 1]. It differs from [2, Theorem 1] only in using H , instead of the set
11:= le E G(H); e+ e i E H and e + ei  e H for some i 0 j ,  1 n}. But this difference
is unessential. Indeed, since H is of the same type as H, we can apply [2, Theorem 1]
to H and g e t  H i  {ee G(17); e+e i e H and e+e ;  E H  for some i O f , 1 n }  =H .
Now, regarding the definition of H , and WI , it is easy to see that H 1 =H .

Lemma 3 and Lemma 4  are new  results. For their proofs we shall need the
following.

Lemma 5. L et (R , p) be a  local proper subring of  a Cohen-M acaulay  local
ring (S , q) with dim R =dim S such that

(i) pS  is a g-prim ary  ideal in S,
(ii) SIR  is a f initely  generated Cohen-Macaulay R-module.
T hen  R  is  a  Cohen-M acaulay  o r non-Cohen-M acaulay  B uchsbaum  ring  if

and only if  dim S I R  dim R - 1  or pS c R , respectively.

P ro o f . W e shall use the notion of local cohomology groups (see e.g. [6]).
Note first that a  finitely generated module M  over a local ring (A , in) is Cohen-
Macaulay if and only if the ith local cohomology group H!„(M) of M  with respect to
in vanishes f o r  i = 0,..., dim M - 1 .  T hen , using ( i )  w e have 1-4(S )-- H(S )=0
fo r i =0 ,..., dim R - 1 .  Therefore, from the exact sequence of local cohomology
groups of the sequence of R-modules

0 R  --> S  --> SIR  0

with respect to  p  we get

for 1 = 0,
Hip (R)

t  H r  (SIR) f o r  i =1,..., dim R -1 .

But by (ii) ;(S IR )= 0 for i =1,..., dim S I R .  Hence, since MimSIR (SIR)0
0, R is a Cohen-Macaulay ring if and only if dim SIR dim R - 1 .

N o w , if  R  i s  a  non-Cohen-Macaulay Buchsbaum r in g , 14'n's/R (S/R)
M i m S / R - F l (R) is a  vector space over R ip [11, Lemma 3]. But that happens only if
SIR is also a vector space over R/p or, equivalently, pS c R.

Conversely, if p 5 =  R, S IR  is  a  vector space over RIP. Hence 14(R )=0 for
i 0 1 , dim R  and  111,1( R )  S I R .  Thus, by [14 , Corollary 1 .1 ], R  m ust be  then  a
non-Cohen-Macaulay Buchsbaum ring, as required.

The proof of Lemma 5 is now complete.

Proof  of  Lemma 3. F or all elements a =(ot i ,..., oc,.)E N ", we shall denote by
t a the monomial tv.••t;-. Assume that k [H ] 1 H  is  a Buchsbaum ring. T h e n ,  since
t2ei , . . . , ., 2er1 form a system of parameters for k[H],„H  by  [2, (1.11)],
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r n H ( t 2ei k [ H ]  g e i ) k r l l i

for a ll i Of, 1 n (see [13, §2]). Let fe  H 2  arbitrary . Then for some i 0j,

t f +2 e ig e i = if  +2eige,

is  a relation of elements o f  k [H ], hence t f + 2 e ' e  t 2 " k [H ] : t 2 e i. L et e e H \ {0}
arbitrary. Then t e e mH , hence t e t f + 2 e ,  

E  12e, kupj Thus, we can find an element
g e H such that

te tf +2e; = tgge t ,

hence e+f=g e H . So we have proved the relation (H\ {0})+ H 2  C H .

Conversely, assume tha t (H\{0})-FH 2 c H .  Then, with similar arguments as
above, we can first show th a t  for J e H 2  t f + e ' e te ik [H ] mi l ,  and Je  H  only if
tf  + e  e  te ik [H ]. Hence, since (teik[H]: m H )\te , k [H ] is a vector space over k with
finite dimension, H2 \H is a finite set. Now it is easy to see that H 2  is an affine semi-
group and that k[H 2 ]  satisfies the following conditions:

(i) mH k[H 2 ] k [H ]  and it is a mH 2 -primary ideal in  k[H 2 ],
(ii) k[H 2 ]/k[H] is a finite-dimensional vector space over k.
Further, since G(H 2 ) = G(H), dim k[H 2 ] =dim k[H ]= rank, G ( H )2 .  There-

fore, by Lemma 5, to show that k[H]„,,, is a Buchsbaum ring it suffices to show that
k[H 2 ]  i s  a Cohen-Macaulay ring. Note first tha t H  2  is  of the sam e type as
H .  Further, if eeri=17 2  w ith  e+e i , e+e i  e  H 2  for some i Of, 1 n, e+2e i ,
e+2e i e(H\{0})+H 2 OEH, hence by the definition of H 2  e e H2 a g a in .  Then, by
Lemma 2, k[H 2 ]  is Cohen-Macaulay, as required.

Proof of  Lemma 4. S in c e  f  H, k [H ] is  a  proper subring of k [K ] .  Since
2f e H, K=H U (H +f); hence we can conclude that m „k[K ] is a  mK -primary ideal
in  k [K ] and tha t k[K]l k[H]2-1' k[H]l k[(H —f) n H ] .  Further, since G(K)(:),Q =
G(H)0,Q, dim k[K] = dim k[H] = rank Q  G(H)0,12 = rank, G (H )  2. Therefore,
we can apply Lemma 5 to the rings k[H]„,„c k[K]„, K . Note that m i i k[K]„„
k[H]„, i , if and only if (H \ {0})+f =(H\{0})+K OE H. Then the statement of Lemma 4
is immediate.

R em ark. In Lemma 5, using [11, Satz 2] one can show that if R is a Buchsbaum
ring, i(R)=(dim R — 1)1(SIR). Thus, in  Lemma 3 or Lemma 4, i f  k[H]m l i  i s  a
Buchsbaum ring, i(k[H]„,)=(n-1)#(11,\H) or (rank z  G(H)-1)#(K\H), respectively,
(cf. [4, Theorem (3.1)].

3. On sum representations in N

Let c, d be elements of Z r .  By a representation of the sum c+ d we understand
a  sum c i  + di  = c+ d  with c 1 , d i  e Z r .  Two representations c 1 +d 1 and  c2 +d 2  o f
c+ d are called to be identical if {c i , d i } ={c 2 , d 2 } ; for the contrary we say that they
are different.
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The aim of this section is to study sum representations of the elements of the
set J: ={ (Œ l ,...,oe,.)G N r: cx, ±...+cc r =s}.

Set for some elements of J, if that is the case,

e 1 =(s,...)

e12 =(s - 1 ,  1,...)

e13 = (S - 1 , 0, 1,...)

f  = ( s -  2, 2,...)

f2----- ( s -3 , 3,...)

f 3 = (s - 2 , 1 ,...),

where the lined points mean that the rested components are zero.
Then we have the following result.

Lemma 6. L et c , d  be elem ents o f  such that by  ev ery  perm utation of  the
components o f  Nr c + d  doesn't hav e the f o rm  of  e 1 +e 1 , e1+e12, e 1 + f 2 ,
e1 + f 3 , e 1 2 +e 1 2 , e12+e13, e12+f1 (note  t h a t  e l  + f i  e i 2 + e i2 ,  el + f2= e12+ fi,
e, + f3  = e i 2  + e i 3 ). Then c+d has at least tw o representations w ith sum m ands in
J which are dif ferent from  c+d and from  each other. In other w ords, c+d belongs
to every additive sem igroup in N '' generated by  a set of  the form  Jqc, d, a} , a e J
arbitrary .

P ro o f . W e m ay assume th a t r, 2. L et c=(y i ,..., yr)  a n d  d
Then c +d  has the following representations with summands in the set {(ai,•••, ar)e
Z r; oci +•••+a r =s}:

(121 ) Y2+1,•••)+(c5, +1, ô 2 -1 ,...)

(R2) (Y 1 -2 , Y2 + 2,...)+ ( 1 +2, 6 2 - 2 , . . . )

(R3) (y1- 3 , Y2+ 3 , . . .)+ ( 6 1+ 3 , 6 2 - 3 , - )

(R ,) (Yi +1, y 2  - 62+ 1,...)

(R5) (y 1 +2, (52+2,...)

and if r > 2,

(R6) (Yi, Y2 - 1 , Y3 + 1, - ) + ( 1 , 6 2+ 15 6 3 - 1 9- )

(R ,) ( V i ,  y 2 +1, y 3 - 1,...)±(6 1 , 6 2 -1 , 6 3 + 1

(R8) (y 1 - 1 , y 2 +2, y 3 -1 ,. . .)+ (b i  +1, 62 -2 , 6 3 + 1 ,- )

(R9) (Y 1 -1 ,  Y2, Y3 + 1,-)±(61 + 1, (52, (53
- 1, - )

(R 1 0 )  (y 1- 2 ,  Y2+ 1 9 Y3+
1 ,•••)+(ô1 +2, 62

- 1 ,  6 3 - 1 , - )
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and, if r> 3,

(R 1 1 ) (Y i, Y 2+ 1 , Y39 Y4 - 1 ,•••)+( 6 1, 6 2 -1 , 6 3 , (54 + 1 ,...) .

Note that the summands of (R ,),..., (R 1 1 ) belongs to J if they belong to Nt and
that since the first summands of (R 1),...,(R 1 1) , c+d  are different from each other,
from three arbitrary representations of c +d  among them one can always find two
different ones. Then, to  show that c+d  has at least two representations with sum-
mands in J which are different from c + d and from each other it suffices also to show
that among (R 1 ),..., (R 1 1 ) there are either three representations with summands in
N r  which are different from c +d  or four representations with summands in  Nr

(because c + d could be identical with only one of those four representations).
First we may assume that

y, =max {y i ,•• Yr, s i ' " ,

= max l y 2 ,• • •, yr , 62 1•.•5 (5r } •

Then V i  >O and, since (52 =0 would imply c =d =e i , 6 2 > 0 too.
(1) C a s e  =1.
Then Y 2,..., Tr, 6 1, — , 6, can take only the values 1,0. If r = 2, s= 2  and we get

e = d = e 1 2 .  If r = 3 and s=2 we can also conclude that by a permutation of the com-
ponents of N r c=e 1 2, d=e12, e13• Thus, by the assumption of the lemma, we may
assume tha t r > 3 or s > 2. N ow  by a permutation of the components of N T  we
always have one of the following cases:

(1.1) Y1=Y3=-62=1, Y2= 6 1= 6 3= 0 ,

(1.2) Y1=Y2=Y3=61=62=1•

In these cases, (R 1 ) and (R 7 ) have summands in N r  and one can check that (R 1 )
and (R 7 ) are different from c + d and from each other.

(2) Case y, =s.
That means c=e i . A straightforward check shows that c +d  is identical with

(R 1 ), (R 2 ), (R,), (R 9 ), (R „) only if d = e 1 2 , . ,
 f f 2 ,  e 13 , a respectively. Therefore, byf3 ,

the assumption of the lemma, c +d  is different from (R 1 ), (R 2 ), (R 3 ), (R 9 ), (R 1 0 ).
Now we distinguish two subcases:

(2.1) ö 2 2. T h e n  6 1 +6 2 <s  because 6 1 +6 2 =s  would imply d = e i2  or .f.1.
Therefore, r > 2 and we may assume that 63  > 0 .  Now it is easily seen that (R 1 ),
(R 9 ), (R 1 0 ) have summands in Nr .

(2 .2 )  6 2  > 2. Then Yi > 2  too . H ence  (R 1), (R 2 ), (R 3 ) have summands in Nr .
( 3 )  Case 1<y 1 <s.
We distinguish two subcases:
( 3 .1 )  r  = 2 .  N ote t h a t  y i  +y 2  = s, 6 1 +6 2 = s ,  a n d  y i  =max {yi, Y2, 6 1, 6 2}.

Then we can conclude that

min {y1 , y 2 , 6,, 6 2 } :s  —y, >0

and that (5 2 2 because 62 = 1  would imply c =d =e 1 2 . If 62 = 2 , i.e. d = f 1 , we have
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y, <s - 1  because y i  =s - 1  would imply c = et 2 . Thus, min {y 1 , y2 , (5,, ô2 } 2. I n
this case, (R 1), (R 2 ), (R 4 ), (R 5) have summands in N .  I f  ô2 >2, then y 1 >2 and one
can check that (R 1), (R 2 ), (R 3 ), (R 5) have summands in N'.

(3 .2 ) r  >  2 . We may assume that

63 =max{ô 3 ..... Sr } .

Suppose that (53 =  0 . Then we may further assume that y, =max {y,,..., yr }.
If y3 =0, we have a situation like (3.1). If y, >0, we have (52 > 1 because 62 =1 would
imply d=e 1 2 ,  c = e „ .  Now it is easily seen that (R 1), (R 2 ), (R 7 ), (R 8 )  have sum-
mands in N T .

It remains the case ô 3 >0. I f  y2  >0, (R 1), (R 6 ), (R 9 ), (R 1 0 ) have summands in
Nr. . If y 3 >0, (R 1), (R 7), (R 9 ), (R 1 0 )  have summands in  Nr. . If y2  = y3  = 0, then
y i  +y 2  + y3 = y i  <s, hence r > 3 and we may assume that y4  > O. Now it is easily seen
that (R 1), (R 9 ), (R 1 0 ) , (R „ )  have summands in Nr.

The proof of Lemma 6 is complete.

Lemma 6 has the following consequences, which we shall use later in the classi-
fication of the double projections of Veronese varieties.

Lemma 7 .  L et c, d  be elem ents of  J such that by  ev ery  perm utation of  the
components of N r  C  d doesn't have the form of ei +e i , e 1 + e 1 2 . Then c+d has at
least a different representation with summands in J. In other words, c+d belongs
to the affine sernigroup in Nr  generated by  the set J\fc, dl.

P ro o f . Straightforward.

Lemma 8. L et c, d  be as in Lemma 7. Then c+d  belongs to the affine semi-
group in  N r  generated by  the set J\le i , c, if  by  every  perm utation of  the ith
components of  N ', i= 2 ,..., r ,  c + d  doesn't hav e the f o rm  o f  e 1 2 +e 1 2 , e 1 2 + f

1
,

e1 2  +e 1 3 .

P ro o f . By Lemma 7, c + d has a different representation c,+ d, with cl , d 1 e J.
If c+d  doesn't belong to the semigroup in N r  generated by J\{e i , c, i.e. c+d
doesn't have a representation with summands in .1\{e1 , c, d}, then e l  e {c l , d 1 } and
c1 +d 1 has on ly a  different representation with summands in  J , which is c+d.
Assume that c,= e,, ( 5 , . )  with (52  = max {(52 ,..., 6,.} an d , if  r> 2, 63 =
max {(53 ,..., 6,.}. Then from the proof of Lemma 6, Case (2) one can deduce that
d1 e {A, f2 ,  f3 } .  Thus, by Lemma 6, c+d  must be identical with one of the sums
e 1 2 +e 1 2 , e 1 2 + e 1 3 .

Lemma 9 . L et c, d  be  a s  in  Lemma 7  w ith r = 2  an d  s > 4 .  T hen c+d
belongs to the affine semigroup in N 2  generated by  the set ./\{e1 2 , c, d} if  c+ d  is
not identical with e 1  + f 1 ,

 e 1  +f2.

P ro o f . By Lemma 7 c + d has a different representation c, + d l  with c l , d 1 e J.
If c+d doesn't belong to the semigroup in N 2  generated by the set J\{e1 2 , c, d} , i.e.
c+ d  doesn't have a representation with summands in  A{e 1 2 , c, d} , then e12e
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{c1 ,  d a  and c, + d 1 has only a  different representation with summands in J,  which
is c + d. Thus, if c + d is not identical with e ,+f 1 , e 1  + f 2 ,  from Lemma 6 one can
deduce that c ,+d , is identical with one of the sums (0, s)+ (2, s - 2), (0, s)+(3, s—  3),
(1, s —1)+(1, s —1), (1, s — 1)+ (2, s — 2). Therefore, e1 2  = (s — 1, 1) must be one of
the elements (0, s), (1, s — 1), (2, s - 2), (3, s— 3), which then implies s 4, a  contra-
diction.

4 .  Double projections of Veronese varieties

We shall adhere to the notations of the preceding sections.
F u rth e r , w e  ca ll a  p ro je c tiv e  variety arithmetically Cohen-Macaulay or

Buchsbaum if the local ring a t the vertex of its affine cone is Cohen-Macaulay or
Buchsbaum, respectively.

We will first classify the projections of V,.,s in P r 2 concerning the arithmetically
Cohen-Macaulay and Buchsbaum property once more, cf. [12], because from our
method one can see more clearly as in  [12] (where different methods and  results
have been used) why there is a such classification.

L et U  be an  arbitrary projection of 17,,,s in  P r 2 w ith  r, s> 1 (the cases r= 1
and s= 1 are trivial). Then the homogeneous coordinate ring of U is isomorphic to
the semigroup ring over k  of an affine semigroup in N r  generated by N - 1  elements
of the set J : = {(oc,,..., oc,.) e N r a l  + • • • +ot,.=5}. Note th a t J  has N  elements ex-
actly. Then w e denote by a the element of J  deleted by the projection U .  Of
course, U is uniquely determined by this element a.

Set for some elements of J

e =( ..., ,

where s stands at the ith place, 1=1,..., r, and

s -1 ,. . . ,  1,...),

where s - 1 stands a t  the ith place and 1 a t the jth place, i, j=1,..., r  w ith i 0 j.
Then, with the above notations, we have the following table which shows in

terms of the element a when U  is arithmetically Cohen-Macaulay or Buchsbaum.

Table I.

P ro o f . Let H  denote the affine semigroup in  N r  generated by the set J\{a} .
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Then we have to study when k[H]
m
„  is a Cohen-Macaulay or Buchsbaum ring.

Let I  denote the affine semigroup in N r generated by J and note that 1=1 (see [1,
Theorem 5] or [7, § 1]).

(1) Case a = ei (cf. [12, Proposition 2]).
We claim that 11= H, from which it then follows by Lemma 1 that k [H ] is a

Cohen-Macaulay ring. Since H g r l  =  / ,  it suffices to show that (I\H) n 11=0.
We may assume that a = e i . Let f be an arbitrary element of I\ H . Then f = me i  + g
for some m > 0 and g E l l .  Note that by Lemma 7 ei + e e ll  for all ee.1\{e i , e1 2 ,...,
ei r }. Then, choosing m as small as possible we must have g =n 2 e1 2 +  • + nr ei r  for
some n2 ,..., fl r 0. Jf f e H.

I f =  E  n a p
a p E \ I{e i)

for some 1>0, n p .. 0. Comparing the sums of all components of If  and E n a p

we get /(m +n 2 + • • • +n r ) s =  rip s , hence /(m +n 2 + -• • + nr )=  E np ,  so that /[ms+
(n 2 + •• • + nr )(s — 1)] =the first component o f If>1(m + n 2 + • • • +nr ) (s -1 )=  E ni,.
(s — 1) the first component o f E np ap ,  a contradiction. We have proved that
(I\H) n = 0 .

For the rested cases (a 0 er) we always have ranks  G (H )=  r  2 and 2a e H
by Lemma 7. Note further that the affine semigroup in NT generated by H  and a
is just I, which defines a Cohen-Macaulay ring k [I] by Lemma 1. Then, by Lemma
4 it suffices to show below that k[H]l k[(H — a) n H ] is a Cohen-Macaulay ring of
a suitable dimension or that (H\ {0})+ a c H.

(2) Case a = ei i  (cf. [5 , §5] and [12, §4]).
(2 .1 )  s = 2. Then e2 1  = e i 2 ,  hence by Lemma 7 e+e 1 2  e H  fo r a ll ee

{e i , e2 }. It follows that (H—e 1 2 ) n H.H\fme 1 +ne 1 2 ; m, If me i  +ne 2 +
e1 2 e H for some m, n 0,

me1 +ne 2 +e 1 2 =m'e 1 +n'e 2 + n aP  P

for some m', n', n p . : 0 .  Since each ap  E./\{ei , e 2 , e 1 2 } always has a non-zero ith
component for some i 3 but that of me, + ne2 +e i 2  is  zero, n = 0  for all ap  ./\
{e„ e 2 , e1 2 }. Therefore, comparing the first components of the elements me i +
ne2 +e 1 2  and m'e 1 +n'e 2  o f N 2 we get 2m +1 =2m', a contradiction. So we have
proved that (H — e i 2 ) n H=H\{me 1 +ne 2 ; m, 0 } .  From this it then follows that

k[H]/k[(1-1 —e12 ) n H] = k[ti, ti]

is a Cohen-Macaulay ring of dimension 2. Thus, by Lemma 4 , k [H ],„  is Cohen-
Macaulay if r  3 and not Buchsbaum if r>3.

(2 .2 )  s>  2 . Then e 2 1  e1 2 , hence by Lemma 7  e+e 1 2  E  H  for all ee.l\{e i }.
It follows that (H — e i 2 ) n H 2Hqme i ; 0 1 .  If me i  + e i 2  e H for some m  0 ,

me, + e i 2 = m'e l  +n a
apeJ\ tei, e12 }  P  P

apeJ\{e l,e2 ,e12 }

for some m', O. S in ce  for all i 3 th e  ith  component of me i  + e i 2  is  zero,
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tip = 0 for all ap  e cc,.) J \  e 1 , e 1 2 }; oc i 0  for some i 31. Hence, comparing
the second components o f  me1 +e 1 2  a n d  m'e l n a p we get np  0  fo r  some
ap  E cx,.)E./\{ei, e 1 2 }; x,= 0 for a ll i 31 a n d  2  the second component of
this ap __ 1 =the second component o f  me i + e 1 2 ,  a contradiction. So  w e have
proved that (H — e1 2 ) n H = H\Ime ; m  01. From this it then follows that

k[H]lk[(H — e 1 2 ) n H] L' k[fl]

is a Cohen-Macaulay ring of dimension 1. Thus, by Lemma 4, k[H]
m
„  is Cohen-

Macaulay if r= 2 and not Buchsbaum if r > 2.
( 3 )  Case a 0 ei , ei j  (cf. [12, Theorem 2]).
Then by Lemma 7 e+ a EH fo r  a ll e E J\{a}, hence (H\ {0})+ a c H .  Thus,

by Lemma 4, k[FI]
m
,, is a non-Cohen-Macaulay Buchsbaum ring.

Summarizing the above cases, we have just proved Table I.

Now we are going to formulate our main result on the classification of the double
projections of Veronese varieties. For that we shall use the notations f i , f 2 , f 3 , ef ,
of Section 3 and Table I.

Let V be an arbitrary projection of I' P r 3 with r, s> 1. (the cases r= 1
and s=1 are trivial). Then the homogeneous coordinate ring of V is isomorphic
to the semigroup ring over k of an affine semigroup in N r  generated by N -2 ele-
ments of the set J:={(1 1 ,..., ocr) e Nr ;  + • + ocr  =  s}. Let a and b denote the two
elements of J deleted by the projection V, a 0 b. Then V is uniquely determined by
the set { a, b}. Further, by a permutation of the components of N r we always have
one of the following situations :

(1) a = e i , b arbitrary,
(2) a= e 1 2 , b0e 1 ,...,
( 3 )  a, b  e i , ei i  for all i, 1 =1,..., i 0j.
For these situations we have the following table which shows in terms of { a, b}

when V is arithmetically Cohen-Macaulay or Buchsbaum, see Table II.
Note that "otherwise" denotes the cases which can not be reduced to one of the

preceding cases of the corresponding situation by a permutation of the components
of Nr

P ro o f . We will om it a  detailed proof because it is rather technical. Let H
denote the affine semigroup in Nr generated by the set J\fa, Eq. Then we have to
study when k[H] n „  is a Cohen-Macaulay or Buchsbaum r in g . L e t K  denote the
affine semigroup in Nr generated by the set J\{a}.

( 1 )  Situation a = e l , b arbitrary.
Then K= K by the proof of Table I, Case (1).
For b=e 2 , e1 2  we claim that H= H, from which it then follows by Lemma 1

that k [H ] is a Cohen-Macaulay ring. Since H H Ic K = K ,  it suffices to show that
(K\H) n H =Ø.

(1 .1 )  b=e 2 .
Let f  be an arbitrary element of K \H . Then f =me 2 + g  for some m > 0 and

g E H .  Since by Lemma 8 e2 +eG H for all ee J\le 2 , e2 1 , e2 3 ,..., e 2 ,1, choosing ni



Double projections of Veronese varieties 577

Table II.

V is arithmetically
Cohen-Macaulay

V is not arithmetically Cohen-Macaulay

arith. Buchsbaum not arith. Buchsbaum

(1)

b—e2, el:

b=  f i  w ith r=2 or
(r, s)=(3, 3)

b=e,, with r=2 or
(r, s)=(3, 3)

b — e2 , with
(r, s)= (3, 2)

otherwise

b= f i  w ith  r, s>2,
(r, s) (3, 3)

b=en  with r, s>2,
(r, s)*(3, 3)

b=e,, with
(r, s)*(3, 2)

(2)

b= fi, A, e21
with r=2

b =e 2 i  with (r, s)=
4)

b e,, with (r, s)=
(3, 2), (4, 2)

b fi, f2, e21

with r=2

otherwise

(3) otherwise
fa, bl = {fi,f2}

as small as possible we must have g = n i e2 i + n3 e2 3  + • • • +n r e2 ,. for some n 1 , n 3 ,....
Now, proceeding as in the proof of Table 1 , Case (1 ), we can show that

f 0 H; hence (K \H) n H = 0, as required.
( 1 .2 )  b  e=-12.
Let f  be an arbitrary element of K \ H .  Then f = me12+g for some m >0 and

g E H . Since by Lemma 8 e 1 2  +e c H  for all ee.1\{ e i , e 1 2 ,..., f i } , choosing m
as small as possible we must have g = n3 en  + -• • +n r e i r +n f i  for some n 3 , . . . ,n r , n
0. If fe n ,

If=tf3e13+•••+u'reir+ n  aP  P
ape.11{et,e12,...,e1 ,}

for some 1 >0, n th e  components o f If  and n'3 e 1 3 +•-• +n 'r e i r +
E np ap  we get ln i ?: tz for i =3 ,..., r and, as in the proof of Table 1, Case (1), /(m+
n3 + •-• +n,.+n)=W3  + • • + n; + E hence /[(m+ n 3 + •• • +n,.)(s—  1) + n(s —2)] =
the first component o f  If> n'3  + • •• + n',.+1(m + n3 + • •• + n,. + n)(s—  2)= (n'3 + • • • +
n ;) ( s -1 )+ E n(s— 2 )  the first component of n e 1 3 +•-• +n'r e i r + E  np ap ,  a  con-
tradiction. Therefore, (K \H) n =0, as required.

For b  e i , e 1 , 1, j=2 , . . . ,  r ,  we always have rank s  G(H)= 2  and 2b c H  by
Lemma 8. Note that the affine semigroup in /Vr generated by H  and b  is just K,
which defines a Cohen-Macaulay ring k [K ] by Lemma 1. Then, by Lemma 4  it
suffices• to show that k[H]lk [(H — b) n H ] is  a Cohen-Macaulay ring of suitable
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dimension or that (H\ {O}) + b  H .
(1 .3 )  b =f 1 .
If s= 2, then f i  = e2 , hence see (1.1).
If s =3, then f ,=e 2 „. By Lemma 8 e+f , e H for all ee A-fe u , e2 1. From this

we can show as in the proof of Table I, Case (2.1) that (H — f1) n H =H\{me, 2 +
ne2; m , n  0 } .  Hence

k[H]l KEW —f1 ) n H ]  k[tit 2 ,

is a Cohen-Macaulay ring of dimension 2. Thus, by Lemma 4 , k[H]„,,, is Cohen-
Macaulay if r = 2, 3 and not Buchsbaum if r> 3.

If s > 3, then f , e 2 , e 2 1 . By Lemma 8 e + f 1  eH  for all e E .1\{e, 2 }. From this
we can show as in the proof of Table I, Case (2.2) that (H —f1 ) n H = H\{me 1 2 ;
0}. Hence

k[H]lk[(H —f1 ) n H]  k [tr i t2]

is a Cohen-Macaulay ring of dimension 1. Thus, by Lemma 4, k[H]„,,, is Cohen-
Macaulay if r = 2 and not Buchsbaum if r > 2.

(1 .4 )  b = e21.

If s= 2, then e2 1  = e, 2 , hence see (1.2).
If s = 3, then e2 , =f i , hence see (1.3).
If s > 3, then e2 1  e i 2 , By Lemma 8  e+ e2 , E H  for a ll e e J\{e2 }. From

this we can show as in the proof of Table I, Case (2.2) that (H — e2 1 ) n H =H\
{me2 ; m  0}. Hence

k[H]/[(1/ — e2 1 ) n k [t]

is a Cohen-Macaulay ring of dimension 1. Thus, by Lemma 4, k[H]„,,, is Cohen-
Macaulay if r = 2 and not Buchsbaum if r > 2.

(1 .5 )  b =e 2 3 .
If s= 2, e 2 3  = e3  2• By Lemma 8 e+e 2 3  G  H  for a ll e E J\ {e2 , e 3 }. From this

we can show as in the proof of Table I, Case (2.1) that (H — e2 3 ) n H = H\{tne 2 +
ne3; m, n 0 } .  Hence

k[H]lk[(H — e23) n H ]  k[ii,

is a Cohen-Macaulay ring of dimension 2. Thus, by Lemma 4, k[H] H  is Cohen-
Macaulay if r = 3 and not Buchsbaum if r> 3.

If s> 2, then e2 3  e 3 2 . By Lemma e+ e2 3  e H for all e e .1\{e2 }. From this we
can show as in the proof of Table I, Case (2.2) that (H — e2 3 ) n H =H\{nte 2 ;
Hence

nUni k[(11 — e23) n H ]  k[ti]

is  a Cohen-Macaulay ring of dimension 1. Thus, by Lemma 4 ,  k[H]„,,, is not
Buchsbaum.

(1 .6 )  Otherwise.
Then b doesn't have the form of e2 , e 1 2 , f ,  e 2 1, e2 3  by every permutation of the
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ith components of N r ,  i = 2 , . . . , r .  By Lemma 8 one can see that e+ b eH  for all
e E J, hence (H\ {O}) + b c H .  Thus, by Lemma 4, k[H] m „„ is a non-Cohen-Macaulay
Buchsbaum ring.

For Situation (2) and Situation (3) we first observe that H  is of the type as in
Lemma 2 and Lemma O.

( 2 )  Situation a  e=  12 , e,..
It is easily seen that e, + e 1 2  H ,  so that by Lemma 3 a sufficient condition for

k[H]„„u  to be not Buchsbaum is e1 2  e fe e H; e + 2e; E H  and e + 2e;  EH for some
rl. Note that this condition may be reduced to e1 2  + 2 e 1 e H and e1 2 +

e H for some i 0 j, 2 r, because e1 2  n i l  is only a  consequence of the re-
lations e1 2  e  H  -2e, G (H ) and  se1 2 = (s - 1)e , + e ,. Then, using the following
statements:

(i) e1 2  + 2e2  e H if s = 3, 4, b  e2 , or if s > 4,

(ii) e1 2 +2e 1 e H if s = 2, b  e i ,, e2 1 or if s >2, i=3,..., r,

it is easy to verify that k[H],„H  is not Buchsbaum if 3, (r, s)0 (3, 2), b  e2 , in the
case (r, s)=(3, 3), (3, 4), b  en , e2 3 , e1 4 , e2 4  in the case (r, s)=(4.2).

For the proof of (i) we may assume that s 3. T h e n  e1 2 e2 1 0 f 1 . Thus,
if b f i , e2 1 ; e 1 2 +2e 2 = f 1 + e 2 , + e2  e H, and, if b = f 1 ,  e 1 2 +2e 2 = f 2 +2e 2 1  E H .  If
s> 4 and b = en , then e1 2  = (2, s -2, 0) and b 0 f2 , hence e1 2  + 2e2  = f2  + (2, s -2 ,  0) +
e2  e H .  So we have proved (i).

For the proof of (ii) let 1= 3 ,.. . ,r .  If s=2 and b  e l ,, e2 1 ; e 1 2 +e,=e 1 1 +e 2 1 e H.
If s>2, e 1 2  + el satisfies the conditions of Lemma 6, hence belongs to H .  Since
e1 2 +e 1 e H implies e1 2  + 2e i e H, we have proved (ii).

Note that if (r, s)=(3, 2) we may assume that b = e i 3 , and, if (r, s)=(4, 2), the
cases b=e 2 3 , e1 4 , e2 4  may be transformed into the case b=e 1 3 . Then it remains
to consider the cases r =2, b = e2 1  w ith  (r, s) = (3, 3), (3, 4), b = e , 3 w ith  (r, s)=
(3, 2), (4, 2).

(2.1) r =2.
If s =2, we have no cases of Situation (2).
If s= 3, we have b =f i , and k [H ]= k [ti, t i] is a Cohen-Macaulay ring.
If s =4, we have b = f i , f2 , and k[H ]=k [tf, t i ti, k [tf, titi, tl] is a Cohen-

Macaulay ring.
If s> 4, we apply Lemma 9 and get

e E J, if b O f1 , f ,  e21,

e+beH f o r a i !  eeJ\ fe i l, if  b=

eeJqe 2 }, if b=e 2 1 .

It follows that (H\ {0})+ b  H if  b  f 1 , f2 , e2 1, and, as in the proof of Table I. Case
(2.2), that

k [t ], if f2,

k[q], if b=e2i,
k [H ]lk [(H  -b ) n
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is a  Cohen-Macaulay ring of dimension 1. Note that rank, G(H)= 2, 2b EH, and
the affine semigroup in N 2 generated by H and b is is just K, which defines a Cohen-
Macaulay ring k[K ] by the proof of Table I, Case (2.1). T h e n , by Lemma 4, k[H]„,H

is Cohen-Macaulay if b =f ,, f 2 , e2 1 and Buchsbaum if b f 2 ,
For the cases b=e 2 1  w ith  (r, s)=(3, 3), (3, 4) and  b=e 1 3  w ith  (r, s)=(3, 2),

(4, 2) we set
H, = {e e H; e+e i e  H  and e+e ;  e H  for some i 0 j, 1 r}  and claim that

H 1 = H, form which it then follows by Lemma 2 that k [H ] is a Cohen-Macaulay
r in g .  Since H g I/ 1 g H  /  =I, where I  denotes the affine semigroup in Nr  generated
by J, it suffices to show that (I\H) n H 1 =4).

(2 .2 )  b=e 2 1  w i t h  (r, s)=(3, 3), (4, 3).

Let f  be an aribtrary element of I \ H .  Then f  = m et2+ ne 2 i  +g  for some m, n  0
and g E H .  Since e 1 2 + e e H , e 2 1 + e e l l  for all e e {(a i , a 2 , ot3 ) e J; 0} (which
may be easily checked by Lemma 6) and  e 1 2 + e2 , =e i  + e2 , 2e 1 2  = el 2 e 2 1 =
e2 + (2, s - 2, 0), choosing m +n as small as possible we must have f = e12 + g or e2 1  +g
for some g  e H ', where H' denotes the affine semigroup in N 3 generated by the set

{(œi, 0(2, c(3)EJ; = 0 )\{e12 , e21} =
e21, i f  s= 3,

{e, , e2 }, if s = 4 .

Without restriction we may assume that f  = e 2 +g  for some g  E H'. T hen  w e can
show as in the proof of Table I, Case (2.1) that f+ e l  O H, f+  e2 O H .  Thus, (I\H) n
H 1 =0, as required.

(2 .3 )  b = e i 3  w i t h  (r, s)-(3 , 2), (4, 2).

One can check directly that e 1 2 +eE H, e 1 3 + e e I I  for all e J\f e i , e 2 , e 3 , e2 3 1.
Therefore, as in (2.2), it is easy to see that every element f  E I\H  has the form e 1 2  +
le i  + me 2 + ne 3 + pe 2 3  o r  e 1 3 +1e 1 +m e 2 +ne 3 + pe 2 3 , 1, in, n ,  p .0 ,  so that w e can
show  as in  the  proof of Table I, Case (2.1) tha t f +e ,O  H , f +e 2 O H, f+e 3 0 H.
Thus, (I\H) n H 1 =0, as required.

( 3 )  Situation a , b  e i , eu  for all i, j =1 ,...,  r, i  j .

(3 . 1) (a, b1={f1 ,f2}

It is  easily  seen  tha t f
1

+2e 1 =2e 1 2 +e 1 E  H, f 1 +2e 2  = (s - 4, 4, 0) + 2e 2 , e H
f , e  Fl (because f i  E  H  - 2 e ,  G(H) and 2f1 = el  +(s -  4, 4, 0)E H), but e 1 2 + f

1
 H .

Thus, by Lemma 3, k[H],„H  is not Buchsbaum.
(3 .2 )  Otherwise.
Let e e J  a rb itra ry . I f  e + a O H, e + a hasn 't a  different representation with

summands in J\{b} . But by Lemma 6 that happens only if  by a permutation of
the components of Nr  {a, b} = { f1, f2} . Thus, we must have e + a e H, and similarly,
e+ b E H .  It follows that (H\ {0}) + / H .  Note that H  =  I. Then, by Lemma 2
and Lemma 3, k[H]„,,, is a non-Cohen-Macaulay Buchsbaum ring.

Summarizing the above cases, we have proved Table II.
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R em ark . From the proof of Table 11 one can also see that if k[1-1],,,, is a non-
Cohen-Macaulay Buchsabum ring, then

r— I in Situation (1) and Situation (2),
i(k[H]„,H ) = 

j. 2(r —1) in Situation (3).
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