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Introduction

L et GIK be a  simply connected compact irreducible Riemannian symmetric
space and let AP(GIK) be the space of complex continuous p-forms on G IK . Then
it may be natural to ask : How does AP(GIK) decompose under th e  canonical
action of G?

For several low rank GIK, such as the spheres, the complex projective spaces,
the  quarternion projective spaces and the  complex quadrics, th e  answer to this
question have been given (see Gallot-Meyer [5], Ikeda-Taniguchi [8], Levy-Bruhl-
Laperrière [9], [10], Strese [11] and Tsukamoto [13]).

The purpose of this paper is to decompose Al(GIK) for all simply connected
compact irreducible Riemannian symmetric spaces G IK . The method used in this
paper is somewhat different from that used in the above papers.

Let A 1-(G) be the space of complex continuous 1-forms on G .  We can regard
Al(G) as a G-module under the action of G induced by left translations of G .  Then
in a natural way, Al(GIK) may be considered as a G-submodule of A l(G ). Therefore
to decompose A'(GIK), we have only to express Al(G) as a  sum o f irreducible G-
submodules and find out all the factors of this decomposition that are contained in
A i(G IK ). Then our problem is to determine the function that assigns to each ir-
reducible G-module the number of factors in AT(GIK) isomorphic to this G-module.

In §1, making use of the theorem of Peter-Weyl on the representative ring of G,
we reduce our problem to the following problem : For each irreducible represen-
tation p: G--*GL(VP), determine the multiplicity of the eigenvalue — l in  (VPOgc),
of the involutive automorphism 0 of (VPOgc), induced by the canonical involution
0 of gc associated to the  symmetric pair (G, K ) (see the definitions in  §1). This
problem can further be reduced to a  problem of the  complexified Lie algebra gc.
In §3 we define a map o f V P  ge onto gc that sends (VP isomorphically onto a
0-invariant subspace p of gc. Then the problem stated above can be reduced to
the problem of determination of the multiplicity of the eigenvalue — 1 of 0 in p.
In order to solve this problem, we first clarify the relation between this multiplicity
and the subset B(A) of non-zero roots of gc determined by the highest weight A  of p.
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We next consider some conditions imposed on B(A) and calculate the multiplicity by
assuming that one of these conditions is satisfied. Thus the only problem that is
left to us is to  exam ine the conditions. In  §4, w e treat tw o exam ples: [A III]
S U(p+q)1S (U(p)xU(q)); [G ] G2 ISU(2)x  SU(2) and show  tha t in  almost every
case one of those conditions is satisfied. W e treat in detail the only exceptional
case that occurs in the case [G].

After the examinations of all simply connected compact irreducible Riemannian
symmetric spaces GIK with G simple, we know that except the case [G ] one of the
conditions imposed on B(A) is satisfied. The details are omitted in this pape r. In
the forthcoming paper [14], we exhibit the results obtained by the above arguments.

Finally we refer to the works [3], [4] of Dzjadyk. In  [4], he obtained the
decompositions of A l(GIK) by using his branching law established in [3]. Although
there is left a question of whether his branching law is true o r  not his results are
the same as ours.

§ 1 .  The G-modules 4 '(G /K ) and Al (G, K )

1 .1 .  Let G be a compact connected semi-simple Lie group and g the Lie algebra
of G .  Let B denote the Killing form of. Naturally B can be extended to a complex
symmetric bilinear form of gc1 ); we also denote it by B .  W e define an A d(G)-
invariant hermitain inner product of gc by

(1.1) (X , Y)= —B(X, Y ) X , Ye w ;

where Y means the complex conjugate of Y w.r.t. g.
Let C(G) be the algebra of C-valued continuous functions on G and let AL(G)

be the vector space of complex continuous 1-forms on G .  Let 11 II°, be the maximal
norm in C(G), i.e.,

II f  II. = max I f (x)I fE C(G).

Making use of 11 we introduce a norm 11 11(g) into A '(G) by

0)( ,Y)11.0(1.2) 11(011(g) = max e A ' (G).
o*x. a c (X , X ) 1 /2

Here A '(G) is identified with C(G)0(gc)* (= Hom c (gc., C(G))) in  a  natural manner.
We now define canonical actions of G on C(G) and A l(G) by setting

(1.3) (Lgf )(x)=f(g - lx ) , (R e f )(x )=f (x g);

(1.4) (Egco)(X)-=- Le(a)(X )), (R e co)(X )=R e (co(A driX ));

where f  e C(G), we A qG), X  cgc, g, x e  G .  Then we can easily observe:

Lg • Rh= Rh. Lg ; L g • Rh = Rh. g, h E G.

1) In the following we mean by V  the complexification of a real vector space V.
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We note that by the action L or R (resp. L or 11) G acts continuously on each finite
dimensional invariant subspace o f  C(G) (resp. A l(G)) w.r.t. 110,  (resp. 11 11(cj- ) ).

In what follows we consider C(G) (resp. A l(G)) as a G-module under the action
L (resp. L).

Let o(G) (resp. o(A '(G))) be the G-submodule of C(G) (resp. /11(G)) composed of
all f e C(G) (resp. w e A l(G)) such that th e  G-orbit passing through f(resp. co) is
contained in a finite dimensional subspace. Clearly o(G) (resp. o(A l(G)) is invariant
under the action R (resp. r2).

Let p: G—*GL(VP) b e  a n  irreducible representation of G 2 ). W e denote by
o (G) (resp. o h„1(A1 (G)) the sum of G-submodules of o(G) (resp. o(A l(G)) equivalent
to  V P as G-m odules. Then we can easily see that o 1(G) (resp. o [ p ] (A ) (G ))) is a
G-submodule of o(G) (resp. o(A 1(G))) and  is  a lso  invariant under the  ac tion  R
(resp. R).

Let us denote by 9(G) the set of all equivalence classes of irreducible representa-
tions of G .  Then we have:

Proposition 1 . 1 .  ( 1 )  T h e  G-subm odule o(iP(G)) i s  d en se  in  A '(G) w,r.t.
Moreover:

(1.5) o (A '(G ) )= E o[ ] (A i(G)) (direct sum).
[p]eg(G)

( 2 )  For each [p] e 9(G) there ex ists a  linear isomorphism 45 p : VPO(VP)*®
(13c)*--o [p 3 (A l(G)) such that

(1.6) g • p ( V O  X * ) =  p (p(g)v® M X *)

(1.7) R g • p (V X *) = p (v ®  p*(g) ® Ad* g X * );

where g e G, v e V P ,  e (VP)* and X * e (qc)*.

Pro o f . The theorem of Peter-Weyl on o(G) tells us that o(G) is a dense subspace
of C(G) w.r.t. Lc, and

o ( G ) =  E  of/4G) (direct sum).
[ p ] E ( G )

Then if we note:

o(A '( G))--o(G)0(q9*, o r p i (A 1 (G))=o [ p l (G )0(ger,

then the assertion (1) follows immediately. To show the assertion (2), we set

(1.8) . p(vOMX*)= O p ( v 0 0 0  X *  v E V P ,  e (V P ) * , X * e (gP)*;

where O p  implies the map VPQ(VP)*—>C(G) defined by

.1) ( v 0 ) ( x ) =( p ( x - 1 )v) v E V P ,  E (VP)*, xe G.

It is known that O p  g ives a n  isomorphism between VPQ(V P)* a n d  ow (G ) and

2) Any representation p  of G is understood to be unitary, i.e., V  is a complex vector space with a
p(G)-invariant hermitian inner product. We always regard V '  as a G-module (resp. oc-module)
under the action g  I-->p(g) (resp. X  H>p(X )).
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0 ,(v O )= 0 ,(p (g )v O ), 1 2 9 .0 p (v (D )= O p (v0p*(g)0.

Thus the assertion (2) can be easily verified. Q. E. D.

1 .2 .  Let K be a closed subgroup of G such that the pair (G, K) is symmetric.
Let 0 be the canonical involution of g associated with (G, K ) .  Naturally 0 can be
extended to an involutive automorphism of the complexified Lie algebra ge. We also
denote it by O.

Let Al(GIK) be the vector space of complex continuous 1-forms on G 1K. We
define a canonical action of T: T9 of G on Al(GIK) by

(1.9) Tgik = (g 1// E (G IK ), g  E  G

and regard AAGIK) as a G-module under this action.
Let n: G—GIK be the canonical projection. Then it is clear that

(1.10) Lgir*ik = n*Tg ik e A '(G IK ), g e G.

Therefore we know that by the map

A l(G IK ) / e Al(G),

Ai(GIK) is mapped G-isomorphically into A l(G ).  In  this meaning A '(G IK ) may
be considered as a  G-submodule of A l(G ). Then it can be easily checked that an
element w e Al(G) belongs to A'(GIK) if and only if

(1.11) rzkw=a) fo r  a n y  k E K;

(1.12) co(x)=0 fo r  a n y  X e te ;

where t denotes the Lie algebra of K .  Let us define an involutive automorphism
0  of Al(G) by

(1.13) Ow(X)=w(OX) X e ge.

Then we clearly obtain

Eg •e=o•r g , R k • O =O • gE G ,k eK

and
6bp(VIV O X * ) .=  Œtp(VOK)0 * X * ) V e V P ,  e ( VP)*, X* e (ge)*.

Since te = {X e ge I OX = X}, (1.12) is equivalent to

(1.14) Ow= —w.

Let us denote by At(G, K) the G-submodule of /11(G) composed of all co e AJ(G)
satisfying (1.11) and set

(1 .15 ) o(A)-(G, K))=o(Al(G)) n K ), o (A l(G IK ))=o(A l(G )) n A'(GIK).

We further set for each [p] e 9(G),
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(1.16) o [ ](ill(G, K))-• o [ p ] (Al (G)) n A '(G, K), o [ p ] (Al (GI K ))= ofp3(A'(G)) n AqG I K)

Then by Proposition 1.1, we have

Proposition 1.2. T h e  G-submodule o(A "(G, K)) (resp. o(A l(GIK))) is  dense
in A 1 (G, K)(resp, A '(GIK)) Moreover:

(1.17) o (A '(G , K ))= E  orm (A l(G, K))
[p]ea(G)

(direct sum);

(1.18) o(A l(GIK))-- om(A1(GIK)) (direct sum).
tpiE9(a)

To obtain a more precise description of o(A l(G, K)) and o(A i(GIK)), we set
for each [p] n 9 (G)

(1.19) b([p])= dim, Hom G (VP, ow (Al(G, K))),

(1.20) a([p])= dime  HomG (VP, o[p1(A1(GIK))).

We call the function a: g(G ) [p]i-*a([p])  n Z  (resp. b : 9 (G ) [p ]i-b ([p ])E  Z) the
spectrum of A l(GIK) (resp. A l(G , K )) . As is easily seen the spectrum a (resp. b)
describes precisely how o(A .'(GIK)) (resp. o(Al(G, K )) decomposes into irreducible
G-submodules.

Let [p] n g ( G ) .  We define a hermitian inner product of VPOgc by

(1.21) (vOX, v'OX ')=(v , v ')(X , X ')  v, y' e V P, X , E ge .

We consider VPOgc (resp.(VPOge)*) as a G-module under the action g '-*p(g)0
A dg  (resp. g l-p * (g )0 A d * g ). W e also define an involutive automorphism 0
(resp. 0*) of VP(Dgc (resp. (VPOgc)*) by

(1.22) 0.(v 0X )=v 0B X v e VP , X e gc,

(1.23) 0*( DX *)=- 0 0*X*n  (VP)*, X * E (gc)*.

Then it can be easily observed that

0(k- w)=k 0(w), 0*(k • q)= k • 0*() w e  V P  O g c E  V P  gc r ,  k e K.

Let us denote by ( / P g g c )„  (resp. (VPOI:Jc)t) the subspace o f V POgc (resp.
(VPOnc)*) composed of all K-invariant vectors and denote by (VPOgc),-,  (resp.
(V POgc)t - ) the eigenspace in (V aOgc)„ (resp. (V POgc):) for the eigenvalue -1 of
6 (resp. 0*). W e remark that the semi-C-linear isomorphism o f  V POgc onto
(V POgc)* induced from the hermitian inner product of VP®gc defined above,
(V POg) K  ( r e s P . ( V P 0 g ) i )  is m apped onto (V ° 099t (resP. (V P 0 0 c)t). T h en
we have

Theorem 1.3. For each [p] E 9(G), the following equalities hold:

(1.24) b([p])= din c (VP Og c )K;

(1.25) a([P ]) =  dime  (VP Og c )i•
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P ro o f. By Proposition 1.1, we know that the map maps VPO(VP(Dge)t
(resp. V PO(VPC)gc)t - )  G-isomorphically onto o [ p i (ill(G, K ))  (resp. o [ p ] (A 1 (G/K))).
Hence we have:

HomG (VP, o[ p ] (A '(G , K )))(V P® gc)t ;

Hom G  (VP, oi p l (A '(GIK )))-(V P(Dge)t - .

Therefore we obtain the equalities (1.24) and (1.25). Q. E. D.

1.3. L et us set C= G x  G and set g  = { (g, g)Ig E G } . A s  is well known G
is expressed by the symmetric space C/K  where the involution is defined by (g, h)l-*
( h ,  g ) .  We can consider that in a sense (1.5) gives a  decomposition o f o(A l(GIK)).
In  this paragraph, however, a s  a n  application o f Theorem 1.3 we determine the
spectrum of A l(GIK) in the line of 1.2.

Let p: G -G L (V P) and a: G-4GL(V a) be two representations o f  G .  We define
a representation p a: G -G L (V P® V a) by

(p o-)(g, h)=-p(g)®o -(h) g ,  h e G.

It is known that the set ( C )  o f  equivalence classes of irreducible representations of
C is given by

g ( C ) =  lEplZ0- *] I M . [a ]  6  g (G)1 •

Corollary to Theorem 1.3. For each [p a * ]  e 9 (0 ) , it holds that

(1.26) a([pZ o-*])=dim c H om G ( V ' ,  VP ® q) .

P ro o f. Let ?I=  +  g be the Lie algebra of G .  Set

= {(X, - X) I X  e g} ,

then tit is the eigenspace for the eigenvalue -1 of the canonical involution 0: 'A a
(X , Y)1--4Y, X)e We regard Inc as a G-module under the action g • (X , -  X )=
(A dgX , -A dgX ); g  E G, X  E ge. Since file L-4 gc as G-modules, we have:

(f/Pg' * ®!1̀ )Tc̀._ HOMG (V a, V1 ®1-11 )2_-' HOMG ( V a, V POgc).

This completes the proof. Q. E. D.

§2 . The spectrum of A' (G! K)

2.1. Let G be a compact connected simple Lie group and let p: G-*GL(V P)
be an irreducible representation of G .  The aim of this paragraph is to decompose
the tensor product p® A d as a sum of irreducible representations of G .  As is easily
seen this decom position is obtained by determ ining t h e  num ber a([pZ o - *])
(=d im , Hom G  (17 6  , VP 0 0 )  for all [a] e g(G).

Let t be a maximal abelian subalgebra of g. We denote by A the set of non-zero
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roots3) of ge with respect to  tc and by 17= {a, ,..., a„} the set of simple roots with

respect to  a linear order in t. F o r  each a e A  we set a* — (Œ

2
Œ ) and  denote by

the reflection of t w .r.t. a, i.e., sOE(A)= A — a*)a e t).
Let Z(G) (resp. D(G)) b e  the set of integral forms (resp. dominant integral

fo rm s) . Let A , be the highest weight of [A d ].  For each pair {A, A l (A , A' e D(G))
we define a number a(A, A ') be setting

(2.1) x(A) • x(A0 ) =  E  a(A, A')x(A');
A'ED(G)

where for each AeZ(G), we mean by z(A) the formal character associated with A.
Let [p ], [a] e 2 (G ) and let A , A ' be  the highest weight o f [p], [a] respectively.
Then it can be easily seen that a ( [ P N a l ) = a ( A ,  A') 4 ) . Hence the decomposition
of p0Ad is given by the following

Theorem 2.1. The number a(A, A ') is given as follows:
(1) The case A ' =A : a(A, A)=#fa i e lli(A , a n >  .
(2) The case A ' = A+a for some a e A:

0  if  the pair is contained in the following list (* );
a(A, A + a)=

1 otherwise.

(3) The case A ' OA , A +Œ for any a E A : a(A, A')=0.

ge
a A

(1°) i± ( ak)
k = i (A , an =0[B a ] 0  0 0 0

., .2 an-, ..
(1._i_n — 1)

n-1

(2°) ± { cci + 2 ( k  ; It Œ k )+  an} ar (A , ) =0[C A  0 - 0 . . . - 0 < 0
I a2 an-1 an

( 1 _ i n - 1 )
0(2 + 0(3)

{ ±(i) ± (al + az + ct3) (A , at) =0

± (a l + 2a2 + 3a3 + a4 )
(3 ° ) [F 4 ] 0 - 0 0 - 0

II 22 23 24 ± (Œ2 ± 2013 +a,)
(ii) ± (061 + a2 + 2a3 + 04) (A , at.) =0

+(a l +2a 2 +2a 3 +a 4 )

(4°)
(i) 2a1 +a 2 , — (011 + c(2) (A , ar)=0

0 ‹[G2] 0
2I2 2 (ii) ai +a 2 , — (2a1 + a2 ) (A , 04)=1

3 )  By a root we mean a vector 'let such that the subspace defined by
(gc)p= {XEg° I [H, X ] =- 27r — 1(2, H)X for any Het}

is not equal to { 0 } .  Similarly we mean by a weight of a representation p :  G— *GL( V P) (simply
(Continued on next page)
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Before proceeding to the proof we show

Proposition 2 .2 . L et {ig, ai } (fl e 4, a1 e17) be a p air satisfy ing (fl, ott) . —2.
Then {fl, a}  coincides with one of the following:

gC fi ai (/3, at)

(I) —ai(l i _n) ai —2

n -1

00 (1°)[B ,,] E cek (l i _n— 0
k=i

n -1

Œn —2

—  (  E ock+ 2 a ,1 ) ( 1 - i_ n - 1 )
k=i

(XII - 2

n -1

(2°)[C n ] 2( E ock ) +a„(1._i n —1)
k= 1+ 1

n -  I

ai —2

— {2( E ak ) + a „ } (1 . in - 1 . )
k= i

ai —2

(3°) [F4] 1Œ2

Or 1 1 +1 2
al + 20(2  + 2a3 + 2a4

a3 —2

— (a2 + 20(3)
(i) - —  (a l + a2 + 2a3 ){ a3 —2

— (a t  + 2 2  + 4 3  + 2a4 )

1 2 + 2a3

(ii) + a l  + a2  + 2/3/
a i + 2a2 + 2a3

a4 —2

/ — (1 2 + 2a3 + 214)
(fi) — (a t  + a2 + 2a3 + 2 0(4) a4 —2

(al + 20(2 + 2a3 + 2 1 4)

(4°) [G2 ] a2, (3a1 + a2 ) a, —3

(Continued)

a weight of V  a vector A G t  such that the subspace defined by
(V )2 -= fr E VP I P(H)V=27r11 - 1(2, H )  y  for any H e t }

is not equal to {0 } .

4 )  This equality follows from
x[p(s)A43=X[p3•XE4,o— E a(CpaT*Dx[,3;

C E ( G )

where for each He 3 (G ) , y i , 3 denotes the character of [7].

(t)
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P roo f. We first note that if /3= -a ) for some °t i e 17, then it holds (fi, cep)-_ç_. - 2
and (/3, 0 for any a i  e /I such that ai 0oc i .

Now let us seek for all pairs {fi, /M e  d , a i e /7) such that (fl, ocr)._ -2 , f l
-  cc) . We remark that under this assumption we have )3+ 2a, e d and fi +2a ) 0
a l . Thus we first seek for all pairs {y, ai l (y e A, oci e II) such that y - 2 a i e y
If gc is not of the type [E i ] (1=6, 7 or 8), we can easily find out all such pairs. We
have:

(1°) [13„]

(2 .)  [C„]

n-1
E ock +2(x„, cc,,} (1 n - 1),
k=i

n-1
{ - (  E ock), /„} (I

k=i

n-1
{2( E + a„, ai l (1 . _ n - 1),

k=i

n-1
{  -1 2 (  E  ak ) + a„1, ai }(1 -1 ) .

k=i+1

(3°) [F4 ]  (i) {012 +2/ 3 , cx3 }, {a, +a, + 2/3 , cx3 }, {cc, +2a, +4/ 3 +2/ 4 , cx3 } ,

{ - 11 23 /3}, { (al + 0(2), /3}, { - (OE, +2/ 2 +2/ 3 +2/ 4 ), /3} •

( i i)  {a, +2/ 3 +2/ 4 , / 4 }, {OE, + /2  +2/ 3 +2/4, /4},

{a, +2/ 2 +2/ 3 +2/ 4 , a 4 }, { -(cx, +2/ 3 ), a 4 },

{ - (cc1 + /2 +2/3), /4}, {-(cx, +2/ 2 +2/ 3 ), / 4 }.

(4°) [G 2] (i) { 2 /1+ 0(2, /IL { - (/1+ /2), oti } •

(ii) { 3 /1+ 0(2, /1 }, { - /2, ai}.
Setting fi = y -2a i for the above pairs, we have (fi, a r ) =  - 2  except the case

(4°). We have (4 0) (i) (/3 , ar)=  -3 , (ii) (fl, ccr)= - 1 .
Finally we treat the case where gc is of the type [Ed (i = 6, 7 or 8). We show

directly: If (13, cct):_. -2, then )3= -ce ) .
Since (/3, /3)= (a) , ai) ,  it holds that (a ) , fi*)=()3, - 2 .  Hence a ) +2/3e d.

Writing fi =  
1 

mi a j ,  we have a) +2 )3= (2m i  +5 ) i )oci . Then it can be checked
j=   

that such a  root of gc  is lim ited to +a,. Hence we have fi= - « ) ,  showing our
assertion.

Thus we have obtained all the pairs satisfying our assumption. Q.E.D.

Proof of  Theorem 2.1. Let us set

(2 .2 )  d o (A )= {cced lA d-ae D (G )} , i (A )= {a e 41 A+ otÉ0(G), x (A - 01)001 .

Then the left hand side of (2.1) is computed as follows:

(2.3) X(A) • AA o)= n (A) +  E x(A +c)+ E z(A+/3)•
aezlo(A) fied i(A )

We consider the third term of the right hand side of (2.3). Let fie d , ( A ) .  Since
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A + 13 D(G), there is a simple root a f such that (A +fl, cc') <O . W e first suppose
that (A + fl, a ')= — 1. Then we have (A + f l + 6, 4)=0 where 6= -L ( E a). Hence2  a c z ,

a> 0
we obtain x(A+ )3)=0, contradicting our assumption fi e A l (A ) . Therefore we have
(A + fl, at) - . — 2. Since (A, Œ t):0 , it follow s that (13, — 2. T hus the pair
{/3, a,} coincides with one of the pairs listed in ( ) of Proposition 2 .2 .  Consequently
we have (A , a')=0, (A +/3, at)= —2 in the cases (I), (II) (1°)— (3°) and have (4°)
(i) (A , 4 )= 0 , (A +f3, a n =  —3 o r  (ii) (A , aI)= 1, (A + [3, at)= — 2. N o w  le t us
put a = sOE(A + 13 + (5)— (A  + 6). Then by a direct calculation, we have Œ=O  in the
case (I) and obtain the list (*) that exhibits all the pairs {A, a} corresponding to the
cases (II) (1°)—(4°). Thus we can see that a  is a root not contained in the list (,tr )
of Proposition 2 .2 . This implies a zt i (A ) . On the other hand, since A +a+6=
sn ,(A + fi + 6), w e  have  x(A + a)= — x(A + fl) O. H e n c e  w e  k n o w  A + a e D(G).
Therefore if we set n 0  =#{a i l(A , c?)> O} and denote by 4 (.4) the subset of 4 0 (A)
composed of all a  such that the pair (A , a}  is not contained in the list (*), we have

z(A)•x(A o )=n o x ( A ) + E  z(A+ a),
ate AP(A)

proving the theorem. Q. E. D.

2 .2 .  Let G1K be a simply connected compact irreducible Riemannian symmetric
space with G  sim ple . In this paragraph we determine the spectrum o f  A 1(G, K).

Let g(G, K ) be the set of equivalence classes of spherical representations for
the symmetric pair (G, K ) .  Then we have

Propotion 2.3. Let V " ®  =U  1 + U r b e  a  G-irreducible decomposition
of V POge. Set p i =(pC)Ad) i u , f o r i Then:

(2.4) b([33])-- StIpi I [Pi] e g(G, K)}

P ro o f . Set (Ui)K  = U n (vP®gc)K for i (1 i Then our assertion follows
from the following facts: (VP 099K—(U OK + .. • +( U K  (direct sum), dim e  (U i)K

and [Pi] e 2(G, K)<=>dime  (Ui)K  = 1. Q. E. D.

Let g = f + in be the canonical decomposition of g obtained by O. Let t  be a
maximal abelian subalgebra o f  g  containing a  maximal abelian subspace of nt.
Set a = t n nt and Li = t  n f. Then we have

t = a +b (orthogonal direct sum).

Note that t (and hence the set A) is invariant by O. In the following we fix a  system
of vectors {X Œ e (gc)la e A} of gc satisfying

OX „=X ,; [X„, X_] =c*.

Let us define a linear order " < " in t such that

H>O,HN b O H < 0  H  e t.

Let 11= (c ,..., a n }  be the set of simple roots with respect to  th is  o rder. W e set
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/= {i I Œ b} and denote by p the Satake involution of I.
Let D(G, K) be the set of all the highest weights of spherical representations

for the pair (G, K ) .  Under our assumption that GIK is simply connected, the set
D(G, K) is identical with the additive semi-group generated by the following M i 's
(i E I , p(i)> i):

(2.5) Mi=

2A f

il i

A i + Ap ( i )

p(i)= i,

p (i)= i,

p(i)>  i.

(ai , 17 n b)= {0} ;

(ai , H n b) {0} ;

Here we mean by {A 1 ,..., A n } the set of fundamental weights, i.e.,

(A i , ce1)=6 i i j

Let A*(K) denote the subset of A  composed of all a e A  such that for any ai e
f i n b, a—ai is not a  root of gc. It is easily checked that A*(K) is invariant by O.

Then we obtain the following

Proposition 2.4. Let p: G -- GL(VP) be an irreducible representation of  G with
A  as its highest weight and let v, be a non-zero highest weight vector of V .  Let
M E D (G , K ). A ssume that there ex ists an  irreducible G-submodule U o f  VPOge
with M  as its highest w eight. T hen it holds either M =A  or M = A + ao  f o r some
ao e 4*(K ) and U contains, as its highest weight vector, a non-zero UM  w ritten in
the following form:

(1) The case M =A :

um=vA 0H+ E V m _ „ 0 X ,c ;
aed
a>0

where vm _„e(VP) m _„; H E tc , H00, (H, an= 0 for any  ai e H such that (M, an = O.
(2) The case M = A + ao  f or some 1 0  E A*(K):

um =vA ox „0 +  ui cmi + E vm „o x oc ;i=1 .A
a> a

where vi e(VP)m ; vm  _„ E (V P), _ct.

P ro o f . Let UM  be a non-zero highest weight vector of U .  Since um  E (VP)M Ø
tc + E (vom _c,009„, um  can be written in the form

ac z1

um = ± vi oA i + E um _Œox a ;
i=1 aed

where vi e (VP)m , vm _„ e(VP)m _OE. Now the following two cases are possible:
(1) It holds vm _Œ= 0 for any a e 4, a <0 and vi 0 0 for some i (1 i  n ) .
(2) Otherwise.
The case (1). Let /3 be any positive root. Then we have

0= X fl(um ) =  ±  (X  f i vi)0 A i + ...;
i=i
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and hence X p vi = 0 n ).  This means vi e (VP)A n ) ,  showing M= A.

Let us take H etc such that v()H = vi ®A i , then we obtain
i= 1

um =vA 01-1+ v 0x,i ; H O .
a>0

We now suppose (M, a7)= 0 .  Since M—Œ is not a weight of U, we have

0 = X _OE (um )-- 27r.\/ — l(H, ai)vA O X _ +  • • • ;

hence (H, 01)=0.
The case (2). Let a, e 4  be  the minimum root such that VM _ O r1O. T h e n  for

each positive root fi, we have

0 = X p (um )= • • • +  (Xp vm  _OE0)10 X„. + • .

Hence X p vm _ c c o = 0. This means vm _„. e (VP)A , proving M  A +a o . Multiplying
a complex number if necessary, we obtain

UM = ±  v,0A,+ E vm _a ox,c +vA 0x,c o .1=1 (ICA

Finally we show ao  e A *(K ). Let ai e /7 n b. S in c e  (M, =0, M — Œ  is not a
weight of U (Note that M e D(G, K)c a). T h en  w e  have

0 = X „S u /0 = vA  [ X XOE.] + • • • .

Hence we know that [X _ Œ,, X OE.]= O. This means that ao  —ai is not a  ro o t. There-
fore ao  e 21*(K). Q. E. D.

Lemma 2 .5 .  L et a e A * (K ). Then there exists a unique M(a) e D(G, K) such
that for any Me D(G, K) the following two conditions are equivalent:

(1) —a+MeD(G).

(2) M—M(a)ED(G, K).

Pro o f . By the definition of 4*(K), we have (a, a n 0  for any Œ. e  n b. H e n c e
if we write

—a k?Ai,

we have k? > 0 for any i  such that

max {0, —

c e11flb.F o r  each ie I ,  p(i) . i, let us set

4 1 p(i)=i, (a i , H n = {0} ;

(2.6) max {0, — p(i)=i, (a i , H nb) 0 {0} ;

max{0, — k?, —14( ) } p(i)> 1,

and put M(a)= E kl M i . Then it is easy to see that M(a) possesses the property
ie l
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stated in the lem m a. The uniqueness is trivial. Q. E. D.

Lemma 2.6. A ny root listed in ( * )  o f  Theorem 2.1 is not contained in  A*(K)

except th e  ca se  where GIK is on e  o f the following:

[BI, BII] SO(2p+1)1S0(p)x SO(p+1):

0 0 0 > 0
Œ2 an-1 an

[ C I ]  Sp(n )IU (n ): 0
al

0 - 0 <
Œ2Œ n -

0.„

[ F l ]  F 4 ISp(3)• SU(2): 0 - 0 0 - 0
oci «2 .3 .4

[ G ]  G2 ISU (2 )x  SU (2 ): 0 ‹ 0
Œ2

P ro o f . It sufficies to consider the case where GIK is  of type [B], [C ], [F ]
or [ G ] .  We note that in case the Satake diagram of GIK does not contain any
black vertex (i.e., GIK coincides with one of the above), it holds that A*(K)= 4.
Thus we have only to consider the following three cases:

[BI, BII] SO(p+q)1S0(p)x SO(q) (1 p q —  3, p+q: odd);

[CII] Sp(p+q)1Sp(p)x Sp(q)

[F il]  F 4 ISpin(9).

We assert that for each a e A listed in (*) there is a simple root a, er/nb such that

[BI, BII] SO(p+q)1S0(p)x SO(q) p q — 3, p +q : odd):

0 0  •
Œ j Œp ap + 1

We have: l i n b = {a,±  ,.•  GO.

• •
Œ,,-1 an

n- 1 n-1
Hence: a= E  + oc„ E  ; e —1);

k=i k=i

n-1
Œ

=E  Œ k + Œ , )
k=i

[C II] Sp(p+q)1Sp(p)x

n-1
—( E oc k +200eA (l 1).

(p < q )

( P = q )

k=1

Sp(q) (1 5_ p q):

• • < •00 - 0
a t  - a2 ce3 a2p a2p+ IŒ p +  q - 1 M p + q

• 0 • • 0
at Ee2 a3 Œ 2 p _ 1 C e 2 p

2 19 2 3,  • •, Ce2p — T1, Œ + j ,  CL2p+21. •  • 3  cep+,} (p < q ) ;
We have: 17 n b

{

{ a l ,  0 ( 3 , • • • 9  CC2p-1}
( p =  q ) .
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n-1 n-1
Hence : a =a i + 2 ( E  a k ) + a„ 2 (  E  ak ) + a„ e

k=i+1 k=i+1
(i : odd),

n-1
 a i +a i + , + 2 ( E  a k ) +a n e d ( i: even);

k=i+2

n - 1n —  1
a= — foci + 2 ( E  a k ) + a„} Œi —  {2 ( E a k ) +a„} e (i : odd),

k=i+1 k=i

n— 1
{a i _ + a i + 2( E a k ) + a„} E  (1: even).

k=i

Thus in the above cases our assertion is shown to be true. Similarly we can obtain
th e  same result in  th e  third case [F il]  F 4 /Spin(9): •— • >1111-- 0 .  The

ce2 a 3 a4

proof is left to the reader. Q.E.D.

We now prove

Theorem 2.7. L et ote 4*(K ). T hen there ex ists a  u n iq u e  A (Œ)ED(G) such
that for any  A  e D(G) the following two con d it io n s  a r e  equivalent:

(1) A  +a e D(G, K) and a(A, A +Œ)=1.

(2) A — A(a) E D(G, K).

Precisely A(a) is given as follows:

GI K a A(a)

(I)

(1°) [B I, BH]
"1(p =q —  1 =,,,I ±  ( ±  ak)( 1i n —  I )

— k=i

— a+M (a)+2A  

(2°) [CI]
n-1

±{ai+2( E ak)+an}
k=i+1

(1 - i n —1)
— a+M(a)+2A 1

(3°) [FI] ± (a2 + a3)
(i) { ± (al + 0(2+ 0(3)

+(at + 2a2 +3a 3 + 204)
— a+ M (a)+2A 3

± (062 + 2a3 + a4)
(ii) { ± (a i + a2 + 2 3 + a4 )

± (al + 2a 2 + 2a3 + a4)
— a + M(a) + 2 A 4

(4°) [G] al + a2, — (2a i +22) —oc+M(a)+2A1

(II) otherwise — a + M(a)

P ro o f . By Lemma 2.6, we know that the following two cases are possible:
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(i) a is not contained in (*) of Theorem 2.1;

(ii) GIK coincides with one of the symmetric spaces listed in Lemma 2.6 and
Œ is contained in (*) of Theorem 2.1.

The case (i). Let us set A(a)= — a + 114(a). Then we have:

A — A(a)=(A+a)—M(a).

By the above equality and by Lemma 2.5, we know that the two conditions A + a e
D(G, K) and A— A (a)e D(G, K) are equivalent. This implies the equivalence of
(1) and (2). (Note that a(A , A +a)= 1 follows immediately from A  +a e D(G, K).)

The case (ii). We first assume (1). By Lemma 2.5, we know that M'= A —
( —a+ M (a)) D (G , K ). By a direct calculation, we have:

(1 0 )  [B I, BI1] (p= q —  1)(—  + M(a), c)=0; (2 ')  [C I] (— a + M(a), a7)=0;
(3 0 )  [FI] (i) (— a+ M(a), aT)= 0, (ii) ( —a + M (a), 4 )= 0 ;

(4°) [G ] (i) (— a+ M(a), an= 1, (ii) ( —a + M(a), an = 1.

Hence by Theorem 2.1, we know that M ' satisfy the following:

(1°) (M ', a )> 0 ; (2°) (M', c7)> O;

(3°) (i) (M ', a'3')>O , (ii) (M ', a:)>O ; (4°) (ii) (M ', an> O.

In the case (4°) (i), M ' may be allowed to be any element of D(G, K ). Therefore
if we define A(a) as the assertion of this theorem, we have A— A(a) e D (G, K ). (Note
that since the Satake diagram of GIK does not contain any black vertex nor any
arrow, the set D(G, K) is given by

D(G, K)-= 2kiA ilkie Z,

Conversely if A— A(a)E D(G, K), then it can be easily checked that A + a e D(G, K)
and a(A , A +a ) =1 .  The uniqueness of A(a) is straightforward. Q. E. D.

Let A e D(G). We set

{i11 -6 i<n , (A , ap)> o} i f  A e D(G, K),
(2 .7 )  I(A )=

0 i f  A ÉO(G, K);

(2.8) B(A)--= {a e A*(K)1 A— A(a) e D(G, 10}

The following theorem is an immediate consequence of Theorem 2.1, Proposition
2.3 and the above theorem.

Theorem 2.8. L et [p] e 2(G ) and let A e D(G) be the highest weight o f  [p].
Then the following equality holds:

(2.9) b([p])=#I(A)+##B(A).
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§ 3. The spectrum of Al (GI K)

In this section we investigate the spectrum of A '(G IK ). The notations used
here are the same as in 2.2.

3 . 1 .  Let p: G—>GL(VP) be an irreducible representation of G with A  as its
highest weight and let VA  be a highest weight vector such that (vA , vA ) = 1 .  We define
a C-linear map P: 1/PC)ge--*gc by

(3.1) T(vO X)=(v, vA )x Va V P , X e g c .

It is clear that

(3.2)

Set p  T ((V P 0 9 `)K )•  Since (V POgc), is invariant by 0, p  is  invariant by O.
For simplicity in the following we set V = 1 " ,  1=1(A ), B = B(A ) and C = .4\B.

Lemma 3.1. There exists a basis {YOE, Z i l,ceefl,iel of 1) written in the form:

(3.3) YOE= XOE +  E g X p +H ; ;
PECp<c,

(3.4) Zi =A i +  E " 13 ;
ftec
fl <0

w here g, q f C  and 1-1„ e tc such that (H a , 01)=0 f o r any i c i .

Pro o f . Let a E B  and let U  be the irreducible G-submodule of .170 s c  with
M ( = A + a) as its highest weight and um  b e  the non-zero highest weight vector
given in Proposition 2.4. We set

= umdk,

where dk denotes a Haar measure of K .  Then we have u?, e (V® gc)K  and (4 ,  um )0
O. Let Q be the set of weights of U .  Then we can write

u2=c ; um +  E u  • c  e C  u  e ( U )g , p

Since (un , um ) = 0 for any p  (<M ), it follows that c c,*0 . H ence  w e  have

T(u2)= c c,X,c +  E c!x 19 +1-4; c'7,e C, H; e tc•
P E A

(Note that 11; =0 in case a <O.)
Assume now  the case A  e D(G, K ). Then there exist linearly independent

irreducible G-submodules U i ( i  I )  whose highest weight vectors u i (i e l )  are of the
form:

u i— v A 0A i+ E v4 _OE0x,c ; vA __„e VA_ Œ .
aed
a>0

itef2
p<M
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Let us set

k • u i dk,

then by the same argument as above we have

W(u?)=d iA i + E clfX p ; d, (00), d E C.
fle<40

Thus if we take linear combinations o f T ( u ) 's  (a E B ) and  T (u?)'s (i E/)
appropriately, we obtain a basis {YOE, z i } of p  of the form  stated in the lemma.

O. E. D.

By Lemma 3.1, it is known that the map V' gives a linear isomorphism between
(VOge)K  and  p . We set

P-=IYEP 1 017= - 1 1 .

From (3.2) and Theorem 1.3, it follows the following

Lemma 3.2. T he map VI gives a  linear isomorphism between (VOgc)ii and
p - . Therefore:

(3.5) a(DD = dime P

We now set: / 1= lie/ IP (0= il, M O O ;

B0 = faeB lO a= a1,B 1 ={aEBIOocOa,6aeB},

B2 ={oceBlOold0} .

It is easily seen that pI 2 =I 2  and 0B 1 =B 1 .
Let us denote by po  the complex subspace of p generated by the vectors {YOE}ŒcB2

stated in Lemma 3.1 and set

(3.6) ao(EPD=dimc (Po 11

Proposition 3.3. The subspace po  is invariant by 0 and the following equality
holds:

(3.7) a([P])=a0(b9])+#/1 + $42+ #13 1.

P roo f. Applying 6 on both sides of (3.3) and (3.4), we easily have

(3.8) YOE = Yoa + E  P:P Yfl (a E Bo or BO;
fieg 2c,

(3.9) 017.=„E  W 1,3 ( e B 2 );
PeB 2
Ofl <a

(3.10)O Z ,= E  eft Yf i( i e  I ).
4%
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(Here we note 0/11 = —A ( 1 ) .) Thus we can see that P o  is invariant by O. Let us set:

EOE= 2 YOE +  E  pV7 Yf t( a  e B o );
'94 4 2.

FI=YŒ -F(Ye.+ E  P1,3) («EB I , Œ<O);
flo  iej !za

P1 =2Z 1 — g?flyi (i e 10;

Qt =Z i ± ( - 4 ( i ) +  E  efl Y 0 ) (i e I 2 , p(i)> i).
fleg 2o

Then we have: OEOE=E Œ,O f l = + F ,  OPi = —Pi and 0Qt = + Q t .  Since the vectors
EŒ (c e B0 ), 11 (ace B i , < 0), YOE (a e B2 ), P1 (i e I i ) and Qt (i E l y , p(i)>i) form a
basis of p, the equality (3.7) can be easily observed. Q. E. D.

3 .2 .  In what follows we calculate the number ao ([p]) under some conditions.
As is easily seen, ao ([p]) is closely related to the set B 2 .  We suppose that the set
B2  is composed of f l i (1 m )  and y,(1_s:S .n) satisfying

fi i >•••>fi„,>0>y„>•••>y i .

Proposition 3 .4 .  A ssume that one of  the follow ing conditions (1) and (2 ) is
satisfied. T hen  it ho lds ao ([p])=n.

(1) m=n, 13 1 >0y i >/32 >Oy2 >••• > flŒ>Oy„.

(2) (i) m= n + 1, f3 i > Oh> 132 > Oy 2 > • • > 13„> Oy„>,R+1;

O D  A, +  =  f ln+15  (A , MO= 0.
Pro o f . We first note the following fact:

13, y e B 2 ,  f3>y > 013 <0y.

Therefore we know by (3.9) that there exists a non-zero complex number e , such

that BYy , = E l  Yi i i . Hence we have 0YR = YY .  T h i s  together with (3.9) means
e l Y 1

that both the terms Y Y y , vanish in 0 Yfl, ( 2  i m) and 017
y ,  ( 2  s n). Then

we also know by (3.9) that there exist a non-zero complex number e2  such that

OY7 2 =e 2 y 3 2 . Hence we have BY — .A
 1  Y T h is  m e a n s  th a t b o th  th e  terms-  82  Y 2

YflOE and Y y 2  vanish in OYf l i  (3 m) and 0Yy s ( 3  s  n ) .  Applying the same argu-
ment successively we know that there exist non-zero complex numbers e, (1 i  n )
(and s (8 2  =1) in the case (2)) such that

10 Yy , = si Yf i i , Oyq i = Yy , (1 i n ) ;

( " f in +  1 =EYfin+1) •

Setting R t =Y ,+E i Yf l i  f o r  i we have ORt = + R t .  Thus the proof of
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the proposition is completed by

Lemma 3 .5 .  A ssume that an element 13e B 2  satisfies the following:

(i) /3> 0, CT= —13 and (A , 13*)=0;

(ii) Yfi =  Yf i( e 2 •--= 1) .

Then it holds 8=1.

P ro o f . T ake wp  e(VOW ),  s u c h  t h a t  Vf(wp )=  Y .  S in c e  X p  + X_ p  e tc, it
follows that

—(Xfi + X_p )iv fl =  A O [X p + X_ p , Yp] + • • •.

Hence we have { X + Yp] =0. (Note that since (A , 13*)=0, A— f i  is  n o t  a
weight of V.) On the other hand from the assumption 017

p = eYf i , it follows

 =  X a  • • •  +6X—fi ••••

Putting this into the above equality, we have

s[Xp , X_ p ] + [X_ p , X,3] =0.

Therefore we have s=1. Q. E. D.

Proposition 3 .6 .  A ssume that the set By is composed of  two positive roots 131

an d  132  satis f y ing  Bfii = — fi ) an d  (A , )37 )=0  (1=1 ,2 ). Then follows 0 Y 13) =-Yp i

(i =1, 2). Therefore a0 ([p ])=0 .

P ro o f . If we express

Yf l i = 4 + •••+ g X _ 132 +•••+pX_ f l ,+•••,

Xf i , +•••+sX_ 132 +•••+rX_ f l ,+•••,

we have

017fl1=pYpt+gYfl2, 0Y132 = rY 0 1 +sY p 2 .

Take wp i , Wp 2 E (I/ 0 0 K  such that W(wp i ) = P (w 2 )= Y 2 . Applying a  similar
argument as in Lemma 3.5 to the relations

(X X _ p i )wp , = (X 2 + X_ 2 )wp 2 =0,

we obtain p =  s= 1 . From  this it follow s g=r =0 , implying BYpi = Yp , (i=  1, 2).
Q. E. D.

Remark. Let p: G.-+GL(VP) be an irreducible representation o f G w ith A  as
its highest weight. We put

a (A )=  fi e 1(A)1 p(i)> + #frx e B(A)I Oa cc, a <0} .

Then it can be easily seen that if one of the assumptions (1) and (2) of Proposition 3.4
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satisfied, then th e  equality a([p])= a(A ) holds. Sim ilarly if  th e  assumption of
Proposition 3.6 is satisfied, the equality also holds. After the examinations o f  all
simply connected compact irreducible Riemannian symmetric spaces G1K with G
simple, we know that one of the assumptions (1) and (2) of Proposition 3.4 is satisfied
except the following two cases: (1 0 )  [DI] SO(2p)1S0(p)x SO(p) (p 3): A = A p■ . 2 ±

M O  (M0 e D(G, K), ( M 0 , _ 1)=(M 0 , ( 1 ) =0 ) ; (2 ° ) [G ] G 2 /SU(2) x SU(2): A =
A , .  In the case (1°) we can see that the assumption of Proposition 3.6 is satisfied.
The details are ommited here. W e treat the case (2°) in detail in the next section and
show that the equality a([p])= a(A ) also holds in this c a s e . Thus we have:

Theorem 3 .7 .  L et [p] E 9(G ) and let A e D(G) be the highest weight of  [p].
Then the following equality holds:

(3.11) a([p])= a(A ).

In the forthcoming paper [14] we will exhibit the lists of the spectra of 1-forms
o n  all simply connected compact irreducible Riemannian symmetric spaces G1K
with G simple.

§ 4. Examples

In this section we calculate the spectra of Ai(G1K) for [A III] SU(p+q)1S(U(p)
x U(q)) p) and [G ] G2 1SU(2) x  SU (2 ). The notations used here are the same
as in the previous sections.

4 .1 .  Example 1. [A il!] SU(p+q)1S(U(p) x U(q))(q

Here we treat the cases q._ ..p +2  in detail. (As to  the cases q=p, p+ 1, we only
exhibit the results.)

[A III] SU(p+q)1S(U(p)x U(q)) (q p+ 2)

OEL Gt2 Œp Œ p + 1

o o o •
T T 1
o o o •

Mp-1,1-2 lq a g -,

q-1

Let us set A i=A p +q _ i fi =  E  a i and A 0 =
i=p+1

i= 1

(c) LI*(K): (1°)
±

k i  
67tk1=!i;),

k=i =

A0=
0

. Then we have:

(a) Bai = — , 064= — a i( 1 p — 1);

Oatp=  (S e p + 13), Ot,= — (ap + 13) .

(b) D(G, K)={ ki(Ai+ A 1)1 k1 e Z, k i > 0, (1 (• -  / 3)1
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0 4; (=

(2°) E k +  E  (Œk + ik)+ ig (=nu),k=i k= j+1

389

E 61k + Ef  (ak + ak) + fi ( = nu) ,k=i k=j+I

thj ( = ° I ) i j  (=  — 1 0 (1.5-

(3°)
 k  

Œk ( = (=

OC (=  —(; +fl)), O (= —(Ci+fl)) (1 p);

(4°) E  (ak + 60 +13 (= 13;), O u i  (=

(5°)— /'3 .

Computing A(a) for each cx e 4*(K) we obtain the following list of A E D(G)
such that B(A)04):

A B(A)

(1) m o (i — 13.1(1 E  0 )

(11)
 

Ai _ 1 + A i +  i + Ai  + 1 + m 0 Kip

A i-i+  Ai + Aj +  + 1 + Mo fhp 0 0i;
(I

(III) A i _ i + A I + 71p + Ap+ i  + Mo OCi

21' i _  -I- Ai + Ap +A g _ i +M o K i

(1 - j-1))

(IV) A p + 1 + Aq -i+M o —13

Here we mean by M o an arbitrary element of D(G, K) and set

iel(M 0 )}, 1c;={1} U ti+1 I i e r o , i Opl.

Thus we can easily observe B2= 40 except the case (I). We now assert that one of
the assumptions (1) and (2) or Proposition 3.4 is satisfied in the case (I). We obtain
by the definitions of B2, lo and I :

B2= Oil f\ I 0 } U l i e / A i l  •

Let us set
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PoV o =
10\16' = { j1 <i2... <i„}

Then we have:
(1) If p e /0 , then we have m =n a n d  <j i <i 2 < j 2 <... < i„<j„.
(2) I f  pcV ,) ,  then  w e have m =n +1 a n d  <.ii < i2 <i2 <  < i <j, <i

+ 1 .
Noting the fact i <j1 3 i > Ai , we know that our assertion has been already shown
except the equality (M o , /3tn+1 )= 0 in the case (2). T o show (M o , fitn+ ,) ,-- 0 we set
io =max /0 . Since p /0 , we have i 0 <p - 1 a n d  hence io + 1 = max (1.-4A/0) =i„ + ,.
This means (M o , ap)=(M o , = 0 for a ll i Since Mo eD(G, K)
a, we have (M o , Œ )= 0  for all j (p +1 — 1 ) .  Therefore we have (M 0 , /32, , ) =
0, proving our assertion. Thus we know that the equality (3.11) holds (see Remark
in §3).

In the same manner as above we can show that the equality also holds in the
case q=p or p + l .  Consequently we obtain the following tables:

(1) [A IM ] SU(p + q)IS(U(p)x U(q))(q> p +  2)

A a(A )

(I) Mo #I(M0)

(II)

A 1_1 +;i i +il i +A ; + 1 +M 0

(1 . i j p -1 )
A i-1+A i+A i+ 71i+1+M0

(1_.. i. j . p —1)

2

2

(III)

A i _ i + ii i + 71,- F Ap+i+ Mo
(1 .. i.__p)

71i-1+ Ai+ /1,-F î l p - F i+  Mo
(1 .. i p)

1

(IV) Ap+1+ A q _ i + Mo 0

(2) [A M ] SU(2p+1)IS(U(p)x U(p +1))
a p

r0

0 - 0 ....... 0
a 2 p Œ 2 p - p + I

A a(A )

(I) Mo ItI(M0)

a l a2

0 - 0
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(II)

A i _ i - F A i + 71i + A i + , +M o

(1 . i j _ p -1 )
A i-i-F ilf+ A id -A i+ ,+ m o

(1.15_i_j_- - 1 )

7

-)

A i _ i +71 1 +271,+Mo 1
(1 i. p)

(III) Ai-1-FAi+2Ap+M 0
(1 . i..p )

Notation: 71i = Â2p _ f (l i p)

( 3 )  [AIII] SU(2p)IS(U(p)x U(p))
Cti

o —
I
0 -  6

2 2 p -  I 2 2p-2

Op

    

Cip

  

Œp+1

 

A a(A)

(I) MO
#1(M0 ) (p $  A M 0 ))

# 1 0 1 0 +1  (p  e /WO)

(II)

A i _1 i- i i 1 +21 .1 +A i i -1 +M 0

(1__.i._.j_p —1)

/1i-i-F ill+A i+Ai+ i+M o
(1. i . .j - p —1)

2

2

Notation: A i = _ (1 p )

4 . 2 .  Example 2. [G] G 2 /SU(2) x SU(2)
22

0 0
We have

(a) (h i = — (i =1, 2).

(b) D(G, K)={2k 1 A 1 +2k 2 A2 1k1 , k2  e Z, k l ,

(c) z1*(K)=.4 ={±a i , ± a 2 , ± (a 1 +a 2 ), ± (2a 1 +a 2 ), ± ( 3 a1+ 0(2),

±(3Œ1 +2o 2 )}.

Computing A(a) for each a E A*(K), we have the following list of A E D(G, K)
such that B(A) ot• or 1(A) 0 0 :
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A B(A)
(I) Mo

(II) A ,+M o ( M o , (M0, a l)
0 02 Œ 1 + Œ 2

0 az, ± (2ai+az)
0 —Œ2,2Œ1+Œ2

+a 2 , ±(2a 1 +a 2 )
(III) A2 +Mo (Mo, af)

0 a l, ±(3a, +2a 2 )
±oci , ±(3a, +20(2)

(IV) A l +A 2 +M o (M o , af)
0 +az), 3 a1+a2

+(al +a2), +( 3 a1+a2)
Here we mean by Mo  an  arbitrary element of D(G, K). It is easy to see that except
the case (II) (M o , af)=(M o , 4 )=0 , i.e., A= A i ,  one of the assumptions (1) and
(2) of Proposition 3.4 is satisfied.

In the following we examine the case A =A , . B y  the dimensional formula of
Weyl we know the degree of [p] (with A , as its highest weight) to be 7. Let S2 be
the set of weights of [ p ] .  Then we have:

52={+/1 1 , +(— /12), ± (2A 1 —A 2 ), 0}.

This can be easily verified by considering the sequence of weights:

A1 — A1 + A2 2A1 — A2 0

—ai — 2 A  + A2 Œ
2 A1 — A2 — A ,.

Consequently we know the multiplicity of each weight equals 1. We now select a
basis {v1}_ 3 1 3  o f  V such that

v ± 3 EV ± A L , v ± 2 eV ± ,_ ± 1 E  V ± (2,11—A2), Y o  E  V o

(y3, y3) = 1 , X „1 Y 3  =1)2, X„1 -v 2 =27R1 —1v 3 .

Let w be a non-zero vector of (VOgc) K . Since B(A 1) =B 2 ={2a 1 +a 2 },  we have
Ow=ew (s2 = 1 ).  In order to show e= 1, we first suppose e= —1. Then w can be
written:

3
w =  E

1=- 3

where Ye gc such that OYi = —11
1. We remark that each Yi can be expressed by a

linear combination o f the  vectors (X„— X _ Gi) 's  (a e z1) and  Ai 's  (i=1 , 2). Since
X OE2 ± X _,,2  e fc, we have

0 = (XOEi + X __„i )w +(X ,„ + X - OE,)v2 Y2 + V2 [Xa i X — ai ,
 1 72]

+ + X _a i )V30 Y3 + V30 [X , + X _ OEi ,  Y3];

0 = (X,c2 + X _ Œ2)W = • • • + V30 [XŒ2 + X —cc2 ,  173] •
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Hence we obtain

(4.1) [X„, +X-Œ„ Y3]+ 2 7 rN/ — 1 Y2 -= 0 ;

(4.2) [X „+X _„„ Y 2 ]+  Y3 =0;

(4.3) [X„,+X_Œ„ Y3]= 0 .

From (4.1) and (4.2) it follows

(4.4) [X„i+ X _„, [X 2 i + X _ 2 „ Y3 ]]-=21r \ /  1 Y3.

Now we define non-zero complex numbers a, b, c and d by the equalities

(4.5)
[ X OE1 , X Œ 2 ]  —  aXa i +a2/ / X ŒI+c<2] =  bX2a1 +a2/

[XOE1, X221 + ct2] = CX3y1 +a2/ [Xce2/ X 3 =  d X 3 a t1  +  2 c € 2 '

Then by simple calculations we obtain:

[X_„„ X .1 = [X-Œ„ XŒ2] =O,

61r\ I —1 87r,1 — 1
(4.6) [X _„ , X „ + „ ] = a X „ ,  [X _ a o  X 2 O EI + OE2] — b X „ ± „,

6n —  1
X 3 Œ , + Œ 2 ]  = c X2cei +cc2/ EX —al / X3cci + 2a2] = 0.

[X_ 2 , X2 ,] =0, [X _ 2 2 , X2 2 ]=

2i  f Î 1 
(4.7)[ X _ 2 , X2 1 +  2 2 ]— X

a
2 , ,  [X . X 2 a i  + a 2 ]  =  0 ,

27r J  —1
[X _  2 , X 3 1 1 +cc2] = 

0
, [ X  — Œ 2 / X3a1+ 2 ,

x2]d X3Œ, +cc2.

Hence we have:

[X œ2 ± X — a2 , X 1 — X —a l ] = a(X  a l + a 2  X— ( a  + a 2)) ,

[X 2 2  + X _2 2 , X2 2 — X _2 ,]=

2ir —  1
[X„,+X._„, X„ 4 , 2 X  _ ( a  4 , 2 ) ]  =  a ( —  X  a i )

(4 .8 )  [X 2 -FX_„2 , X 2 OEt a 2 X  — (2C(i+a2)]

[Xœ2
- 1- X—œ2 , X3ai +ccOE — X — (3a1+cc2)] = d(X3cii + 2a2 — X  — (3cci + 2a2))

27C V
—

l i v

[ X OE2 4
- X  —OE2 9 X3cti + 2a2 — X  — (3x, + 2a2)] = d 3cci +a2 — X  —(3al +ce2))

[ X OE2 ±  X  —Œ2/ A 1 ]= 0 , [X  2 2 + X _ 2 2 , A2 ]= —27k1 —1(A 2 ) 0(2)(XŒ2 X  — Œ2)  *

Therefore Y 3  can be written in the form



394 Eiji Kaneda

(4.9) Y3 = e(X 2 „i  + O E ,— X _ (2 a , +OE2) ) ) + f A i ;  e, f e C.

Putting (4.9) into (4.4), we have

ei1411N1 1(X211-Fce2 — X —(2ai +ot2)) 4
a
8

b
7r2 (Xce2 —  X  — a)}

+47r/ — 1(A 1 , QOM =27r N./ — 1{e(X2Œ 1+ ,(2 — X _
( 2 a i  a 2 ) )  + f A  1  }  •

Then it is easy to see that e =f== O. This implies Y 3 = 0, contradicting our assumption
w  0  (see Lemma 3.1). Therefore we have E = 1.

As a consequence of the above arguments we obtain the quality (3.11).
We resume the results in the following table:

[G] G 2 /SU(2) X SU(2)

A a(A)

(I) Mo #/(Mo)

(II) A i+ Mo (Mo, a t) (Mo, Œn
0 0 0
+ 0 1
0 + 1
+ + 2

(III) A2 ±  MO (MO, Cen
0 1

+ 2

(IV) A i + A 2 +  MO ( M05 at)
0 1
+ 2

OSAKA UNIVERSITY OF FOREIGN STUDIES

References

[ 1 ] N. Bourbaki, Groupes et Algèbres de L ie, Chapitres 4, 5 et 6, Hermann (1968).
[ 2 ] C. C hevalley , Theory of Lie G ro u p s , Princeton (1946).
[ 3 ] J. V. D z ja d y k , On the determination of the spectrum of an induced representation on a

compact symmetric space, Soviet Math. D okl., 16 (1975), 193-197.
[ 4 ] J. V. D z ja d y k , Representations realizable in  vector fields on compact symmetric spaces,

ibid., 229-232.
[ 5 ] S. G allot et D. M eyer, Opérateur de courbure et Laplacien des forms différentielles d'une

variété riemannienne, J. Math. Pure Appl., 54 (1975), 259-284.



The spectra of 1-forms 395

[ 6 ] S. H elgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press
(1978).

[ 7 ] J. E. Humphreys, Introduction to  Lie Algebras and Representation Theory, Springer-
Verlag (1972).

[ 8 ] A. Ikeda and Y. Taniguchi, Spectra and eigenforms of the Laplacian on S " and P^(C),
Osaka J. Math., 15 (1978), 515-546.

[ 9 ] A. Levy-Bruhl-Laperrière, Spectre de de Rham-Hodge sur les formes de degré 1 des spheres
de R" (n 6 ) ,  Bull. Sc. Math., 2^ série 99 (1975), 213-240.

[10] A. Levy-Bruhl-Laperrière, Spectre de de Rham-Hodge sur l'espace projectif complexe,
C. R. Acad. Sc. Paris, 284 (23 mai 1977) Série A, 1265-1267.

[11] H. Strese, Spectren symmetrishe Raume, Math. Nachr., 98 (1980), 75-82.
[12] M. Takeuchi, Gendai no Kyukansu, Iwanami (1975) (in Japanese).
[13] C. Tsukamoto, The spectra of the Laplace-Beltrami operators on S O(n+2)1S 0(2)xS 0(n)

and S p(n+1)IS p(1)x S p(n), Osaka J. Math., 18 (1981), 407-426.
[1 4 ]  E. Kaneda, The spectra of 1-forms on simply connected compact irreducible Riemannian

symmetric spaces II, in  preparation.


