J. Math. Kyoto Univ. JMKYAZ)
23-2 (1983) 369-395

The spectra of 1-forms on simply connected compact
irreducible Riemannian symmetric spaces

By
Eiji KANEDA

(Communicated by Prof. Toda Dec. 21, 1981. Revised March 26, 1982)

Introduction

Let G/K be a simply connected compact irreducible Riemannian symmetric
space and let AP(G/K) be the space of complex continuous p-forms on G/K. Then
it may be natural to ask: How does A7(G/K) decompose under the canonical
action of G?

For several low rank G/K, such as the spheres, the complex projective spaces,
the quarternion projective spaces and the complex quadrics, the answer to this
question have been given (see Gallot-Meyer [5], Ikeda-Taniguchi [8], Levy-Bruhl-
Laperriére [9], [10], Strese [11] and Tsukamoto [13]).

The purpose of this paper is to decompose A'(G/K) for all simply connected
compact irreducible Riemannian symmetric spaces G/K. The method used in this
paper is somewhat different from that used in the above papers.

Let A'(G) be the space of complex continuous 1-forms on G. We can regard
A'(G) as a G-module under the action of G induced by left translations of G. Then
in a natural way, A!(G/K) may be considered as a G-submodule of A!(G). Therefore
to decompose A(G/K), we have only to express A1(G) as a sum of irreducible G-
submodules and find out all the factors of this decomposition that are contained in
AY(G/K). Then our problem is to determine the function that assigns to each ir-
reducible G-module the number of factors in A1(G/K) isomorphic to this G-module.

In §1, making use of the theorem of Peter-Weyl on the representative ring of G,
we reduce our problem to the following problem: For each irreducible represen-
tation p: G—GL(V?), determine the multiplicity of the eigenvalue —1 in (V°®g°)x
of the involutive automorphism § of (V?®g¢), induced by the canonical involution
0 of g¢ associated to the symmetric pair (G, K) (see the definitions in §1). This
problem can further be reduced to a problem of the complexified Lie algebra g°.
In §3 we define a map of V?®gc onto g¢ that sends (VV?®g°)x isomorphically onto a
f-invariant subspace p of g¢. Then the problem stated above can be reduced to
the problem of determination of the multiplicity of the eigenvalue —1 of 6 in p.
In order to solve this problem, we first clarify the relation between this multiplicity
and the subset B(A) of non-zero roots of g¢ determined by the highest weight A of p.
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We next consider some conditions imposed on B(A) and calculate the multiplicity by
assuming that one of these conditions is satisfied. Thus the only problem that is
left to us is to examine the conditions. In §4, we treat two examples: [AII]]
SU(p+q)/S(U(p)x U(q)); [G] G,/SUR2)xSU(2) and show that in almost every
case one of those conditions is satisfied. We treat in detail the only exceptional
case that occurs in the case [G].

After the examinations of all simply connected compact irreducible Riemannian
symmetric spaces G/K with G simple, we know that except the case [G] one of the
conditions imposed on B(A) is satisfied. The details are omitted in this paper. In
the forthcoming paper [14], we exhibit the results obtained by the above arguments.

Finally we refer to the works [3], [4] of Dzjadyk. In [4], he obtained the
decompositions of A1(G/K) by using his branching law established in [3]. Although
there is left a question of whether his branching law is true or not his results are
the same as ours.

§1. The G-modules 41(G/K) and 41(G, K)

1.1. Let G be a compact connected semi-simple Lie group and g the Lie algebra
of G. Let B denote the Killing form of g. Naturally B can be extended to a complex
symmetric bilinear form of g°); we also denote it by B. We define an Ad(G)-
invariant hermitain inner product of g¢ by

(1.1) (X, Y)=-B(X,Y) X, Yeg;

where Y means the complex conjugate of Y w.r.t. g.

Let C(G) be the algebra of C-valued continuous functions on G and let A}(G)
be the vector space of complex continuous 1-forms on G. Let | |, be the maximal
norm in C(G), i.e.,

1 lloo =max Sl fed6).

Making use of | ||, we introduce a norm || [|{ into A!(G) by
(1.2) o)W = max 12D e 11(6).

0+Xeg© (X- X)I/Z

Here A!(G) is identified with C(G)®(g°)* (= Hom¢ (g¢, C(G))) in a natural manner.
We now define canonical actions of G on C(G) and A!(G) by setting

(1.3) (L f)(x)=f(g7'x), (Re)(x)=f(x9):

(1.4) (L,0)(X)=L(a(X)). (R,o)(X)=R,(w(Adg~' X));

where fe C(G), we AY(G), X eg, g, xe G. Then we can easily observe:
L,-R,=R,-L,;: L,-R,=R,-L, g,heG.

1) In the following we mean by V¢ the complexification of a real vector space V.
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We note that by the action L or R (resp. L or R) G acts continuously on each finite
dimensional invariant subspace of C(G) (resp. A(G)) w.r.t. | | (resp. || [).

In what follows we consider C(G) (resp. A'(G)) as a G-module under the action
L (resp. ).

Let o(G) (resp. 0(A41(G))) be the G-submodule of C(G) (resp. A!(G)) composed of
all fe C(G) (resp.we A(G)) such that the G-orbit passing through f(resp.w) is
contained in a finite dimensional subspace. Clearly o(G) (resp. 0(A!(G)) is invariant
under the action R (resp. R).

Let p: G-»GL(V?) be an irreducible representation of G?. We denote by
0.,1(G) (resp. op,1(4'(G)) the sum of G-submodules of o(G) (resp. o(A4'(G)) equivalent
to ¥# as G-modules. Then we can easily see that o;,(G) (resp. o;,;(41(G))) is a
G-submodule of o(G) (resp. o(A!(G))) and is also invariant under the action R
(resp. R).

Let us denote by 2(G) the set of all equivalence classes of irreducible representa-
tions of G. Then we have:

Proposition 1.1. (1) The G-submodule o(AY(G)) is dense in A'(G) w.r.t.
I I, Moreover:

(1.5) n(A‘(_G))=[ ]Z(G)o[p](Al(G)) (direct sum).

(2) For each [p]e 2(G) there exists a linear isomorphism @,: V*@(V)*®
(g°)*—>0(,(AY(G)) such that

(1.6) L,-3,00(@X*)=0,(p(g)v@ERX™).
(1.7) R, ®,(v®E@X*)=8,(vQp*(9)E@Ad*g X *);
where ge G, ve Ve, Ee(VP)* and X*e(g°)*.

Proof. The theorem of Peter-Weyl on o(G) tells us that o(G) is a dense subspace
of C(G) w.r.t. | |« and

o(G)= > o,(G)  (direct sum).
[ple2(G)

Then if we note:

o(A1(G))=0(G)R(g)*, v, (A'(G)) =10, (G)R(g°)*,
then the assertion (1) follows immediately. To show the assertion (2), we set
(1.8) B, (VRERX*)=D,(bREQX* veVr, Ee(VP)*, X*e(g°)*;
where @, implies the map V*®(V*)*—C(G) defined by

P, (v@&)(x)=¢(p(x~ )  velVr Ee(VP)* xe(.

It is known that &, gives an isomorphism between V/®(V?)* and o[,(G) and

2) Any representation p of G is understood to be unitary, i.e., ¥ ° is a complex vector space with a
p(G)-invariant hermitian inner product. We always regard V' ¢ as a G-module (resp. g°-module)
under the action g = p(g) (resp. X —o(X)).
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Lg * ¢p(v®é) = d)p(p(g)l)@é)’ Rg ° d’p(”@é) = ¢;7("’@!)*(g)é) .
Thus the assertion (2) can be easily verified. Q.E.D.

1.2. Let K be a closed subgroup of G such that the pair (G, K) is symmetric.
Let 6 be the canonical involution of g associated with (G, K). Naturally 0 can be
extended to an involutive automorphism of the complexified Lie algebra g¢. We also
denote it by 0.

Let A1(G/K) be the vector space of complex continuous 1-forms on G/K. We
define a canonical action of T: g T, of G on A'(G/K) by

(1.9) Ty=(@ ") VYeA(G/K), geG

and regard 4'(G/K) as a G-module under this action.
Let m: G—G/K be the canonical projection. Then it is clear that

(1.10) Lya*y=n*Ty Y e AY(G/K), geG.
Therefore we know that by the map
ANG/K) 2y > n*y € A1(G),

AY(G/K) is mapped G-isomorphically into A!(G). In this meaning A'(G/K) may
be considered as a G-submodule of A1(G). Then it can be easily checked that an
element w € A1(G) belongs to A!(G/K) if and only if

(1.11) Row=w forany keK;
(1.12) o(X)=0 for any Xefe;

where f denotes the Lie algebra of K. Let us define an involutive automorphism
O of AY(G) by

(1.13) Ou(X)=w(0X) X ege.
Then we clearly obtain
L,,6=0.L,R,-6=0-R, geG keK
and
0-8,(vRERX*)=F,(vRE®O*X*) veVr, (e(VP)*, X*e(g9)*
Since fc={X eg°|0X = X}, (1.12) is equivalent to
(1.14) Pu=—ow.

Let us denote by A!(G, K) the G-submodule of 41(G) composed of all w € A1(G)
satisfying (1.11) and set v

(1.15)  o(AY(G, K))=0(AY(G)) n AY(G, K), 0o(4}(G/K))=0(A'(G)) n A(G/K).
We further set for each [p] € 2(G),
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(1.16) oy, )(A(G, K))=0p,((4(G)) N A'(G, K), 01,(A'(G/K))=0(,(A'(G)) n A'(G/K)
Then by Proposition 1.1, we have

Proposition 1.2. The G-submodule o(AY(G, K)) (resp.o(A(G/K))) is dense
in AY(G, K) (resp. A(G/K)) w.r.t. | |L. Moreover:

(1.17) o(AY(G, K))=[ 12«;) o, (4'(G, K)) (direct sum);
(1.18) o(A‘(G/K))=[ ]Z . 0;,(4'(G/K)) (direct sum).
p1e2(G)

To obtain a more precise description of o(A!(G, K)) and o(A!(G/K)), we set
for each [p] e 2(G)

(1.19) b([p])=dimg Homg (V7, 0, y(A1(G, K)).,
(1.20) a([p]) =dimg Homg (V7, 05,(A1(G/K))).

We call the function a: 2(G)3 [p]—a([p]) € Z (resp. b: 2(G)3 [p]l—b([p]) € Z) the
spectrum of A'(G/K) (resp. A1(G, K)). As is easily seen the spectrum a (resp. b)
describes precisely how o(A(G/K)) (resp. o(A(G, K)) decomposes into irreducible
G-submodules.

Let [p]e 2(G). We define a hermitian inner product of V?®g¢ by
(1.21) WX, V®X')=(, v)(X, X)) v, veVr, X, X eg°.

We consider VP®gc (resp. (V?®g°)*) as a G-module under the action g~ p(g)®
Adg (resp. g—p*(g)® Ad*g). We also define an involutive automorphism &
(resp. %) of V°®ge (resp. (V*®g°)*) by

(1.22) Iv®X)=v®0X veVr, Xege,
(1.23) 0*(EQRX*)=E(@O*X* Ee(VP)*, X*e(g9)*.
Then it can be easily observed that
O(k-w)y=k-0(w), 0%(k-n)=k-0%(n) weVr®qg°, ne(VP®g)*, ke K.

Let us denote by (V?®g)x (resp. (V°®g°)¥) the subspace of VP®ge (resp.
(V?®g°)*) composed of all K-invariant vectors and denote by (V*?®g°)x (resp.
(VP®g°)E~) the eigenspace in (V2®g°)k (resp. (V?®g©)}) for the eigenvalue —1 of
0 (resp.f*). We remark that the semi-C-linear isomorphism of V?®g¢ onto
(VP®g°)* induced from the hermitian inner product of V*?®gc defined above,
(VP®g°)k (resp.(V?®g°)x) is mapped onto (V*®g)g (resp. (V*®g°)k). Then
we have ’

Theorem 1.3. For each [p]le 2(G), the following equalities hold:
(1.24) b([p]) =dim¢ (V" ®¢)k;
(1.25) a([p]) =dim¢ (V*®g°)k-
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Proof. By Proposition 1.1, we know that the map & maps V’°®(V*®g)%
(resp. V?@(V?®g°)§ ™) G-isomorphically onto og,,(A'(G, K)) (resp. o;,,(A'(G/K))).
Hence we have:

HomG (VP’ D[p](Al(Gs K)));(V’I@gc)l*é;
Homg (V7. oy, (A (G/K))) = (VP @g°)% ™.
Therefore we obtain the equalities (1.24) and (1.25). Q.E.D.

1.3. Let us set G=GxG and set K={(g, g)|geG}. As is well known G
is expressed by the symmetric space G/K where the involution is defined by (g, h)—
(h, g). We can consider that in a sense (1.5) gives a decomposition of o(A!(G/K)).
In this paragraph, however, as an application of Theorem 1.3 we determine the
spectrum of A!(G/K) in the line of 1.2.

Let p: G- GL(V?) and o: G—>GL(V?) be two representations of G. We define
a representation pXlo: G—»>GL(V*®V°) by

(pXo) (g, h)=p(g)®a(h) g, heG.

It is known that the set 2(G) of equivalence classes of irreducible representations of
G is given by

2(6)={[pXo*]1[p]. [c1€ 2(G)} -
Corollary to Theorem 1.3. For each [p[Xlo*] € 2(G), it holds that
(1.26) a([pXe*])=dim; Homg (V7, VP ®qg®).
Proof. Let §=qg+g be the Lie algebra of G. Set
m={X, —X)|Xeg},

then i is the eigenspace for the eigenvalue —1 of the canonical involution 0: §3
(X, Y)»(Y, X)e§. We regard mc as a G-module under the action g-(X, —X)=
(AdgX, —AdgX), ge G, Xeg®. Since m“=g¢ as G-modules, we have:

(VPR ®§°) x>~ Homg (V°, VP®@me€) = Homg (V°, VP®g°).

This completes the proof. Q.E.D.

§2. The spectrum of A*(G/K)

2.1. Let G be a compact connected simple Lie group and let p: GoGL(V?)
be an irreducible representation of G. The aim of this paragraph is to decompose
the tensor product p® Ad as a sum of irreducible representations of G. As is easily
seen this decomposition is obtained by determining the number a([pXlo*])
(=dim; Homg (V°, Vr®g®)) for all [o] € 2(G).

Let t be a maximal abelian subalgebra of . We denote by 4 the set of non-zero
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roots®) of g¢ with respect to t¢ and by IT={a,,..., a,} the set of simple roots with
respect to a linear order in t. For each ae 4 we set a*= (—0‘27) and denote by
s, the reflection of t w.r.t. «, i.e., s,(A)=4—(4, a*)a (Let).

Let Z(G) (resp. D(G)) be the set of integral forms (resp.dominant integral
forms). Let A, be the highest weight of [4d]. For each pair {A, A’} (4, A" € D(G))
we define a number a(A4, A") be setting

.1 x(A) - x(Ao)= A,eg(o) a(A, A)x(A");

where for each A€ Z(G), we mean by y(A) the formal character associated with A.
Let [p]. [6]1€ 2(G) and let A, A’ be the highest weight of [p], [¢] respectively.
Then it can be easily seen that a([p[Xlo*])=a(A, A)». Hence the decomposition
of p®Ad is given by the following o

Theorem 2.1. The number a(A, A') is given as follows:

(1) The case A'=A: a(A, A)y=4#{a; eIl |(A, a¥)>0}.

(2) The case A'=A+a for some ae A:

0 if the pair is contained in the following list (%);
a(A, A+a)=
| otherwise.

(3) Thecase A'# A, A+a for any ae Ad: a(A, A')=0.

g o A
(1°) |[Bu] 0—0-—0=0 () (4, 43) =0
(1£ign—1)
n—1
() |[6) 9=0m—0e=0 | FIHTH I, WITRT (o o
(1Zign—-1)
(%) T (22 +a3)
() {i(al+az+°¢3) (4, 03)=0
39 |[£] 0—0—s0—0 + (ot + 2005 + 303+ 01y)
' 4. — —
o @z 73 a4 + (o + 203+ 0ty)
(ii){ + (g + oy + 205+ 0y) (4, a})=0
+ (otg + 2005 + 2005+ 0ty)
) |61 oe=o0 @ 2mtas, —(@ta) | (4,a)=0
v (i) o) +0z, —(20;+ay) (4, a%) =1

3) By a root we mean a vector A€t such that the subspace defined by
(g9):={X<g°| [H, X]1=22—1(2, H)X for any HEt)}
is not equal to {0}. Similarly we mean by a weight of a representation p: G—>GL(V *) (simply
(Continued on next page)
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Before proceeding to the proof we show

Proposition 2.2. Let {B, «;} (Bed, a;eIl) be a pair satisfying (B, a¥)< —2.
Then {B, o;} coincides with one of the following:

g¢ B L2 (B, a¥)
D —o;(1<i<n) % )
ap | 09083 | E wdsisa-n % | -2
—('Zliak+2a,,)(1§i§n—l) %, )
@C] | 20,5 w)+aisisa-1) w | -2
—{Z(Zliak)+a,,}(l§i§n—1) o —2

(3°)[Fu] %
o |

(;) al + az Ot3 - 2
oy + 200, + 2003+ 2004
— (xp+ 203)
(i)_ { -—(Ot1+0t2+20(3) a3 _2
- (al + 2a2 +4a3 +2a4)
oy + 205
(ii)+{ot1+0£2+20(3 064 '—2
oy + 2005 + 203
— (otp + 2003+ 204)
(ii)_{ —(a1+az+2a3+2d4) 2 7% -2
— (otg + 2005 + 2003 + 204)
4°)[G.] oz, — (3o +a3) oy -3
(Continued)

a weight of ¥ °) a vector 1€t such that the subspace defined by
V), ={veV’|p(H)v=22y—1(2, H) v for any H &t}
is not equal to {0}.
4) This equality follows from
Xo®@aa1=Xto1 Xeaar= 2 a([pRe*Dxe1;
(6IED(6)

where for each [r]€ D(G), x;.; denotes the character of [r].
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Proof. We first note that if f= —«; for some «; € I1, then it holds (8, af)< —2
and (B, a¥)=0 for any o«; € IT such that a;#o;.

Now let us seek for all pairs {f, o;}(B € 4, a;€ IT) such that (B, a})< -2, f+#
—a;. We remark that under this assumption we have f+2x;€4 and f+2a;#
a;. Thus we first seek for all pairs {y, o;} (ye 4, o; € II) such that y—20;€ 4, y#a;.
If g¢ is not of the type [E;] (i=6, 7 or 8), we can easily find out all such pairs. We
have:

W) B {Z ot 20, )} (1SiSn—1),
{—( kz‘ w), o} (1Sign—1).
@[] CF ) +a, a} ASisn—1),

(—20 5 a)+a) ap(1Sisn-1).

(3°) [Fa] () {ay+203, az}, {o; +ay+203, a3}, {00y + 200, + 4oz + 204, 03},
{—ay, as}, {—(oy +a3), as}, {— (0 +200; + 2003+ 201), 3}
(ii) {ay+203+20,, 0y}, {0t + 0oy +203+ 20, a4},
{ory + 200, + 203 + 2004, g}, {— (003 +203), 04},
{—(ay+oy+203), ag}, {—(00y + 2054+ 20a3), 004} .
(49 [G2] () {20y +ay, oy}, {—(og +a5), 04}

(") {3a1+a2, a1}9 {_a29 al} .
Setting f=y—2a; for the above pairs, we have (ff, af)= —2 except the case
(4°). We have (4°) (i) (B, a¥)= -3, (ii)) (B, a})=—1.
Finally we treat the case where g° is of the type [E;] (i=6, 7 or 8). We show
directly: If (B, af)< —2, then f= —a,.
Since (8, [3) (o, @;), it holds that (a,, B¥)=(B, a¥)< —2. Hence o;+2f€ 4.
Writing f= Z mj«;, we have a;+2f= Z (2m;+6;;)a;. Then it can be checked

that such a root of g¢ is limited to +tx Hence we have f= —a;, showing our
assertion.
Thus we have obtained all the pairs satisfying our assumption. Q.E.D.

Proof of Theorem 2.1. Let us set
2.2) Ay(A)={aed|A+aeD(G)}, A4\ (A)={aed|A+a&D(G), y(A+a)#0}.
Then the left hand side of (2.1) is computed as follows:

(2.3) xA)- x(Ao)=ny(M+ ¥ xA+0)+ 3 x(A+p).
ae do(A) Bedi(A)

We consider the third term of the right hand side of (2.3). Let fed,(A). Since
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A+ p&D(G), there is a simple root a; such that (A+f, a¥)<0. We first suppose
that (A4, a})= —1. Then we have (A+f+3, a¥)=0 where §= %( > a). Hence
acd

a>0

we obtain y(A+ f)=0, contradicting our assumption B e 4,(A4). Therefore we have
(A+PB, a¥)< —2. Since (4, a¥)=0, it follows that (8, a¥)< —2. Thus the pair
{B, o;} coincides with one of the pairs listed in (¥) of Proposition 2.2. Consequently
we have (4, af)=0, (A+f, af)=—2 in the cases (I), (II) (1°)~(3°) and have (4°)
(i) (4, at)=0, (A+p, af)=—=3 or (i) (4, a})=1, (A+B, a¥)=—2. Now let us
put a=s,(A4+p+6)—(A+05). Then by a direct calculation, we have a=0 in the
case (I) and obtain the list (%) that exhibits all the pairs {4, a} corresponding to the
cases (II) (1°)~(4°). Thus we can see that o is a root not contained in the list (¥)
of Proposition 2.2. This implies aé&4,(A). On the other hand, since A+a+d6=
S.(A+pf+6), we have y(A+a)=—y(A+p)#0. Hence we know A+aeD(G).
Therefore if we set no=4#{o;| (A, a¥)>0} and denote by Ay(A) the subset of Ay(A)
composed of all & such that the pair {4, a} is not contained in the list (), we have
1(A4) - x(Ao)=nox(A)+ AZ(A) w(A+a),

proving the theorem. Q.E.D.

2.2, Let G/K be a simply connected compact irreducible Riemannian symmetric
space with G simple. In this paragraph we determine the spectrum of A!(G, K).

Let 2(G, K) be the set of equivalence classes of spherical representations for
the symmetric pair (G, K). Then we have

Propotion 2.3. Let V'®g°=U;+...4+U, be a G-irreducible decomposition
of V?®@gc. Set p;=(p@Ad)\y, for i 1=i=<r). Then:

(2.4) b([p])=#{pi|[pi] € 2(G, K);.

Proof. Set (U)xk=U;n(V*®g°)k for i (1Li<r). Then ourassertion follows
from the following facts: (V?®g°)x=(U )k +... +(U )k (direct sum), dim; (U)x <1
and [p,] € Q(G, K)@dimc (Ui)K =1. Q. E.D.

Let g=f+m be the canonical decomposition of g obtained by 6. Let t be a
maximal abelian subalgebra of g containing a maximal abelian subspace of m.
Seta=tnmand b=tnf Then we have

t=a+b (orthogonal direct sum).

Note that t (and hence the set 4) is invariant by 6. In the following we fix a system
of vectors {X,e(g°)|ae 4} of g° satisfying

0X,=Xp5 [Xo X-o]=0*.
Let us define a linear order ““<”’ in t such that
H>0, HEb=—60H <0 Het.

Let T={x,,...,a,} be the set of simple roots with respect to this order. We set
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I={i|o;&b} and denote by p the Satake involution of I.

Let D(G, K) be the set of all the highest weights of spherical representations
for the pair (G, K). Under our assumption that G/K is simply connected, the set
D(G, K) is identical with the additive semi-group generated by the following M;’s
(iel, p(iy2i):

24; p()=i, (o, I nb)={0};
(2.5) M;=¢ 4; p(i)=1i, (o, ITNDb)##{0};
1 Ai+ A p()>1i.

Here we mean by {A4,,..., 4,} the set of fundamental weights, i.e.,
(Al’ 05?)=5,-j léi,jén.

Let 4*(K) denote the subset of 4 composed of all « € 4 such that for any «; €
IInb, a—a; is not a root of g°. It is easily checked that A*(K) is invariant by 0.
Then we obtain the following

Proposition 2.4. Let p: G—>GL(V*) be an irreducible representation of G with
A as its highest weight and let v, be a non-zero highest weight vector of V*. Let
M e D(G, K). Assume that there exists an irreducible G-submodule U of VP®g*
with M as its highest weight. Then it holds either M=A or M=A+og for some
oo € 4¥(K) and U contains, as its highest weight vector, a non-zero u,; written in
the following form:

(1) The case M=A:

Upy=v,QH+ ZZ Uy —a®X,:

a>0

where vy _,€(VP)y—_o; Hete, H#0, (H, a})=0 for any a; € II such that (M, o¥)=0.
(2) The case M=A+oa, for some oy e A¥(K):

Uy=v,0X,,+ '21 v;®4;+ ZA Uy - @ X3
1= ae

a>ap

where 0;€ (V)3 Va— € (VO pr o
Proof. Let uy be a non-zero highest weight vector of U. Since uy e (V?),,®
e+ > (V) _o®(8°), Uy can be written in the form
acd
uy= '21 0,Q4;+ ZADM—u®Xa;
= aE

where v;€(VP)p, Upr—o € (VP)pr—o. Now the following two cases are possible:
(1) It holds vy;—,=0 for any a € 4, a<0 and v;#0 for some i (1<i<n).
(2) Otherwise.
The case (1). Let § be any positive root. Then we have

0=Xp(upy) = iz; (Xpv)®@4;+ ...
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and hence X,;v,=0 (1<i<n). This means v;e(V*?), (1=i<n), showing M=4.
Let us take H e t¢ such that v@ H= Zn v;®4;, then we obtain
i=1

Uuy=v,0H+ ZAvM_a®Xu; H=#0.

a>0

We now suppose (M, a¥)=0. Since M —q; is not a weight of U, we have

0=X_a‘(uM)=211:\/:T(H, ai)vA®X—aq+ e

hence (H, o})=0.
The case (2). Let age 4 be the minimum root such that vy _,,#0. Then for
each positive root f, we have

0=Xﬂ(uM)="'+(XﬂvM—ao)®Xao+""
Hence X;0p_4,=0. This means vy _,,€(V?),, proving M=A4+a. Multiplying

a complex number if necessary, we obtain

Up= ;1 u,®4;+ EA Oy —o®@ X+ 0, @ Xy,

a>ag

Finally we show «,€4*(K). Let a;elInb. Since (M, a¥)=0, M—a; is not a
weight of U (Note that M € D(G, K)<a). Then we have

0=X—a((uM)=vA®[X—a19 Xao]+.“ .

Hence we know that [X _,;, X,, ]=0. This means that o —a; is not a root. There-
fore agy € 4*(K). Q.E.D.

Lemma 2.5. Let ae A*(K). Then there exists a unique M(x)e D(G, K) such
that for any M € D(G, K) the following two conditions are equivalent:

6)) —a+MeD(G).
(2 M —M() e D(G, K).

Proof. By the definition of 4*(K), we have (a, a¥)<0forany o;e II nb. Hence
if we write

—o= él k%4;,
we have k=0 for any i such that o;eIInb. For each iel, p(i)=i, let us set
max {O, — [—é— k?:]} p() =i, (&, I nb)={0};
(2.6) ki =1 max {0, — K9} p(i) =i, (o, TN D) #{0};
max{0, —k?, —kS;} p()>i,

andput M(e)= Y k!M;. Thenitis easy to see that M(x) possesses the property
iel
p(izi
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stated in the lemma. The uniqueness is trivial. Q.E.D.

Lemma 2.6. Any root listed in () of Theorem 2.1 is not contained in 4*(K)

except the case where G[K is one of the following:

[BI, BII] SO(2p+1)/SO(p)x SO(p+1):

O O O=—0
[C1] Sp(n)/U(n): O—O-+—0O0

[FI1 F,/Sp(3)-SU2): O—O=0—-"20

ay a3 xq

[G] G,/SUR)xSUR): OO0

a2

Proof. 1t sufficies to consider the case where G/K is of type [B], [C], [F]
or [G]. We note that in case the Satake diagram of G/K does not contain any
black vertex (i.e., G/K coincides with one of the above), it holds that 4*(K)=4.

Thus we have only to consider the following three cases:
[BI, BII] SO(p+q)/SO(p)xSO(q) 1=p=q—3, p+q: odd);

[(Cl] Sp(p+q)/Sp(p)xSp(q9) (1=p=q);

[FII] F,/Spin(9).
We assert”the;t'fdr each o€ 4 listed in () there is a simple root d, e IInb such that

a—o;€A.
[BI, BII] SO(p+q)/SO(p)xSO(q) (1=p=q-—3, p+q: odd):
O— OO — @0 (= (p+q—1)

We have: ITnb={a,,,,..., &,}.

n—1 n—1
Hence: a= Y o, +a, =2 Y aed(lSisn—1);
k=i k=i
n—1 n—1
°‘=—(Z ak+an) |A,—(Zak+2a,,)EA(1§l§n—l)
k=i k=1

[(Ciy Sp(p+q)/Sp(p)x Sp(q) (1=p=q):

e—0O—eo O—O0— —@—0 (r<9)

ay - az - a3 A2p  @2p+1 @p+gq-1 Ap+gq

o—O—0——0—0 L (p=9)
x2p

ay Tay a3 azp-1
. | {ul, 035005 X3p—15 Xap415 A2p4 2500y ap'+q} i (p<Q)§‘ )
We have: IInb=
{al’ “3""’ a2p—l} (p=Q)'
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n—1

n—1
Hence: oc=oc,-+2(k2 1oc,‘)+oc,, [—2i 2(k > a)toa,ed (i: odd),
=i+ =i+1
n—1
=2ttty oy 400 + 2( k_Z“ o) +a,eA(i: even);
n—1 n—1
a=—{0+2( T ) +o} =t — (2T w)+a}ed (i 0dd),

n—1
—2izty —{o;_y+o;+2( X o) +a,} €4 (i even).
k=i

Thus in the above cases our assertion is shown to be true. Similarly we can obtain
the same result in the third case [FII] F,/Spin(9): @—@—@——0O. The

a2 o3

x4
proof is left to the reader. Q.E.D.

We now prove

Theorem 2.7. Let o€ A*(K). Then there exists a unique A(x)e D(G) such
that for any A€ D(G) the following two conditions are equivalent:

(1) A+aeD(G, K) and a(A, A+a)=1.
) A—A(@) e D(G, K).

Precisely A(a) is given as follows:

G/K a A(a)
(1°) [BI, BII] n _
(pma—imm | E(E@(sisn—1) M+ 24,
M —
o i: iﬁ'z + n
@) [cr] t2Q 0t M@+,
(1i<n—1)
(30) [FI] i(a2+a3)
(i) { + (ot + oy +3) —o+ M) +244
+ (oty 4+ 2005 + 3003+ 2014)
. j:(a24-2a34—a4)
(ii){ + (ot + oy + 2003+ ) —o+ M) +24,
j:(a14-2a24-2a34-a4)
4°) [G] oy o, — (20 +ay) - —o+ M(a) +24,
(ID) otherwise —oa+ M(a)

Proof. By Lemma 2.6, we know that the following two cases are possible:
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(i) « is not contained in (%) of Theorem 2.1;

(ii) G/K coincides with one of the symmetric spaces listed in Lemma 2.6 and
o is contained in (%) of Theorem 2.1.
The case (i). Let us set A(x)= —o+ M(a). Then we have:

A—A(a)=(A+a)—M(x).

By the above equality and by Lemma 2.5, we know that the two conditions A+ae€
D(G, K) and A—A(a)e D(G, K) are equivalent. This implies the equivalence of
(1) and (2). (Note that a(A4, A+a)=1 follows immediately from A4+ae D(G, K).)

The case (ii). We first assume (1). By Lemma 2.5, we know that M'=4—
(—a+M(x)e D(G, K). By a direct calculation, we have:

(1°) [BL, BII] (p=q—1)(—a+M(), a})=0; (2°) [CI] (—a+M(x), a})=0;
(3°) [F1] () (—a+M(), of)=0, (ii) (—a+M(a), af)=0;

(4°) [G] () (—a+M(x), af)=1, (ii) (—a+M(a), af)=1.
Hence by Theorem 2.1, we know that M’ satisfy the following:
(1) (M, o3)>0: (2°) (M’, a})>0;

(3°) () (M', a%)>0, (i) (M', a})>0; (4°) (ii)) (M’, a})>0.

In the case (4°) (i), M’ may be allowed to be any element of D(G, K). Therefore
if we define A(«) as the assertion of this theorem, we have A — A(x) € D(G, K). (Note
that since the Satake diagram of G/K does not contain any black vertex nor any
arrow, the set D(G, K) is given by

D(G, K)={ 3. 2kA;| ki€ Z, k;=0 (1<i<n)})
i=1

Conversely if A— A(x) e D(G, K), then it can be easily checked that A+ae D(G, K)
and a(A4, A+a)=1. The uniqueness of A(«) is straightforward. Q.E.D.

Let A€ D(G). We set
{i|1Zign, (A4, af)>0} if AeD(G, K),
2.7 IN)=
if A&D(G, K);
(2.8) B(A)={ae 4*(K)| A— A(x) € D(G, K)}.

The following theorem is an immediate consequence of Theorem 2.1, Proposition
2.3 and the above theorem.

Theorem 2.8. Let [p]le 2(G) and let Ae D(G) be the highest weight of [p].
Then the following equality holds:

(2.9) b([p])=#1(A)+$B(A).
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§3. The spectrum of A1(G/K)

In this section we investigate the spectrum of A!(G/K). The notations used
here are the same as in 2.2.

3.1. Let p: G»GL(V?) be an irreducible representation of G with A as its
highest weight and let v, be a highest weight vector such that (v,, v,)=1. We define
a C-linear map ¥: V?®g°—g° by

3.1 Yw®X)=(, v)X veVr, Xege.
It is clear that
3.2 v.0=0.-v.

Set p=Y((V?®g)k). Since (V?®g°)x is invariant by 6, p is invariant by 6.
For simplicity in the following we set V=V?, I=I1(A), B=B(A) and C=A4\B.

Lemma 3.1. There exists a basis {Y,, Z;},cpr of p written in the form:

(33) Ya=Xa+ Z ngp"'Ha:
e
7<%

where p?, qf € C and H, e t° such that (H,, a})=0 for any iel.

Proof. Let aeB and let U be the irreducible G-submodule of V®g°¢ with
M (=A+0a) as its highest weight and u, be the non-zero highest weight vector
given in Proposition 2.4. We set

u2=S k- upgd,
K

where dk denotes a Haar measure of K. Then we have u% € (V®g°)g and (49, uy)#
0. Let Q be the set of weights of U. Then we can write

142=ca(uM+”ZQ u,; c,€C u,e(U),.
€
u<M

Since (u,,, uy)=0 for any u (<M), it follows that ¢,#0. Hence we have

Pu)=c,X,+ ﬁezd cAX,+H,; che C, H et
B<a
(Note that H,=0 in case «<0.)

Assume now the case A€D(G, K). Then there exist linearly independent
irreducible G-submodules U, (i € I) whose highest weight vectors u; (i € I) are of the
form: v

u=0,Q4;+ aé V4-a®Xy3 Vg-a€ Vom0

a>0



The spectra of 1-forms 385

Let us set
u(,?=g k- u,dk,
K

then by the same argument as above we have

P9 =didi+ T diX,: di (#0), df e C.

B<0

Thus if we take linear combinations of Y(u9)’s (xeB) and Y(u?)’s (iel)
appropriately, we obtain a basis {Y,, Z;} of p of the form stated in the lemma.
Q.E.D.

By Lemma 3.1, it is known that the map ¥ gives a linear isomorphism between
(V®g°)x and p. We set

p - ={Yep|O0Y=-Y}.
From (3.2) and Theorem 1.3, it follows the following

Lemma 3.2, The map ¥ gives a linear isomorphism between (V®g°)y and
p~. Therefore:

(3.5) a([p])=dim¢p-.
We now set: I, ={iel|p(i)=i}, I,={iel|p(i)#i};
By={aeB|Ba=0a}, B={ae€ B|0x#a, Ouec B},
B,={o € B|fa& B}.

It is easily seen that pI,=1, and 0B, =B;.
Let us denote by p, the complex subspace of p generated by the vectors {Y,},.p,
stated in Lemma 3.1 and set

(3.6) ao([pD=dimg(ponp7).
Proposition 3.3. The subspace p, is invariant by 0 and the following equality

holds:

3.7) a([p]) =ao([p]) +#1,+ 5 #L,+ - #B,.

Proof. Applying 0 on both sides of (3.3) and (3.4), we easily have

(3.8) 0Y,=Ye+ 3 pifYs («€ B, or By);
pe,
3.9 0Y,= > pity, ' (x€B,);
3
(3.10) 0Z,=—-Z,,+ ¥ q¥%Y, (ieD.
BeB;

6p<0
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(Here we note 04;= —A,;.) Thus we can see that p, is invariant by 0. Let us set:
E,=2Y,+ % pi*Ys (x€ By);
BeB;
08 <a
Fi=Y,x(Yu+ ¥ piY)  (2€B,, a<0);
052
P=2Z,— ¥ ‘I?ﬁyﬂ (iely);
BeB,
608<0
Q?:=Zii(_zp(i)+ﬁeBz q3Yy) (iely, p(i)>i).
2
0p<0

Then we have: 0E,=E,, 0Ff =+ F%, 0P,= — P, and QFf = + Qf. Since the vectors
E, (@€ By), Ff (¢€B,, a<0), Y, (xeB,), P; (iel,) and Q% (iel,, p(i)>i) form a
basis of p, the equality (3.7) can be easily observed. Q.E.D.

3.2. In what follows we calculate the number aq([p]) under some conditions.
As is easily seen, ay([p]) is closely related to the set B,. We suppose that the set
B, is composed of §; (1<i<m) and y, (1 £s=<n) satisfying

B1>"'>ﬁm>0>'y">"'>y1'

Proposition 3.4. Assume that one of the following conditions (1) and (2) is
satisfied. Then it holds ao([p])=n.

1) m=n, f§,>0y,>p,>0y,>:->p,>0y,.
2) (@) m=n+1,p,>0y,>p,>0p,>>p,>09,>P,:;
(i) 0B,+1=—Pus1, (4, B7e1)=0.
Proof. We first note the following fact:
B, yeB,, f>y = 0p<0by.

Therefore we know by (3.9) that there exists a non-zero complex number &; such

that 0Y, =¢,Y,. Hence we have 0Y; = SL Y,. This together with (3.9) means
1

that both the terms Yy, and Y, vanishin 0Y,, (2<i<m) and 0Y, (2=<s<n). Then

we also know by (3.9) that there exist a non-zero complex number ¢, such that

0Y,,=¢,Y,,. Hence we have 0Y;, = 512- Y,,. This means that both the terms

Y;, and Y,, vanish in 6Y, (3<i<m) and 0Y, (3=s=<n). Applying the same argu-

ment successively we know that there exist non-zero complex numbers ¢; (1=i=<n)
(and ¢ (¢2=1) in the case (2)) such that
1

6}’7‘=81Yﬂi, 0Y,,¢= 8_‘ Y

-Y,  (sisga);

(eyﬂn+1=£Yﬂn+1)'
Setting Rf =Y, +¢;Y,, for i (1=i<n), we have ORf =+ Rf. Thus the proof of
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the proposition is completed by
Lemma 3.5. Assume that an element B € B, satisfies the following:
(i) B>0,08=—p and (4, p*)=0;
(i) 0Y,=¢Y, (e2=1).
Then it holds e=1.

Proof. Take wgpe(V®g)x such that ¥(wg)=Ys Since Xp+X_jefc, it
follows that

0=(Xp+ X_p)wp=0,Q[X;+X_y, Yp]+--.

Hence we have [X;+X_;, Y;]1=0. (Note that since (4, f*)=0, A—pB is not a
weight of ¥.) On the other hand from the assumption 0Y; =¢Y}, it follows

Yy=Xp+ - +eX g+
Putting this into the above equality, we have
e[ Xp, X_p]+[X_4, Xz]=0.
Therefore we have e=1. Q.E.D.

Proposition 3.6. Assume that the set B, is composed of two positive roots f,
and B, satisfying 0B;=—p; and (A, B¥)=0 (i=1,2). Then follows 0Y;=Y)
(i=1, 2). Therefore ay([p])=0.

Proof. If we express
Yy =Xp + o +qX_p, 4+ pXop oo,
Yy, =X+ 85X g+t rX g+ ooy
we have
0Y, =pYy +qYy, 0Yp,=rYs +5Y,

Take wg,, wg, € (V®g°)g such that ¥(wg,)=Y,, ¥Y(w,,)=Y,,. Applying a similar
argument as in Lemma 3.5 to the relations

(Xp,+ X_p)Iwp, = (Xp, + X_p,)wp, =0,

we obtain p=s=1. From this it follows g=r=0, implying 0Y; =Y, (i=1, 2).
Q.E.D.

Remark. Let p: G>GL(V?) be an irreducible representation of G with A as
its highest weight. We put

a(A)=#{iel(A)| p(i)=i}+ #{o e B(A)| ba#ua, ot<O}.

Then it can be easily seen that if one of the assumptions (1) and (2) of Proposition 3.4
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satisfied, then the equality a([p])=a(A) holds. Similarly if the assumption of
Proposition 3.6 is satisfied, the equality also holds. After the examinations of all
simply connected compact irreducible Riemannian symmetric spaces G/K with G
simple, we know that one of the assumptions (1) and (2) of Proposition 3.4 is satisfied
except the following two cases: (1°) [DI] SO(2p)/SO(p) x SO(p) (p=3): A=A, ,+
M, (MoeD(G, K), (Mo, ay_))=(M,, 25)=0); (2°) [G] G,/SU@Q)xSU2): 4=
A,. In the case (1°) we can see that the assumption of Proposition 3.6 is satisfied.
The details are ommited here. We treat the case (2°) in detail in the next section and
show that the equality a([p])=a(A) also holds in this case. Thus we have:

Theorem 3.7. Let [p]e 2(G) and let Ae D(G) be the highest weight of [p].
Then the following equality holds:

(3.11) a([pl)=a(A).

In the forthcoming paper [14] we will exhibit the lists of the spectra of 1-forms
on all simply connected compact irreducible Riemannian symmetric spaces G/K
with G simple.

§4. Examples

In this section we calculate the spectra of AY(G/K) for [AIIT] SU(p+ q)/S(U(p)
x U(q)) (= p) and [G] G,/SU(2)x SU(2). The notations used here are the same
as in the previous sections.

4.1. Example 1. [AIII] SU(p+4q)/S(U(p) x U(q))(g=p).

Here we treat the cases g=p+2 in detail. (As to the cases g=p, p+1, we only
exhibit the results.)

[AII1] SU(p+q)/S(U(p)x U(9)  (g=p+2)

T T
! ! ! 1
O—O0——0O—®

-~ q—1
Let us set &i=ap+q—i (lélép)’ Ai=Ap+q—i (lélél’), ﬂ= Z ®; and A0=
-~ i=p+1
Ao=0. Then we have:

(a) Oai=—&,~, 9&,'-'—'—&,- (1§l_<____.p—1),
0= —(8,+B), 08, = — (2, +B).

(b) D(G, K)={ ?, ki A+ A) | ki€ Z, k20, (1Si<p)}.

@ 40 (1) E a(=8), E b (=),
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Béij(’:_éij), GEij(=—éij) (Igigjsp-1);
@) Tt 3 @ta)B(=m).
S a4t 3 (uta)+B (=1,
k=i k=j+1

Oni; (= —Aip), 0 (=—nyp)  (1Sisjsp-1);

[l M'ﬂ

(3°)

M=

A ( = Ci)’
i k

00 (= —(Gi+B), 0L (==(Li+p)  (1SiSp);
(4% éi(dk+°‘tk)+ﬂ(=ﬂ,~),913,-(=—B.-) (Isisp):

iak (=€.’),

(5% -8
Computing A(x) for each o€ 4*(K) we obtain the following list of A e D(G)
such that B(A4)# ¢:

A B(A)
I M, Bi(iel3), —Bjely)
AD A+ A+ A+ Ap + My &y, 08, 1y Oy
(1Sigjsp-1)
Ao+ A+ A+ Ap + M &y, 08, 0y, 00
(I<igjsp-1)
A Ao+ A+ A+ Ay + My 4, 64
(I=i<p)
A+ 4+ A4,+ 4, +M, 60
(I=i<p)
(IV) Appi+4,-1+M, -B
Here we mean by M, an arbitrary element of D(G, K) and set
Io={i|1<i<p, ie My}, IE={1}u{i+1|iel,, i#p}.

Thus we can easily observe B, =¢ except the case (I). We now assert that one of
the assumptions (1) and (2) or Proposition 3.4 is satisfied in the case (I). We obtain
by the definitions of B,, I, and I§:

By={Bilielg\lo} U{—PB;|jel\I}.

Let us set
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13-\10={i1 <i2... <im};

T\[§={j1<Jja2-e-<Jn}-
Then we have:

(1) If pely, then we have m=nand i, <j,<i,<j,<...<i,<j,

(2) If p&ly, then we have m=n+1 and i, <j,;<i,<j,<...<i,<j,<in4i.
Noting the fact i<j<f;>B;, we know that our assertion has been already shown
except the equality (M, Bf , )=0in the case (2). To show (M,, f¥ ., )=0 we set
ip=maxl,. Since p&I,, we have ij<p—1 and hence iy+1=max (I§\[)=1i,,;.
This means (M, af)=(M,, 4¥)=0 for all i (i,,;<i<p). Since M,eD(G, K)c
a, we have (Mo, a*)=0 for all j (p+1=<j<q—1). Therefore we have (M,, B¥ . )=
0, proving our assertion. Thus we know that the equality (3.11) holds (see Remark
in §3).

In the same manner as above we can show that the equality also holds in the
case g=p or p+1. Consequently we obtain the following tables:

(1) [AII] SU(p+q)/S(U(p)x U(9))(92p+2)

A a(A)
@O M, $1(Mo)
Ao+ A+ Aj+ A + M, 2
an (I1sisj=sp-1)
Ao+ A+ A+ A + M 2
(Isigsjsp-1)
Aoy + A+ A+ Ay + My 1
(1=i=p)
(I Ao+ A+ Ap+ App + M, 1
(I1=igp)

(2) [ALII] SUQRp+1)/S(U(p)x U(p+1))

xt a2 ap
<(_} <‘O ...... (\
O O—— oveee O
®2p  d2p-1 Zpti
A4 a(A)

@ M, #1(Mo)
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A+ A+ Aj+ Ay + M, 2
(Isisjsp-1)
(II) /’l\i-1+Ai+Aj+/Tj+l+M0 2
(1sisj<p-1)
A+ A +24,+ M, 1
(I1=isp)
111 N
(I Aoyt A, 424, + M, 1
(1<i<p)

Notation: A;=4,,-;+, (1Zi<p)

(3) [4l1] SURp)/S(U(p)x U(p))

Coay a2 ap-1
o—0 O\
I l I Oap
I S
az2p-1 A2p-2 Gp+i
A a(A)
0} M, #1(Mo) (pE1(M,))
#I(Mo)+1 (pel(My))
A+ A+ A+ Ay + M, 2
(ISigj<p-1)
a0 A+ A+ A+ A+ M,y 2
(I=igj=p-1

Notation: A;=4,,_; (1Si<p)

4.2. Example 2. [G] G,/SU(2) x SU(2)
)
We have
(@) Oo=—o;(i=1,2).
(b) D(G, K)={2k,A,+2k,A, | ky, ky€ Z, ky, k,=0}.
(©) A¥(K)=d={tay, o, +(a;+0a,), £ +a,), +(3a;+0as),
+(3ay +205)} .

Computing A(x) for each o € 4*(K), we have the following list of A e D(G, K)
such that B(A)# ¢ or [(A)# ¢:
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A B(A)
O M, ¢
(InD A;+M, (Mo, af) (M, a3)
0 0 200, + 1y
+ 0 oy, + 2oty +ay)
0 + —0y, 20, + 0,
+ + +a,, + (20, +0a5)
() A,+M, (M, o)
0 oy, (30 +205)
+ +a,, +30; +20,)
(V) A;+A4,+M, (Mo, of) - - :
0 —(org +ap), 3oty oy
+ +(ay +0ay), £(30; +a3)

Here we mean by M, an arbitrary element of D(G, K). It is easy to see that except
the case (II) (Mo, a¥)=(M,, a¥)=0, i.e., A=A, one of the assumptions (1) and
(2) of Proposition 3.4 is satisfied.

In the following we examine the case A=A4,. By the dimensional formula of
Weyl we know the degree of [p] (with A, as its highest weight) to be 7. Let Q be
the set of weights of [p]. Then we have:

Q={i/119 i(_Al +A2)a i(zAl_A2)9 0}'

This can be easily verified by considering the sequence of weights:
Al _-_al_y —A1+A2__ﬂ_)2/11_/12__:gl—)0

__a_‘_) —2A1+A2_1)A!_A2_.l) —Al‘

Consequently we know the multiplicity of each weight equals 1. We now select a
basis {v;}_3<i<3 Of V" such that

043€V44n V226V iatay V:1€Vi@a-42, Vo€V03
(03, 3) =1, X_,03=0, X, -v,=2mn/—1v,.
Let w be a non-zero vector of (V®g¢)k. Since B(A;)=B,={2x,;+a,}, we have

Ow=¢ew (e2=1). In order to show e=1, we first suppose e=—1. Then w can be
written:

3 .
w= Z vi®Yi'

i=-3

where Y,e g such that 0Y;= —Y;. We remark that each Y; can be expressed by a
linear combination of the vectors (X,—X_,)’s (xe4) and A;’s (i=1,2). Since
Xo+ X o Xpp+X_,, €, we have

0=(Xa1+X—a1)w= "'+(Xal+X—a|)DZ®YZ+02®[X¢|+X—ap Yz]
+(Xa1+X—a1)v3®Y3+D3®[Xa1+X—an Y3]§
0=(X,,+ X _Jw="+03Q[X,,+ X _,,, Ys].
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Hence we obtain

4.1) [ Xy, +X_,, Ya]+20/—1Y,=0;
4.2) [X,, +X_,, Y,]+Y;=0;
4.3) [X,,+X_,, Y;1=0.

From (4.1) and (4.2) it follows

4.9 [Xa+ X o [Xo, + Xy, Ya11=20/—1Y5.

Now we define non-zero complex numbers a, b, ¢ and d by the equalities
[Xep Xod=aXo 00y [Xaps Xoy 40,1 =0X 20, 40y
[Xap Xooy 40,1 =6X30, 400 [ Xap X3ay 40,1 =X 34, 4+ 20

Then by simple calculations we obtain:

(4.5)

[X—an Xal]= _a’lk’ [X—ala Xa2]=0s

6ny/—1 8ny/—1
(46) [X-—ap Xa,+a2]= \‘/1 Xap [X—als X2a1+a2]= __bLXalth

6n/—1
[X—ap X3au+az] = { X2azl+a2’ [X—ala X3a1+2az]=0'

[X_az’ X“']=0’ [X—aza Xa2]= —af,

2n—1
(4'7) [X—az’ Xat, +a1] =- \/ X

a ay [X—az’ X2a1+a2]=0a

2n/—1
[X—az’ X3al+a2] =0’ [X—az’ X3a|+2az] =—- \‘/1 X3a1 +azt

Hence we have:
[Xuz'l'X—a;a Xal —X-an] = _a(Xa1+az_X—(a1+az)) >
[Xaz'l'X—ap Xuz—X—az] = _2a;"

2n -1

a

[Xaz+X—az’ Xal+a2_X—(u1+a2)]= - (Xal_X—an)a

(4-8) [Xaz+X-az’ XZal +az _X—(2d1+az)] =0,
[Xa2+X—az’ X3a1 +az_X—(3a1 +az)] =d(X3aq+2az_X—(3a1+2a2)) s

2n—1
[Xaz+X—aza Xaa, +2a2 “X—(aa. +2a2)] == \/T (X3au+a2_X—(3a1 +az)) )

[Xaz+X—az’ Al] =0’ [Xa2+X—¢1’ A2]= —27T\/—_1_(A2, aZ)(Xaz_X—az)‘

Therefore Y, can be written in the form

393
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(4.9) Y3=e(X2al+¢2—X_(2a‘+az)))+f/11: e,fE C.
Putting (4.9) into (4.4), we have

- 2
e{14n\/— 1(X211+a2_X—(2a1+a2))_ '4_‘81;:_ (Xaz_X—az)}

+4”\/j(/11, ay) fof =27T\/j{e(xza.+az_X—(2a1+az)) +fA,}.

Then it is easy to see that e=f=0. This implies Y; =0, contradicting our assumption
w#0 (see Lemma 3.1). Therefore we have e=1.

As a consequence of the above arguments we obtain the quality (3.11).

We resume the results in the following table:

[G] G,/SU@2)xSU(2)

A a(A)
D M, $1(M,)
(I A+ M, (Mo, af) (M, o3)

0 0 0

+ 0 1

0 + 1

+ + 2
(1) A+ My (M, of)

0 1

+ 2
av) (A, +A4,+M, (M, af)

0

+ 2
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