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§ 0 .  Introduction

Let Sp(n) be the n-th symplectic group and S2Sp(n) its  loop  space . In [12],
the Hopf algebra structure of 11,(QSp(n)) and 11,(QSp(n))0 Z [ - l ]  were determined
where h (  )  is  a  complex oriented homology theory. Moreover, F. Clarke [9]
and the author [13] determined that of K,(52Sp(n)) independently.

The purpose of this paper is to determine MU,(S2Sp(n)) as a Hopf algebra over
M U (pt) where M U is complex cobordism.

Let C  b e  a  MU,(pt)-algebra and f(x)-= Ei „  f i x , g(x )= L o  g i xi e C[[x]].
Define (f  Eg)(x) e (CO m u . ( p ) C )[[x ]] to  be E i "  (E .1.± k = i  f i Og k )xi. T h e n  the

j ,k o
main result of this paper is

Theorem 2.14.
T h e re  a r e  r2 1 _ 1 EMU,(S2Sp(n)) (1 . i . n) s u c h  th at  M U ,(S 2 S p (n ) )=

11/1U,(pt)[r 1 , r 3 ,..., r 2 „_ 1 ] as a Hopf algebra and there ex ists P(x )e M U,(pt)[[x ]]
such that the diagonal 4) is given by

(r2k- i) =
(10r„)(x)+ (r„1=11)(x)+ P(x)•(r„Or„)(x)1

101 + (r„Dr„)(x ) _12k-1

w here r„(x )= En r 2 1  1 x 2 1  an d  EE denotes the coefficient of xi in E a ixi.

The paper is organized as follows:
In §1, we recall some general results in [12] for MU,(S2Sp(n)).
In §2, we introduce some algebraic notations and prove the main re su lt . The proof
is similar as one in [13], but more systematic.

We use the quite similar notation as in [12] or [13], so the definitions of some
usual notations are omitted in this paper.

The author would like to express his hearty thanks to Professor H. Toda and
Professor A. Kono for their valuable advices.
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§ 1 .  The algebra M U ,(Q S p(n))

First, recall some notations (See [12] and [13]).
Let U(n), Sp(n) be the n-th unitary and symplectic groups, and U, Sp the infinite

groups U(co), Sp(co), respectively.
Let g: U(n)c->Sp(n) and c: Sp(n)(4U(2n) be the natural inclusions in [12].
Let i„: Sp(n)c-Sp be the natural inclusion.
The H-structure of 52SU is given by the loop product /1: 52SU x 52SU—>S2SU

and the diagonal map is denoted by z1 OSU—q2SU x 2SU . Futherm ore, le t J:
OSU—q2SU be the loop inverse of S2SU.

Define the conjugation I: U—>U by I(A )- A . Then I induces a map BI: BU—
BU.

Let g: BU=>S2SU be the B ott m ap. For simplicity, we define 52SU—>S2SU
to be goBlog -1 .

Let c(x) be the formal inverse of the formal group Fm u  (for detail, see [2] and
[17]).

Put R =M U * (pt).
Under the notation, we can quote the results from [12] and [13].

Theorem 1.1.
( i ) There exist fl i e MU2i(r2SU) 1) such that

MU * (52SU)=R[B 1 , f i„,...] as  an  algebra and c(13 i) = E i ±k _1 13i 013k w here
j ,k > 0

(-I; is the reduced diagonal defined by J .
(ii) S2c.flg=,19(id x(Joi))0z1 holds and if  we put

f i(x )=L io  I31x1 (130=1) an d  ex tend J * ,  l *  and S2(c.g) *  o v e r M U * (S2SU) [Lx]]
by  the natural way, then

JJ(x )=11f l(x ), / * 13(x)=13(e(x)) and

52(cog)* fl(x)= 13(x)1,3(t(x)).

(iii) There are z2k-1 E MU4k - 2 (IS p) such that
MU * (S2Sp)=R[z i , z 3 ,..., z 2k _ i ,...] a s  a n  alg e b ra and  S 2c*z2k_, ==

-
f l 2 k - 1

modulo the subalgebra generated by 13 1 , fl2 ,...,13 2k -
2
 ov er R . T hus Q c *  is  a  split

monomorphism.
(iv) (Qin) * :  MU * (52Sp(n))—>MU* ( f 2 S p )  is  a  split m o n o m o rp h ism  and

Im(Qi„) *  is generated by z 1 , z 3,..•, z 2,1 as a subalgebra of MU * (QSp).

For the proofs, see [12] and [13].

§ 2 .  Algebraic notation and the main result

Put R =M U * (pt), A = M U * (S2SU) and B =M U * (S2Sp), for simplicity.
We need some algebraic notations.
Let C be an R-algebra and C [[x]] the formal power series ring over C .  Then
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clearly C [[x ]] has a natural R- or R[[x]]-algebra structure.
Let C, D be R-algebras and f :C -4 D  be an R-algebra homomorphism. Then

w e define f :  C [[x ]]— >D [Lx]] b y  f (E i cixi)= E i f (c i) x '  w here ci e C .  A lso , if
f (x )=  E i f ix  e C [ [x ] ]  a n d  g(x)= g  i xf e D [[x ] ] ,  then  w e define  (f Eig)(x) e
(CO R D ) [[x ]] to be E k ( Ei+i=k (f iggm x k .

If C is a Hopf algebra over R, then 4): C-4CO R C is an R-algebra homomor-
p h ism . So we can obtain 4): C [[x]] — (CORC)

Let C [[x ]],„  be all even functions in C [[x ]] and C[Exi]Od all odd functions in
C[[x]] where C is an R-algebra.

Definition 2.1.
Define bev(x), bod(x)e A [[x]] to be 1+ Ek m r ( x ) •  fik 

a n d
 k > 1 111j, d  (X ) • '6,,

respectively, where mr(x) e  R [[x ]]„  and InZd(x)e R[[x]],.
Of course, if we change mr(x) and mr1(x), then we get various bev(x)E A[[x]]„

and bod(x)E AUXE 0 d.
Let p (x )= Y P21- e R [[x ]]

o d •

Definition 2.2.
W e call the pair (bey, bod) to  be  a  nice pair for p(x), if  Obev=bevElbev+

bodEbod and Obod= bevEbod +bodEbev+ p • (bodObod) hold.

Then we have the following lemma.

Lemma 2.3.
The pair (bey, hod) is a nice pair for p(x) if and only if

In v = r n i n g i  + I n v. m yc d t

(2.4)
nve =  I n v my, . r n v /  +p.m7d.mrl_

hold for all

P ro o f .  By the Definition 2.1.,

Obev(x)= 4)( I + E k > v(x) • fik) = L  nif v (x) (Es +t=k flsO P  and

obod(x )= ck( Ek> 0 mzd(x)• fik)= Ek infd(x)(Es-Ft=k fis® )6 1) •

On the other hand, if (bey, bod) is nice, then we have

Obev(x)=(bevEbev+ bodEbod)(x)

= (1 + E s >0  in es'v (x) - 13s)0(1+Et>0 iK v (x)•

+(Es> 0 11W(x)fis)1:1(Et> 0 n (x)fi,) and

Obod(x)=(bevElbod+ bodObey+ p • (bodEbod))(x)

=(1 4- E, > 0  m N x ) . fls)0 (E r ›0  inri (x)• fir)

+ (E s > 0 tri: d (x)•fls)0( 1 + Ef > 0  n4 v (x)• 13 i)

+ P(x)• ( E s >  m d (x) • fls) E I (E ,>  0  m (x ) .
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If we check the coefficients at 131 013k _ t , then the only if part is easily seen.
To prove the converse, we have only to show the following two equations for

all s, t such that s+ t=k  under (2.4):

/rise  •tt4v +114d • rilV d =  I n s
e  1 * •m(14.ii and

rig V 1,n(t d n e s i  r n r ,  p

=m 1r n4+1+ 114 2  1. 114-V  +p  114 2 1 •negi•

We can easily show this by the induction for s and omit details.

Thus, the nice pair for p(x) has one to  one correspondence with the pair (inn,
mïd) for the fixed p ( x ) .  So, we denote the nice pair for p(x) decided with ( n 11, 5  m ci a)

by  (bey(mTv, i n ) ,  bod(mTv 9 In v ) ) A lso , w e  d e f in e  m(niv, mgd),e,v (resp. tn(mTu ,
m7d)r,d) to be the coefficient of bev(mTv, m l " )  (resp. bod(m1v, m7d)) at 13,.

Example.
If we put mr(x)= 0 and m7d(x)=x, then (2.4) gives

m(0, x)I'v =0, m(0, x)Sv =x 2 , m(0, x)Sv =.x 3 p(x)

m(0, x)7d=x, m(0, x)s d =  x 2 p (x )  and  m (0 , x )sd  x 3 + x 3(p(x)) 2 .

We put Bev(x)— bey(0, x)(x) and Bod(x)=bod(0, x)(x).

Now we consider / * bey, / * b o d .  Since I * : A—*A is  a  H opf algebra homo-
morphism over R, if (bey , bod) is nice for p(x), then (/ * bey, /  * bod) is so.

We denote it: A [[x]]— >R[[x]] corresponding f  e A[[x]] to the coefficient at
P u t e(x )=E i > , g ix i  where e(x) the  formal inverse of the form al group of

complex cobordism theory. Then, as is well-known, g 1 = — I (see [2]).

Lemma 2 .5 .  rc(( * fik ) =g k .

P ro o f .  [741,/3(x))] k = In(f3(e(x)))]k =[e(x)] k =g k . Since it and [ ], commutes,
the result follow s. 0
Thus, we have

7(/ * b e y )=7 4 1 ,(1 + k >  Mr • 13  k)) =  E k >  M  •  gk

7E(/*bod)= 7 (/ *(Ek>1 IC' • fik))= k >  1  r q d • g.

Proposition 2.6.
—1T here is a P ( x ) = E , ,  P2 i _  x 21, e R [[x]] o d such that

and

(2.7) *Bev(x))=x • P(x).

P ro o f .  Using (2.5), we have
n(/ * B ey(x ))=7d--.1‘ 1  M ( 0 ,  X ) le, v • gk . Since m "(0, x)= 0, w e obtain 4 /  * Bey(x))=

m(0, x)r • gk .
We need the following lemma.
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Lemma 2.8.
(i) m(0, x )r  and m(0, x)rr e •  Z E [x , p (x )]],
(ii) m(0, x)S,", =  2 k

X  +  h ig h e r and
m(0, x)lg _ 1 =  x2k-1  +  h ig h er f or all positive integer k.

Pro o f . All follows from (2.4) and by an easy in d u c tio n . 1=1

T h e n  w e  have [n(/ * Bev(x))] 2 1 +  =  0 a n d  P2 i_  1  =  [n(/ * Bev(x))] 21 =
E E 2 i> k 2  M (0 ,  4

e, v g j 2 1 .  Since k 2, the last can be written by g 1 , g2 ,...,g 21 and
b y  P 1 , P 2 , . . . ,  P 2 1 _ 3 .  S o  (2 .7 ) gives an  inductive  form ula  for the  definition of
P 2 i—  l• LI

Define f (x )=  E i , , f 2 i _ ,x2 i - - 1 e R [ [ x ] ] "  to  b e 1  M (0 , 2C) a • g„. Since
m(0, x)Td =x and g,= —1, we obtain f 1 = —1.

Lemma 2.9.
I f  f (x )  — x  m o d  x 2 " • R [ [ x ] ] ,  t h e n  m(f (x), x P(x))f,d — m (0, x ) modmod

X 2 " + 2  • R [[x ]] f or 2.

This lemma is a key fo rm u la . It is easy but tedious to show ( 2 .9 ) .  So we defer
this to the appendix.

Proposition 2.10.

f(x)= —x.

Proof. W e  p ro v e  th is  b y  the induction. Let assum e f (x ). — x  mod
x2 " • R [[x ]] for

Since 1 ,01 , =  id, we have

1 m(f, xPYk'd • gk = m(0, x)îd = x.

So, for n  1, we obtain the following equations

0=  [E k>  !HU', xP/Z d  g1]2 1+1= [ g t  ..f + Ek >2  in(f, xP)0 91]2„+

= +[Ek, — m(0, x)rl g 1 ] 2 „+  ,. Thus we have

f2n + 1 =  { E k  >  2  M O ,  X W I g k h n +  I •

B u t since f (x )= E k m(0, x)eg k ,  w e  h av e  a lso  f2„+1= EZ >2 •XYk" • g1] 2„-F 1.

Since R is torsion free,f2 „+ 1 =  0 . Thus the induction argument asserts the result. E l

Thus we have

(/ * Bev, IBod)=(1+ E k >  /77(XP, X)jcv • 8r k• ,—■k> 1 m(xP, — x )1°d  fild -
But, if  we p u t Bey' = Bev+ P • Bod and Bod'= —Bocl, then we have the following
proposition by an easy calculation.

Proposition 2.11.
(Bev', Bod') is a nice pair for P.
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Since n(B ev ')=xP, n(B od')= — x, one can show easily / * Bev= Bev' , ,B o d  =
Bod'.

Since Bev(x) is unit in A [[x ]], we can put

r(x )=i r _ , x21 - 1 = Bod(x)1Bev(x).

As in [13], we can calculate Or(x) and 0(coci),r(x).

Proposition 2.12.

r[11+1 Or+ P•rOr 
1 C)1 + rEr

2r+ P•r 2  

(ii) Q(coq)*r — 1 + r 2•

P roo f. Since A [[x]]--Lb'O R A )  [ [x ]] and A [[x]] ORA [ [x]]—F2> ( A  ORA) [ [x]]
are R-algebra homomorphisms, and since (Bev, Bod) is nice, (i) of (2.12) is clear.

Since A.(1 x J)0z1 : OSU— q2SU is  null-homotopic, we have 2* . ( 1 0 4 ) .4 r  =O.
By this equation and (i) of (2.12), we obtain easily the following equation:
J,r= — r1(1+P • r). O n  th e  o th e r  h a n d , w e  h a v e  l * r =  „B odll „Bev= Bod' 1
Bev' = — Bod 1(Bev+ P • Bod)= — 11(1+P • r). So we obtain

.1 ,0/ „r=.1„..1„r=(J.J),r=r.

Then, by (ii) of (1.1), we have the following equations:

Q (coq)r= 4 .(l o f *„/ * )c o r  _   r+ J,./ „r + P• r • „r
1 + r•J,./ „r

_   , r+ P-r 2

• El1 + r2

Put F=R [r 1 , r 3 ,...,
Then, as in [13], we can now prove,

Theorem 2.13. 1m (52c),= F.

P roo f. First, we prove F c 1m ( Q c ) , .  By the  definition o f  r(x), Bev(x) and
Bod(x), r i =f3

1
 is easily seen. On the other hand, (iii) of (1.1) implies ( f2 c )z 1

So, r 1 e Im (Oc),.
Assume that r 1 ,  r3 ,..., r 2 i,_ ,e 1 m (Q c ) ,.  Note that

2 .r (x )+  P (x ). (r (x ))2 = +L + (r(x)) 2_  2 k + I 2k

modulo R[r 1, r 3 ,..., 1.
2 k - 1 ] . 1 . 3 , •  •  • ,  1. 2 k -  J O E ImSince R [r,, (Oc), by the assumption,

we have 2r 2 k +  , E IM (S2c)* . But, by (iii) of (1.1), Tm (Oc), is a split submodule of A.
Thus, r2 k +  1 e lm  (52c), and we have F c Im(Oc),.

By (ii)  o f (2.8), r 2 k  _ 1 — 8= , 2 k - 1  mod R[I3 1 , 8r  2
,

• • ', /
9

2k - 2 ]  is easily  seen. Then
(iii) of (1.1) asserts the following equation:
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r2k - 1 ( Q C ) * Z 2 k  -  1

m odulo  R[(52c) * z (52c),,,z2k_ J .  S o  R [r,, •3 ,..., r _ i ] =R [(Q c)z i ,
(Q c)z 3 ,...,(Qc),,z 2 k _ 1 ]  can be obtained by an  easy induction . If we put k= oo,
then we have ( 2 .1 3 ) .  I:1

We have also

Theorem 2.14.
There are  r21 _ 1 EMU * (S2Sp(n))(1_i_n) su ch  th at MU(52Sp(n))=MU * (pt)

[1.1 , r 3 ,..., r 2 „_ 1 ]  a s  a  Hopf algebra an d  there ex ists P(x)e MU * (p t ) [ [x ] ]  such
that the diagonal 0 is given by

0 0 . 2 i -  1 ) [ ( 1 ID r„) (x) + (r„ PI) (x) + P(x) • (r „Or )(x ) 
01 + (r „Er „)(x) 21.-1

where r„(x)= En r 21 _ 1 x 2 1 - '  and  [Ea ixi] i  denotes the coefficient of  x i  in  Ea ixi.

Appendix.

First, we prove that if f (x ) —  x  mod x 2 " • R [[x ]], then the following equations
hold for all 2:

(a) m(xP, f)" m(xP, — x)gy mod x 2 "+1 • R [[x]]
(A.1)

( b )  m(xP, f)r," a--  m(xP, — x) modmod X2 " + 2  •  R[[x ]] .

W e prove this by the  induc tion . Using (2 .4 ), we have easily m(xP, =
f 2  - F X2 P  and  m(xP, f)(1d =2xPf+Pf 2 . So, (A .1) is directly seen for k = 2. For

3, we obtain

m(xP, f)?c d =m(xP, f )  • m(xP, )7; +  m(xP, f);" • m(xP, f

+P • m(xP, f)? d  • tn(xP, f)),"!

=f. m(xP, f),e,L 1 + xP • m(xP, f )0 1 +f P  m (xP ,

By the assumption of the induction, and by the fact that deg (m(xP, — x)ri)
2 (k• 3) and deg ( P )  1 ,  we obtain

m(xP, f)r,d ( —x) m(xP, — x)fL i + xP • m(xP, — x)0. 1 +(— x) • P m(xP, — x ) . 1

m(xP, — x)r,d mod X2 "+2 • R[[x ]] .

The case (a) is obtained by the similar method.
Next, we prove that

( a )  x • m(xP, x)fv =m(0, x) 1

(A.2)
( b )  m(xP, — x)r,d = - m(0, x)rc d (k 1) .

Again, we prove this by the induction on k.
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The results are clear for k =1, for

x • m (xP , -x )d =x  • xP=P • (m(0, x)7d)2 =m(0, x)(1d and

m(xP, -X )7  =  - X  =  - m(0, x ) .

Assume the results for k. Then we have

tn (xP , -x )1 = m (xP , _  x ) .  m (x p , _  x)f V V • m(xP,)+ m (x P ,  X

+P • m(xP, - x)7d • m(xP, - x)r,d

= ( - X) • m(xP, - x)fv +xP • m(xP, - x ) ' -xP • m(xP, -x)f,a

= ( - X) • m(xP, - x),ec v  = - m(0, x)g i .

The case (a) for k+ I  is proved more easily. (b ) of (A. l )  and (A.2) assert the
key lemma (2.9).
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