The Hopf algebra structure of $\mathbf{M U}_{*}(\Omega \mathbf{S p}(\mathbf{n}))$

By
Kazumoto Kozima

(Received Feb. 1, 1982)

§0. Introduction

Let $S p(n)$ be the n-th symplectic group and $\Omega S p(n)$ its loop space. In [12], the Hopf algebra structure of $H_{*}(\Omega S p(n))$ and $h_{*}(\Omega S p(n)) \otimes Z\left[\frac{1}{2}\right]$ were determined where $h_{*}()$ is a complex oriented homology theory. Moreover, F. Clarke [9] and the author [13] determined that of $K_{*}(\Omega S p(n))$ independently.

The purpose of this paper is to determine $M U_{*}(\Omega S p(n))$ as a Hopf algebra over $M U_{*}(p t)$ where $M U$ is complex cobordism.

Let C be a $M U_{*}(p t)$-algebra and $f(x)=\sum_{i \geqq 0} f_{i} x^{i}, g(x)=\sum_{i \geqq 0} g_{i} x^{i} \in C[[x]]$. Define $(f \square g)(x) \in\left(C \otimes_{M U *(p t)} C\right)[[x]]$ to be $\sum_{i \geqq 0}\left(\sum_{\substack{j+k=i \\ j, k \geqq 0}} f_{j} \otimes g_{k}\right) x^{i}$. Then the main result of this paper is

Theorem 2.14.

There are $r_{2 i-1} \in M U_{*}(\Omega S p(n))(1 \leqq i \leqq n)$ such that $M U_{*}(\Omega S p(n))=$ $M U_{*}(p t)\left[r_{1}, r_{3}, \ldots, r_{2 n-1}\right]$ as a Hopf algebra and there exists $P(x) \in M U_{*}(p t)[[x]]$ such that the diagonal ϕ is given by

$$
\phi\left(r_{2 k-1}\right)=\left[\frac{\left(1 \square r_{n}\right)(x)+\left(r_{n} \square 1\right)(x)+P(x) \cdot\left(r_{n} \square r_{n}\right)(x)}{1 \otimes 1+\left(r_{n} \square r_{n}\right)(x)}\right]_{2 k-1}
$$

where $r_{n}(x)=\sum_{i=1}^{n} r_{2 i-1} x^{2 i-1}$ and $\left[\sum a_{i} x^{i}\right]_{j}$ denotes the coefficient of x^{j} in $\sum a_{i} x^{i}$.
The paper is organized as follows:
In $\S 1$, we recall some general results in [12] for $M U_{*}(\Omega S p(n))$.
In §2, we introduce some algebraic notations and prove the main result. The proof is similar as one in [13], but more systematic.

We use the quite similar notation as in [12] or [13], so the definitions of some usual notations are omitted in this paper.

The author would like to express his hearty thanks to Professor H. Toda and Professor A. Kono for their valuable advices.

§ 1. The algebra $M U_{*}(\Omega S p(n))$

First, recall some notations (See [12] and [13]).
Let $U(n), S p(n)$ be the n-th unitary and symplectic groups, and $U, S p$ the infinite groups $U(\infty), S p(\infty)$, respectively.

Let $q: U(n) \hookrightarrow S p(n)$ and $c: S p(n) \hookrightarrow U(2 n)$ be the natural inclusions in [12].
Let $i_{n}: S p(n) \hookrightarrow S p$ be the natural inclusion.
The H-structure of $\Omega S U$ is given by the loop product $\lambda: \Omega S U \times \Omega S U \rightarrow \Omega S U$ and the diagonal map is denoted by $\Delta: \Omega S U \rightarrow \Omega S U \times \Omega S U$. Futhermore, let J : $\Omega S U \rightarrow \Omega S U$ be the loop inverse of $\Omega S U$.

Define the conjugation $I: U \rightarrow U$ by $I(A)=\bar{A} . \quad$ Then I induces a map $B I: B U \rightarrow$ $B U$.

Let $g: B U \simeq \Omega S U$ be the Bott map. For simplicity, we define $\ell: \Omega S U \rightarrow \Omega S U$ to be $g \circ B I \circ g^{-1}$.

Let $c(x)$ be the formal inverse of the formal group $F_{M U}$ (for detail, see [2] and [17]).

Put $R=M U_{*}(p t)$.
Under the notation, we can quote the results from [12] and [13].

Theorem 1.1.

(i) There exist $\beta_{i} \in M U_{2 i}(\Omega S U)(i \geqq 1)$ such that $M U_{*}(\Omega S U)=R\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n}, \ldots\right]$ as an algebra and $\tilde{\phi}\left(\beta_{i}\right)=\sum_{\substack{j+k=1 \\ j, k>0}} \beta_{j} \otimes \beta_{k}$ where $\tilde{\phi}$ is the reduced diagonal defined by Δ.
(ii) $\Omega c \circ \Omega q=\lambda_{\circ}(i d \times(J \circ \ell)) \circ \Delta$ holds and if we put
$\beta(x)=\sum_{i \geqq 0} \beta_{i} x^{i}\left(\beta_{0}=1\right)$ and extend J_{*}, ℓ_{*} and $\Omega\left(c^{\circ} \circ\right)_{*}$ over $M U_{*}(\Omega S U)[[x]]$ by the natural way, then

$$
\begin{aligned}
& J_{*} \beta(x)=1 / \beta(x), \iota_{*} \beta(x)=\beta(\iota(x)) \quad \text { and } \\
& \Omega(c \circ q)_{*} \beta(x)=\beta(x) / \beta(\iota(x)) .
\end{aligned}
$$

(iii) There are $z_{2 k-1} \in M U_{4 k-2}(\Omega S p)$ such that
$M U_{*}(\Omega S p)=R\left[z_{1}, z_{3}, \ldots, z_{2 k-1}, \ldots\right]$ as an algebra and $\Omega c_{*} z_{2 k-1} \equiv \beta_{2 k-1}$ modulo the subalgebra generated by $\beta_{1}, \beta_{2}, \ldots, \beta_{2 k-2}$ over R. Thus Ωc_{*} is a split monomorphism.
(iv) $\left(\Omega i_{n}\right)_{*}: M U_{*}(\Omega S p(n)) \rightarrow M U_{*}(\Omega S p)$ is a split monomorphism and $\operatorname{Im}\left(\Omega i_{n}\right)_{*}$ is generated by $z_{1}, z_{3}, \ldots, z_{2 n-1}$ as a subalgebra of $M U_{*}(\Omega S p)$.

For the proofs, see [12] and [13].

§ 2. Algebraic notation and the main result

Put $R=M U_{*}(p t), A=M U_{*}(\Omega S U)$ and $B=M U_{*}(\Omega S p)$, for simplicity.
We need some algebraic notations.
Let C be an R-algebra and $C[[x]]$ the formal power series ring over C. Then
clearly $C[[x]]$ has a natural R - or $R[[x]]$-algebra structure.
Let C, D be R-algebras and $f: C \rightarrow D$ be an R-algebra homomorphism. Then we define $f: C[[x]] \rightarrow D[[x]]$ by $f\left(\sum_{i} c_{i} x^{i}\right)=\sum_{i} f\left(c_{i}\right) x^{i}$ where $c_{i} \in C$. Also, if $f(x)=\Sigma_{i} f_{i} x^{i} \in C[[x]]$ and $g(x)=\sum_{j} g_{j} x^{j} \in D[[x]]$, then we define $(f \square g)(x) \in$ $\left(C \otimes_{R} D\right)[[x]]$ to be $\sum_{k}\left(\sum_{\substack{i, j=k \\ i, j \geq 0}}\left(f_{i} \otimes g_{j}\right)\right) x^{k}$.

If C is a Hopf algebra over R, then $\phi: C \rightarrow C \otimes_{R} C$ is an R-algebra homomorphism. So we can obtain $\phi: C[[x]] \rightarrow\left(C \otimes_{R} C\right)[[x]]$.

Let $C[[x]]_{e v}$ be all even functions in $C[[x]]$ and $C[[x]]_{o d}$ all odd functions in $C[[x]]$ where C is an R-algebra.

Definition 2.1.

Define $\operatorname{bev}(x), \operatorname{bod}(x) \in A[[x]]$ to be $1+\sum_{k \geqq 1} m_{k}^{e v}(x) \cdot \beta_{k}$ and $\sum_{k \geqq 1} m_{k}^{o d}(x) \cdot \beta_{k}$, respectively, where $m_{k}^{e v}(x) \in R[[x]]_{e v}$ and $m_{k}^{o d}(x) \in R[[x]]_{o d}$.

Of course, if we change $m_{k}^{e v}(x)$ and $m_{k}^{o d}(x)$, then we get various $\operatorname{bev}(x) \in A[[x]]_{e v}$ and $\operatorname{bod}(x) \in A[[x]]_{o d}$.

Let $p(x)=\sum_{i \geqq 1} p_{2 i-1} x^{2 i-1} \in R[[x]]_{o d}$.

Definition 2.2.

We call the pair (bev, bod) to be a nice pair for $p(x)$, if $\phi b e v=b e v \square b e v+$ bod \square bod and $\phi b o d=b e v \square b o d+b o d \square b e v+p \cdot(b o d \square b o d)$ hold.

Then we have the following lemma.

Lemma 2.3.

The pair (bev, bod) is a nice pair for $p(x)$ if and only if

$$
\begin{align*}
& m_{k}^{e v}=m_{1}^{e v} \cdot m_{k-1}^{e v}+m_{1}^{o d} \cdot m_{k-1}^{o d} \\
& m_{k}^{o d}=m_{1}^{e v} \cdot m_{k-1}^{o d}+m_{1}^{o d} \cdot m_{k-1}^{e v}+p \cdot m_{1}^{o d} \cdot m_{k-1}^{o d} \tag{2.4}
\end{align*}
$$

hold for all $k \geqq 2$.
Proof. By the Definition 2.1.,

$$
\begin{aligned}
& \phi \operatorname{bev}(x)=\phi\left(1+\sum_{k>0} m_{k}^{e v}(x) \cdot \beta_{k}\right)=\sum_{k} m_{k}^{e v}(x)\left(\sum_{s+t=k} \beta_{s} \otimes \beta_{t}\right) \quad \text { and } \\
& \phi \operatorname{bod}(x)=\phi\left(\sum_{k>0} m_{k}^{o d}(x) \cdot \beta_{k}\right)=\sum_{k} m_{k}^{o d}(x)\left(\sum_{s+t=k} \beta_{s} \otimes \beta_{t}\right) .
\end{aligned}
$$

On the other hand, if (bev, bod) is nice, then we have

$$
\begin{aligned}
\phi b e v(x)= & (b e v \square b e v+\operatorname{bod} \square b o d)(x) \\
= & \left(1+\sum_{s>0} m_{s}^{e v}(x) \cdot \beta_{s}\right) \square\left(1+\sum_{t>0} m_{t}^{e v}(x) \cdot \beta_{t}\right) \\
& +\left(\sum_{s>0} m_{s}^{o d}(x) \beta_{s}\right) \square\left(\sum_{t>0} m_{t}^{o d}(x) \beta_{t}\right) \quad \text { and } \\
\operatorname{bbod}(x)= & (\operatorname{bev} \square \operatorname{bod}+\operatorname{bod} \square b e v+p \cdot(\operatorname{bod} \square b o d))(x) \\
= & \left(1+\sum_{s>0} m_{s}^{e v}(x) \cdot \beta_{s}\right) \square\left(\sum_{t>0} m_{t}^{o d}(x) \cdot \beta_{t}\right) \\
& +\left(\sum_{s>0} m_{s}^{o d}(x) \cdot \beta_{s}\right) \square\left(1+\sum_{t>0} m_{t}^{e v}(x) \cdot \beta_{t}\right) \\
& +p(x) \cdot\left(\sum_{s>0} m_{s}^{o d}(x) \cdot \beta_{s}\right) \square\left(\sum_{t>0} m_{t}^{o d}(x) \cdot \beta_{t}\right) .
\end{aligned}
$$

If we check the coefficients at $\beta_{1} \otimes \beta_{k-1}$, then the only if part is easily seen.
To prove the converse, we have only to show the following two equations for all s, t such that $s+t=k$ under (2.4):

$$
\begin{aligned}
& m_{s}^{e v} \cdot m_{t}^{e v}+m_{s}^{o d} \cdot m_{t}^{o d}=m_{s-1}^{e v} \cdot m_{t+1}^{e v}+m_{s-1}^{o d} \cdot m_{t+1}^{o d} \quad \text { and } \\
& m_{s}^{e v} \cdot m_{t}^{o d}+m_{s}^{o d} \cdot m_{t}^{e v}+p \cdot m_{s}^{o d} \cdot m_{t}^{o d} \\
& \quad=m_{s-1}^{e v} \cdot m_{t+1}^{o d}+m_{s-1}^{o d} \cdot m_{t+1}^{e v}+p \cdot m_{s-1}^{o d} \cdot m_{t+1}^{o d} .
\end{aligned}
$$

We can easily show this by the induction for s and omit details.
Thus, the nice pair for $p(x)$ has one to one correspondence with the pair ($m_{1}^{e v}$, $m_{1}^{o d}$) for the fixed $p(x)$. So, we denote the nice pair for $p(x)$ decided with ($m_{1}^{\text {ov }}, m_{1}^{o d}$) by $\left(\operatorname{bev}\left(m_{1}^{e v}, m_{1}^{o d}\right)\right.$, $\operatorname{bod}\left(m_{1}^{e v}, m_{1}^{o d}\right)$). Also, we define $m\left(m_{1}^{e v}, m_{1}^{o d}\right)_{k}^{e v}$ (resp. $m\left(m_{1}^{e v}\right.$, $\left.\left.m_{1}^{o d}\right)_{k}^{o d}\right)$ to be the coefficient of $\operatorname{bev}\left(m_{1}^{e v}, m_{1}^{o d}\right)\left(\right.$ resp. $\operatorname{bod}\left(m_{1}^{e v}, m_{1}^{o d}\right)$) at β_{k}.

Example.

If we put $m_{1}^{e v}(x)=0$ and $m_{1}^{o d}(x)=x$, then (2.4) gives

$$
\begin{array}{ll}
m(0, x)_{1}^{e v}=0, & m(0, x)_{2}^{c v}=x^{2}, \quad m(0, x)_{3}^{e v}=x^{3} p(x) \\
m(0, x)_{1}^{o d}=x, & m(0, x)_{2}^{o d}=x^{2} p(x) \quad \text { and } \quad m(0, x)_{3}^{o d}=x^{3}+x^{3}(p(x))^{2}
\end{array}
$$

We put $\operatorname{Bev}(x)=\operatorname{bev}(0, x)(x)$ and $\operatorname{Bod}(x)=\operatorname{bod}(0, x)(x)$.
Now we consider ℓ_{*} bev, ℓ_{*} bod. Since $\ell_{*}: A \rightarrow A$ is a Hopf algebra homomorphism over R, if (bev, bod) is nice for $p(x)$, then $\left(\ell_{*} b e v, \ell_{*} b o d\right)$ is so.

We denote $\pi: A[[x]] \rightarrow R[[x]]$ corresponding $f \in A[[x]]$ to the coefficient at β_{1}.
Put $\iota(x)=\sum_{i \geq 1} g_{i} x^{i}$ where $\iota(x)$ the formal inverse of the formal group of complex cobordism theory. Then, as is well-known, $g_{1}=-1$ (see [2]).

Lemma 2.5. $\pi\left(/ \beta_{k}\right)=g_{k}$.
Proof. $\left[\pi\left(/ \iota_{*} \beta(x)\right)\right]_{k}=[\pi(\beta(\iota(x)))]_{k}=[\iota(x)]_{k}=g_{k}$. Since π and []$_{k}$ commutes, the result follows.
Thus, we have

$$
\begin{aligned}
& \pi\left(\ell_{*} \text { bev }\right)=\pi\left(\ell_{*}\left(1+\sum_{k \geqq 1} m_{k}^{e v} \cdot \beta_{k}\right)\right)=\sum_{k \geqq 1} m_{k}^{e v} \cdot g_{k} \text { and } \\
& \pi\left(\ell_{*} \text { bod }\right)=\pi\left(\ell_{*}\left(\sum_{k \geqq 1} m_{k}^{o d} \cdot \beta_{k}\right)\right)=\sum_{k \geqq 1} m_{k}^{o d} \cdot g_{k} .
\end{aligned}
$$

Proposition 2.6.

There is a $P(x)=\sum_{i \geqq 1} P_{2 i-1} x^{2 i-1} \in R[[x]]_{\text {od }}$ such that

$$
\begin{equation*}
\pi\left(\ell_{*} B e v(x)\right)=x \cdot P(x) . \tag{2.7}
\end{equation*}
$$

Proof. Using (2.5), we have $\pi\left(\iota_{*} \operatorname{Bev}(x)\right)=\sum_{k \geqq 1} m(0, x)_{k}^{e v} \cdot g_{k}$. Since $m_{1}^{c v}(0, x)=0$, we obtain $\pi\left(\iota_{*} \operatorname{Bev}(x)\right)=$ $\sum_{k \geqq 2} m(0, x)_{k}^{e v} \cdot g_{k}$.

We need the following lemma.

Lemma 2.8.

(i) $m(0, x)_{k}^{e v}$ and $m(0, x)_{k}^{o d} \in x^{k} \cdot \boldsymbol{Z}[[x, p(x)]]$,
(ii) $m(0, x)_{2 k}^{e v}=x^{2 k}+$ higher and
$m(0, x)_{2 k-1}^{o d}=x^{2 k-1}+$ higher for all positive integer k.
Proof. All follows from (2.4) and by an easy induction.
Then we have $\left[\pi\left(\iota_{*} \operatorname{Bev}(x)\right)\right]_{2 i+1}=0 \quad$ and $\quad P_{2 i-1}=\left[\pi\left(/_{*} \operatorname{Bev}(x)\right)\right]_{2 i}=$ $\left[\sum_{2 i \geqq k \geqq 2} m(0, x)_{k}^{e v} g_{k}\right]_{2 i}$. Since $k \geqq 2$, the last can be written by $g_{1}, g_{2}, \ldots, g_{2 i}$ and by $P_{1}, P_{2}, \ldots, P_{2 i-3}$. So (2.7) gives an inductive formula for the definition of $P_{2 i-1}$.

Define $f(x)=\sum_{i \geqq 1} f_{2 i-1} x^{2 i-1} \in R[[x]]_{o d}$ to be $\sum_{k \geqq 1} m(0, x)_{k}^{o d} \cdot g_{k}$. Since $m(0, x)_{1}^{o d}=x$ and $g_{1}=-1$, we obtain $f_{1}=-1$.

Lemma 2.9.

If $f(x) \equiv-x \bmod x^{2 n} \cdot R[[x]]$, then $m(f(x), x \cdot P(x))_{k}^{o d} \equiv-m(0, x)_{k}^{o d} \bmod$ $x^{2 n+2} \cdot R[[x]]$ for $k \geqq 2$.

This lemma is a key formula. It is easy but tedious to show (2.9). So we defer this to the appendix.

Proposition 2.10.

$f(x)=-x$.
Proof. We prove this by the induction. Let assume $f(x) \equiv-x \bmod$ $x^{2 n} \cdot R[[x]]$ for $n \geqq 1$.

Since $\ell_{*^{\circ}} \ell_{*}=i d$, we have

$$
\sum_{k \geqq 1} m(f, x P)_{k}^{o d} \cdot g_{k}=m(0, x)_{1}^{o d}=x .
$$

So, for $n \geqq 1$, we obtain the following equations

$$
\begin{aligned}
& 0=\left[\sum_{k \geqq 1} m(f, x P)_{k}^{o d} \cdot g_{k}\right]_{2 n+1}=\left[g_{1} \cdot f+\sum_{k \geqq 2} m(f, x P)_{k}^{o d} \cdot g_{k}\right]_{2 n+1} \\
&=-f_{2 n+1}+\left[\sum_{k \geqq 2}-m(0, x)_{k}^{o d} \cdot g_{k}\right]_{2 n+1} . \text { Thus we have } \\
& f_{2 n+1}=-\left[\sum_{k \geqq 2} m(0, x)_{k}^{o d} \cdot g_{k}\right]_{2 n+1} .
\end{aligned}
$$

But since $f(x)=\sum_{k} m(0, x)_{k}^{o d} g_{k}$, we have also $f_{2 n+1}=\left[\sum_{\geqq 2} m(0, x)_{k}^{o d} \cdot g_{k}\right]_{2 n+1}$. Since R is torsion free, $f_{2 n+1}=0$. Thus the induction argument asserts the result.

Thus we have

$$
\left(\ell_{*} B e v, \ell_{*} B o d\right)=\left(1+\sum_{k \geqq 1} m(x P,-x)_{k}^{e v} \cdot \beta_{k}, \sum_{k \geqq 1} m(x P,-x)_{k}^{o^{d}} \cdot \beta_{k}\right) .
$$

But, if we put $B e v^{\prime}=B e v+P \cdot B o d$ and $B o d^{\prime}=-B o d$, then we have the following proposition by an easy calculation.

Proposition 2.11.

(Bev', Bod') is a nice pair for P.

Since $\pi\left(\right.$ Bev $\left.^{\prime}\right)=x P, \pi\left(B o d^{\prime}\right)=-x$, one can show easily $\ell_{*} B e v=B e v^{\prime}, \ell_{*} B o d=$ Bod'.

Since $\operatorname{Bev}(x)$ is unit in $A[[x]]$, we can put

$$
r(x)=\sum_{i \geqq 1} r_{2 i-1} x^{2 i-1}=\operatorname{Bod}(x) / \operatorname{Bev}(x)
$$

As in [13], we can calculate $\phi r(x)$ and $\Omega(c \circ q)_{*} r(x)$.

Proposition 2.12.

$$
\begin{equation*}
\phi r=\frac{r \square 1+1 \square r+P \cdot r \square r}{1 \otimes 1+r \square r}, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\Omega(c \circ q)_{*} r=\frac{2 r+P \cdot r^{2}}{1+r^{2}} . \tag{ii}
\end{equation*}
$$

Proof. Since $A[[x]] \xrightarrow{\phi}\left(A \otimes_{R} A\right)[[x]]$ and $A[[x]] \otimes_{R} A[[x]] \xrightarrow{\longrightarrow}\left(A \otimes_{R} A\right)[[x]]$ are R-algebra homomorphisms, and since (Bev, Bod) is nice, (i) of (2.12) is clear.

Since $\lambda \circ(1 \times J) \circ \Delta: \Omega S U \rightarrow \Omega S U$ is null-homotopic, we have $\lambda_{*} \circ\left(1 \otimes J_{*}\right) \circ \phi r=0$. By this equation and (i) of (2.12), we obtain easily the following equation:
$J_{*} r=-r /(1+P \cdot r)$. On the other hand, we have $\iota_{*} r=\iota_{*} \operatorname{Bod} / \iota_{*} \operatorname{Bev}=\operatorname{Bod}^{\prime} /$ $\operatorname{Bev}^{\prime}=-\operatorname{Bod} /(\operatorname{Bev}+P \cdot \operatorname{Bod})=-r /(1+P \cdot r)$. So we obtain

$$
J_{*} \circ /{ }_{*} r=J_{*} \circ J_{*} r=(J \circ J)_{*} r=r .
$$

Then, by (ii) of (1.1), we have the following equations:

$$
\begin{aligned}
\Omega(c \circ q)_{*} r & =\lambda_{*} \circ\left(1 \otimes J_{*^{\circ}} \ell_{*}\right) \circ \phi r=\frac{r+J_{*} \circ \ell_{*} r+P \cdot r \cdot J_{*} \circ{ }_{*} r}{1+r \cdot J_{*^{\circ} /} *^{r}} \\
& =\frac{2 r+P \cdot r^{2}}{1+r^{2}} \cdot \square
\end{aligned}
$$

Put $\Gamma=R\left[r_{1}, r_{3}, \ldots, r_{2 k-1}, \ldots\right] \subset A$.
Then, as in [13], we can now prove,
Theorem 2.13. $\operatorname{Im}(\Omega c)_{*}=\Gamma$.
Proof. First, we prove $\Gamma \subset \operatorname{Im}(\Omega c)_{*}$. By the definition of $r(x), \operatorname{Bev}(x)$ and $\operatorname{Bod}(x), r_{1}=\beta_{1}$ is easily seen. On the other hand, (iii) of (1.1) implies $(\Omega c)_{*} z_{1}=\beta_{1}$. So, $r_{1} \in \operatorname{Im}(\Omega c)_{*}$.

Assume that $r_{1}, r_{3}, \ldots, r_{2 k-1} \in \operatorname{Im}(\Omega c)_{*}$. Note that

$$
\left[\frac{2 \cdot r(x)+P(x) \cdot(r(x))^{2}}{1+(r(x))^{2}}\right]_{2 k+1} \equiv 2 r_{2 k+1}
$$

modulo $R\left[r_{1}, r_{3}, \ldots, r_{2 k-1}\right]$. Since $R\left[r_{1}, r_{3}, \ldots, r_{2 k-1}\right] \subset \operatorname{Im}(\Omega c)_{*}$ by the assumption, we have $2 r_{2 k+1} \in \operatorname{Im}(\Omega c)_{*} . \quad$ But, by (iii) of $(1.1), \operatorname{Im}(\Omega c)_{*}$ is a split submodule of A. Thus, $r_{2 k+1} \in \operatorname{Im}(\Omega c)_{*}$ and we have $\Gamma \subset \operatorname{Im}(\Omega c)_{*}$.

By (ii) of (2.8), $r_{2 k-1} \equiv \beta_{2 k-1} \bmod R\left[\beta_{1}, \beta_{2}, \ldots, \beta_{2 k-2}\right]$ is easily seen. Then (iii) of (1.1) asserts the following equation:

$$
r_{2 k-1} \equiv(\Omega c)_{*} z_{2 k-1}
$$

modulo $R\left[(\Omega c)_{*} z_{1},(\Omega c)_{*} z_{3}, \ldots,(\Omega c)_{*} z_{2 k-1}\right]$. So $R\left[r_{1}, r_{3}, \ldots, r_{2 k-1}\right]=R\left[(\Omega c)_{*} z_{1}\right.$, $\left.(\Omega c)_{*} z_{3}, \ldots,(\Omega c)_{*} z_{2 k-1}\right]$ can be obtained by an easy induction. If we put $k=\infty$, then we have (2.13).

We have also

Theorem 2.14.

There are $r_{2 i-1} \in M U_{*}(\Omega S p(n))(1 \leqq i \leqq n)$ such that $M U_{*}(\Omega S p(n))=M U_{*}(p t)$ $\left[r_{1}, r_{3}, \ldots, r_{2 n-1}\right]$ as a Hopf algebra and there exists $P(x) \in M U_{*}(p t)[[x]]$ such that the diagonal ϕ is given by

$$
\phi\left(r_{2 k-1}\right)=\left[\frac{\left(1 \square r_{n}\right)(x)+\left(r_{n} \square 1\right)(x)+P(x) \cdot\left(r_{n} \square r_{n}\right)(x)}{1 \otimes 1+\left(r_{n} \square r_{n}\right)(x)}\right]_{2 k-1}
$$

where $r_{n}(x)=\sum_{i=1}^{n} r_{2 i-1} x^{2 i-1}$ and $\left[\sum a_{i} x^{i}\right]_{j}$ denotes the coefficient of x^{j} in $\sum a_{i} x^{i}$.

Appendix.

First, we prove that if $f(x) \equiv-x \bmod x^{2 n} \cdot R[[x]]$, then the following equations hold for all $k \geqq 2$:

> (a) $m(x P, f)_{k}^{e v} \equiv m(x P,-x)_{k}^{d v} \bmod x^{2 n+1} \cdot R[[x]]$
> (b) $m(x P, f)_{k}^{o d} \equiv m(x P,-x)_{k}^{o d} \bmod x^{2 n+2} \cdot R[[x]]$

We prove this by the induction. Using (2.4), we have easily $m(x P, f)_{2}^{e v}=$ $f^{2}+x^{2} P$ and $m(x P, f)_{2}^{o d}=2 x P f+P f^{2}$. So, (A.1) is directly seen for $k=2$. For $k \geqq 3$, we obtain

$$
\begin{aligned}
m(x P, f)_{k}^{o d}= & m(x P, f)_{1}^{o d} \cdot m(x P, f)_{k-1}^{e v}+m(x P, f)_{1}^{e v} \cdot m(x P, f)_{k-1}^{o d} \\
& +P \cdot m(x P, f)_{1}^{o d} \cdot m(x P, f)_{k-1}^{o d} \\
= & f \cdot m(x P, f)_{k-1}^{e v}+x P \cdot m(x P, f)_{k-1}^{o d}+f \cdot P \cdot m(x P, f)_{k-1}^{o d} .
\end{aligned}
$$

By the assumption of the induction, and by the fact that $\operatorname{deg}\left(m(x P,-x)_{k-1}^{e v}\right) \geqq$ $2(k \geqq 3)$ and $\operatorname{deg}(P) \geqq 1$, we obtain

$$
\begin{aligned}
m(x P, f)_{k}^{o d} & \equiv(-x) \cdot m(x P,-x)_{k-1}^{e v}+x P \cdot m(x P,-x)_{k-1}^{o d}+(-x) \cdot P \cdot m(x P,-x)_{k-1}^{o d} \\
& \equiv m(x P,-x)_{k}^{o d} \bmod x^{2 n+2} \cdot R[[x]] .
\end{aligned}
$$

The case (a) is obtained by the similar method.
Next, we prove that

$$
\begin{align*}
& \text { (a) } x \cdot m(x P,-x)_{k}^{e v}=m(0, x)_{k+1}^{o d} \tag{A.2}\\
& \text { (b) } m(x P,-x)_{k}^{o d}=-m(0, x)_{k}^{o d} \quad(k \geqq 1) .
\end{align*}
$$

Again, we prove this by the induction on k.

The results are clear for $k=1$, for

$$
\begin{aligned}
& x \cdot m(x P,-x)_{1}^{o d}=x \cdot x P=P \cdot\left(m(0, x)_{1}^{o d}\right)^{2}=m(0, x)_{2}^{o d} \quad \text { and } \\
& m(x P,-x)_{1}^{o d}=-x=-m(0, x)_{1}^{o d} .
\end{aligned}
$$

Assume the results for k. Then we have

$$
\begin{aligned}
m(x P,-x)_{k+1}^{o d}= & m(x P,-x)_{1}^{o d} \cdot m(x P,-x)_{k}^{e v}+m(x P,-x)_{1}^{e v} \cdot m(x P,-x)_{k}^{o d} \\
& +P \cdot m(x P,-x)_{1}^{o d} \cdot m(x P,-x)_{k}^{o d} \\
= & (-x) \cdot m(x P,-x)_{k}^{e v}+x P \cdot m(x P,-x)_{k}^{o d}-x P \cdot m(x P,-x)_{k}^{o d} \\
= & (-x) \cdot m(x P,-x)_{k}^{e v}=-m(0, x)_{k+1}^{o d} .
\end{aligned}
$$

The case (a) for $k+1$ is proved more easily. (b) of (A.1) and (A.2) assert the key lemma (2.9).

Department of Mathematics Кyoto University

References

[1] J. F. Adams, Lectures on generalized cohomology, Lecture Notes in Math., 99 (1969).
[2] J. F. Adams, Quillen's work on the formal groups and complex cobordism, Mathematics Lecture Notes, Univ. of Chicago, 1970.
[3] M. Atiyah-F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. A. M. S., 3 (1961), 7-38.
[4] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-281.
[5] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[6] R. Bott, The stable homotopy of classical groups, Ann. Math., 70 (1959), 313-337.
[7] R. Bott and H. Samelson, Application of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964-1029.
[8] F. Clarke, On the K-theory of the loop space on a Lie group, Proc. Camb. Phil. Soc., 76 (1974), 1-20.
[9] F. Clarke, The K-theory of $\Omega S p(n)$, Quart. J. Math. Oxford Ser. (2), 32 (1981), 11-22.
[10] F. Clarke, On the homology of $\Omega S p(n)$, J. London Math. Soc. (2), 24 (1981), 346-350.
[11] P. E. Conner-E. E. Floyd, The relation of cobordism to K-theories, Lecture Notes in Math., 28 (1966).
[12] A. Kono-K. Kozima, The space of loops on a symplectic group, Japan. J. Math., 4-2 (1978), 461-486.
[13] K. Kozima, The Hopf algebra structure of $K_{*}(\Omega S p(n))$, J. Math. Kyoto Univ., 19-2 (1979), 315-326.
[14] K. Kozima, The comodule structure of $K_{*}(\Omega S p(n))$, J. Math. Kyoto Univ., 20-2 (1980), 315-325.
[15] J. Milnor-J. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211-264.
[16] T. Petrie, The weak complex bordism of Lie groups, Ann. Math., 88 (1968), 371-402.
[17] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Adv. in Math., 7 (1971), 29-56.

