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§0. Introduction

Let Sp(n) be the n-th symplectic group and QSp(n) its loop space. In [12],
the Hopf algebra structure of H,(2Sp(n)) and h,(Q2Sp(n))® Z [+] were determined
where h,( ) is a complex oriented homology theory. Moreover, F. Clarke [9]
and the author [13] determined that of K,(Q2Sp(n)) independently.

The purpose of this paper is to determine MU ,(QSp(n)) as a Hopf algebra over
MU 4(pt) where MU is complex cobordism.

Let C be a MU,(pt)-algebra and f(x)=3 ;50 fix', g(x)= X ;50 9:x' € C[[x]].
Define (f[0g)(x) € (C® pmy.(mnC) [[x]] to be Zigo(z.§+kk2=(i)f:f®gk)xi' Then the

main result of this paper is

Theorem 2.14.

There are r1y_€MU(QSp(n)) (1=5i<n) such that MU(QSp(n))=
MU (p)[ry, ¥35..e F2u_1] as a Hopf algebra and there exists P(x)e MU (pt) [[x]]
such that the diagonal ¢ is given by

— (ID n)( )+( nDl)( )+P( )'( nD n)( )
b= = | O e Gy ]

n ) . oo P i
where r(x)= 2 ry—1x27 1 and [ ¥ a;x']; denotes the coefficient of x/ in X a;x'.
i=1

The paper is organized as follows:
In §1, we recall some general results in [12] for MU (RS p(n)).
In §2, we introduce some algebraic notations and prove the main result. The proof
is similar as one in [13], but more systematic.

We use the quite similar notation as in [12] or [13], so the definitions of some
usual notations are omitted in this paper.

The author would like to express his hearty thanks to Professor H. Toda and
Professor A. Kono for their valuable advices.
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§1. The algebra MU, (2Sp(n))

First, recall some notations (See [12] and [13]).

Let U(n), Sp(n) be the n-th unitary and symplectic groups, and U, Sp the infinite
groups U(o0), Sp(o0), respectively.

Let g: U(n)SSp(n) and ¢: Sp(n)S U(2n) be the natural inclusions in [12].

Let i,: Sp(n)~Sp be the natural inclusion.

The H-structure of QSU is given by the loop product A: QSU x QSU—-QSU
and the diagonal map is denoted by 4: QSU—-QSU x QSU. Futhermore, let J:
QSU—-QSU be the loop inverse of QSU.

Define the conjugation I: U—U by I(4)=A. Then I induces a map Bl: BU—
BU.

Let g: BUSQSU be the Bott map. For simplicity, we define /: QSU—->QSU
to be goBlog™!.

Let ¢(x) be the formal inverse of the formal group F,,, (for detail, see [2] and
RYA)2

Put R=MU ,(pt).

Under the notation, we can quote the results from [12] and [13].

Theorem 1.1.

(i) There exist ;e MU,(QSU) (i=1) such that
MU (QSU)=R[B,, B2s--s Ppr---]1 as an algebra and <ﬁ(ﬂi)=zj:+kk>=3 B;®pP, where
¢ is the reduced diagonal defined by A. "

(il) QcoQq=A(id x(Jo/))o4 holds and if we put
P(x)=2iz0Bix" (Bo=1) and extend Jy, 7/, and Q(coq)y over MU(QSU)[[x]]
by the natural way, then

JxB(x)=1/B(x), 7 +B(x)=P(e(x)) and
Q(coq)xf(x)= B(x)/B(¢(x)) .

(iii) There are z,, ., € MU 4 _,(QSp) such that

MU (QSp)=R[z, Z3,..-» Zgk_1.---] as an algebra and Qcyzy_ =P,
modulo the subalgebra generated by B, B,,-.., Box—, over R.  Thus Qc, is a split
monomorphism.

@iv) (Qi)g: MU(QSp(n))-»MU(QSp) is a split monomorphism and
Im (Qi,)y is generated by z,, zs,..., Z5,-; as a subalgebra of MU ,(2Sp).

For the proofs, see [12] and [13].

§2. Algebraic notation and the main result

Put R=MU,(pt), A=MU(QSU) and B=MU 4(QSp), for simplicity.
We need some algebraic notations.
Let C be an R-algebra and C[[x]] the formal power series ring over C. Then
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clearly C[[x]] has a natural R- or R[[x]]-algebra structure.

Let C, D be R-algebras and f: C—D be an R-algebra homomorphism. Then
we define f: C[[x]]-=D[[x]] by f(X;cix')=X;f(c;)x} where c;eC. Also, if
fx)=%; fix'eC[[x]] and g(x)=3;g;x/ e D[[x]], then we define (fg)(x)e
(C®rD)[[x]] to be Zk(Zz+J =k (f.®gj))xk

If C is a Hopf algebrd over R, then ¢: C>C®RxC is an R-algebra homomor-
phism. So we can obtain ¢: C[[x]]>(C®C) [[x]].

Let C[[x]],, be all even functions in C[[x]] and C[[x]],, all odd functions in
C[[x]] where C is an R-algebra.

Definition 2.1.

Define bev(x), bod(x)e A[[x]] to be 1+ 3,5, mg®(x)- B, and X ;5 mp4(x)- By,
respectively, where mg?(x) € R[[x]],, and mg4(x) € R[[x]],q4

Of course, if we change mg¥(x) and mg4(x), then we get various bev(x) € A[[x]].,
and bod(x) e A[[x]],4-

Let p(x)= 321 P2i-1X* "' € R[[x]]04-

Definition 2.2.
We call the pair (bev, bod) to be a nice pair for p(x), if ¢pbev=bev[Jbev+
bod[Jbod and ¢bod = bev[Jbod + bod[bev+ p-(bod[Jbod) hold.

Then we have the following lemma.

Lemma 2.3.
The pair (bev, bod) is a nice pair for p(x) if and only if

mg =ms-mgy, +mid-mpe
(2.4)
md=ms$’-m@d , +msd-mg¥ +p-mi¢-mgé,
hold for all k=2.
Proof. By the Definition 2.1.,
pbev(x)=P(1 + 2150 ME¥(x) - fi) =24 mEY(x) (Xs+.=4 B®P,) and
Pbod(x)= (X >0 mU(x)- B =T M) (Esri=i B®B) -
On the other hand, if (bev, bod) is nice, then we have
dbev(x)=(bevdbev+ bodJbod)(x)
=(1+ X5 0 me(x)- IO+ X150 m*(x)- B)
+(Xs>0 MBI 50 meAx)B)) and
dbod(x)=(bev[Qbod + bod[bev+ p-(bod[bod))(x)
=14 X 50 m(x)- BIO(X 50 me4(x) - By)
H(Xss0 mA(x)- BIO(L+ X5 0 m¥(x)- By)
+ (%) (X5 0 mUx) - BIOUZ 50 mU(x)- B) .
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If we check the coefficients at f, ® 8, _ |, then the only if part is easily seen.
To prove the converse, we have only to show the following two equations for
all s, t such that s+¢=k under (2.4):

me-me’+m2d-md =mel -ml, +m2d, -mo¢, and
me’-med+mt-mg +p-mt-mgd
=met-med +med miy, +p-med, -myd,.
We can easily show this by the induction for s and omit details. [

Thus, the nice pair for p(x) has one to one correspondence with the pair (m$?,
m9?) for the fixed p(x). So, we denote the nice pair for p(x) decided with (m$§®, m34)
by (bev(msv, m9%), bod(ms», me%)). Also, we define m(ms$®, m9)g® (resp. m(ms?,
m?99)29) to be the coefficient of bev(m$®, m3?) (resp. bod(m$®, m39)) at B,.

Example.
If we put m$?(x)=0 and m$4(x)=x, then (2.4) gives

m(0, x)s*=0, m(0, x)s*=x2, m(0, x)§* =x3p(x)
m(0, x)2¢=x, m(0, x)3¢=x2p(x) and m(0, x)3¢=x3+x3(p(x))2.
We put Bev(x)=bev(0, x)(x) and Bod(x)=bod(0, x)(x).

Now we consider /4 bev, /4bod. Since /4: A—>A is a Hopf algebra homo-
morphism over R, if (bev, bod) is nice for p(x), then (/ (bev, /4 bod) is so.

We denote n: A[[x]]—R[[x]] corresponding fe A[[x]] to the coefficient at §,.

Put ¢(x)=3;5, g:x* where ¢(x) the formal inverse of the formal group of
complex cobordism theory. Then, as is well-known, g, = —1 (see [2]).

Lemma 2.5. 7n(/4f,)=9,-

Proof. [n(/ «f(xX)]=[n(B(e(x))]i=[e(x)]x=¢g, Sincen and [ ], commutes,
the result follows. [
Thus, we have

n(/ wbev)=1(/ (1 + 4o M- B))=2k= 1 mi¥ g, and

(4 wbod)=n(/ (51 mgd - B)) = 21@1 mgt- gy.
Proposition 2.6.
There is a P(x)= 3,5, P2;-1X*"' € R[[x]],q4 such that
2.7) n(/ «Bev(x))=x- P(x).
Proof. Using (2.5), we have
m(/ xBev(x))=X ;> m(0, X)g*-g,.  Since mi*(0, x)=0, we obtain n(/4Bev(x))=

Piz2 (0, X)F¥ - gy
We need the following lemma.
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Lemma 2.8.
(i) m(0, x)¢* and m(0, x)7% € x* - Z[[x, p(x)1],
(i) m(0, x)sf =x%*+higher and
m(0, x)3¢_, =x2"1+higher for all positive integer k.

Proof. All follows from (2.4) and by an easy induction. [

Then we have [n(/4Bev(x))],:41=0 and P,;_;=[n(/«Bev(x))],;=
[X2iskz2 m(0, x)£°g, 2. Since k=2, the last can be written by g4, g,,..., g,; and
by P,, P,,..., P5;_5. So (2.7) gives an inductive formula for the definition of
Py O

Define f(x)=3;z1/f2i-1x* "' €R[[x]]oy to be Xis;m(0, x)z%-g,. Since
m(0, x)9¢=x and g, = — |, we obtain f; = —1.

Lemma 2.9.
If f(x)=—x mod x?"-R[[x]], then m(f(x), x-P(x))z?=—m(0, x)7 mod
x2m+2. R[[x]] for k=2.

This lemma is a key formula. It is easy but tedious to show (2.9). So we defer
this to the appendix.

Proposition 2.10.
f(x)=—x.

Proof. We prove this by the induction. Let assume f(x)=—x mod
x2". R[[x]] for n=1.
Since / 4o/, =id, we have
Yis1 m(f, xP)p4- g, =m(0, x)3¢=x.
So, for n= 1, we obtain the following equations

0=[4s1 m(fs xP)* - g dons 1 =091 S+ Ziz2 m(fo xP)4- g1 J2ns

=—faut1+[2kz2 =m0, x)i* g, J2,+1. Thus we have
Soner1=—=[Zkz2 m0, )24 g, ]004 1

But since f(x)=3%,m(0, x){’g,, we have also fy,4 =[5, m(0, )¢ gilau+1-
Since R is torsion free, f,,. ; =0. Thus the induction argument asserts the result. [

Thus we have

(7 Bev, /yBod)=(1+ X5, m(xP, —=x)§*- By, Ty5q m(xP. —x)2¢- ;).
But, if we put Bev'=Bev+ P-Bod and Bod' = — Bod, then we have the following
proposition by an easy calculation.

Proposition 2.11.
(Bev', Bod') is a nice pair for P.
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Since n(Bev')=xP, n(Bod')= —x, one can show easily /,Bev=Bev', /,Bod=
Bod'.
Since Bev(x) is unit in A[[x]], we can put

HX)= 151 rai- X271 = Bod(x)/Bev(x).
As in [13], we can calculate ¢r(x) and Q(coq)4r(x).

Proposition 2.12.

. _rg@gr+1gr+P-rQ4r
(1) o= iertor
.. 2 2

(ii) Q(coq)yr = ;’l—“;i:zL_.

Proof. Since A[[x]]-%(A®xA)[[x]] and A[[x]1® rAL[[x]]-(A®rA) [[x]]
are R-algebra homomorphisms, and since (Bev, Bod) is nice, (i) of (2.12) is clear.

Since Ao(1 xJ)od: QSU—-QSU is null-homotopic, we have 1,o(1®J,)o¢pr=0.
By this equation and (i) of (2.12), we obtain easily the following equation:
Jyr=—r/(14P-r). On the other hand, we have /. r=/,Bod//.Bev=Bod’|
Bev'= — Bod/(Bev+ P- Bod)= —r/(1+P-r). So we obtain

Jyol wr=Jodyr=(Jod)r=r.

Then, by (ii) of (1.1), we have the following equations:

Qcoqhr =ho1 @ yod yopr= LIl L P Tur oy
_ 2+ P-r?

14r2 o

Put F'=R[r, ry,..., rag—1....]J< 4.
Then, as in [13], we can now prove,

Theorem 2,13. Im(Qc),=T.

Proof. First, we prove I'clm(Qc),. By the definition of r(x), Bev(x) and
Bod(x), r;=p, is easily seen. On the other hand, (iii) of (1.1) implies (Qc)4z, =f,.
So, r, € Im (Qc¢).

Assume that r,, rs,..., ro - € Im(Qc¢),. Note that

2-r(x)+ P(x) (r(x))? _
[ T+ (r(0)? lm =2r2kiy

modulo R[ry, rj,..., Fak—1]- Since R[ry, r'3,..., For— 1] < Im (Lc), by the assumption,
we have 2r,; 4, € Im (Qc),. But, by (iii) of (1.1), Im (Qc), is a split submodule of A.
Thus, r,, 41 € Im (Qc), and we have I' < Im (Qc),.

By (ii) of (2.8), rax—1=Pa-1 mod R[By, Bi,..., Bar-2] is easily seen. Then
(iii) of (1.1) asserts the following equation:
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rak-1=(Q0)sz3, -

modulo R[(Q2¢)sz;, (2¢)xZ3,.-, (2C)sZ2k-1]- So R[ry, rys..., Fo—11=R[(Q¢)42;,
(Q¢)sz35-.., (Q¢) 24— 1] can be obtained by an easy induction. If we put k=00,
then we have (2.13). [

We have also

Theorem 2.14.

There are r,;_, € MU, (QSp(n)) (1=i<n) such that MU ,(QSp(n))=MU ,(pt)
[rys #30--s F2u_1] as a Hopf algebra and there exists P(x)e MU (pt)[[x]] such
that the diagonal ¢ is given by

— (lDrn)(x)+(rnD1)(x)+P(x)'(rnL_-'rn)(x)
d)(er_]) - |: ]®] + (rnDrn)(x) iIZk‘l

n . . . s, .
where r,(x)= i; ryi-1 X271 and [Ya;x']; denotes the coefficient of x’ in Y a;x'.

Appendix.

First, we prove that if f(x)= —x mod x2"- R[[x]], then the following equations
hold for all k=2:

(a) m(xP, f)g*=m(xP, —x)* mod x2"*1. R[[x]]
(A.1)
(b) m(xP, f)g¢4=m(xP, —x)2¢ mod x2"*2. R[[x]].

We prove this by the induction. Using (2.4), we have easily m(xP, f)5°=
f*+x2P and m(xP, f)3¢=2xPf+Pf%.  So, (A.1) is directly seen for k=2. For
k=3, we obtain

m(xP, f)g4=m(xP, f)3¢-m(xP, g2 +m(xP, f)s° - m(xP, f)p,
+ P-m(xP, )34 m(xP, f)24,
=f-m(xP, f)g*+xP-m(xP, f)g¢,+f-P-m(xP, f)34,.

By the assumption of the induction, and by the fact that deg (m(xP, —x)g?,)=
2 (k=3) and deg (P)=1, we obtain

m(xP, )4 =(~x)- m(xP, —X){,+XP-m(xP, —x)gd, +(—x)- P-m(xP, —x)pt,
=m(xP, —x)¢ mod x2"*2. R[[x]].

The case (a) is obtained by the similar method.
Next, we prove that
(a) X m(XP’ _x)lfv = m(O’ x)l':g-l
(A.2)
(b) m(xP, —x)p!=—m(0, x)p*  (kz1).

Again, we prove this by the induction on k.
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The results are clear for k=1, for
x-m(xP, —x)34=x-xP=P-(m(0, x)39)?=m(0, x)3¢ and
m(xP, —x)34=—x=—m(0, x)3¢.
Assume the results for k. Then we have
m(xP, —x)24, =m(xP, —x)¢-m(xP, —x)g*+m(xP, —x)§*-m(xP, —x)34
+P-m(xP, —x)34-m(xP, —x)p¢
=(—x)-m(xP, —x)g*+xP-m(xP, —x)2¢—xP-m(xP, —x)p¢
=(—x)-m(xP, —x)g*=—m(0, x)g4,.

The case (a) for k+ 1 is proved more easily. (b) of (A.1) and (A.2) assert the

key lemma (2.9). O
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