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1. Results.

The properties of the Schrédinger operators with constant magnetic fields are
well kown (see, e.g., Avron-Herbst-Simon [1]). If one chooses a suitable gauge taking

the z axis parallel to the magnetic field, the operator has the form H":—(aix_ 7
By

e (3 LBy \z 0 . . . .
5 y) —($+27x) — 5t where By is the intensity of the magnetic field. The

. . . . . . 2
most characteristic feature of Ao is that the two-dimensional operator —(a% —1 %’ y)

2
_(% +z‘%’x) has a complete set of eigenfunctions (the eigenvalues are Bo times
positive odd numbers and each of them is infinitely degenerate), which corresponds to
the fact that classical orbits of charged particles in constant magnetic fields are
bounded in the x and y directions. Our purpose of the present paper is to show that
the same is true for the perturbed operator, namely, we shall prove the following
theorem:

Theorem A. Let L be the differential operator defined on C3(R2) by

) . \2 d  \2
1=—(g —ia) "(@* —it)
where a and b are the multiplications by real-valued C* functions a (x, y) and b (x, y),

respectively. Suppose that B (x, y)5~% (x, y)—g—i (x,9) tends to a positive constant

Bo as Jx2+y? tends to infinity. Let H be a self-adjoint extension of L in 3=L*R?).
Then ocss (H)={(2k+1)Bo| % is an integer =0}.

Remark 1. 0. (A4) (=the essential spectrum of a self-adjoint operator A4) is
the set of all AER such that the dimension of R (E((A—e, A+¢))) (R (*) denotes
the range of an operator) is infinite for all e>0 where £ is the spectral measure
associated with 4. Thus, by the discreteness of o.ss (&) according to Theorem A,
has a complete set of eigenfunctions with eigenvalues which, with their multiplicities
taken account of, have the accumulation points equal to o.ss (A).
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Remark 2. Z is essentially self-adjoint (see, e.g., Leinfelder-Simader [4]), and
thus /A is the unique self-adjoint extension of Z.

The magnetic Schrodinger operators perturbed by scalar potentials 7 in R3, i.e.,
Ho+ ¥V, have been studied fairly well, e.g., by [1], but there seems to be only few
researches on perturbations of magnetic fields. One difficulty in manipulating such
perturbations lies in the fact that the Hamiltonian A depends explicitly not on the

field B=rot (Z but on the vector potential ;z(a(x,y), b(x,y)) which allows the so-called
gauge transformations which do not change the field. We avoid this ambiguity of

the choice of a by noting that B[Bo=:[II1, 2] =i (lI1[1:—211) where II,=
J%o(zgzj—c +a) and I 2=«7%;(i<%’ +b). This commutation relation can be regarded
as a perturbation of C.C.R. (the canonical commutation relation, 7 (PQ—QFP)=1)
because B|Bo=1+small. C.C.R.is an old topic in quantum mechanics and has been
studied by many authers (see e.g. Dixmier [2], Putnam [5]). Our first step is to prove
a theorem (Theorem B below) concerned with a perturbation of C.C.R. which we think

interesting in itself. Theorem A is obtained by applying the following theorem:

Theorem B. LZet P and Q be symmetric operators in a Hilbert space I defined
on Q, dense in K, such that PRCQ, QQCQ. Suppose that
(@) P2+ Q2 is essentially self-adjoint (let H denote the self-adjoint extension of P+ Q2),
&) i(PQ—QP)u=0A+K)u for u€S2 where K is a relatively compact operator
with respect to H(i.e., D(K) (=the domain of K) contains D(H) and K (H~+7)?
s compact).
Then either of the following (i) or (¢7) holds:
(1) e (H)=0,
(7)) oess (H)={2k+1|4kis an integer 20}.

2. A Lemma and Proofs.

Lemma. Zet 4 be a densely defined closed operator on a Hilbert space 9.
Suppose that
(1) AA*=A*A+14+K, where K s a relatively compact operator with respect to
A*A,
that is, D(AA*¥)=D(A*A)=D, DCD(K), K(A*A+1)"1 zs compact and AA*=A*A
+ 14K kolds on D. Then either of the following () or (i) holds:
(1) Oue (A*A) =4,
(27)  0ess (A*A)={k|k is an integer=0}.
Moreover, tn the case (2), N(A)=the null space of A={uc D(A)|Au=0} is finite
dimensional, and, in the case (ii), N(A) is infinite dimensional.

Proof. Let S=o.ss (A*A). Then since 4*A4=0,
(2) S0, o).
On the other hand, we have
(3 S\(0N(={a|a€ES, a#0))=0es: (44*)\{0} .
because A* 4 restricted to V(A*A4)+ (L denotes the orthogonal complement) is unitarily
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equivalent to A4.A4* restricted to N(A4A*)L by using the polar decomposition of A4
(see Kato [3], p.334).
Moreover,
(4) Gess (AA*¥)=00ss (A*A+1)=S5+1,
by (1) (Reed-Simon [6], p. 113) where S+1={e+1l¢E.S}. Hence we have, from
(3) and (4),
(5) S\{0}=5+1
since (S+1)\{0}=S+1 by (2). If S+#¢, it is not difficult to verify S={£% is an
integer =0} using (2) and (5). Thus we have proved that either (i) or (ii) holds.
Next, let g.ss (4*A4)=¢ (the case (i) hold). Since N(A)=N(A4*4), N(4) is finite
dimensional by the definition of essential spectrum (see Remark 1 after Theorem A).
Finally, let o (4*4)={k|%is an integer =0} (the case (ii) hold). Suppose
that &V (4) is finite dimensional. Let £; and £: be the spectral measure associated
with 4*4 and AA*, respectively. Then, as stated above, the unitary equivalence
between £1(B) and E2(B) holds if B is a Borel set contained in (0, o0). Since oess
(4A*)=1{~|% is an integer>0} by (4), R(Z2((0, ¢))) is finite dimensional if 0<<c<1.
Thus R (Z£1((0, ¢))) is also finite dimensional. Since £ ([0, ¢))=£1({0})+£1((0, ¢))
where £1({0}) is the orthogonal projection onto N(A)=N(A*A), R (E1([0, ¢))) is
finite dimensional if & (4)is so. Hence, noting that £1((—oo, ¢))=£1 ([0, ¢)) since
A*A=0, we have g.;; (4*¥*A4)$0. This contradicts the supposition that o..s (A*A)
={A|£is an integer =0}. Hence N (4) must be infinite dimensional in the case (ii).
We have thus concluded the proof of the lemma.

Proof of Theorem B. Let X and ¥ be operators defined on 2 by X =V%(P—
iQ), ¥ :% (P+7Q). Since P and Q are symmetric, we have (Xu, v)=(«», Yv) (%,
vEQR). Hence, X*DY and X**C V*. Therefore, X has the closure 4 (=X**),
whose adjoint extends Y, and
(6) YXCA*A4, XY CAA*

On the other hand, by the assumption (b),
( YX =L (PHiQ(P—i Q)= (P+QY) —i L(PQ—QP)

M) =5PHY— LA+,

XY =P+ Q)+ (14 K).

Moreover, note that, when D(S) D D(7") and p(7") (the resolvent set of 7°) # ¢ for
operators .S, 7" in some Banach space, S(7'+2)~! is compact for some zEp(7") if and
only if {Su.} contains a convergent subsequence for any sequence »,E.D(7") with both
{us} and {7} bounded. That is, our definition of relative compactness is equivalent
to that in [3], p.194, except that the latter can also be applied to non-closed 7.
Therefore, X is A-compact and hence P2+ Q2-compact in the sence of [3]. Hence we
obtain

® PHQLK=HtK

(bar denotes the closure of an operator) because A+ K'is closed as well as A, P24 Q24K
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is closable as well as P2+ (Q¢2, the closures of P2+ Q2 and P2+ Q24K have the same
domain ([3], p. 194, Theorem 1.11), and P2+ Q2+ K CH +K. Moreover, we have
by the same theorem in [3]

9) K is (H4K)-compact,

and it is not difficult to see KJoDK|pu (Ko denotes K restricted to R, etc.), which
implies that K|pu) is symmetric since Klao= 7(PQ—QP)—1 is symmetric as 2, Q
are so. Hence we have ([6], p.113)

(10) H+K is self-adjoint.

Therefore, we have from (6), (7) and (8)

%H—% A+K)=TX CA*4,
1,1

27T

1D

H4++ (14+K)=XY CAA4*,

since 4*A4 and AA* are self-adjoint ({3], p. 275) and thus closed. Moreover we have
from (10), (11) and the self-adjointness of 4*4 and A4.4*

%H—%(l +K)—=A*A,

(12) 1

2
Hence we have shown that D(A4*A4)=D(AA*)=D(H) and AA*=A*A4+1+ K where
K is relatively compact with respect to 4*4 :%(H +14-K) by (9). Thus the closed
operator A suffices the assumption (1) of Lemma. Therefore, we have by Lemma
either (i) o.ss (4*A4)=¢ or (ii) oess (4*A4)={£l% is an integer=0}. Finally, by noting
that #=24*A4 + 14K with K relatively compact with respect to 4*4, we obtain
Goss (H)=04ss (24*A+1) ([6]. p.113) and thus the conclusion of the theorem.

HyL (14 K)=d 4>,

Proof of Theorem A. Let Pand Q be the operators defined on Cy (R2) by

‘/—;—o(z’g—z— +au), Qu:»l—(ig?u —|—bu>

Pu= 7B

and let X be the operator of multiplication by the function K (x,y)=B8(x, ¥)/Bo—1.
Then Cy° (R?) is invariant under 2 and Q,2 and Q are symmetric, and Bo(P2+Q?)=L.
We have by direct computation

(PQ—QP) u-——%i(—a%; —z'a)(% —z‘b)u +%o(j : _z’é) (—aa; —z'a) u

0 oy
=z (ﬂ _ 25,)
T Bo\dy ox/)¥
=—7i(14+K)u.

Moreover, it is known that P24 Q2 :*51,7 L is essentially self-adjoint as remarked after
Theorem A, and that X is a relatively compact operator with respect to /A since X (x,
) — 0 as J/x2+y2 — oo (see [1], Theorem 2.6 and [6], p. 117). Thus the assumption

of Theorem B is satisfied for 2 and Q if we put 2=Cg’ (R2). According to Theorem
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B, it suffices to show o.s; (&)+#¢ for obtaining the assertion of Theorem A.

Let {(¢;, 4 ;)};=1,2, ... be a sequence of points in R2 and M, » be positive con-
stants such that Q;, the disks in R2 with radius » about (¢;, &;), do not intersect each
other and

(13) 1B =] 52t )52 (x| S M

for (x, »)EQ; (=1, 2, ...). (There exist such {(¢;, 4))} and M, » since B (x,y)is
bounded in the whole plane by the assumption of the theorem.) Then we can construct
functions »;ECy (R2) such that supp #;CQ;,

a9 = [1ustx, iz dway)* =1,

(el 4l

where C is a constant independent of 7. This can be done as follows:
Let @ ; be defined by

2

=C

(15)  (Huj up)=

(5:9)
(e =] (@@, ) dx+b (x, 3) dy)
where the integral is taken along the straight line from (¢;, &) to (x, »).
Then @ ; is a real-valued C*= function and we have

0;(x, )= (o, ) +y B (e, 1) at

where (x', y)=(x—c;, y—d;) and (a(x’, y'), b(x', yN=(a(x, ), 6(x, y)). Hence we
obtain, by using (82: gi )( " ¥)=B(c;+x', dj+y)=B (x', y') and integrating by
parts, )

3@; . 1 ’ ’ ’ 1 __@Z ’ ’
2 (&, y)_joa(zx.zy)dz+xj 192 (412’ ty') dt

(16)
—I—yJ t—(tx w') dt
:J:a (', ty')dt+_[ot La(te, ) dt
——y'ﬁtﬁ (', v’y dt
=2, y)—y| 1B, 1)t
=a(x, )—(y—d ) [ 1Bt (—c), dte(y—d ))dr
Therefore, by (13) and (16),

an | i@ ) —ale DSMy—djSHr forall (v )EQ,

and similarly we have

18 [ b My forall  9)EQ;

Let #(x, y)ECy (R?) such that «(x, )=0 if Jx2y2 g% and ||#||=1. Define «;(x, y)
=exp {#®;(x, »)} u(x—c;, y—d ;). Then we have (14),
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(b

= H[(;—x — z’a) exp {z@;}] u(x—c;, y—d )+
+exp {z@,-}%:_— (x—cj, y—d ;)

%

)

<2 e 50

and a similar estimate for N(% —z'b)u il, which together with (17) and (18) show that
(15) holds.

Thus we have shown that there exists an orthonormal sequence of functions
{#;}j=1,2, ... in D(H) such that (Hu;, «;) is bounded. Suppose that g..; (H)=¢. Then,
by the definition of essential spectrum (see Remark 1 after Theorem A), the range of
E([—A, A)) is finite dimensional and hence £ ([—A, A)) is compact for all A>0 where £ is
the spectral measure associated with /Z. Since Z =0, we have also
(19) Ei=E((—oo, A))=E£([—A, A]) is compact.

Moreover, for any positive number 4, we have

(20)  (Huy u)=| Ad(Bay, u)

> _[ "M (Eauy, )

2A(E((A4, o)) u;, u))
=A(|luj||2—(Eauj, uj)).

Since {#,} is orthonormal, Zax; — 0 strongly as j — oo by (19). Hence we obtain, with
the use of (20) and ||»}||=1,

lim inf (Hu;, u;)2 4,
§ > oo

which contradicts the boundedness of {(H;, #;)} since A is arbitrary. Thus o.s (Z)
#¢. This completes the proof of the theorem.
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