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I. Results.

The properties o f th e  Schradinger operators with constant magnetic fields are
well kown (see, e.g., Avron-Herbst-Simon [1]). If one chooses a suitable gauge taking

the z  axis parallel to the magnetic field, the operator has the form — iax
Bo \ 2

 (

2 -Y ) a3y B2° x)2 3z2
9 2  w he re B o is  the intensity of the magnetic field. T h e

a o 2most characteristic feature of H o is that the two-dimensional operator — ( —ax
 _ i B
 2

(  ay m
L i Bo0 )

2 has a complete set of eigenfunctions (the eigenvalues are Bo times2
positive odd numbers and each o f them is infinitely degenerate), which corresponds to
the fact that classical orbits o f  charged particles in constant magnetic fields are
bounded in the x  and y  directions. Our purpose of the present paper is to show that
the same is true for the perturbed operator, namely, we shall prove the following
theorem:

Theorem A .  Let L  be th e d iffe r en tia l op era to r  d e fin ed  on  C7(R 2) by

L =   ai r — (—a  -
\ \ ay

w h ere a and b a r e  th e  m u lt ip lica t io n s  by rea l-va lu ed  C"functions a (x, y ) a n d  b (x, y ) ,
aaa b  r e s p e c t i v e l y .  Suppose th a t  B  (x , y )a- a y (x, y)— (x,y) t e n d s  t o  a  positive con stan tax

B o a s ,Ix 24-y 2 t e n d s  t o  i n f i n i t y .  Let H be a  se lf-a d jo in t ex ten sion  o f L  in  ,gi- =_L 2(R 2).
T h e n  a .  (H )={ (2k +1)B o lk  is  an in teg er  0} .

Remark 1. a (A ) ( = th e essential spectrum of a self-adjoint operator A ) is
the set of all A E R  such that the dimension of (E((A— s , A+ s))) (.92. (-) denotes
the range of an operator) is infinite for all e> 0  where E  is the spectral measure
associated with A .  Thus, by the discreteness o f a ,s, (H )  according to Theorem A , H
has a complete set of eigenfunctions with eigenvalues which, with their multiplicities
taken account of, have the accumulation points equal to a .  (H ).
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Remark 2. L  is essentially self-adjoint (see, e.g., Leinfelder-Simader [4]), and
thus H  is the unique self-adjoint extension of L.

The magnetic Schr6dinger operators perturbed by scalar potentials V in R3 , i.e.,
H o+  V, have been studied fairly well, e.g., by [1 ], but there seems to be only few
researches on perturbations of magnetic fields. O n e  difficulty in  manipulating such
perturbations lies in the fact that the Hamiltonian H  depends explicitly not on the
field i i =rot a , but on the vector potential a-=(a(x ,y),b(x ,y)) which allows the so-called
gauge transformations which do not change the field. We avoid this ambiguity of
the choice of by noting that B /.80=i H z ]  i (1 7 1 1 1 2 -H 2 H O  where Hi=

1 . 
ax + a )  and 112= \117

1
0+ b ) .  This commutation relation can be regarded

as a perturbation of C. C. R . (the canonical commutation relation, i(PQ — Q P)=1)
because B/B 0= 1+ sm all. C .C .R . is an old topic in quantum mechanics and has been
studied by many authers (see e.g. Dixmier [2], Putnam [5]). Our first step is to prove
a theorem (Theorem B  below) concerned with a perturbation of C.C.R. which we think
interesting in itself. Theorem A is obtained by applying the following theorem:

Theorem B .  L et P  a n d  Q b e sym m etr ic op era to rs in  a  H ilb ert space SC defined
on S2, dense in  SC, such that Pr2 c0 , Q ,Q cS 2 . Suppose tha t
(a) P 2 + Q2 is essen tia lly self-adjoint (let H  denote th e self-ad jo in t ex ten sion  o f P2+ Q2) ,
(b) i(PQ — Q P)u =(1 +K )u  f o r  uE S 2  w h e r e  K  i s  a  r e la t i v e l y  c o m p a c t  opera tor

w ith  resp ect to H (i.e ., D (K )(=th e  dom ain  o f K ) con ta in s D (H ) and K (H +i) - - 1

is compact).
T h en  eith er o f  th e  fo l low in g  ( i)  o r  (ii)  ho ld s:

( i )  (Tess (H )=4 ,
ess (H)=--- (2k+11k  is an in teg er

2. A  Lemma and Proofs.

Lem m a. L et A  b e  a  d en s e ly  d e f in ed  c lo s ed  o p e ra to r  o n  a  H ilb e r t  sp a ce  SC.

Suppose that
(1) A A *=A *A -F1H -K , w h e r e  K  i s  a  r e la t i v e ly  com p a ct  o p e r a to r  w i th  r e s p e c t  to

A* A ,
tha t is, D(A A *)-=D(A * D , D cD (K ), K (A *A +1) - 1  is  com p a ct and A A* = A* A
+1 +K  ho ld s on D . T h en  e i th e r  o f th e  fo l low in g  (i) o r  (ii) ho ld s:

( i )  cress (A *A )=0,
a,s., (A* A )={ k lk  is  an integer 0}.

M oreo v e r , in  t h e  c a s e  ( i) , N (A )=th e  n u l l  s p a c e  o f  A---= { uED(A )1A u = 0) is  fin ite
d im en siona l, and , in  th e case (ii), N  (A ) is in fin ite d im ensional.

P r o o f .  Let S =cre„ (A * A ). Then since A * A 0 ,
(2) S C [0, co).
On the other hand, we have
(3) SV O}(=fala E S , a#01)-=cress (A A*)\{0}
because A* A restricted to N(A*A)-L (_L denotes the orthogonal complement) is unitarily
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equivalent to A A * restricted to N (A A * )I by using the polar decomposition of A
(see Kato [3], p.334).
Moreover,
(4) os (A A * )= cr, (A *A + 1 )= S + 1 ,
by (1 ) (Reed-Simon [6], p. 113) where S+1=-{a+1la E  S}. Hence we have, from
(3) and (4),
(5) S\{0}---S+1
since (S+1)\ {0} =-S+1 by ( 2 ) .  I f  S *, it is not d ifficu lt to verify S={klk is an
integer 0} using (2) and (5). Thus we have proved that either (i) or (ii) holds.

Next, let crss (A*A)=0 (the case (i) h o ld ). Since N (A )=N (A *A ), N (A ) is finite
dimensional by the definition of essential spectrum (see Remark 1 after Theorem A).

Finally, le t um  (A* A)={k1 k is  an  integer 0} (the case ( ii)  hold). Suppose
that 117(A) is finite dimensional. Let E 1 and E 2  be the spectral measure associated
with A*A and A A *, respectively. Then, as stated above, the unitary equivalence
between E1(B) and E2(B) holds if B  is a Borel set contained in  (0 , 0 0 ) . Since Cf

(AA*)={klh is an in teger> 0}  by (4), .g2. (E2((0, c))) is finite dimensional if 0 < c < 1 .
Thus R(E1((0, c))) is also finite dimensional. Since El ([0, c))=E1 ({0})+Ei((0, c))
where E 1 ({0}) is the orthogonal projection onto N (A)=117 (A * A ), .gt, (E1([0 , c))) is
finite dimensional if N (A ) is so. Hence, noting that Ei ((—  00, c))=Ei ([0, c)) since
A* 0 , we have c  s (A* ,4)3 O. This contradicts the supposition that (A* A)
=fhlk is an integer 0 1 .  Hence N (A ) must be infinite dimensional in the case (ii).
We have thus concluded the proof of the lemma.

Proof of Theorem B .  L e t X  and Y be operators defined on D by X =  —

1
(P -

,1 2
iQ ), Y—  -

1

- (P d -iQ ). Since P  and Q are symmetric, we have (Xu, Yv) (u,
,/ 2

v E S 2 ) . Hence, X*D Y and X * * c  Y * •  Therefore, X  has the closure A  (=X **),
whose adjoint extends Y, and
(6) Y X cA *A , X Y cA A *.
On the other hand, by the assumption (b),

Y X  = y1Q ) = - 2 - 1 (P 2 + Q2 )  - i  (PQ - 4 2P)

1 1
(7) =-2 (P 2 - 1-  Q 2 ) 

2  
(1 + K ) ,

X Y  = -1 (P 2 +Q 2) + -1 (1±K ).
2 2

Moreover, note that, when D (S ) D D (T )  and p (T ) (the resolvent set of T) # 0 for
operators S, T in some B anach space, S(T+z) -- I is compact for some zep (T ) if and
only if {Su>,} contains a convergent subsequence for any sequence u E D (T ) with both
{u„} and (Tu„} bounded. That is, our definition of relative compactness is equivalent
to that in [3], p.194, except that the latter can also be applied to non-closed T.
Therefore, K is H-compact and hence P 2 +Q 2-compact in the sence of [3]. Hence we
obtain
(8) p2±,-12 ± K = H ± K
(bar denotes the closure of an operator) because H +K  is closed as well as H, p2+Q2±K
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is closable as well as P 2 + Q2 , the closures of P 2 + Q2 and P 2 + Q2 +K have the same
domain ([3 ], p. 194, Theorem 1.11), and P 2 -FQ 2 ± K  c H ± K .  Moreover, we have
by the same theorem in [3]
(9) K  is (H+K)-compact,
and it is not difficult to see KinDKID(H) (K in  denotes K  restricted to 0 ,  etc.), which
implies that KID(H) is symmetric since K in =  i(PQ — Q P)-1  is symmetric as P, Q
are so. Hence we have ([6], p.113)
(10) H +K  is self-adjoint.
Therefore, we have from (6), (7) and (8)

(

-
1

H - -
1  

(1+K )= Y  X  cA *A ,2 2

(1 +K )=X Y  C A A * ,2 2

since A *A  and A A * are self-adjoint ([3], p. 275) and thus closed. Moreover we have
from (10), (11) and the self-adjointness of 21*.,4 and AA*

H - -
1

(1+K )=A *A ,2 2

1H + -
2

(1+K )=A A *.

Hence we have shown that D(A *A ).---D(A A *)=D(H) and A A *--A *A +1+ X  where
1K  is relatively compact with respect to A * ./1 =- (H +1 +K )  by (9). Thus the closed

operator A  suffices the assumption (1) of Lemma. Therefore, we have by Lemma
either ( i)  a,,, (,4*A )=0 or (ii) cTees (A *A )={ k lk  is an in te g e r_ 0 } . Finally, by noting
that H =2 A * A  +1 +K  with K  relatively compact with respect to A *A , we obtain
o e  (H )=ore.” (2A *A +1) ( [6 ] . p. 113) and thus the conclusion of the theorem.

Proof of Theorem A .  Let P  and Q be the operators defined on CT (R 2 ) by

p u 1   (1.  au _L a u ) , , u  1  (i +bu)3Y

and let K  be the operator of multiplication by the function K (x ,y ) --"-B(x, y)/B o - 1 .

Then C7 (R 2 ) is invariant under P and Q,P and Q are symmetric, and Bo(P2-1-Q2) =L .
We have by direct computation

 a
1

i b v   a 
( P Q— QP ) u —  B 0 ( 30x j 'a )( 30.),  — i b ) 11 +  B o  k ayj ax

I aa ab )
B o \ 0y a x

= - 1(1+K )u.
1Moreover, it is known that P 2 + Q2 = L  is essentially self-adjoint as remarked after

Theorem A, and that K  is a relatively compact operator with respect to H  since K (x,
y )--. 0 as ,/x2 --Fy2 0 0  (see [1], Theorem 2.6  and [6], p. 1 1 7 ) .  Thus the assumption

of Theorem B is satisfied for P  and Q i f  we put S-2—C,7 (R 2). According to Theorem

(12)

ia)u
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B, it suffices to show cr.  (H ) * 0  for obtaining the assertion of Theorem A.
Let {(c1, d 1)} 3=1,2, ... b e  a sequence of points in R 2 and M , r be positive con-

stants such that Q1 , the disks in R 2 with radius r about (c„ (11) ,  do not intersect each
other and

(13) IB(x, Y )I=
ab

y ) - -ax (x, y)

for (x , y )EQ ; ( j= 1 , 2 , .. . ).  (There exist such {(c1, d ,)} and M , r since B (x, y) is
bounded in the whole plane by the assumption of the theorem.) Then we can construct
functions u 1 E C 7 (R 2 )  such that supp u,c Q,,

(14) 1114A  = (f Y)12 dxdy) 1 12 =1,

(15)( H u g ,  u ,)= —  ia)u; 2 +
— i b ) u ,  

2

where C is a constant independent of j .  This can be done as follows:
Let 0 , be defined by

(.,y)
1 (x, y)----=--$ ( , i , d j ) (a(x, y) dx+b (x , y) dy)

where the integral is taken along the straight line from (ci , d 1) to  (x, y).
Then 0 , is a real-valued C°' function and we have

0, (x , y )= 5 1
0(x'a (tx ', ty ')+y 'S (tx ' , ty ')) dt

where (x', y') (x — c 1, y—d ,) and (ã(x', y '), -b(x ' , y '))= (a (x , y ) ,  b(x , y ) ) .  Hence we

obtain, by using ( 
a
ay
a

 a
a !  )(x', y ')=B  (c ,± x ' , d  (x', y ') and  integrating by

parts,

(1 6 )
( x ' Y ) = T :a (ix', ty ')  d t+x 'f l

o t (tx' , ty')

4-y'S l
o t  o

a
x
g

 (tx' , ty ') dt

= J ' a (ix', ty ')dt+ S l
o t  dd   {a(tx' , ty')}  di

— y ' ot:g(tx' , ty ')dt

=a (x' , l
ot -8- (ix', ty ')d t

=a(x , y )— (y — d f l
o1B(c1 +t(x — c 1), d ,+t(y — d 3))dt

Therefore, by (13) and (16),

(17) a(P  (x
'
 y)— a(x, y)ax 

and similarly we have

ao(18) (x, y)— b(x, y) < M r  for all (x, y )  Q t .ay

Let u(x , y)EC,7 (R 2 ) such that u (x ,y )=0  i f / x 2 -1 -y 2 a n d Define u,(x , y)

exp {i0 1(x, y )) u(x—c 1, y— d J). Then we have (14),

M1y — d1I M r  for all (x , y)E Qi,
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r i a —  ia) exp {i }] u (x—c i , y— d ;)+

+exp {il) ; } (x —c1, y— d 1)

a°1  a)u(x — c 1 , y— d J ) -1- a_xu1 ax d

and a similar estimate for — zb)u( a• , which together with (17) and (18) show that

(15) holds.
Thus we have shown that there exists an orthonormal sequence o f functions

... in D (H ) such that (Hu  1, u 1) is bounded. Suppose that a m  (H )=0 . Then,
by the definition of essential spectrum (see Remark 1 after Theorem A), the range of
E([— A , A]) is finite dimensional and hence E ([ —A, A]) is compact for all A>0 where E  is
the spectral measure associated with H .  Since H  0, we have also
(19) E(( —co, A]) = E([ —A, A]) is compact.
Moreover, for any positive number A , we have

(20) (Hu j , u ;) =.-  o Ad(E,12 u1)

f:A d ( E v  u 1)

-A (L ' ( ( A  °°)) 1

= A O* ;112  —( E Au i „

Since {le i } is orthonormal, EA /i f  0  strongly as j 00 by (19 ). Hence we obtain, with
the use of (20) and Hu i ll =1,

lim inf (H u  u

which contradicts the boundedness of {(Hu 1 , i )}  since A  is arbitrary. Thus a m  (H )
#95. This completes the proof of the theorem.
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