On invariant tensors of β-changes of Finsler metrics

By
Chōkō Shibata
(Communicated by Prof. H. Toda, October 29, 1982)

Let M^{n} be an n-dimensional differentiable manifold and $F^{n}=\left(M^{n}, L\right)$ be a Finsler space equipped with a fundamental function $L(x, y)\left(y^{i}=\dot{x}^{i}\right)$ on M^{n}. For a differential one-form $\beta(x, d x)=b_{i}(x) d x^{i}$ on M^{n}, we shall deal with a change of Finsler metric which is defined by

$$
\begin{equation*}
L(x, y) \longrightarrow \bar{L}(x, y)=f(L(x, y), \beta(x, y)), \tag{0.1}
\end{equation*}
$$

where $f(L, \beta)$ is a positively homogeneous function of L and β of degree one. This is called a β-change of the metric. We have specially interesting example of β-change of the metric, for instance,
(1) $\bar{L}(x, y)=L(x, y)+\beta(x, y)$,
(2) $\bar{L}(x, y)=L^{2}(x, y) / \beta(x, y)$,
(3) $\bar{L}(x, y)=L^{3}(x, y) / \beta^{2}(x, y)$.

The change (0.2) (1) has been introduced by Matsumoto [12]*. Hashiguchi and Ichijyō [7] named it a Randers change and proved a theorem which shows a relation between a Randers change and a projective change.

Next, the change (0.2) (2) is called a Kropina change. For a β-change $L \rightarrow \bar{L}=f(L, \beta)$, if L is a Riemannian metric $\alpha(x, d x)=\left(a_{i j}(x) d x^{i} d x^{j}\right)^{1 / 2}$, then $\bar{L}=f(L, \beta)$ becomes well-known (α, β)-metric ([5], [6]). In particular $\bar{L}=\alpha+\beta$ is a Randers metric ([3], [9]) and $\bar{L}=\alpha^{2} / \beta$ is a Kropina metric ([11]). Both of them are closely related to physics and so Finsler spaces with these metrics have been studied by many authors, from various standpoint in the physical and mathematical aspect ([3], [9], [22], [23], [26]).

In § 1, we shall study how the fundamental and the torsion tensors change by a β-change of the metric. $\S 2$ is devoted to giving transformation formulas of the torsion and the curvature by a β-change of the metric. In $\S 3$, we consider Randers changes and give some invariant tensors under these changes, and in $\S 4$ we shall study some geometrical properties of these invariant tensors. In $\S 55$ and 6 , we are concerned with projective Randers changes and also give a characterization of the vanishing Douglas tensor which is invariant under a

[^0]projective Randers change. $\S 7$ is devoted to a study of decomposable tensor. In the final section we give another example of projective change besides the Randers change.

The terminology and notations are referred to well-known Rund's book [21] and Matsumoto's monograph [16].

The author wishes to express his sincere gratitude to Professor M. Matsumoto for his valuable suggestions and encouragement.

§ 1. Changes of connections.

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space with a fundamental function $L(x, y)$. We consider a change of Finsler metric which is defined by $L \rightarrow \bar{L}=f(L, \beta)$, and have another Finsler space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$ with $\bar{L}=f(L, \beta)$.

Throughout the present paper we shall use the following notations:

$$
\begin{array}{ll}
f_{1}=\partial f / \partial L, & f_{2}=\partial f / \partial \beta, \quad f_{11}=\hat{o}^{2} f / \partial L \partial L, \quad \text { etc. }, \\
\partial_{i}=\partial / \partial x^{i}, & \dot{\partial}_{i}=\partial / \partial y^{i} .
\end{array}
$$

Since $\bar{L}=f$ is a positively homogeneous function of L and β of degree one, we have

$$
\begin{equation*}
f=f_{1} L+f_{2} \beta, \quad L f_{12}+\beta f_{22}=0, \quad L f_{11}+\beta f_{12}=0 . \tag{1.1}
\end{equation*}
$$

For the later use we put

$$
\begin{equation*}
p=f f_{1} / L, \quad q=f f_{2}, \quad q_{0}=f f_{22} . \tag{1.2}
\end{equation*}
$$

Paying attention to $l_{i}=\dot{\partial}_{i} L$, from (1.1) we have

$$
\begin{equation*}
\bar{l}_{i}=f_{1} l_{1}+f_{2} b_{i} . \tag{1.3}
\end{equation*}
$$

Differentiating this by y^{j}, we have the angular metric tensor $\bar{h}_{i j}=\bar{L} \dot{\partial}_{i} \dot{\partial}_{j} \bar{F}$ of \bar{F}^{n} :

$$
\begin{equation*}
\bar{h}_{i j}=p h_{i j}+q_{0} m_{i} m_{j}, \tag{1.4}
\end{equation*}
$$

where the covariant vector m_{i} is defined by

$$
\begin{equation*}
m_{i}=b_{i}-\beta y_{i} / L^{2} . \tag{1.4}
\end{equation*}
$$

It is noted that m_{i} is a non-zero vector orthogonal to y^{i}. In fact $m_{i}=0$ gives $L^{2} b_{i}-\beta y_{i}=0$. We differentiate this by y^{j} and get $\beta g_{i j}-2 L l_{j} b_{i}+b_{j} y_{i}=0$, which leads to a contradiction $g_{i j}-l_{i} l_{j}=0$.

Now, from (1.1), (1.3), (1.4) and (1.4)1) the fundamental tensor $\bar{g}_{i j}=\dot{\partial}_{i} \dot{\partial}_{j}\left(\bar{L}^{2} / 2\right)$ of \bar{F}^{n} is given by

$$
\begin{equation*}
\bar{g}_{i j}=p g_{i j}+p_{0} b_{i} b_{j}+p_{-1}\left(b_{i} y_{j}+b_{j} y_{i}\right)+p_{-2} y_{i} y_{j}, \tag{1.5}
\end{equation*}
$$

where we put
(1.5) 1)

$$
\begin{array}{ll}
p_{0}=q_{0}+f_{2}{ }^{2}, & \\
q_{-1}=f f_{12} / L, & p_{-1}=q_{-1}+p f_{2} / f, \tag{1.5}\\
q_{-2}=f\left(f_{11}-f_{1} / L\right) / L^{2}, & p_{-2}=q_{-2}+p^{2} / f^{2} .
\end{array}
$$

The reciprocal tensor $\bar{g}^{i j}$ of $\bar{g}_{i j}$ can be written as

$$
\begin{equation*}
\bar{g}^{i j}=(1 / p) g^{i j}-s_{0} b^{i} b^{j}-s_{-1}\left(b^{i} y^{j}+b^{j} y^{i}\right)-s_{-2} y^{i} y^{j}, \tag{1.6}
\end{equation*}
$$

where we put

$$
\begin{align*}
& b^{i}=g^{i j} b_{j}, \quad b^{2}=g^{i j} b_{i} b_{j}, \quad \nu=b^{2}-\beta^{2} / L^{2}, \\
& s_{0}=\bar{L}^{2} q_{0} / \tau p L^{2}, \quad s_{-1}=p_{-1} \bar{L}^{2} / p \tau L^{2}, \tag{1.6}\\
& s_{-2}=p_{-1}\left(\nu p L^{2}-b^{2} \bar{L}^{2}\right) / \tau p \beta L^{2}, \quad \tau=\bar{L}^{2}\left(p+\nu q_{0}\right) / L^{2} .
\end{align*}
$$

From the homogeneity it follows that these quantities satisfy

$$
\begin{array}{ll}
q_{0} \beta+q_{-1} L^{2}=0, & q_{-1} \beta+q_{-2} L^{2}=-p, \\
p_{0} \beta+p_{-1} L^{2}=q, & q \beta+p L^{2}=f^{2}, \\
p_{-1} \beta+p_{-2} L^{2}=0, & s_{0} \beta+s_{-1} L^{2}=q / \tau, \tag{1.7}\\
s_{-1} b^{2}+s_{-2} \beta=p_{-1} \nu / \tau .
\end{array}
$$

As to the torsion tensor $\bar{C}_{i j k}=\dot{\partial}_{k}\left(\bar{g}_{i j} / 2\right)$ of \bar{F}^{n}, from (1.5) and (1.7) we get

$$
\begin{equation*}
\bar{C}_{i j k}=p C_{i j k}+p_{-1}\left(h_{i j} m_{k}+h_{j k} m_{i}+h_{k i} m_{j}\right) / 2+p_{02} m_{i} m_{j} m_{k} / 2, \tag{1.8}
\end{equation*}
$$

where we put $p_{02}=\partial p_{0} / \partial \beta$. Contracting this by $\bar{g}^{h k}$, we have

$$
\begin{equation*}
\bar{C}_{i}{ }_{j}{ }_{j}=C_{i}{ }^{h}{ }_{j}-V_{i}{ }^{h}{ }_{j}, \tag{1.9}
\end{equation*}
$$

where we put

$$
\begin{align*}
V_{i}{ }^{h}{ }_{j}= & Q^{h}\left(p C_{i m j} b^{m}-p_{-1} m_{i} m_{j}\right)-\left(m^{h} / p-\nu Q^{h}\right)\left(p_{02} m_{i} m_{j}+p_{-1} h_{i j}\right) / 2 \\
& -p_{-1}\left(h^{h}{ }_{i} m_{j}+h^{h}{ }_{j} m_{i}\right) / 2 p, \tag{1.9}\\
Q^{h}= & s_{0} b^{h}+s_{-1} y^{h}, \quad h^{h}{ }_{i}=g^{h r} h_{i r}, \quad m^{h}=g^{h r} m_{r} .
\end{align*}
$$

We denote by the symbol (|) the h-covariant differentiation with respect to the Cartan connection $C \Gamma$ and put

$$
\begin{equation*}
2 E_{j k}=b_{j \mid k}+b_{k \mid j}, \quad 2 F_{j k}=b_{j \mid k}-b_{k \mid j} . \tag{1.10}
\end{equation*}
$$

Now we deal with well-known functions $G^{i}(x, y)$ which are (2)p-homogeneous in y^{i} and are written as $G^{i}=\gamma_{j}{ }^{i}{ }_{k} y^{j} y^{k} / 2$, by putting

$$
\gamma_{j}{ }^{i}{ }_{k}=g^{i r}\left(\partial_{k} g_{j r}+\partial_{j} g_{k r}-\partial_{r} g_{j k}\right) / 2 .
$$

Owing to (1.5) and (1.6), a straightforward calculation leads to

$$
\begin{equation*}
\bar{G}^{i}(x, y):=\left(\bar{\gamma}_{j}{ }^{i}{ }_{k} y^{j} y^{k}\right) / 2=G^{i}+D^{i}, \tag{1.11}
\end{equation*}
$$

where the vector D^{i} is given by

$$
\begin{gather*}
D^{i}=(q / p) F^{i}{ }_{0}+\left(p E_{00}-2 q F_{r 0} b^{r}\right)\left(s_{-1} y^{i}+s_{0} b^{i}\right) / 2, \tag{1.11}\\
F^{i}{ }_{j}=g^{i r} F_{r j},
\end{gather*}
$$

and the subscript 0 (excluding s_{0}) means the contraction by y^{i}.

We shall examine how the Cartan connection $C \Gamma$ changes by a β-change of the metric. Let $C \bar{\Gamma}=\left(\bar{F}_{j}{ }^{i}{ }_{k}, \bar{N}^{i}{ }_{j}, \bar{C}_{j}{ }^{i}{ }_{k}\right)$ be the Cartan connection on the space $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$. For coefficients $N^{i}{ }_{j}=\dot{\partial}_{j} G^{i}$ of the non-linear connection, we differentiate (1.11) by y^{i} and get

$$
\begin{equation*}
\bar{N}^{i}{ }_{j}=N^{i}{ }_{j}+D^{i}{ }_{j}, \tag{1.12}
\end{equation*}
$$

where the tensor $D^{i}{ }_{j}=\dot{\partial}_{j} D^{i}$ is given by

$$
\begin{align*}
& D^{i}{ }_{j}:=(1 / p) A^{i}{ }_{j}-Q^{i} A_{r j} b^{r}-q b_{01 j}\left(s_{-1} b^{i}+s_{-2} y^{i}\right), \\
& A_{i j}:=(1 / 2) E_{00} B_{i j}+q F_{i j}+F_{i 0} Q_{j}-\left(p C_{i j m}+V_{i j m}\right) D^{m}, \tag{1.12}\\
& A_{j}^{i}=g^{i r} A_{r j}, \quad V_{i j m}=g_{s j} V_{i}{ }^{s}, \quad Q_{i}=p_{-1} y_{i}+p_{0} b_{i}, \\
& B_{j k}=\left(p-1 h_{j k}+p_{02} m_{j} m_{k}\right) / 2 .
\end{align*}
$$

Here, for the covariant vector Q_{i} it is noted that

$$
\begin{equation*}
Q_{0}=q, \quad \dot{\partial}_{k} Q_{j}=B_{j k} / 2 . \tag{1.13}
\end{equation*}
$$

Let $B \bar{\Gamma}=\left(\bar{G}_{j}{ }^{i}{ }_{k}, \bar{N}^{i}{ }_{j}\right)$ be the Berwald connection on \bar{F}^{n}. Differentiating (1.12) by y^{k}, we have connection coefficients $\bar{G}_{j}{ }^{i}{ }_{k}=\dot{\partial}_{k} \bar{N}^{i}{ }_{j}$ of $B \bar{\Gamma}$ which are given by

$$
\begin{equation*}
\bar{G}_{j}{ }^{i}{ }_{k}:=G_{j}{ }^{i}{ }_{k}+B_{j}{ }^{i}{ }_{k}, \quad B_{j}{ }^{i}{ }_{k}=\dot{\partial}_{k} D^{i}{ }_{j}, \tag{1.14}
\end{equation*}
$$

where $G_{j}{ }^{i}{ }_{k}$ are connection coefficients of $B \Gamma$ on F^{n}. Therefore from (1.6), (1.8), (1.9) and (1.12) we obtain connection coefficients $\bar{F}_{j}{ }^{i}{ }_{k}$ of the Cartan connection $C \bar{\Gamma}$ on \bar{F}^{n} as follows :

$$
\begin{align*}
\bar{F}_{j}{ }^{i}{ }_{k}: & =\bar{\gamma}_{j}{ }^{i}{ }_{k}+\bar{C}_{j k r} \bar{N}^{r}{ }_{m} \bar{g}^{i m}-\bar{C}_{k}{ }^{i}{ }_{r} \bar{N}_{j}-\bar{C}_{j}{ }^{i} \bar{N}^{r}{ }_{k} \tag{1.15}\\
& =F_{j}{ }^{i}{ }_{k}+D_{j}{ }^{i}{ }_{k},
\end{align*}
$$

where we put

$$
\begin{align*}
D_{j}{ }^{i}{ }_{k}= & \left\{g^{i s} / p-Q^{i} b^{s}-y^{s}\left(s_{-1} b^{i}+s_{-2} y^{i}\right)\right\} \\
& \cdot\left(B_{s j} b_{01 k}+B_{s k} b_{0 \mid j}-B_{k j} b_{0 \mid s}+F_{s j} Q_{k}+F_{s k} Q_{j}+E_{k j} Q_{s}+p C_{j k r} D^{r}{ }_{s}\right. \tag{1.15}\\
& \left.+V_{j k r} D_{s}^{r}-p C_{s k m} D_{j}^{j_{j}}-V_{s j m} D_{k}^{m}-p C_{s j m} D_{k}^{m}-V_{s k m} D_{j}^{m}\right) .
\end{align*}
$$

The tensor $D_{j}{ }^{i}{ }_{k}$, called the difference tensor, has the following properties:
(1) $D_{j}{ }^{i}{ }_{0}=B_{j}{ }^{i}{ }_{0}=D^{i}{ }_{j}$,
(2) $D_{0}{ }^{i}{ }_{0}=2 D^{i}$.

Theorem 1.1. The covariant vector, the components $b_{i}(x)$ of which are coefficients of the one-form β, is parallel with respect to the Cartan connection $C \Gamma$ on F^{n} if and only if the difference tensor $D_{j}{ }^{i}{ }_{k}$ of (1.15) 1) vanishes.

Proof. Assume that the vector $b_{i}(x)$ is parallel with respect to $C \Gamma$. Then (1.10) shows $E_{i j}=F_{i j}=0$, and so (1.11) 1) implies $D^{i}=0$ and $D^{i}{ }_{j}=0$. Consequently (1.15) 1) leads to $D_{j}{ }^{i}{ }_{k}=0$.

Conversely if $D_{j}{ }^{i}{ }_{k}$ vanishes, (1.16) immediately gives $D^{i}=0$. Contracting (1.11) 1) by y_{i}, we have $p E_{00}-2 q F_{r 0} b^{r}=0$, because of $s_{0} \beta+s_{-1} L^{2} \neq 0$ in (1.7).

Thus (1.11) 1) reduces to $F_{i 0}=0$ and $E_{00}=0$, and so (1.10) gives $b_{i \mid j}=0$.
A Finsler space F^{n} is called a Berwald space if the Berwald connection of F^{n} is a linear connection, that is, connection coefficients $G_{j}{ }^{i}{ }_{k}$ are functions of the position (x^{i}) only. As an immediate consequence of Theorem 1.1, and (1.14) we have

Theorem 1.2. Assume that the original space F^{n} is a Berwald space and the covariant vector $b_{i}(x)$ is parallel with respect to the Cartan connection $C \Gamma$ on F^{n}. Then the space \bar{F}^{n} obtained from F^{n} by the β-change is also a Berwald space.

Corollary 1.1. Assume that the covariant vector $b_{i}(x)$ is parallel with respect to the Riemannian connection on Riemannian space $F^{n}=\left(M^{n}, L=\alpha\right)$. Then $\bar{F}^{n}=$ ($M^{n}, \bar{L}=f(\alpha, \beta)$), obtained from F^{n} by the β-change, is a Berwald space.

§ 2. Change of the torsion and the curvature tensors.

In this section, we shall consider how the torsion and the curvature tensors change by a β-change of the metric.

Let $F \Gamma=\left(F_{j}{ }^{i}{ }_{k}, N^{i}{ }_{j}, C_{j}{ }^{i}{ }_{k}\right)$ be a Finsler connection on the space F^{n} and let K be a Finsler tensor field, for instance, of type (1,1). Then the h - and the v-covariant derivatives of K are respectively defined by

$$
\begin{aligned}
& K^{i}{ }_{j \mid k}=\delta K^{i}{ }_{j} / \partial x^{k}+K^{m}{ }_{j} F_{m}{ }^{i}{ }_{k}-K^{i}{ }_{m} F_{j}{ }^{m}{ }_{k}, \\
& \left.K^{i}{ }_{j}\right|_{k}=\dot{\partial}_{k} K^{i}{ }_{j}-K^{i}{ }_{m} C_{j}{ }^{m}{ }_{k}+K^{m}{ }_{j} C_{m}{ }^{i}{ }_{k}, \\
& \delta / \partial x^{k}=\partial / \partial x^{k}-N^{r}{ }_{k} \partial / \partial y^{r} .
\end{aligned}
$$

The torsion and the curvature tensors of $F \Gamma$ are written as follows:

$$
\begin{aligned}
& R_{j}{ }^{i}{ }_{k}=\mathfrak{A}_{(j k)}\left\{\delta N^{i}{ }_{j} / \partial x^{k}\right\}, \quad P_{j}{ }^{i} k=\dot{\partial}_{k} N^{i}{ }_{j}-F_{k}{ }^{i}{ }_{j}, \\
& R_{h}{ }^{i}{ }_{j k}=\mathcal{A}_{(j k)}\left\{\delta F_{h}{ }^{i}{ }_{j} / \partial x^{k}+F_{h}{ }^{m}{ }_{j} F_{m}{ }^{i}{ }_{k}\right\}+C_{h}{ }^{i}{ }_{m} P_{j}{ }^{m}{ }_{k}, \\
& P_{h}{ }^{i}{ }_{j k}=\dot{\partial}_{k} F_{h}{ }^{i}{ }_{j}-C_{h}{ }^{i}{ }_{k l j}+C_{h}{ }^{i}{ }_{m} P_{j}{ }^{m}{ }_{k}, \\
& \left.S_{h}{ }^{i}{ }_{j k}=\mathcal{A}_{(j k)}\left\{\dot{\partial}_{k} C_{h}{ }^{i}{ }_{j}+C_{h}{ }^{m}{ }_{k} C_{m}{ }^{i}\right\}\right\} .
\end{aligned}
$$

Throughout the paper, for the sake of brevity, we shall adopt the notations $\mathfrak{S}_{(i j k)}$ and $\mathfrak{A}_{(i j)}$ such that

$$
\begin{aligned}
& \mathfrak{S}_{(i j k)}\left\{X_{i r} X_{j}{ }^{r}\right\}=X_{i r} Y_{j}{ }^{r}{ }_{k}+X_{j r} Y_{k}{ }^{r}{ }_{i}+X_{k r} Y_{i}{ }^{r}{ }_{j}, \\
& \mathfrak{A}_{(i j)}\left\{X_{i r} Y_{j}{ }^{r}{ }_{k}\right\}=X_{i r} Y_{j}{ }^{r}{ }_{k}-X_{j r} Y_{i}{ }^{r}{ }_{k} .
\end{aligned}
$$

Let $F \bar{\Gamma}$ be a Finsler connection on \bar{F}^{n}, obtained from F^{n} by a β-change. Then the torsion and the curvature tensors change as follows ([4]).
(1) $\bar{C}_{j}{ }^{i}{ }_{k}=C_{j}{ }^{i}{ }_{k}-V_{j}{ }^{i}{ }_{k}$,
(2) $\bar{R}_{j}{ }^{i}{ }_{k}=R_{j}{ }^{i}{ }_{k}+\mathfrak{A}_{(j k)}\left\{D^{i}{ }_{j \mid k}-\left(B_{j}{ }^{i}{ }_{r}+P_{j}{ }^{i}{ }_{r}\right) D^{r}{ }_{k}\right\}$,
(3) $\bar{P}_{j}{ }^{i}{ }_{k}=P_{j}{ }^{i}{ }_{k}+\left(A_{k}{ }^{i}{ }_{j}+C_{k}{ }^{i}{ }_{m} D^{m}{ }_{j}\right)+B_{j}{ }^{i}{ }_{k}$,
(4) $\bar{R}_{n}{ }^{i}{ }_{j k}=R_{n}{ }^{i}{ }_{j k}+S_{h}{ }^{i}{ }_{m n} D^{m}{ }_{j} D^{n}{ }_{k}-\mathfrak{A}_{(j k)}$

$$
\begin{align*}
& \cdot\left\{A_{h}{ }^{i}{ }_{j \mid k}-A_{h}{ }^{i}{ }_{j n} D^{n}{ }_{k}+\left(A_{n}{ }^{i}{ }_{j}+C_{n}{ }^{i}{ }_{m} D^{m}{ }_{j}\right) A_{h}{ }^{n}{ }_{k}+A_{m}{ }^{i}{ }_{j} C_{h}{ }^{m}{ }_{n} D^{n}{ }_{k}\right. \\
& \left.\quad+P_{h}{ }^{i}{ }_{j n} D^{n}{ }_{k}-V_{r}{ }^{i} P_{j}{ }^{r}{ }_{n} D^{n}{ }_{k}+V_{m}{ }^{i}{ }_{h} D_{j}{ }^{m}{ }_{k}-V_{h}{ }^{i}{ }_{m} B_{j}{ }^{m} D^{r}{ }_{k}\right\} \tag{2.1}\\
& -V_{h}{ }^{i}{ }_{m} R_{j}{ }^{m}{ }_{k},
\end{align*}
$$

(5) $\bar{P}_{h}{ }^{i}{ }_{j k}=P_{h}{ }^{i}{ }_{j k}-S_{h}{ }^{i}{ }_{m} D^{m}{ }_{j}-A_{h}{ }^{i}{ }_{j k}-C_{m}{ }^{i}{ }_{k} A_{h}{ }^{m}{ }_{j}+C_{h}{ }^{m}{ }_{k} A_{m}{ }^{i}{ }_{j}$

$$
\begin{aligned}
& -V_{m}{ }^{i}{ }_{h} P_{j}{ }^{m}{ }_{k}-A_{j}{ }^{i}{ }_{m} V_{h}{ }^{m}{ }_{k}+V_{m}{ }^{i}{ }_{k} A_{h}{ }^{m}{ }_{j}+V_{j}{ }^{i}{ }_{k \mid h}+V_{m}{ }^{i}{ }_{h} B_{j}{ }^{m}{ }_{k} \\
& -V_{k}{ }^{i}{ }_{m h} D^{m}{ }_{j}+C_{r}{ }^{i}{ }_{h} V_{k}{ }^{r}{ }_{m} D^{m}{ }_{j}-V_{h}{ }^{i}{ }_{r} C_{m}{ }^{r}{ }_{k} D^{m}{ }_{j},
\end{aligned}
$$

(6) $\bar{S}_{n}{ }^{i}{ }_{j k}=S_{h}{ }^{i}{ }_{j k}+\mathfrak{A}_{(j k)}\left\{C_{m}{ }^{i}{ }_{k} V_{h}{ }^{m}{ }_{j}-C_{h}{ }^{m}{ }_{k} V_{m}{ }^{i}{ }_{j}-V_{m}{ }^{i}{ }_{k} V_{h}{ }^{m}{ }_{j}\right\}$,
where tensors $D^{i}{ }_{j}, B_{j}{ }^{i}{ }_{k}, A_{j}{ }^{i}{ }_{k}, V_{j}{ }^{i}{ }_{k}, A_{h}{ }^{i}{ }_{j k}$ and $V_{h}{ }^{i}{ }_{j k}$ are respectively given by

$$
D^{i}{ }_{j}=\bar{N}^{i}{ }_{j}-N^{i}{ }_{j}, \quad B_{j}{ }^{i}{ }_{k}=\dot{\partial}_{k} D^{i}{ }_{j},
$$

$$
\begin{align*}
& A_{j}{ }^{i}{ }_{k}=F_{j}{ }^{i}{ }_{k}-\bar{F}_{j}{ }^{i}{ }_{k}+C_{j}{ }^{i}{ }_{m}\left(N^{m}{ }_{k}-\bar{N}^{m}{ }_{k}\right), \tag{2.1}\\
& V_{j}{ }^{i}{ }_{k}=C_{j}{ }^{i}{ }_{k}-\bar{C}_{j}{ }^{i}{ }_{k}, \quad A_{j}{ }^{i}{ }_{k h}=\dot{\partial}_{h} A_{j}{ }^{i}{ }_{k}, \quad V_{j}{ }^{i}{ }_{k h}=\dot{\partial}_{h} V_{j}{ }^{i}{ }_{k} .
\end{align*}
$$

Moreover, for the tensor $A_{j}{ }^{i}{ }_{k}$ in (2.1) 1) we get

$$
\begin{align*}
& \text { (CГ) } A_{j}{ }^{i}{ }_{k}=-D_{j}{ }^{i}{ }_{k}-C_{j}{ }^{i}{ }_{m} D^{m}{ }_{k}, \quad \text { (BГ) } A_{j}{ }^{i}{ }_{k}=B_{j}{ }^{i}{ }_{k}, \tag{2.2}\\
& \text { (HГ) } A_{j}{ }^{i}{ }_{k}=H_{j}{ }^{i}{ }_{k}\left(=-B_{j}{ }^{i}{ }_{k}-C_{j}{ }^{i}{ }_{m} D^{m}{ }_{k}\right), \quad(R \Gamma) \quad A_{j}{ }^{i}{ }_{k}=-D_{j}{ }^{i}{ }_{k},
\end{align*}
$$

where $R \Gamma$ and $H \Gamma$ are respectively the Rund connection and the Hashiguchi connection ([4], [16]). Therefore, on account of (2.2), we can derive the torsion and the curvature tensors of each connection in the concrete form, for example,
(Case of $C \Gamma$)
(1) $\bar{R}_{j}{ }^{i}{ }_{k}=R_{j}{ }^{i}{ }_{k}+\mathfrak{A}_{(j k)}\left\{D^{i}{ }_{j \mid k}-\left(B_{j}{ }^{i}{ }_{r}+P_{j}{ }_{j}{ }_{r}\right) D^{r}{ }_{k}\right\}$,
(2) $\bar{P}_{j}{ }^{i}{ }_{k}=P_{j}{ }^{i}{ }_{k}-D_{j}{ }^{i}{ }_{k}+B_{j}{ }^{i}{ }_{k}$,
(3) $\bar{R}_{h}{ }^{i}{ }_{j k}=R_{h}{ }^{i}{ }_{j k}+2 S_{n}{ }^{i}{ }_{m n} D^{m}{ }_{j} D^{n}{ }_{k}-\mathfrak{A}_{(j k)}$

$$
\begin{aligned}
\cdot & \left\{A_{h}{ }^{i}{ }_{j \mid k}-A_{h}{ }^{i}{ }_{j n} D^{n}{ }_{k}+D_{n}{ }^{i}{ }_{j} D_{h}{ }^{n}{ }_{k}+P_{h}{ }^{i}{ }_{j n} D^{n}{ }_{k}-V_{r}{ }^{i}{ }_{h} P_{j}{ }_{n} D^{n}{ }_{k}\right. \\
& \left.+V_{m}{ }^{i} D^{m}{ }_{j j \mid k}-V_{h}{ }_{m} B_{j}{ }^{m}{ }_{r} D^{r}{ }_{k}\right\}-V_{h}{ }^{i}{ }_{m}{ }_{j}{ }^{m}{ }_{k},
\end{aligned}
$$

(4) $\bar{P}_{n}{ }^{i}{ }_{j k}=P_{h}{ }^{i}{ }_{j k}-2 S_{n}{ }^{i}{ }_{m} D^{m}{ }_{j}-A_{h}{ }^{i}{ }_{j k}+C_{m}{ }^{i}{ }_{k} D_{h}{ }^{m}{ }_{j}-C_{h}{ }^{m}{ }_{k} D_{m}{ }^{i}{ }_{j}$
$-V_{m}{ }^{i}{ }_{h} P_{j}{ }^{m}{ }_{k}-A_{j}{ }^{i}{ }_{m} V_{h}{ }^{m}{ }_{k}+V_{m}{ }^{i}{ }_{k} A_{h}{ }^{m}{ }_{j}+V_{j}{ }^{i}{ }_{k \mid n}-V_{m}{ }^{i}{ }_{h} B_{j}{ }^{m}{ }_{h}$
$-V_{k}{ }^{i}{ }_{m} D^{m}{ }_{j}-C_{r}{ }^{i}{ }_{n} V_{k}{ }^{T}{ }_{m} D^{m}{ }_{j}+V_{n}{ }^{i}{ }_{s} C_{m}{ }^{s}{ }_{k} D^{m}{ }_{j}$,
(5) $\bar{S}_{n}{ }^{i}{ }_{j k}=S_{h}{ }^{i}{ }_{j k}+\mathcal{A}_{(j k)}\left\{C_{m}{ }^{i}{ }_{k} V_{h}{ }^{m}{ }_{j}-C_{h}{ }^{m}{ }_{k} V_{m}{ }^{i}{ }_{j}-V_{m}{ }^{i}{ }_{k} V_{n}{ }^{m}{ }_{j}\right\}$,

Assume that the vector $b_{i}(x)$ is parallel with respect to the Cartan connection $C \Gamma$. Then Theorem 1.1 asserts that the difference tensor $D_{j}{ }^{i}{ }_{k}$ vanishes. Therefore, (2.2) and (2.3) imply

$$
\begin{equation*}
\bar{R}_{h}{ }^{i}{ }_{j k}=R_{h}{ }^{i}{ }_{j k}-V_{h}{ }^{i}{ }_{m} R_{j}{ }_{k}{ }_{k} . \tag{2.4}
\end{equation*}
$$

Further we contract (2.4) by y^{h} and get $\bar{R}_{0}{ }^{i}{ }_{j k}=R_{0}{ }^{i}{ }_{j k}-V_{0}{ }^{i}{ }_{m} R_{j}{ }^{m}{ }_{k}$. Because of $V_{j}{ }^{i}{ }_{k}=C_{j}{ }^{i}{ }_{k}-\bar{C}_{j}{ }_{j}{ }_{k}$, it is clear that $V_{0}{ }^{i}{ }_{m}=0$. Consequently $\bar{R}_{h}{ }^{i}{ }_{j k}=0$ and $R_{h}{ }^{i}{ }_{j k}=0$ are mutually equivalent. Thus we have

Theorem 2.1. Assume that the covariant vector $b_{i}(x)$ is parallel with respect to the Cartan connection $C \Gamma$. Then the h-curvature tensor $\bar{R}_{h}{ }^{i}{ }_{j k}$ of \bar{F}^{n}, obtained from F^{n} by the β-change, vanishes if and only if the h-curvature tensor $R_{h}{ }^{i}{ }_{j k}$ of F^{n} vanishes.

Now the space F^{n} is called a locally Minkowski space if F^{n} is a Berwald space and the h-curvature tensor $R_{h}{ }^{i}{ }_{j k}$ vanishes. From Theorem 1.2 and Theorem 2.1 we have

Theorem 2.2. Assume that the covariant vector $b_{i}(x)$ is parallel with respect to the Cartan connection $C \Gamma$ on F^{n}. If F^{n} is a locally Minkowski space, then the space \bar{F}^{n}, obtained from F^{n} by the β-change, is also locally Minkowskian.

Next, we restrict ourselves to a Riemannian space F^{n} with a Riemannian metric α. Then \bar{F}^{n}, obtained from F^{n} by a β-change, becomes a Finsler space with a so-called (α, β)-metric. Since $C_{h i j}=0$ and $S_{h i j k}=0$ in F^{n}, the h-, the $h v$-, and the v-curvature tensors of \bar{F}^{n} are respectively given by
(1) $\bar{R}_{h}{ }^{i}{ }_{j k}=R_{h}{ }^{i}{ }_{j k}+\bar{C}_{n}{ }^{i}{ }_{m} R_{i}{ }^{m}{ }_{k}+\mathfrak{Y}_{(j k)}$

$$
\cdot\left\{D_{j}{ }^{i}{ }_{h 1 k}+D_{r}{ }^{i}{ }_{j} D_{h}{ }^{r}{ }_{k}+\bar{C}_{h}{ }^{i}{ }_{m}\left(D_{j}{ }^{m}{ }_{1 k}+D_{s}{ }^{m}{ }_{j} D^{s}{ }_{k}\right)\right\},
$$

(2) $\bar{P}_{h}{ }^{i}{ }_{j k}=\dot{\partial}_{k} D_{h}{ }^{i}{ }_{j}+D_{j}{ }^{i}{ }_{m} \bar{C}_{h}{ }^{m}{ }_{k}-D_{h}{ }^{m}{ }_{j} \bar{C}_{m}{ }^{i}{ }_{k}-\bar{C}_{m}{ }^{i}{ }_{h} D_{j}{ }^{m}{ }_{k}$

$$
-\dot{\partial}_{h} \bar{C}_{k}{ }^{i}{ }_{m} D^{m}{ }_{j}+\bar{C}_{j}{ }^{i}{ }_{k \mid h},
$$

(3) $\bar{S}_{n}{ }^{i}{ }_{j k}=\bar{h}_{n k} M_{i j}-\bar{h}_{h j} M_{i k}+\bar{h}_{i j} M_{h k}-\bar{h}_{i k} M_{h j}$,
where \mid is the h-covariant differentiation with respect to the Cartan connection $C \bar{\Gamma}$ on \bar{F}^{n}, and $M_{i j}=p_{-1}\left\{\bar{L}^{2} p_{-1} \nu \bar{h}_{i j} / 2 \tau L^{2}+\left(p_{-1}+\bar{L}^{2} \nu\left(p p_{02}-3 p_{-1} q_{0}\right) / L^{2} \tau\right) m_{i} m_{j}\right\} / 2$.

Owing to Corollary 1.1 and Theorem 2.2, we obtain
Proposition 2.1 (Kikuchi ([10]). A Finsler space \bar{F}^{n} with an (α, β)-metric is locally Minkowskian if and only if $\nabla_{j} b_{i}=0$ and $R_{h}{ }^{i}{ }_{j k}=0$ hold good, where $R_{h}{ }^{i}{ }_{j k}$ is the Riemannian curvature tensor of $F^{n}=\left(M^{n}, \alpha\right)$ and ∇_{j} is the covariant differentiation with respect to the Riemannian connection.

Next, we consider the $h v$-curvature tensor $\bar{P}_{h i j k}$ of $\bar{F}^{n}=\left(M^{n},(L, \beta)\right)$. Then (2.3) and Theorem 1.1 show that $\bar{P}_{j}{ }_{k}=0$ is equivalent to $P_{j}{ }^{i}{ }_{k}=0$ if the covariant vector $b_{i}(x)$ is parallel with respect to the Cartan connection $C \Gamma$. Here we shall
recall the concept of Landsberg space:
Definition 2.1. A Finsler space F^{n} is called a Landsberg space if the $h v$ curvature tensor $P_{h i j k}$ of $C \Gamma$ vanishes, or equivalently $P_{j}{ }^{i}{ }_{k}=0$.

As the $h v$-curvature tensor $P_{h i j k}$ of a Riemannian space $F^{n}=\left(M^{n}, \alpha\right)$ vanishes identically, we can state

Theorem 2.3. Assume that the covariant vector $b_{i}(x)$ is parallel with respect to the Cartan connection $C \Gamma$. Then a Landsberg space remains to be a Landsberg space by the β-change of the metric.

Corollary 2.1. Assume that the covariant vector $b_{i}(x)$ is parallel with respect to the Riemannian connection constructed from a Riemannian metric α. Then a Finsler space with the (α, β)-metric is a Landsberg space.

§ 3. Randers change.

We consider a special β-change called a Randers one which is defined by $L \rightarrow \bar{L}=L+\beta$. As a special case where $L(x, d x)$ is Riemannian, we have a Randers metric. Moreover if L is a Randers metric and the covariant vector $b_{i}(x)$ of one-form β is gradient, then the Randers change is regarded as a gauge change which is important in the quantum electrodynamics [27]. Recently, Hashiguchi and Ichijyō [7] considered some properties that remain invariant under a Randers change, and proved that any geodesic remains to be a geodesic if and only if the covariant vector $b_{i}(x)$ is gradient.

We shall first introduce certain tensors which remain invariant by a Randers change. In this case, it follows from (1.1), (1.2) and (1.5) 1) that $f_{1}=f_{2}=1$, $p=\bar{L} / L$ and $q=\bar{L}$, so that (1.3) yields

$$
\begin{equation*}
\bar{l}_{i}=l_{i}+b_{i} . \tag{3.1}
\end{equation*}
$$

Putting

$$
\begin{equation*}
L_{i j}=h_{i j} / L \tag{3.2}
\end{equation*}
$$

we observe from (3.1) that the tensor $L_{i j}$ is invariant by the Randers change. From (3.1) and (3.2) we have the fundamental theorem of a Randers change:

Theorem 3.1. The following statements are equivalent.
(1) A β-change $L \rightarrow \bar{L}$ of the Finsler metric is a Randers change,
(2) $\partial^{2}(\bar{L}-L) / \partial y^{i} \partial y^{j}=0$,
(3) $L_{i j}=\bar{L}_{i j}$.

We shall call $L_{i j}$ in (3.2) the first fundamental tensor of the Randers change. From now on, we shall call a tensor which is invariant under a Randers change an R-invariant tensor.

Since $\dot{\partial}_{k} h_{i j}=2 C_{i j k}-\left(L_{i k} l_{j}+L_{j k} l_{i}\right)$, differentiating (3.2) by y^{k} and putting

$$
\begin{equation*}
L_{i j k}:=\dot{\partial}_{k} L_{i j}=\left\{2 C_{i j k}-\left(L_{i j} l_{k}+L_{j k} l_{i}+L_{k i} l_{j}\right)\right\} / L, \tag{3.3}
\end{equation*}
$$

we get $L_{i j k}=\bar{L}_{i j k}$. This invariant tensor $L_{i j k}$ is called the second fundamental tensor of the Randers change.

Moreover, putting $L_{h i j k}=\dot{\partial}_{h} L_{i j k}$ and refferring to the T-tensor

$$
T_{h i j k}=\left.L C_{h i j}\right|_{k}+l_{h} C_{i j k}+l_{k} C_{i j h}+l_{i} C_{h j k}+l_{j} C_{h i k},
$$

it is seen that

$$
\begin{gather*}
L_{h i j k}=2 T_{h i j k} / L^{2}+\Im_{(i j k)}\left\{2 C_{h r j} C_{i}{ }^{r} / L+\left(-2 C_{h i j}+l_{h} L_{i j}\right) l_{k} / L^{2}\right. \tag{3.4}\\
\left.-L_{i j} L_{n k} / L\right\}-4 l_{h} C_{i j k} / L^{2}
\end{gather*}
$$

satisfies $\bar{L}_{n i j k}=L_{n i j k}$, therefore we get another R-invariant tensor $L_{h i j k}$, which is called the third fundamental tensor of the Randers change.

We shall consider how the fundamental and the torsion tensors change by a Randers change. From (1.5) we have

$$
\begin{equation*}
\bar{g}_{i j}=\mu g_{i j}+b_{i} b_{j}+\left(b_{i} l_{j}+b_{j} l_{i}\right)-\beta l_{i} l_{j} / L, \quad \mu=\bar{L} / L, \tag{3.5}
\end{equation*}
$$

and (1.6) gives

$$
\begin{equation*}
\bar{g}^{i j}=(1 / \mu) g^{i j}+\omega l^{i} l^{j}-\left(l^{i} b^{j}+l^{j} b^{i}\right) / \mu^{2}, \quad \omega=\left(L b^{2}+\beta\right) / \bar{L} \mu^{2} . \tag{3.6}
\end{equation*}
$$

Next, for the $h(h v)$-torsion tensor $C_{i j k}$, (1.8) leads to

$$
\begin{equation*}
\bar{C}_{i j k}=\mu C_{i j k}+\left(L_{i j} m_{k}+L_{j k} m_{i}+L_{k i} m_{j}\right) / 2 . \tag{3.7}
\end{equation*}
$$

Contracting this by $\bar{g}^{h k}$, we have

$$
\begin{align*}
\bar{C}_{i}{ }^{h}{ }_{j}= & C_{i}{ }^{h}{ }_{j}+\left(h_{i}^{h} m_{j}+h_{j}^{h} m_{i}+h_{i j} m^{h}\right) / 2 \bar{L}-C_{i j r} r^{r} l^{h} / \mu \tag{3.8}\\
& -\left(2 m_{i} m_{j}+m^{2} h_{i j}\right) l^{h} / 2 L \mu^{2}, \quad m^{2}=g^{i j} m_{i} m_{j}, \quad m^{i}=g^{i r} m_{r} .
\end{align*}
$$

Thus the torsion vector $\bar{C}_{i}=\bar{C}_{i}{ }^{r}{ }_{r}$ is given by

$$
\begin{equation*}
\bar{C}_{i}=C_{i}+(n+1) m_{i} / 2 \bar{L} . \tag{3.9}
\end{equation*}
$$

On the other hand, paying attention to (3.1), the vector m_{i} in (1.4) 1) and \bar{C}_{i} are rewritten in the form

$$
\begin{equation*}
m_{i}=\bar{l}_{i}-\mu l_{i}, \quad \bar{C}_{i}=C_{i}+(n+1)\left(\bar{l}_{i}-\mu l_{i}\right) / 2 \bar{L} . \tag{3.9'}
\end{equation*}
$$

Contracting (3.8) by $\bar{g}^{i j}$ and then \bar{C}_{h}, we obtain

$$
\begin{align*}
& \bar{C}^{h}=(1 / \mu) C^{h}+(n+1) m^{h} / 2 \mu^{2} L-\left\{C_{\beta}+(n+1) m^{2} / 2 \bar{L}\right\} l^{h} / \mu^{2}, \tag{3.10}\\
& \bar{C}^{2}=(1 / \mu) C^{2}+(n+1)\left\{C_{\beta}+(n+1) m^{2} / 4 \bar{L}\right\} / L \mu^{2}, \tag{3.11}
\end{align*}
$$

where $C^{2}=C^{i} C_{i}, C_{\beta}=C_{i} b^{i}$.
If C_{β} is eliminated from (3.10) and (3.11), m^{h} is written as a linear combination of \bar{C}^{h}, C^{h} and l^{h}. Substituting this into $m^{i}=b^{i}-\beta y^{i} / L^{2}$, we get

$$
\begin{equation*}
b^{i}=2 L \mu^{2}\left(\bar{C}^{i}-C^{i} / \mu /(n+1)+\left\{\beta / L+m^{2} / 2 \mu+2 \mu L^{2}\left(\mu \bar{C}^{2}-C^{2}\right) /(n+1)^{2}\right\} l^{i} .\right. \tag{3.12}
\end{equation*}
$$

Further, substituting from (3.12) into (3.6) and putting

$$
\begin{equation*}
{ }^{*} g^{i j}=L\left\{g^{i j}+2\left(C^{i} y^{i}+C^{j} y^{i}\right) /(n+1)+\left(4 C^{2} /(n+1)^{2}-1 / L^{2}\right) y^{i} y^{j}\right\} \tag{3.13}
\end{equation*}
$$

we see ${ }^{*} \bar{g}^{i j}={ }^{*} g^{i j}$, that is, ${ }^{*} g^{i j}$ is R-invariant. Therefore, on account of this tensor, we can derive some new R-invariant tensors, for instance,

$$
\begin{equation*}
\text { 1) }{ }^{*} L^{i}{ }_{j}={ }^{*} g^{i r} L_{r j}, \tag{3.14}
\end{equation*}
$$

2) $* L^{h}{ }_{i k}=* g^{k r} L_{r i k}, \cdots$, etc.

Let $\mathrm{g}(x, y)$ be the determinant consisting of components $g_{i j}$ of the fundamental tensor. It is well-known ([15]) that the determinant \bar{g} of \bar{F}^{n}, obtained from F^{n} by a Randers change, is given by

$$
\begin{equation*}
\bar{g}=g(\bar{L} / L)^{n+1} . \tag{3.15}
\end{equation*}
$$

Thus $g \neq 0$ implies $\bar{g} \neq 0$. Therefore,

$$
\begin{equation*}
* L=L / g^{1 / n+1} \tag{3.16}
\end{equation*}
$$

is an R-invariant relative scalar which was called a relative fundamental function of weight $-2 /(n+1)$ of F^{n} by Matsumoto [15]. Differentiating (3.16) by y^{i} and putting

$$
\begin{equation*}
K_{i}=\dot{\partial}_{i}\left(\log ^{*} L\right), \tag{3.17}
\end{equation*}
$$

this is written as

$$
\begin{equation*}
K_{i}=l_{i} / L-2 C_{i} /(n+1), \tag{3.17'}
\end{equation*}
$$

because of $\dot{\partial}_{i} g=2 g C_{i}$ and $\dot{\partial}_{i} L=l_{i}$. Therefore this vector K_{i} is R-invariant; this fact can be also observed from (3.9'). Moreover we differentiate K_{i} by y^{j} and get

$$
\begin{align*}
K_{i j}:=\dot{\partial}_{j} K_{i}= & \left(h_{i j}-l_{i} l_{j}\right) / L^{2}-2\left(T_{i j}-l_{i} C_{j}-l_{j} C_{i}\right) /(n+1) L \tag{3.18}\\
& -2 C_{m} C_{j}^{m}{ }_{i} /(n+1),
\end{align*}
$$

where we refer to $T_{i j}=\left.L C_{i}\right|_{j}+C_{i} l_{j}+C_{j} l_{i}$.
As it has been seen, we obtain two systems of R-invariant quantities of F^{n} :
(i) $L_{i j}, L_{i j k}, L_{n i j k}, \cdots \ldots \ldots \ldots \ldots$,
(ii) ${ }^{2} L, K_{i}, K_{i j}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

Now, from these systems, we can construct many R-invariant tensors. First, putting

$$
\begin{equation*}
H_{h i j}:=\left(L_{n i j}+L_{n i} K_{j}+L_{i j} K_{h}+L_{j h} K_{i}\right) / 2, \tag{3.19}
\end{equation*}
$$

(3.3) and (3.17') lead to

$$
H_{h i j}=\left[C_{n i j}-\left(h_{i j} C_{n}+h_{j n} C_{i}+h_{n i} C_{j}\right) /(n+1)\right] / L,
$$

and

$$
\begin{align*}
H_{h i j k}:=\dot{\partial}_{k} H_{h i j}= & {\left[T_{h i j k}-\left(h_{i j} T_{n k}+h_{h j} T_{i k}+h_{h i} T_{j k}\right) /(n+1)\right] / L^{2} } \tag{3.20}\\
& -2 H_{i j h} l_{k} / L+\Theta_{(i j h)}\left\{-H_{j k h} l_{i} / L+C_{i}{ }^{m}{ }_{k} H_{m h j}\right\}
\end{align*}
$$

is also R-invariant.

Secondly we contract $H_{h i j}$ in (3.19) by $* g^{h k}$ and get the R-invariant tensor

$$
\begin{equation*}
* H_{i}{ }^{k}{ }_{j}:=H_{i n j}{ }^{*} g^{h k}=L H_{i}{ }^{k}{ }_{j}+2 L y^{k} C_{r} H_{i}{ }^{r} /(n+1), \tag{3.21}
\end{equation*}
$$

where we put $H_{i}{ }^{k}{ }_{j}=H_{i s j} g^{s k}$. (3.19') and (3.21) give the R-invariant tensor:

$$
\begin{align*}
U_{h i j k}:= & H_{h r k} * H_{i}{ }^{r}{ }_{j}-H_{h r j} * H_{i}{ }^{r}{ }_{k} \tag{3.22}\\
= & S_{h i j k} / L-\mathcal{A l}_{(j k)}\left\{\left(C_{h r k} L_{i j}+C_{r i j} L_{n k}\right) C^{r} /(n+1)\right. \\
& \left.\quad-\left(L_{i j} C_{h} C_{k}+L_{n k} C_{i} C_{j}+C^{2} L_{h k} h_{i j}\right) /(n+1)^{2}\right\} .
\end{align*}
$$

Thirdly from (3.3) and (3.19') we obtain the following R-invariant tensors:

$$
\begin{align*}
& \text { (1) } M_{i j k}:=-L_{i j k}+2 H_{i j k}=L_{k i} K_{j}+L_{i j} K_{k}+L_{j k} K_{i}, \tag{3.23}\\
& \text { (2) } M_{h i j k}:=\dot{\partial}_{k} M_{h i j}=\mathbb{S}_{(i j h)}\left\{L_{h i k} K_{j}+L_{k i} K_{j k}\right\} .
\end{align*}
$$

Finally (3.13) and (3.17') yield

$$
\begin{equation*}
K_{i}{ }^{*} g^{i j}=0, \tag{3.24}
\end{equation*}
$$

which will play an important role later on.

§4. Properties of the R-invariant tensors.

We shall treat C-reducible Finsler spaces. Matsumoto and Hōjō [17] proved a remarkable theorem: The metric functions of C-reducible Finsler spaces are confined solely to the Randers metric ($L=\alpha+\beta$) and the Kropina one ($L=\alpha^{2} / \beta$).

Definition 4.1. A Finsler space $F^{n}(n \geqq 3)$ is called C-reducible if the $h(h v)$ torsion tensor $C_{i j k}$ is written as

$$
C_{h i j}=\left(h_{h i} C_{j}+h_{i j} C_{n}+h_{j h} C_{i}\right) /(n+1) .
$$

For $H_{h i j}$ of (3.19), from the above definition we get
Theorem 4.1. The R-invariant tensor $H_{h i j}$ of (3.19) vanishes if and only if the Finsler space is C-reducible.

Corollary 4.1. A C-reducible Finsler space remains to be C-reducible by any Randers change.

As $L_{i j}=\dot{\partial}_{i} \dot{\partial}_{j} L$ and $K_{i}=\dot{\partial}_{i} \log * L$, from (3.3) the second fundamental tensor $L_{i j k}$ is written as $\partial_{i} \partial_{j} \partial_{k} L$. Thus from (3.19) and Theorem 4.1 we can state

Theorem 4.2. A Finsler space F^{n} is C-reducible if and only if its fundamental function L satisfies a system of differential equations

$$
\dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} L=-\Im_{(i j k)}\left\{\left(\dot{\partial}_{i} \dot{\partial}_{j} L\right)\left(\dot{\partial}_{k} \log * L\right)\right\},
$$

where we put ${ }^{*} L=L / g^{1 / n+1}$ and $g=\operatorname{det}\left(\dot{\partial}_{j} \dot{\partial}_{i} L^{2} / 2\right)$.
Next, we introduce

$$
\begin{equation*}
V_{h i j k}:=\dot{\partial}_{k} H_{h i j}-\Xi_{(h i j)}\left\{H_{h i r} * H_{j}{ }^{r}-K_{i} H_{h j k}\right\}+2 K_{k} H_{h i j} . \tag{4.1}
\end{equation*}
$$

By (3.17) and (3.19') it is written as

$$
\begin{align*}
V_{h i j k}= & T_{h i j k} / L^{2}-\mathbb{S}_{(h i j)}\left\{h_{i j} T_{h k} / L^{2}+H_{i h k} C_{j}-h_{j k} H_{h i r} C^{r}\right\} /(n+1) \tag{4.1'}\\
& -C_{k} H_{h i j} /(n+1) .
\end{align*}
$$

Thus we get the R-invariant tensor $V_{h i j k}$ in relation to the T-tensor $T_{h i j k}$. Since $T_{h i j k} y^{k}=0$ and $H_{i j k} y^{k}=0$, contraction of (4.1') by $* g^{i k}$ yields

$$
\begin{align*}
V_{h j}:=V_{h i j k} * g^{i k}= & \left((n-1) T_{h j}-T h_{h j}\right) /(n+1) L \tag{4.2}\\
& -(n-1) L H_{h j r} C^{r} /(n+1),
\end{align*}
$$

which is also R-invariant. Moreover, owing to these tensors we construct a new R-invariant tensor

$$
\begin{align*}
4^{*} T_{h i j k}= & V_{h i j k}+V_{k h i j}+V_{j k h i}+V_{i j k h} \tag{4.3}\\
& +2 \Xi_{(h i j)}\left\{L_{i k} V_{h j}+L_{i j} V_{n k}\right\} /(n+1),
\end{align*}
$$

which, in virtue of (4.1) and (4.2), is written in the form

$$
\begin{align*}
* T_{h i j k}= & {\left[T_{n i j k}-T\left(h_{i k} h_{h j}+h_{h k} h_{i j}+h_{j k} h_{h i}\right) /\left(n^{2}-1\right)\right] / L^{2} } \tag{4.3'}\\
& -H_{j i k} C_{h}-H_{h j k} C_{i}-H_{i k k} C_{j}-H_{h i j} C_{k} .
\end{align*}
$$

Hence we get
Theorem 4.3. The T-tensor $T_{n i j k}$ of a Finsler space is written as

$$
\begin{align*}
T_{h i j k}= & T\left(h_{i k} h_{h j}+h_{h k} h_{i j}+h_{j k} h_{h i}\right) /\left(n^{2}-1\right) \tag{4.4}\\
& +L^{2}\left(C_{i} H_{h j k}+C_{j} H_{i h k}+C_{h} H_{j i k}+C_{k} H_{h i j}\right),
\end{align*}
$$

if and only if the R-invariant tensor $* T_{h i j k}$ of (4.3) vanishes.
Corollary 4.2. If the T-tensor $T_{h i j k}$ of F^{n} is written as (4.4), the T-tensor $\bar{T}_{\text {hijk }}$ of \bar{F}^{n}, obtained from F^{n} by a Randers change, is also written in the same form as (4.4).

If a Finsler space F^{n} is C-reducible, Theorem 4.1 shows that the tensor $H_{h i j}$ vanishes, and so R-invariant tensors $V_{h i j k}$ and ${ }^{*} T_{n i j k}$ also vanish. Therefore the T-tensor $T_{n i j k}$ of a C-reducible Finsler space ([16]) is written as

$$
T_{h i j k}=T\left(h_{i k} h_{h j}+h_{h k} h_{i j}+h_{j k} h_{h i}\right) /\left(n^{2}-1\right) .
$$

Next, we shall deal with the R-invariant tensor $U_{h i j k}$ defined by (3.22). It is obvious that $U_{h i j k}$ vanishes if a Finsler space F^{n} is C-reducible. Contracting (3.22) by $* g^{i k}$ and then $* g^{h j}$, we get

$$
\begin{align*}
U_{h j}:=U_{h i j k} *^{i k}= & S_{h j}+\left\{(n-3)\left(C_{h r j} C^{r}-C_{h} C_{j} /(n+1)\right)\right. \tag{4.5}\\
& \left.+2 C^{2} h_{h j} /(n+1)\right\} /(n+1), \quad S_{n j}=S_{h i j k} g^{i k}, \\
U:=U_{h j}{ }^{*} g^{h j}= & L\left(S+(n-2) C^{2} /(n+1)\right), \quad S=S_{h j} g^{h j} . \tag{4.6}
\end{align*}
$$

On the other hand, from the definition of (3.22), the above quantities can be respectively written as follows:

$$
\begin{align*}
& U_{h j}=L^{2} H_{h r k} H_{i}{ }^{r}{ }_{j} g^{i k}, \tag{4.5'}\\
& U=L^{3} H_{h r k} H_{m i j} g^{h m} g^{r i} g^{k j},
\end{align*}
$$

where $H_{i r k} g^{i k}=0$ and $H_{i j k} y^{i}=0$ are used. We now assume that $g_{i j}$ is positive definite. Then (4.6') shows that $U=0$ is equivalent to $H_{h i j}=0$, and (4.6) does $S+(n-2) C^{2} /(n+1)=0$. Consequently, from Theorem 4.1 we have

Theorem 4.4. A Finsler space $F^{n}(n>2)$ is C-reducible if and only if the v-scalar curvature S is given by

$$
S=-(n-2) C^{2} /(n+1),
$$

provided that $g_{i j}$ be positive definite.
Remark. Since $S=C_{a b c} C^{a b c}-C^{2}$, Corollary 4.2 resembles closely to the following fact: If the v-scalar curvature S is given by $S=-C^{2}$ and $g_{i j}$ is positive definite, a Finsler space is Riemannian.

Corollary 4.3. A Finsler space F^{n} is C-reducible if and only if the v-Ricci tensor $S_{h j}$ is written in the form

$$
\begin{equation*}
S_{h j}=\left\{(n-3)\left(C_{h} C_{j} /(n+1)-C_{h r j} C^{r}\right)-2 C^{2} h_{h j} /(n+1)\right\} /(n+1), \tag{4.7}
\end{equation*}
$$

provided that $g_{i j}$ be positive definite.
Moreover we shall give another R-invariant tensor in relation to the v-curvature tensor $S_{h i j k}$. Since $U_{h j}=\bar{U}_{h j}$ and $U=\bar{U}$ in (4.5), (4.6), it holds
(1) $C_{h r j} C^{r} /(n+1)=C_{h} C_{j} /(n+1)^{2}+\left\{\bar{C}_{h r j} \bar{C}^{r}-\bar{C}_{h} \bar{C}_{j} /(n+1)\right\} /(n+1)$

$$
\begin{equation*}
+\left(\bar{S}_{h j}-S_{n j}\right) /(n-3)+2\left(\bar{C}^{2} \bar{h}_{h j}-C^{2} h_{h j}\right) /(n+1)^{2}(n-3), \tag{4.8}
\end{equation*}
$$

(2) $C^{2} /(n+1)=\bar{L}\left\{\bar{S} \bar{L} /(n-2)+\bar{C}^{2} \bar{L} /(n+1)\right\} / L-S /(n-2)$.

Substituting from (4.8) into (3.22) and putting

$$
\begin{equation*}
*_{n i j k}:=\left[S_{h i j k}+\mathfrak{A}_{(j k)}\left\{h_{i j} S_{n k}+h_{h k} S_{i j}-S h_{i j} h_{h k} /(n-2)\right\} /(n-3)\right] / L, \tag{4.9}
\end{equation*}
$$

we get ${ }^{*} S_{h i j k}=* \bar{S}_{h i j k}$, that is, ${ }^{*} S_{h i j k}$ is R-invariant.
Here we introduce the concept of S4-like Finsler space ([14]):
Definition 4.2. A non-Riemannian Finsler space $F^{n}(n>4)$ is called S4-like, if the v-curvature tensor $S_{\text {hijk }}$ is written in the form

$$
L^{2} S_{h i j k}=h_{h j} M_{i k}+h_{i k} M_{h j}-h_{h k} M_{i j}-h_{i j} M_{h k},
$$

where $M_{i j}$ is a symmetric and indicatory tensor.
Assume that F^{n} be S4-like. Then the tensor $M_{i j}$ of the above definition is given by $\left\{S_{i j}-S h_{i j} / 2(n-2)\right\} /(n-3)$ and accordingly (4.9) gives ${ }^{*} S_{n i j k}=0$ imme-
diately. Thus we have
Theorem 4.5. A non-Riemannian space $F^{n}(n>4)$ is S4-like if and only if the R-invariant tensor ${ }^{*} S_{h i j k}$ of (4.10) vanishes.

Corollary 4.4. If a Finsler space $F^{n}(n>4)$ is $S 4$-like, the Finsler space \bar{F}^{n}, obtained from F^{n} by a Randers change of the metric, is also S4-like.

§ 5. Projective Randers change.

In this section, we shall treat a special class of Randers satisfying

$$
\begin{equation*}
\partial_{i} b_{j}-\partial_{j} b_{i}=0 \text {, i.e., } \quad F_{i j}=0, \tag{5.1}
\end{equation*}
$$

that is, the covariant vector $b_{i}(x)$ is gradient. Such a change is called a projective Randers change.

Hashiguchi and Ichijyō [7] have shown an interesting result: A Randers change is projective, that is, any geodesic remains to be a geodesic by the change, if and only if $b_{i}(x)$ is gradient.

Throughout the present section, we restrict ourselves to projective Randers changes and from now on, we shall call a quantity which is invariant under a projective Randers change, a projective R-invariance.

From (1.11), (1.11) 1) and (5.1) we get

$$
\begin{equation*}
D^{i}:=\bar{G}^{i}-G^{i}=\alpha y^{i}, \quad \alpha=E_{00} / 2 \bar{L} . \tag{5.2}
\end{equation*}
$$

Since $N^{i}{ }_{j}=\dot{\partial}_{j} G^{i}$, the above gives

$$
\begin{equation*}
D^{i}{ }_{j}=\bar{N}^{i}{ }_{j}-N^{i}{ }_{j}=\alpha_{j} y^{i}+\alpha \hat{o}^{i}{ }_{j}, \quad \alpha_{j}=\dot{\partial}_{j} \alpha . \tag{5.3}
\end{equation*}
$$

We consider the R-invariant vector K_{i} of (3.17'). Differentiating covariantly by x^{j}, we get

$$
\begin{equation*}
\bar{K}_{i \mathrm{~T} 0}=K_{i 10}-2 K_{i r} D^{r}-K_{r} D_{i}^{r}, \tag{5.4}
\end{equation*}
$$

where the symbol (T) denotes the h-covariant differentiation with respect to $C \bar{\Gamma}$.
On the other hand, from $l_{i \mid j}=L_{1 j}=0,\left(3.17^{\prime}\right)$ yields

$$
K_{i 10}=-2 C_{i 10} /(n+1)=-2 P_{i} /(n+1), \quad\left(P_{i}=P_{i}^{r}\right) .
$$

In the same manner, we get $\bar{K}_{i \tau 0}=-2 \bar{P}_{i} /(n+1)$. Therefore, (5.4) is written as

$$
\begin{equation*}
\bar{P}_{i}=P_{i}-(n+1) \alpha K_{i} / 2+(n+1) \alpha_{i} / 2 . \tag{5.5}
\end{equation*}
$$

Differentiating this by y^{j}, we get

$$
\begin{equation*}
\bar{P}_{i j}=P_{i j}-(n+1)\left(\alpha_{j} K_{i}+\alpha K_{i j}\right) / 2+(n+1) \alpha_{i j} / 2, \tag{5.6}
\end{equation*}
$$

where we put $P_{i j}=\dot{\partial}_{j} P_{i}$ and $\alpha_{i j}=\dot{\partial}_{j} \alpha_{i}$.
Next, (5.3) gives

$$
\begin{equation*}
\bar{G}_{j}{ }^{i}{ }_{k}=G_{j}{ }^{i}{ }_{k}+\alpha_{j k} y^{i}+\alpha_{j} \delta^{i}{ }_{k}+\alpha_{k} \delta^{i}{ }_{j} \tag{5.7}
\end{equation*}
$$

Further partial differentiation by y^{h} yields

$$
\begin{equation*}
\bar{G}_{j}{ }^{i}{ }_{k h}=G_{j}{ }^{i}{ }_{k h}+\alpha_{j k h} y^{i}+\alpha_{j k} \delta^{i}{ }_{h}+\alpha_{j h} \delta^{i}{ }_{k}+\alpha_{k h} \delta^{i}{ }_{j} . \tag{5.8}
\end{equation*}
$$

Summing this with respect to $i=h$, from the homogeneity of $\alpha_{j k}$, we get

$$
\begin{equation*}
\alpha_{j k}=\left(\bar{G}_{j k}-G_{j k}\right) /(n+1), \quad G_{i}{ }^{r}{ }_{j r}=G_{i j} . \tag{5.9}
\end{equation*}
$$

Substituting from (5.9) into (5.6), we get

$$
\begin{equation*}
\bar{P}_{i j}=P_{i j}-(n+1)\left(\alpha_{j} K_{i}+\alpha K_{i j}\right) / 2+\left(\bar{G}_{i j}-G_{i j}\right) / 2 . \tag{5.6'}
\end{equation*}
$$

Contracting this by the R-invariant tensor ${ }^{*} g^{i j}$ given by (3.13) and referring to $G_{i j} y^{i}=0$ and (3.24), we have

$$
\begin{equation*}
\bar{P}=P-(n+1) \alpha^{*} K / 2+\bar{G}-G, \tag{5.10}
\end{equation*}
$$

where we put $P=P_{i j}{ }^{*} g^{i j}, * K=K_{i j}{ }^{*} g^{i j}$ and $G=G_{i j}{ }^{*} g^{i j} / 2$. If we put

$$
\begin{equation*}
\Phi=-2(P-G) /(n+1) * K, \tag{5.10}
\end{equation*}
$$

(5.10) is written as

$$
\alpha=\bar{\Phi}-\Phi .
$$

For α_{i} in (5.5), we have

$$
\begin{equation*}
\alpha_{i}=\dot{\partial}_{i}(\bar{\Phi}-\Phi)=2\left(\bar{P}_{i}-P_{i}\right) /(n+1)+(\bar{\Phi}-\Phi) K_{i} . \tag{5.11}
\end{equation*}
$$

Further, by substituting from (5.11) into (5.8), we have

$$
\begin{align*}
\bar{G}_{j k}-G_{j k} & =\dot{\partial}_{k}\left\{2\left(\bar{P}_{j}-P_{j}\right)+(n+1)(\bar{\Phi}-\Phi) K_{j}\right\} \\
& =2\left(\bar{P}_{j k}-P_{j k}\right)+(n+1)\left\{\dot{\partial}_{k}(\bar{\Phi}-\Phi) K_{j}+(\bar{\Phi}-\Phi) K_{j k}\right\} . \tag{5.12}
\end{align*}
$$

Consequently D^{i} in (5.2) and $D^{i}{ }_{j}$ in (5.3) are respectively rewritten in the form

$$
\begin{gather*}
D^{i}=(\bar{\Phi}-\Phi) y^{i}, \\
D^{i}{ }_{j}=\left\{2\left(\bar{P}_{j}-P_{j}\right) /(n+1)+(\bar{\Phi}-\Phi) K_{j}\right\} y^{i}+(\bar{\Phi}-\Phi) \delta^{i}{ }_{j}, \tag{5.3'}
\end{gather*}
$$

and $\bar{G}_{j}{ }^{i}{ }_{k}$ in (5.7) are written as

$$
\begin{align*}
\bar{G}_{j}{ }^{i}= & G_{j}{ }^{i}{ }_{k}+\left(\bar{G}_{j k}-G_{j k}\right) y^{i} /(n+1)+\left\{2\left(\bar{P}_{j}-P_{j}\right) /(n+1)+(\bar{\Phi}-\Phi) K_{j}\right\} \delta^{i}{ }_{k} \tag{5.7'}\\
& +\left\{2\left(\bar{P}_{k}-P_{k}\right) /(n+1)+(\bar{\Phi}-\Phi) K_{k}\right\} \delta^{i}{ }_{j} .
\end{align*}
$$

Thus from (5.3), (5.3'), (5.7) and (5.7') we obtain projectively R-invariant connection coefficients as follows:

$$
\begin{align*}
& \text { (1) }{ }^{*} N^{i}{ }_{j}:=N^{i}{ }_{j}+I^{i}{ }_{j}, \tag{5.13}\\
& \text { (2) }{ }^{*} G_{j}{ }^{i}{ }_{k}=G_{j}{ }^{i}{ }_{k}+I_{j}{ }^{i}{ }_{k},
\end{align*}
$$

where tensors $I^{i}{ }_{j}$ and $I_{j}{ }^{i}{ }_{k}$ are respectively given by
(1) $I^{i}{ }_{j}=-\left\{2 P_{j} /(n+1)+\Phi K_{j}\right\} y^{i}-\Phi \delta^{i}{ }_{j}$,
(2) $I_{j}{ }^{i}{ }_{k}=-\left[G_{j k} y^{i}+\left(2 P_{j}+(n+1) \Phi K_{j}\right) \delta^{i}{ }_{k}\right.$

$$
\begin{equation*}
\left.+\left(2 P_{k}+(n+1) \Phi K_{k}\right) \delta^{i}{ }_{j}\right] /(n+1) . \tag{5.14}
\end{equation*}
$$

Moreover we can derive projectively R-invariant quantities from P_{i} and $G_{j k}$. First substituting from (5.11) into (5.5), it is clear that the vector

$$
\begin{equation*}
* P_{i}:=2 P_{i} /(n+1)-\Phi_{i}+\Phi K_{i}, \quad \Phi_{i}=\dot{\partial}_{i} \Phi \tag{5.15}
\end{equation*}
$$

satisfies ${ }^{*} P_{i}=* \bar{P}_{i}$. Therefore we immediately get a projectively R-invariant tensor

$$
\begin{equation*}
{ }^{*} P_{i j}=\dot{\partial}_{j} P_{i}=2 P_{i j} /(n+1)-\dot{\partial}_{j}\left(\Phi K_{i}-\dot{\partial}_{i} \Phi\right) . \tag{5.16}
\end{equation*}
$$

Secondly from (5.12) and (5.16) we get another projective R-invariance

$$
\begin{equation*}
* U_{j k}:=G_{j k}-\dot{\partial}_{k}\left\{2 P_{j}+(n+1) \Phi K_{j}\right\} . \tag{5.17}
\end{equation*}
$$

Hence we obtain
Proposition 5.1. The covariant vector ${ }^{*} P_{i}$ in (5.15) and the tensor ${ }^{*} U_{i j}$ in (5.17) are projectively R-invariant.

Next, in terms of connection coefficients ($G_{j}{ }^{i}{ }_{k}, N^{i}{ }_{j}$), the (v)h-torsion tensor $R_{j}{ }^{i}{ }_{k}$ and the $h v$-curvature tensor $G_{i}{ }^{h}{ }_{j k}$ are respectively written as

$$
R_{j}{ }^{i}{ }_{k}=\mathfrak{A}_{(j k)}\left\{\partial_{k} N^{i}{ }_{j}-G_{j}{ }_{r}{ }_{r} N^{r}{ }_{k}\right\}, \quad G_{i}{ }^{n}{ }_{j k}=\dot{\partial}_{i} G_{j}{ }^{h}{ }_{k} .
$$

From ${ }^{*} N^{i}{ }_{j}$ and ${ }^{*} G_{j}{ }^{i}{ }_{k}$ in (5.13), we can introduce projectively R-invariant tensors

$$
* R_{j}{ }^{i}{ }_{k}:=\mathscr{A}_{(j k)}\left\{\partial_{k}{ }^{*} N^{i}{ }_{j}-* G_{j}{ }_{j}{ }_{r}{ }^{*} N^{r}{ }_{k}\right\}, \quad{ }^{*} G_{i}{ }^{n}{ }_{j k}=\dot{\partial}_{i}{ }^{*} G_{j}{ }^{h}{ }_{k} .
$$

These tensors are rewritten in the form

$$
\begin{gather*}
* R_{j}{ }^{i}{ }_{k}=R_{j}{ }^{i}{ }_{k}+\mathfrak{U}_{(j k)}\left\{I^{i}{ }_{j ;}+I_{j}{ }^{i} I_{r} r_{k}\right\}, \tag{5.18}\\
* G_{i}{ }_{j}{ }_{j k}=G_{i}{ }_{j k}+I_{i}{ }_{j k}, \quad I_{i}{ }_{j}{ }_{j k}=\dot{\partial}_{k} I_{i}{ }_{j}, \tag{5.19}
\end{gather*}
$$

where the symbol (;) denote the h-covariant differentiation with respect to $B \Gamma$.
We are concerned with the tensor ${ }^{*} R_{j}{ }^{i}{ }_{k}$. If F^{n} is a Berwald space, that is, $G_{j}{ }^{i}{ }_{k}=G_{j}{ }^{i}{ }_{k}(x)$, then $P_{j}{ }^{i}{ }_{k}=0$ and $G_{j}{ }^{i}{ }_{k}=0$, therefore the scalar Φ in (5.10) 1) vanishes. Consequently from (5.14) and (5.18.) we can state

Proposition 5.2. If a space F^{n} is a Berwald space, the (v)h-torsion tensor $R_{j}{ }^{i}{ }_{k}$ is equal to the projective R-invariant tensor $* R_{j}{ }^{i}{ }_{k}$.

Next, contracting (5.18) by y^{j}, we have

$$
\begin{equation*}
* R_{0}{ }^{i}{ }_{k}=R_{0}{ }^{i}{ }_{k}+2 I^{i}{ }_{; k}-I^{i}{ }_{k ; 0}+I^{i}{ }_{r} r^{r}{ }_{k}-2 I_{k}{ }_{k}{ }^{i} r^{r}, \tag{5.20}
\end{equation*}
$$

where $2 I^{i}=I^{i}{ }_{0}$. Further, contracting this by $L_{n i}$, and then substituting from (5.14) it is obvious that the tensor

$$
\begin{equation*}
* R_{h 0 k}:=L_{h i} * R_{0}{ }^{i}{ }_{k}=\left(R_{h 0 k}+\Psi h_{h k}\right) / L \tag{5.21}
\end{equation*}
$$

satisfies ${ }^{*} \bar{R}_{h 0 k}={ }^{*} R_{h 0 k}$, where Ψ is given by

$$
\begin{equation*}
\Psi:=\Phi_{; 0}-\Phi^{2} . \tag{5.21}
\end{equation*}
$$

Further $* \bar{R}_{h 0 k} * \bar{g}^{h k}=* R_{h 0 k} * g^{h k}$ gives

$$
\begin{equation*}
\Psi=-\left(R_{00}-\bar{R}_{00}\right) /(n-1)+\bar{\Psi}, \quad R_{00}=R_{0}{ }^{r}{ }_{0 r} . \tag{5.22}
\end{equation*}
$$

We substitute from (5.22) into (5.21), and get a projectively R-invariant tensor :

$$
\begin{equation*}
W_{h k}=\left\{R_{h 0 k}-R_{00} h_{h k} /(n-1)\right\} / L . \tag{5.2.2}
\end{equation*}
$$

We treat a Finsler space $F^{n}(n>2)$ of scalar curvature $K(x, y)$. Such a space is characterized by the following equation:

$$
\begin{equation*}
R_{h 0 k}=L^{2} K h_{h k}, \quad K=R_{00} /(n-1) L^{2} . \tag{5.24}
\end{equation*}
$$

Thus from (5.23) and (5.24) we can state
Theorem 5.1. A Finsler space is of scalar curvature, if and only if the projectively R-invariant tensor $W_{h_{k}}$ in (5.23) vanishes identically.

Corollary 5.1. If a Finsler space F^{n} is of scalar curvature, then \bar{F}^{n}, obtained from F^{n} by a projectively Randers change, is also of scalar curvature.

Finally we consider the second fundamental tensor $L_{i j k}$ of the Randers change. Differentiating covariantly this tensor, we get

$$
\begin{equation*}
\bar{L}_{i j k T 0}=L_{i j k \mid 0}-2 L_{i j k r} D^{r}-L_{r j k} D_{i}^{r}-L_{i r k} D^{r}{ }_{j}-L_{i j r} D_{k}^{r}, \tag{5.25}
\end{equation*}
$$

where we used the relation (5.3). From $L_{\mid j}=0$ and $L_{i j \mid k}=0$, (3.3) leads to

$$
\begin{equation*}
\bar{L}_{i j k T 0}=2 \bar{P}_{i j k} / \bar{L}, \quad L_{i j k \mid 0}=2 P_{i j k} / L . \tag{5.26}
\end{equation*}
$$

By means of $\left(5.2^{\prime}\right)$ and (5.3^{\prime}), it is clear that the tensor

$$
\begin{align*}
* P_{i j k}:= & P_{i j k} / L-\left(L_{j k} P_{i}+L_{k i} P_{j}+L_{i j} P_{k}\right) /(n+1) \tag{5.27}\\
& -\Phi\left(L_{i j k}+L_{j k} K_{i}+L_{k i} K_{j}+L_{i j} K_{k}\right) / 2
\end{align*}
$$

satisfies ${ }^{*} P_{i j k}=* \bar{P}_{i j k}$. Because (3.19') gives

$$
\begin{equation*}
2 H_{i j k \mid 0}=\left\{P_{i j k}-\left(h_{i j} P_{k}+h_{j k} P_{i}+h_{k i} P_{j}\right) /(n+1)\right\} / L, \tag{5.28}
\end{equation*}
$$

the projective R-invariant tensor ${ }^{*} P_{i j k}$ is rewritten as

$$
\begin{equation*}
{ }^{*} P_{i j k}=2 H_{i j k \mid 0}-\Phi H_{i j k} . \tag{5.27'}
\end{equation*}
$$

We shall introduce the concept of P-reducibility which is defined as follows:
Definition 5.1. A Finsler space is called P-reducible if the $v(h v)$-torsion tensor $P_{i j k}$ is written as

$$
P_{i j k}=\left(h_{i j} P_{k}+h_{j k} P_{i}+h_{k h} P_{j}\right) /(n+1) .
$$

It is obvious that a C-reducible Finsler space is P-reducible. Therefore Theorem 4.1 leads to

Theorem 5.2. A P-reducible Finsler space F^{n} is C-reducible if and only if
the projectively R-invariant tensor ${ }^{*} P_{i j k}$ vanishes, provided $\Phi \neq 0$.

Theorem 5.3. A P-reducible Finsler space F^{n} remains to be P-reducible by a projective Randers change if and only if the quantity Φ in (5.10) 1) is projective R-invariant, provided that F^{n} be non-C-reducible.

Proof. Assume that both of two Finsler spaces F^{n} and \bar{F}^{n} are P-reducible. Then (5.27') implies ($\bar{\Phi}-\Phi) H_{i j k}=0$, and so $\Phi=\bar{\Phi}$ holds, because of $H_{i j k} \neq 0$.

Conversely if $\Phi=\bar{\Phi}$ holds, $\left(5.27^{\prime}\right)$ gives $H_{i j k 10}=\bar{H}_{i j k T 0}$, so that the P-reducibility of F^{n} implies that of \bar{F}^{n}.

§6. Douglas tensor.

In the theory of projective changes in Finsler spaces, we have two essential projective invariants, one is the projective h-curvature tensor $W_{i}{ }^{h}{ }_{j k}$, which is related to a Finsler space of scalar curvature and the other is the projective $h v$-curvature tensor $D_{i}{ }^{h}{ }_{j k}$. These tensors $W_{i}{ }_{j k}$ and $D_{i}{ }^{h}{ }_{j k}$ are called the Weyl curvature tensor and the Douglas tensor respectively.

In this section we shall deal with the projectively R-invariant tensor ${ }^{*} G_{i}{ }^{h}{ }_{j k}$ of (5.19). By means of (5.14) 2) $* G_{i}{ }^{h}{ }_{j k}$ is written as

$$
\begin{align*}
* G_{i}{ }_{j k}= & G_{i}{ }^{{ }_{j}}{ }_{j k}-\left(G_{i j \cdot k} y^{h}+G_{i j} \delta_{k}^{h}\right) /(n+1) \tag{6.1}\\
& -\dot{\partial}_{k}\left\{2 P_{j}+(n+1) \Phi K_{j}\right\} \delta_{i}^{h} /(n+1) \\
& -\dot{\partial}_{k}\left\{2 P_{i}+(n+1) \Phi K_{i}\right\} \delta_{j}^{h} /(n+1)
\end{align*}
$$

From ${ }^{*} G_{i}{ }^{h}{ }_{j k}$ and ${ }^{*} U_{i j}$ in (5.17), we can introduce the projectively R-invariant tensor

$$
D_{i}{ }^{h}{ }_{j k}:={ }^{*} G_{i}{ }^{h}{ }_{j k}-\left(* U_{j k} \hat{o}^{h}{ }_{i}+* G_{i k} \delta^{h}{ }_{j}\right) /(n+1),
$$

which, in virtue of (5.17) and (6.1), is written as

$$
\begin{equation*}
D_{i}{ }_{j k}=G_{i}{ }_{j k}-\left[G_{i j \cdot k} y^{h}+\Im_{(i j k)}\left\{G_{i j} \delta^{h}{ }_{k}\right\}\right] /(n+1) \tag{6.2}
\end{equation*}
$$

This tensor is nothing but the well-known Douglas tensor. We have attempted to derive this from projective Randers change.

We now assume that the tensor ${ }^{*} G_{i}{ }^{h}{ }_{j k}$ vanishes. Then (6.1) gives

$$
\begin{align*}
G_{i}{ }_{j k}= & {\left[G_{i j . k} y^{h}+G_{i j} \delta_{k}^{h}+\dot{\partial}_{k}\left\{2 P_{i}+(n+1) \Phi K_{i}\right\} \delta_{j}^{h}\right.} \tag{6.3}\\
& \left.+\dot{\partial}_{k}\left\{2 P_{j}+(n+1) K_{j}\right\} \delta_{i}^{h}\right] /(n+1)
\end{align*}
$$

Summing (6.3) with respect to $h=k$, we get

$$
G_{i j}=\dot{\partial}_{j}\left\{2 P_{i}+(n+1) \Phi K_{i}\right\}
$$

so that $G_{i}{ }^{h}{ }_{j k}$ is rewritten in the form

$$
\begin{equation*}
G_{i}{ }_{j k}^{h}=\left(G_{i j . k} y^{h}+G_{i j} \delta_{k}^{h}+G_{k i} \delta_{j}^{h}+G_{k j} \delta_{i}^{h}\right) /(n+1) \tag{6.3'}
\end{equation*}
$$

Therefore, (6.2) and (6.3') imply $D_{i}{ }^{h}{ }_{j k}=0$. Hence we can state

Proposition 6.1. If the projectively R-invariant tensor $* G_{i}{ }^{h}{ }_{j k}$ vanishes, then the Douglas tensor $D_{i}{ }^{h}{ }_{j k}$ vanishes.

Next, we consider a relation between the $h v$-curvature tensor $P_{i}{ }^{h}{ }_{j k}$ with respect to $C \Gamma$ and the projective $h v$-curvature tensor $D_{i}{ }^{h}{ }_{j k}$. Contracting (6.2) by y_{h}, we have

$$
\begin{equation*}
G_{i j \cdot k}=-(n+1) D_{i}{ }^{r}{ }_{j k} y_{r} / L^{2}-\mathbb{S}_{(i j k)}\left\{G_{i j} l_{k}\right\} / L, \tag{6.4}
\end{equation*}
$$

so that $D_{i}{ }^{h}{ }_{j k}$ is rewritten in the form

$$
\begin{equation*}
D_{i}{ }^{n}{ }_{j k}=D_{i}{ }^{r}{ }_{j k} y_{r} y^{h} / L^{2}+G_{i}{ }^{n}{ }_{j k}-\Xi_{(i j k)}\left\{G_{i j} h^{h}{ }_{k}\right\} /(n+1) . \tag{6.2'}
\end{equation*}
$$

Since $\dot{\partial}_{k} F_{i}{ }^{h}{ }_{j}=P_{i}{ }^{h}{ }_{j}+C_{i}{ }^{h}{ }_{k \mid j}-C_{i}{ }^{h}{ }_{s} P_{j}{ }^{s}{ }_{k}$, the equation $G_{i}{ }^{h}{ }_{j}=F_{i}{ }^{h}{ }_{j}+P_{i}{ }^{h}{ }_{j}$, which shows the relation between the Cartan connection $C \Gamma$ and the Berwald connection $B \Gamma$, gives

$$
\begin{gather*}
G_{i}{ }^{h}{ }_{j k}=P_{i}{ }^{h}{ }_{j k}+C_{i}{ }^{h}{ }_{k \mid j}-C_{i}{ }^{h}{ }_{s} P_{j}{ }^{s}{ }_{k}+\dot{\partial}_{k} P_{i}{ }^{h}{ }_{j}, \tag{6.5}\\
G_{i j}=P_{i}{ }^{r}{ }_{j r}+C_{i \mid j}-C_{i}{ }^{r}{ }_{s} P_{j}{ }^{s}+\partial_{r} P_{i}{ }^{r}{ }_{j} . \tag{6.6}
\end{gather*}
$$

Substituting from (6.5) and (6.6) into (6.2'), we get

$$
\begin{align*}
h^{h}{ }_{r} D_{i}{ }^{r}{ }_{j k}= & P_{i}{ }^{h}{ }_{j k}+C_{i}{ }^{h}{ }_{k \mid j}-C_{i}{ }^{h}{ }_{s} P_{j}{ }_{k}+2 P_{i j k} y^{h}+\dot{\partial}_{k} P_{i}{ }^{h}{ }_{j} \tag{6.7}\\
& -\coprod_{(i j k)}\left\{\left(P_{j}{ }^{r}{ }_{k r}+C_{j \mid k}-C_{j}{ }_{j} P_{k}{ }_{k}{ }_{r}+\dot{\partial}_{r} P_{j}^{r}{ }_{k}\right) h^{h}{ }_{i}\right\} /(n+1) .
\end{align*}
$$

We shall be concerned with a Landsberg space F^{n}, which is defined by $P_{i}{ }^{h}{ }_{j k}=0$. If the Douglas tensor $D_{i}{ }^{h}{ }_{j k}$ of this F^{n} vanishes, then (6.7) implies

$$
\begin{equation*}
C_{h i k \mid j}=\left(h_{h i} C_{j \mid k}+h_{h j} C_{k \mid i}+h_{h k} C_{i \mid j}\right) /(n+1), \tag{6.8}
\end{equation*}
$$

which immediately gives

$$
\begin{equation*}
C_{h \mid j}=C^{r}{ }_{\mid r} h_{h j} /(n-1) . \tag{6.9}
\end{equation*}
$$

Further (6.6) and (6.9) yield $G_{i j}=C^{r}{ }_{1 r} h_{i j} /(n-1)$. Differentiating this by y^{k} and referring to $\dot{\partial}_{k} h_{i j}=2 C_{i j k}-\left(h_{i k} l_{j}+h_{j k} l_{i}\right) / L$, we get

$$
\begin{equation*}
\dot{\partial}_{k} G_{i j}=\left\{\left(\dot{\partial}_{k} C_{\mid r}^{r}\right) h_{i j}+C^{r}{ }_{\mid r}\left(2 C_{i j_{k}}-h_{i k} l_{j} / L-h_{j k} l_{i} / L\right)\right\} /(n-1) . \tag{6.10}
\end{equation*}
$$

Owing to $\dot{\partial}_{k} G_{i j}=\dot{\partial}_{j} G_{i k}$, (6.10) gives $\dot{\partial}_{j} C^{r}{ }_{1 r}=-C^{r}{ }_{\mid r} l_{j} / L$, so that (6.10) is rewritten in the form

$$
\dot{\partial}_{k} G_{i j}=C^{r}{ }_{i r}\left\{2 C_{i j k}-\left(h_{i k} l_{j}+h_{j k} l_{i}+h_{i j} l_{k}\right) / L\right\} /(n-1) .
$$

On the other hand, from (6.4) and $G_{i j}=C^{r}{ }_{\mid r} h_{i j} /(n-1)$, we have

$$
\begin{equation*}
\dot{\partial}_{k} G_{i j}=-C^{r}{ }_{\mid r}\left(h_{i j} l_{k}+h_{j k} l_{i}+h_{k i} l_{j}\right) /(n-1) L . \tag{6.11}
\end{equation*}
$$

Comparing (6.10) with (6.11), we obtain $C^{r}{ }^{1 r}=0$, so that (6.8) and (6.9) lead to $C_{i j k \mid h}=0$, that is, the Finsler space is a Berwald space.

Conversely, if a Finsler space F^{n} is a Berwald space, then the Douglas tensor $D_{i}{ }^{h}{ }_{j k}$ vanishes obviously. Summarizing up all the above, we can state

Theorem 6.1. Assume that a Finsler space F^{n} is a Landsberg space. The Douglas tensor $D_{i}{ }^{n}{ }_{j}$ 號 of F^{n} vanishes if and only if the Finsler space F^{n} is a Berwald space.

§ 7. Decomposable tensors.

The tangent vector space F_{x}^{n} with the origin removed at any point x of F^{n} is regarded as a Riemannian space with the fundamental quadratic form $d s^{2}=$ $g_{i j}(x, y) d y^{i} d y^{j}$. The indicatrix I_{x} at x is a hypersurface of the Riemannian space F_{x}^{n} which is defined by the equation $L(x, y)=1$ (x is fixed) ([13)].

Definition 7.1. A Finsler tensor $U_{i j}$ is called indicatory if $U_{i j}$ satisfies equations $U_{i j} l^{i}=U_{i j} j^{j}=0$.

From an arbitrary tensor $U_{i j}$ we get an indicatory tensor ' $U_{i j}$ which is given by

$$
{ }^{\prime} U_{i j}=U_{l m} h^{l}{ }_{i} h^{m}{ }_{j} .
$$

It is clear that the tensors $h_{i j}, C_{i j k}, P_{i j k}, S_{h i j k}$ and $T_{h i j k}$ are indicatory. From (3.2), (3.19'), (4.4'), (4.10) and (5.23) we have

Proposition 7.1. Tensors $L_{i j}, H_{h i j},{ }^{*} T_{h i j k},{ }^{*} S_{h i j k}, W_{h k}$ and ${ }^{*} P_{i j k}$ are indicatory.

Here we treat R-invariant tensors in $\S 3$. First, for the covariant vector K_{i} in (3.17'), by applying the above indicatorization we immediately get ' $K_{i}=$ $-2 C_{i} /(n+1)$. For the second fundamental tensor $L_{i j k}$ of the Randers change in (3.3), from the homogeneity we get $L_{i 00}=0$, and hence by applying the above indicatorization it follows that ' $L_{i j k}=2 C_{i j k} / L$. Moreover, for $M_{i j k}$ and $M_{h i j k}$ in (3.21), we have

$$
\begin{gather*}
\prime M_{i j k}=-2\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right) /(n+1) L, \tag{7.1}\\
\prime M_{h i j k}=S_{(i j h)}\left\{-4 C_{h i k} C_{j} /(n+1) L+h_{i j}\left(h_{h k} / L-2 T_{n k} /(n+1)\right) / L^{2}\right\} . \tag{7.2}
\end{gather*}
$$

Now, for the $h(h v)$-torsion tensor $C_{i j k}$, it is obvious that F^{n} is Riemannian if the tensor $C_{i j k}$ vanishes, and Deicke's theorem ([12]) shows that F^{n} is also Riemannian even if the torsion vector C_{i} vanishes. Therefore for above indicatory tensors we can state

Proposition 7.2. (1) One of indicatorized tensors ' K_{i} and ' $M_{i j k}$ vanishes if and only if the Finsler space F^{n} is a Riemannian space.
(2) The indicatorized tensor ' $L_{i j k}$ vanishes if and only if the Finsler space is a Riemannian space.

Proof. If ' K_{i} vanishes, from ' $K_{i}=-2 C_{i} /(n+1)$ we immediately $C_{i}=0$. Next, if ' $M_{i j k}$ vanishes, in virtue of $h_{i j} C^{i}=C_{j}$, (7.1) yields $C_{j}=0$. In any case, owing to Deicke's theorem asserts that the space F^{n} is Riemannian. For ' $L_{i j k}$ of (2),
we observe that ' $L_{i j k}=0$ is equivalent to $C_{i j k}=0$, so F^{n} is Riemannian. It is clear that the converses of those facts are true.

Next, we will treat another hypersurface of the Riemannian space F_{x}^{n} called a g-hypercone which is defined by the equation $g(x, y)=c(c=$ const., $\neq 0)([24])$. The concept of g-hyperconic tensor is defined as follows:

Definition 7.2. Let $V_{i j k}$ be a Finsler tensor, for instance, of (0,3)-type. If $V_{i j k}$ satisfies $V_{i j k} N^{i}=V_{i j k} N^{j}=V_{i j k} N^{k}=0$, then $V_{i j_{k}}$ is called a g-hyperconic tensor, where N^{i} is the unit normal of g-hypercone, i.e., $N^{i}=C^{i} / C, C^{2}=C_{i} C^{i}$.

A method to derive the g-hyperconic tensor " $V_{i j}$ from an arbitrary Finsler tensor $V_{i j}$ is the following, similar to the case of indicatory tensor :

$$
{ }^{\prime \prime} V_{i j}=V_{m n} N^{m}{ }_{i} N^{n}{ }_{j},
$$

where $N_{i j}=g_{i j}-N_{i} N_{j}, \quad N^{m}{ }_{i}=g^{m r} N_{r i}, N_{i}=g_{i j} N^{j}$.
Now we are concerned with a Finsler tensor $X_{i j}$. The g-hyperconic tensor and the indicatory tensor derived from $X_{i j}$ are respectively given by

$$
\begin{equation*}
\text { (1) " } X_{i j}=X_{i j}-\left(N_{i} X_{g j}+N_{j} X_{i g}\right)+X_{g g} N_{i} N_{j} \text {, } \tag{7.3}
\end{equation*}
$$

(2) ${ }^{\prime} X_{i j}=X_{i j}-\left(l_{i} X_{0 j}+l_{j} X_{i 0}\right) / L+X_{00} l_{i} l_{j} / L^{2}$,
where the suffix g stands for the contraction by N^{i}. Contracting (7.3)2) by N^{i} and then N^{j} successively we have

$$
' X_{g j}=X_{g j}-X_{g 0} l_{j} / L, \quad X_{g g}=X_{g g},
$$

by means of $N^{i} l_{i}=0$. Thus (7.3) leads to

$$
\begin{equation*}
\prime \prime\left({ }^{\prime} X_{i j}\right)={ }^{\prime} X_{i j}-X_{g 0}\left(N_{i} l_{j}+N_{j} l_{i}\right) / L+X_{g g} N_{i} N_{j}-\left(N_{i} X_{g j}+N_{j} X_{i g}\right) . \tag{7.4}
\end{equation*}
$$

Consequently, from (7.3) and (7.4) we get
Proposition 7.3. Let $X_{i j}$ be a Finsler tensor, for instance, of (0, 2)-type. Then $X_{i j}$ can be written as

$$
\begin{equation*}
X_{i j}={ }^{\prime} X_{i j}+{ }^{\prime \prime} X_{i j}-\prime \prime\left(X_{i j}\right)+{ }^{*} X_{i j}, \tag{7.5}
\end{equation*}
$$

where we put ${ }^{*} X_{i j}=\left(X_{g 0} N_{i} l_{j}+X_{0 g} N_{j} l_{i}\right) / L$.
Remark. A ($0, r$)-type, for instance, Finsler tensor $X_{i j \ldots k}$ can be similarly written as (7.5), i.e.,

$$
X_{i j \ldots k}=X_{i j \ldots k}+^{\prime \prime} X_{i j \ldots k}-^{\prime \prime}\left({ }^{\prime} X_{i j \ldots k}\right)+* X_{i j \ldots k} .
$$

For tensors ' $X_{i j}$, " $X_{i j}$ and ${ }^{*} X_{i j}$ in (7.5), from (7.3) and (7.4) we can state
Proposition 7.4. An arbitrary Finsler tensor $X_{i j}$ satisfies
(1) ${ }^{\prime}\left({ }^{*} X_{i j}\right)={ }^{\prime \prime}\left(* X_{i j}\right)=0$,
(2) ${ }^{\prime \prime}\left({ }^{\prime \prime} X_{i j}\right)="\left({ }^{\prime} X_{i j}\right)$.

Proposition 7.5. A Finsler tensor $X_{i j}$ is indicatory (resp. g-hyperconic) if and only if $X_{i j}$ satisfies

$$
* X_{g 0}=0 \quad \text { and } \quad " X_{i j}="\left({ }^{\prime} X_{i j}\right) \quad\left(\text { resp. }{ }^{\prime} X_{i j}={ }^{\prime}\left(" X_{i j}\right)\right) .
$$

Hence we are led to the following definition:
Definition 7.3. Let $X_{i j}$ be a Finsler tensor, for instance, of (0, 2)-type. If $X_{i j}$ is written as

$$
\begin{equation*}
X_{i j}={ }^{\prime} X_{i j}+{ }^{\prime \prime} X_{i j}+{ }^{*} X_{i j}, \tag{7.7}
\end{equation*}
$$

then $X_{i j}$ is called a decomposable tensor.
From the above and (7.5) we have
Theorem 7.1. $A(0,2)$-type, for instance, Finsler tensor $X_{i j}$ is decomposable if and only if the tensor " $\left({ }^{\prime} X_{i j}\right)$ vanishes.

Remark. It is noted that Propositions 7.3, 7.4, 7.5 and Theorem 7.1 are easily generalized for a ($0, r$)-type Finsler tensor.

Now, we consider Finsler spaces with the torsion tensor $C_{i j k}$ of which satisfies some tensor equations ([18], [19], [20]).

Definition 7.4. A non-Riemannian Finsler space is called quasi-C-reducible (resp. semi-C-reducible, resp. C2-like), if the $h(h v)$-torsion tensor $C_{i j k}$ is written in the form (1) (resp. (2), resp. (3))
(1) $C_{i j k}=P_{i j} C_{k}+P_{j k} C_{i}+P_{k i} C_{j}$,
(2) $C_{i j k}=p\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right) /(n+1)+q C_{i} C_{j} C_{k} / C^{2}, \quad p+q=1$,
(3) $C_{i j k}=C_{i} C_{j} C_{k} / C^{2}, \quad\left(C^{2} \neq 0\right)$.

Further, we consider, Finsler spaces in which $C_{i j k}$ satisfies the tensor equation

$$
\begin{align*}
C_{i j k}= & \left(C_{i j}+C_{j k} C_{i}+C_{k i} C_{j}\right) / C^{2}+2 Q C_{i} C_{j} C_{k} / C^{3}, \tag{7.9}\\
& \left(C_{i j}=C_{i r j} C^{r}, \quad Q=-\left(1 / C^{3}\right) C^{i} C^{j} C^{k} C_{i j k}\right) .
\end{align*}
$$

It is noted that the torsion tensor $C_{i j k}$ of a semi- C-reducible or $C 2$-like Finsler space are written in the form (7.9).

Here we deal with decomposability of some R-invariant tensors. First for K_{i} in (3.17'), we have " $K_{i}=l_{i} / L$ and ' $K_{i}=-2 C_{i} /(n+1)$, so that the R-invariant vecotr K_{i} is written as

$$
\begin{equation*}
K_{i}={ }^{\prime} K_{i}+{ }^{\prime \prime} K_{i} . \tag{7.10}
\end{equation*}
$$

Secondly, for $M_{i j k}$ in (3.21), (7.1) and (7.2) give " $\left({ }^{\prime} M_{i j k}\right)=0$, therefore this tensor is also written in the form

$$
\begin{equation*}
M_{i j k}=M_{i j k}+{ }^{\prime \prime} M_{i j k}+{ }^{*} M_{i j k} \tag{7.11}
\end{equation*}
$$

Finally, for the second fundamental tensor $L_{i j k}$ of the Randers change in (3.3), by applying the method of (7.3) we have

$$
"\left(L_{i j k}\right)=C_{i j k}-\left(C_{i j g} N_{k}+C_{g j k} N_{i}+C_{i g k} N_{j}\right)+2 C_{g g g} N_{i} N_{j} N_{k}
$$

therefore, which leads to " $\left(^{\prime} L_{i j k}\right)=0$ if $C_{i j k}$ of F^{n} is written as (7.9). Paying attention to $N^{i}=C^{i} / C$, the converse is true also. Consequently from Theorem 7.1, (7.10), (7.11) and (7.12) we can state

Theorem 7.2. (1) The R-invariant vector K_{i} of (3.17) and the R-invariant tensor $M_{i j k}$ of (3.21) are decomposable.
(2) The R-invariant tensor $L_{i j k}$ of (3.3) is decomposable if and only if the $h(h v)$-torsion tensor $C_{i j k}$ of F^{n} is written in the form (7.9).

We consider a condition for a Finsler space to be semi-C-reducible. If F^{n} is semi-C-reducible, then the tensor $L_{i j k}$ is the decomposable tensor, because of Theorem 7.2. Thus we obtain

Theorem 7.3. A Finsler space is semi-C-reducible if and only if the \bar{R} invariant tensor $L_{i j k}$ is the decomposable tensor and the $h(h v)$-torsion tensor $C_{i j k}$ satisfies

$$
C_{i j r} C^{r}=p C^{2} h_{i j} /(n+1)+\{1-(n-1) p /(n+1)\} C_{i} C_{j},
$$

where p is a scalar.

§8. Relation between projective change and β-change.

We shall return to a β-change of the metric. For two Finsler spaces $F^{n}=$ (M^{n}, L) and $\bar{F}^{n}=\left(M^{n}, \bar{L}\right)$, if any geodesic on F^{n} is also a geodesic on \bar{F}^{n} and the inverse is true, the change $L \rightarrow \bar{L}$ of the mctric is called projective. A geodesic on F^{n} is given by a system of dfferential equations

$$
\begin{equation*}
d y^{i} / d t+2 G^{i}(x, y)=\tau y^{i}, \quad y^{i}=d x^{i} / d t \tag{8.1}
\end{equation*}
$$

where $\tau=\left(d^{2} s / d t\right) /(d s / d t)$. $G^{i}(x, y)$ are (2) p-homogeneous functions in y^{i}. We are now in a position to find a condition for a β-change to be projective. For this purpose we deal with the Euler-Lagrange differential equations $B_{i}=0$, where B_{i} is defined by

$$
B_{i}=\partial_{i} L-d\left(\dot{\partial}_{i} L\right) / d t
$$

From (1.1) and (1.2), we have $L d f_{1} / d t+\beta d f_{2} / d t=0$, so that the Euler-Lagrange differential equations $\bar{B}_{i}=0$ for \bar{F}^{n} are given by

$$
\bar{B}_{i}=f_{1} B_{i}+2 f_{2} F_{0 i}-m_{i} d f_{2} / d t=0 .
$$

In virtue of (1.2) and (1.4) 1), \bar{B}_{i} are written as

$$
\begin{equation*}
f \bar{B}_{i}=p L B_{i}-q_{0} B_{r} m^{r} m_{i}+A_{i} \tag{8.2}
\end{equation*}
$$

where the covariant vector A_{i} is defined by

$$
\begin{equation*}
A_{i}=2 q F_{0 i}-q_{0} E_{00} m m_{i} . \tag{8.3}
\end{equation*}
$$

From (8.2) we get
Proposition 8.1. A β-change $L \rightarrow \bar{L}=f(L, \beta)$ of the metruc is projective if and only if the covariant vector A_{i} in (8.3) vanishes identically.

Proof. Since $B_{i}=0$ (resp. $\bar{B}_{i}=0$) are equations of a geodesic on F^{n} (resp. \bar{F}^{n}, we immediately obtain $A_{i}=0$ if a β-change is projective.

Conversely if $A_{i}=0$ holds, then (8.2) shows that $B_{i}=0$ lead to $\bar{B}_{i}=0$. On the other hand, we observe from (8.2) and $A_{i}=0$ that $\bar{B}_{i}=0$ give $p L B_{i}-q_{0} B_{r} M^{r} m_{i}$ $=0$. Contracting this by m^{i} and referring to $m^{2}=\nu, p L-\nu q_{0} \neq 0$, we get $B_{r} m^{r}=0$, so that $B_{i}=0$ hold. Consequently any geodesic remains to be a geodesic by a β-change.

We shall continue the discussion for the condition in Proposition 8.1, i.e., $A_{i}=0$, which, by means of $q=f f_{2}$ and $q_{0}=f f_{22}$, is written as

$$
\begin{equation*}
2 f_{2} F_{i 0}+f_{22} m_{i} E_{00}=0 . \tag{8.4}
\end{equation*}
$$

On the other hand, (1.1) and (1.10) give

$$
L f_{122}+\beta f_{222}=-f_{22}, \quad E_{00}=b_{i \mid j} y^{i} y^{j} .
$$

Then, differentiating (8.4) by y^{j}, we have

$$
\begin{array}{r}
2 f_{2} F_{i j}+\left\{2\left(m_{i} E_{j 0}+m_{j} F_{i 0}\right)+E_{00}\left(\beta y_{i} y_{j} / L^{2}-m_{i} y_{j}-m_{j} y_{i}\right.\right. \tag{8.5}\\
\left.\left.-\beta g_{i j}\right) / L^{2}\right\} f_{22}+f_{222} E_{00} m_{i} m_{j}=0 .
\end{array}
$$

Because $F_{i j}$ in the above is skew-symmetric in indices, (8.5) leads to

$$
\begin{align*}
& f_{22}\left(m_{i} E_{j 0}+m_{j} E_{i 0}\right)+\left(f_{222}-f_{22}{ }^{2} / f_{2}\right) E_{00} m m_{i} m_{j} \tag{8.6}\\
& \quad+E_{00} f_{22}\left(\beta y_{i} y_{j} / L^{2}-m_{i} y_{j}-m_{j} y_{i}-\beta g_{i j}\right) / L^{2}=0
\end{align*}
$$

Contraction of this by $b^{i} b^{j}$ does

$$
\begin{equation*}
2 f_{22} E_{\beta 0}+\left(f_{222}-f_{22}{ }^{2} / f_{2}\right) \nu E_{00}-3 \beta f_{22} E_{00} / L^{2}=0 \tag{8.7}
\end{equation*}
$$

where we used $\nu=m_{i} b^{i}=b^{2}-\beta^{2} / L^{2}(\neq 0)$. Moreover we contract (8.6) by $g^{i j}$ and get

$$
\begin{equation*}
2 f_{22} E_{\beta 0}+\left(f_{222}-f_{22}^{2} / f_{2}\right) \nu E_{00}-(n+1) \beta f_{22} E_{00} / L^{2}=0 \tag{8.8}
\end{equation*}
$$

Comparing (8.7) with (8.8), we can conclude

$$
\begin{equation*}
(n-2) \beta f_{22} E_{00}=0, \tag{8.9}
\end{equation*}
$$

therefore we are led discussions of two cases given by

$$
\begin{equation*}
\text { (A) } \quad f_{22}=0 \tag{8.10}
\end{equation*}
$$

(B) $f_{9 \varrho} \neq 0$,
provided $n>2$.

First, we consider the case (A). Since f is positively homogeneous in two valuables L and β of degree one, we have $f=L+\beta$, that is, the β-change is Randers, and from (8.4) we obtain $F_{i 0}=0$, which shows that the covariant vector field $b_{i}(x)$ is gradient.

Next, we shall treat the case (B). From (8.4) and (8.9) we immediately have $F_{i j}=0$ and $E_{00}=0$, thus we get $b_{i \mid j} y^{j}=0$, which implies that ($\left.\partial_{j} b_{i}-b_{m} F_{i}{ }^{m}{ }_{j}\right) y^{i}=0$. Differentiating this by y^{k} and referring to $\left(\dot{\partial}_{k} F_{i}{ }^{m}{ }_{j}\right) y^{i}=P_{j}{ }^{m}{ }_{k}$, we get

$$
\begin{equation*}
b_{k \mid j}=b_{m} P_{j}^{m}{ }_{k} . \tag{8.11}
\end{equation*}
$$

Conversely, if $b_{k}(x)$ satisfies the equation (8.11), the symmetry property of $P_{j}{ }^{m}{ }_{k}$ and $P_{j}{ }^{m}{ }_{0}=0$ imply that $b_{k}(x)$ is a gradient vector, and $E_{j 0}=0$. Therefore the covariant vector A_{i} in (8.3) vanishes identically. Summarizing up the above, from Proposition 8.1, we have

Theorem 8.1. A β-change $L \rightarrow \bar{L}$ of the metric is projective if and only if one of the following facts holds good:
(1) It is a Randers change and the covariant vector field $b_{i}(x)$ is gradient.
(2) The covariant vector field $b_{i}(x)$ satisfies the equation $b_{i \mid j}=b_{m} P_{i}{ }^{m}{ }_{j}$, provided $n>2$.

Now the concept of a projective change is closely related to Finsler spaces of scalar curvature. In fact, Szabó [25] showed the following :

Theorem A. Let F^{n} be a Finsler space of scalar curvature. Then the Finsler space \bar{F}^{n}, obtained from F^{n} by a projective change of the metric, is also of scalar curvature.

In case of a Riemannian space, " of scalar curvature" means " of constant curvature ". Moreover, the $v(h v)$-torsion tensor $P_{i}{ }^{h}{ }_{j}$ of a Riemannian space always vanishes identically, and $b_{i \mid j}=0$ means that $b_{i}(x)$ is parallel with respect to the Riemannian connection constructed from the Riemannian metric α. Owing to Theorem A and Theorem 8.1, we can conclude

Corollary 8.1. Assume that the covariant vector field $b_{i}(x)$ is parallel with respect to the Riemannian connection constructed from a Riemannian metric α. Then the Finsler space $\bar{F}^{n}=\left(M^{n},(\alpha, \beta)\right)$ with the (α, β)-metric is of scalar curvature if and only if a Riemannian space $F^{n}=\left(M^{n}, \alpha\right)$ is of constant curvature.

Corollary 8.2. ([26]). Assume that β is a closed differential one-form. Then a Randers space $\bar{F}^{n}=\left(M^{n}, L+\beta\right)$, where L is Riemannian, is of scalar curvature, if and only if a Riemannian space $F^{n}=\left(M^{n}, L\right)$ is of constant curvature.

Department of Mathematics, Kushiro College
Hokkaido University of Education

References

[1] L. Berwald, Über Finslersche und Cartansche Geometries. IV. Projectivkrümmung allgemeiner affiner Räume und Finslersche Räume skalarer Krümmung. Ann. of Math., 48 (1947), 755-781.
[2] A. Deicke, Über die Finsler Räume mit $A_{i}=0$, Arch. Math., 4 (1953), 45-51.
[3] M. A. Eliopoulos, A generalized metric space for electromagnetic theory, Acad. Roy. Belg. Bull. Cl. Sci., (5) 51 (1965), 986-995.
[4] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ., 16 (1976), 25-50.
[5] M. Hashiguchi, S. Hōjō and M. Matsumoto, On Landsberg spaces of two dimensions with (α, β)-metric, J. Korean Math. Soc., 10 (1973), 17-26.
[6] M. Hashiguchi and Y. Ichijyō, On some special (α, β)-metrics, Rep. Fac. Sci. Kagoshima Univ. (Math. Fhys. Chem.) 8 (1975), 39-46.
[7] M. Hashiguchi and Y. Ichijyō, Randers spaces with rectilinear geodesic, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem.), 13 (1980), 33-40.
[8] Y. Ichijyō, Finsler manifolds modeled on a Minkowski space, J. Math. Kyoto Univ., 16 (1976), 639-652.
[9] R.S. Ingarden, On the geometrically absolute optical representation in the electron microscope, Trav. Soc. Sci. Lettr. Wrosław B45 (1957), 60p.
[10] S. Kikuchi, On the condition that a space with (α, β)-metric be locally Minkowskian, Tensor, N.S., 33 (1979), 242-246.
[11] M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S., 24 (1972), 29-37.
[12] M. Matsumoto, On Finsler spaces with Randers' metric and special forms of important tensors, J. Math. Kyoto Univ., 14 (1974), 477-498.
[13] M. Matsumoto, On the indicatrices of a Finsler space, Period. Math. Hungar., 8 (1977), 185-191.
[14] M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor, N. S., 34 (1980), 303-315.
[15] M. Matsumoto, A relative theory of Finsler spaces, to appear in J. Math. Kyoto Univ.
[16] M. Matsumoto, Fcundations of Finsler geometry and special Finsler spaces, 1977 (unpublished).
[17] M. Matsumoto and S. Hōjō, A conclusive theorem on C-reducible Finsler spaces, Tensor, N. S., 32 (1978), 225-230.
[18] M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor $=0$ and $S 4$-likeness of Finsler spaces, J. Math. Kyoto Univ., 19 (1979), 301-314.
[19] M. Matsumoto and S. Numata, On semi-C-reducible Finsler spaces with constant coefficients, Tensor, N. S., 34 (1980), 218-222.
[20] T. Okada and S. Numata, On generalized C-reducible Finsler spaces, Tensor, N. S., 35 (1981), 313-318.
[21] H. Rund, The differential geometry of Finsler speces, Springer Verlag, Berlin, 1959.
[22] C. Shibata, On Finsler spaces with Kropina metric, Rep. on Math. Phys., 13 (1978), 117-128.
[23] C. Shibata, H. Shimada, M. Azuma and H. Yasuda, On Finsler spaces with Randers' metric, Tensor, N. S., 31 (1977), 219-226.
[24] C. Shibata and S. Shimada, On g-hypercone of a Minkowski space, Tensor, N. S., 35 (1981), 73-85.
[25] Z.I. Szabó, Ein Finslerschen Räume ist gerade dann von skalarer Krümmung, wenn seine Weylsche Projectiv-krümmung verschwindet, Acta Sci. Math. Szeged, 39 (1977), 163-168.
[26] H. Yasuda and H. Shimada, On Randers spaces of scalar curvature, Rep. of Math. Phys., 11 (1977), 347-360.
[27] K. Yokoyama, A quantum electrodynamics and the gauge transformation, Mathematical Sciences, 7 (1980), 16-21.

[^0]: * Number in brackets refer to the references at the end of the paper.

