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Let M™ be an n-dimensional differentiable manifold and F*=(M™, L) be a
Finsler space equipped with a fundamental function L(x, y)(yi=4%) on M™ For
a differential one-form B(x, dx)=b;(x)dx* on M™, we shall deal with a change of
Finsler metric which is defined by

(0.1) L(x, v) — L(x, y)=f(L(x, ), Blx, ¥)),

where f(L, B) is a positively homogeneous function of L and 8 of degree one.
This is called a B-change of the metric. We have specially interesting example
of 3-change of the metric, for instance,

() L(x, y)=L(x, y)+p(x, y),
0.2) @) L(x, »)=L%x, y)/8(x, ),
() L(x, y)=L%x, y)/p4x, y).

The change (0.2) (1) has been introduced by Matsumoto [127*. Hashiguchi
and Ichijyo [7] named it a Randers change and proved a theorem which shows
a relation between a Randers change and a projective change.

Next, the change (0.2) (2) is called a Kropina change. For a B-change
L—L=f(L, B), if L is a Riemannian metric a(x, dx)=(a(x)dx'dx%)"? then
L=f(L, B) becomes well-known (e, B)-metric ([5], [6]). In particular L =a+f
is a Randers metric ([3], [9]) and L=a?/ B is a Kropina metric ([11]). Both of
them are closely related to physics and so Finsler spaces with these metrics
have been studied by many authors, from various standpoint in the physical
and mathematical aspect ([3], [9], [22], [23], [26]).

In §1, we shall study how the fundamental and the torsion tensors change
by a jB-change of the metric. §2 is devoted to giving transformation formulas
of the torsion and the curvature by a f-change of the metric. In §3, we con-
sider Randers changes and give some invariant tensors under these changes, and
in §4 we shall study some geometrical properties of these invariant tensors. In
8§85 and 6, we are concerned with projective Randers changes and also give a
characterization of the vanishing Douglas tensor which is invariant under a

* Number in brackets refer to the references at the end of the paper.
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projective Randers change. §7 is devoted to a study of decomposable tensor.
In the final section we give another example of projective change besides the
Randers change.

The terminology and notations are referred to well-known Rund's book [21]
and Matsumoto’s monograph [16].

The author wishes to express his sincere gratitude to Professor M. Matsu-
moto for his valuable suggestions and encouragement.

§1. Changes of connections.

Let F*=(M", L) be an n-dimensional Finsler space with a fundamental
function L(x, y). We consider a change of Finsler metric which is defined by
L—L=f(L, B), and have another Finsler space F*=(M", L) with L=f(L, B).

Throughout the present paper we shall use the following notations:

fi=0f/0L.,  f,=0f/0B,  fu=0f/0LOL, etc.,
9,=0/0x", 0,=0/0y".

Since L=/ is a positively homogeneous function of L and p of degree one, we
have

(1.1) f=fiL+f.8, Lfio+Bf=0, Lfu+Bfi.=0.
For the later use we put

(1.2) p=Fff/L,  q=ffs,  q=[fa.

Paying attention to ll:éiL, from (1.1) we have

(1.3) [i=fils+ fb; .

Differentiating this by y’, we have the angular metric tensor /1;;=Ld,0,F of Fn:
(1.4) hiy=phi+qemim;,

where the covariant vector m; is defined by

(L4 1) my=b;— By:/ L%

It is noted that m; is a non-zero vector orthogonal to y* In fact m;=0 gives
Lb;—By;=0. We differentiate this by y’ and get fg.;—2L.;b;+b;y,=0, which
leads to a contradiction g;;—/;/;=0.

Now, from (1.1), (1.3), (1.4) and (1.4) 1) the fundamental tensor g;;=0:0,(L%/2)
of F* is given by

(1.5) 8iy=D8i; T pobibj+p-1(b:y;+b;y)+p-2y:y5,
where we put

po=qo+f2*,
(1.5 1) g-1=ffr/L, p1=qtpfe/f,

g-2.=f(fu—fi/L)/ L% P-e=q-tp?/f*.
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The reciprocal tensor g% of g;; can be written as
(1.6) G9=(1/p)g"—sobtbI—s_y (b1 yI+bIy")—s .y y7,
where we put
bi=gb;, b*=g%b;b;, y=>b?—p%/L?
(1.6) 1) so=L%q,/tpL? s.=p-L?*/prL?
so=p_(wpL*—b*L?)/tpBL?, =L p+vq,)/ L
From the homogeneity it follows that these quantities satisfy
qof+q-1L*=0, g-1f+q-.L*=—p,
poB+p-L'=q, gB+pL*=17,
p-1f+p-.L*=0, sof+s-1L=q/T,
Sob* s f=p-w/T.

(L.7)

As to the torsion tensor Ci;x=04(g:;/2) of F", from (1.5) and (1.7) we get
(1.8) 6ijk=pCijk—I-p-l(hijmk-}-hjkmi—l—hkimj)/Z—I—pozmimjmk/Z,
where we put pe,,=08p,/08. Contracting this by g"*, we have
1.9 ' Cr=C—V "y,
where we put
Vi i=QMpCimb™— p_ymgmy)—(m" [ p—vQ" N poamomn;+ p-1h5)/2
(1.9 1) —pa(hPmi+h"m;)/2p
Qr=seb"+s_,y", h*=g"h;, mt=g"m,.

We denote by the symbol (]) the h-covariant differentiation with respect to
the Cartan connection CI” and put

(1.10) 2E;k=bjrtbrj,  2Fj;=bj—be;.

Now we deal with well-known functions G x, y) which are (2)p-homogene-
ous in y* and are written as G'=y;*,y/y*/2, by putting

Tjik=gir(akgjr+ajgkr_argjk)/z .

Owing to (1.5) and (1.6), a straightforward calculation leads to

(1.11) Gi(x, y): =F;/+y'y")/2=G'+ D",

where the vector D* is given by

(L11) 1) Di=(g/p)Fto+(p Evo—29F b )(s-1y*+500%)/2,
Fiy;=g'"Fy,

and the subscript 0 (excluding s,) means the contraction by yt.
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We shall examine how the Cartan connection CI” changes by a §-change of
the metric. Let CI'=(F;,, Ni;, C,,) be the Cartan connection on the space
Fr=(Mm", L). For coefficients N"j:éjGi of the non-linear connection, we dif-
ferentiate (1.11) by y*® and get

(1.12) Nij=N';+D';,

where the tensor D?;=4d;D is given by
Dty =1/ p)Ati—Q A" —qboi(s- b +5-,9%)
Aij: =(1/2)EwBij+qFi i+ FioQ;—(pCijm+V ijm) D™,
ALj=g"A;,  Vim=g4Vim,  Qi=p-1yitpibi,
Bjr=(p-1hje+ potmyms)/2.

(1.12) 1)

Here, for the covariant vector Q; it is noted that
(1.13) Qu=q¢, 0:Q;=Bj/2.

Let BI'=(G,s, N;) be the Berwald connection on F». Differentiating (1.12)
by y* we have connection coefficients G,',=0,N; of BI" which are given by

(1.14) Giie: =G, +Bjty, Bjik:ékDij’
where G;%, are connection coefficients of B/ on F*. Therefore from (1.6), (1.8),

(1.9) and (1.12) we obtain connection coefficients Fji ¢ of the Cartan connection
CI’ on F™ as follows:

(1.15) Fiy: =7/ 4+Ci N mgim—C,',N",—C, N7,
=Fi+Djs,
where we put
Djty={g"/p—Q"b*—y(s_.b"+s_,y")}
(1.15) 1) “(Bssbote+ Bsboij— BrsboistFojQ 1+ Fsx Qs+ E Qs+ pCjar D7
4V i1:DTs— pCopmD™;—V sjm D™ — pCsjm D™ e =V 4 m D™ ) .
The tensor D;*;, called the difference tensor, has the following properties :

(1.16) (].) DJl(]:BJIOZDtJ, (2) DoiozzDi.

Theorem 1.1. The covariant vector, the components b;(x) of which are coeffi-
cients of the one-form B, is parallel with respect to the Cartan connection CI" on
F™ if and only if the difference tensor D;t, of (1.15) 1) vanishes.

Proof. Assume that the vector b;(x) is parallel with respect to C/° Then
(1.10) shows E;;=F;;=0, and so (1.11) 1) implies D‘=0 and D?;=0. Consequently
(1.15) 1) leads to D,*,=0.

Conversely if D;*, vanishes, (1.16) immediately gives D*=0. Contracting
(1.11) 1) by y;, we have pE,—2¢F,b"=0, because of s,8+s-,L*#0 in (1.7).



On invariant tensors 167

Thus (1.11) 1) reduces to F;=0 and E,=0, and so (1.10) gives b;,;=0.

A Finsler space F™ is called a Berwald space if the Berwald connection of
F™ is a linear connection, that is, connection coefficients G;*, are functions of
the position (x?) only. As an immediate consequence of Theorem 1.1, and (1.14)
we have

Theorem 1.2. Assume that the original space F™ is a Berwald space and the
covariant vector by(x) is parallel with respect to the Cartan connection CI" on F™.
Then the space F™ obtained from F™ by the B-change is also a Berwald space.

Corollary 1.1. Assume that the covariant vector b,(x) is parallel with respect
to the Riemannian connection on Riemannian space F*=(M", L=a). Then Fr=
(M™, L=f(a, B)), obtained from F™ by the B-change, is a Berwald space.

§2. Change of the torsion and the curvature tensors.

In this section, we shall consider how the torsion and the curvature tensors
change by a B-change of the metric.

Let FI'=(F;*;, N*;, Cj*;) be a Finsler connection on the space F™ and let K
be a Finsler tensor field, for instance, of type (1, 1). Then the h- and the
v-covariant derivatives of K are respectively defined by

Ky =0K%;/0x*+K™;Fpty—KinFi™y,
Kije=0,K—K'nC/m e+ K™ ,Cry
0/0x*=0/0x*—N7,0/0y".
The torsion and the curvature tensors of FI are written as follows:
Rt e=Wiu ON1;/8x%),  Pia=0,Ni\—F,';,
Rutis=Ucjm (0Fnt;/0x* +Fy™;Fnts} +ChinP™,
Prij=04Fy —Chl o 4-CrimPi™ s,
Sutie=Wcsm (0:Cn +Cr™eCrls).

Throughout the paper, for the sake of brevity, we shall adopt the notations
6@,‘];) and ?I(ij) such that

Suim XX} =X0Y 7o+ XY i+ XY 75
QI(ij) {Xirerk} =XirYjT/¢—Xj,Yirk .

Let FI" be a Finsler connection on F”, obtained from F” by a @B-change.
Then the torsion and the curvature tensors change as follows ([4]).
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1) Cia=Ci's—V ',
@) Rj%=R; 4w (D5is—(BjH+PiD"4,
(3) Piy=Pi s+ (Ast+Ci'nD™ )+ B,
@) Ria'jp=Ritja+SaimaD™;D™ e —Usn
AAR = Ant D" (Ar i+ Coln D™ ) An™ s+ A’ Ca™n D™ &
@1 +Pat D=V Py u D oV D™ =V abn By D7)
—ViiaR™s,
(5) Puise=Patsa—SatmiD™— Aniss—Cri s A+ Ci™ A
—V nia Py AV P sV nb AV Y i By
Vit un D™+ CAnV D™=V 3 Cr s D™,
6) Sali=Sn'aF Ui Cn'eVa™—Cra™V =V a'eVa™,
where tensors D¥;, By, Ay, Vs, An'je and V,!;, are respectively given by
Di;=Ni{/—N%;,  Bj}y=0,D';,
2.0 D Afv=F = F e+ Cin(N™—N™,)
Viv=Ca=Cita,  Afam=0nAs,  Vim=0V .
Moreover, for the tensor A;*, in (2.1) 1) we get
C) Ajfy=—D—CitnD™s, (BI') Ajx=Bj',
(HI) Ajty=Hty (=—Bj'—CiinD™), (RI") Ajty=—Dj4,

where RI" and HI  are respectively the Rund connection and the Hashiguchi
connection ([4], [16]). Therefore, on account of (2.2), we can derive the torsion
and the curvature tensors of each connection in the concrete form, for example,

(Case of CI')

(1) Rj'%=R; 44U AD?js—(Bs'+Pi D"},

2) Pji=Pi'v—Djy+Bj,

() Rpiju=Ru ;s +2Sntmn D™ D™ s —N s

AAR i — Ant i D™+ D D™y Patjn D™y —V Py D™,
2.3 FV i D™=V iin B D7y} =V o' Ri™s

(4) Prije=Prijs—2S3 niD™;— Antjx+Crt e Dp™;—Cr™ s D'
VP e—AfnVa™ eV e An™ 5V o=V n'a Bi™a
—V itanD™—C AV " D™ 4V 3,2 Cr* 2 D™,

5) Saln=Sa' i+ Ui ACn' eV a™—Cra™ iV n'—Vn'aVa™3},

..............................
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Assume that the vector b;(x) is parallel with respect to the Cartan connec-
tion CI. Then Theorem 1.1 asserts that the difference tensor D;’, vanishes.
Therefore, (2.2) and (2.3) imply

(2.4) Riljp=Rptj—ViinR™s .

Further we contract (2.4) by »" and get R,i;,=Ry*;,—V,'nR;™,. Because of
V#=Cj,—Cj%, it is clear that V,*,=0. Consequently R,%;,=0 and R,%;,=0
are mutually equivalent. Thus we have

Theorem 2.1. Assume that the covariant vector b/(x) is parallel with respect
to the Cartan connection CI. Then the h-curvature tensor R,';, of F", obtained
from F™ by the B-change, vanishes if and only if the h-curvature tensor R,';; of
F™ vanishes.

Now the space F™ is called a locally Minkowski space if F" is a Berwald
space and the h-curvature tensor R,';, vanishes. From Theorem 1.2 and Theo-
rem 2.1 we have

Theorem 2.2, Assume that the covariant vector bi(x) is parallel with respect
to the Cartan connection CI' on F™. If F™ is a locally Minkowski space, then
the space F™, obtained from F™ by the B-change, is also locally Minkowskian.

Next, we restrict ourselves to a Riemannian space F® with a Riemannian
metric «. Then F* obtained from F™ by a B-change, becomes a Finsler space
with a so-called (a, B)-metric. Since C,;;=0 and Sy;;,=0 in F", the k-, the hv-,
and the v-curvature tensors of F" are respectively given by

1) Ru'jp=Ri'u+CainR™ i+ Ui
AD e+ Dy DT 4 Cotm(Dy™ e +D™ D%},
@) Prt;4=04Dn'j+D;nCr™s—Di™,Cnis—CrinD™,
—0,CiénD™+C
@) Sitjp=hneMij—hniMiy+hiiMyy—hixMyy,
where | is the h-covariant differentiation with respect to the Cartan connection

Clon F*, and My;=p_{L*p_,whis/2c L*+(p -1+ L%(p pos—3p-1q0)/ LoT)mim;} /2.
Owing to Corollary 1.1 and Theorem 2.2, we obtain

Proposition 2.1 (Kikuchi ([10]). A Finsler space F* with an (q, B)-metric
is locally Minkowskian if and only if V;b;=0 and R,%;,=0 hold good, where Rt;,
is the Riemannian curvature tensor of F"=(M™, &) and V; is the covariant differ-
entiation with respect to the Riemannian connection.

Next, we consider the hv-curvature tensor P;;, of F*=(M?", (L, 8)). Then
(2.3) and Theorem 1.1 show that P;i,=0 is equivalent to P;{,=0 if the covariant
vector b;(x) is parallel with respect to the Cartan connection CI. Here we shall
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recall the concept of Landsberg space:

Definition 2.1. A Finsler space F* is called a Landsberg space if the hv-
curvature tensor P;;, of CI" vanishes, or equivalently P;*,=0.

As the hv-curvature tensor Ph;;; of a Riemannian space F*=(M™", «) vanishes
identically, we can state

Theorem 2.3. Assume that the covariant vector b;(x) is parallel with respect
to the Cartan connection CI. Then a Landsberg space remains to be a Landsberg
space by the B-change of the metric.

Corollary 2.1. Assume that the covariant vector by(x) is parallel with respect
to the Riemannian connection constructed from a Riemannian metric a. Then a
Finsler space with the (a, B)-metric is a Landsberg space.

§3. Randers change.

We consider a special 8-change called a Randers one which is defined by
L—»Z:L+,B. As a special case where L(x, dx) is Riemannian, we have a
Randers metric. Moreover if L is a Randers metric and the covariant vector
bi(x) of one-form B is gradient, then the Randers change is regarded as a gauge
change which is important in the quantum electrodynamics [27]. Recently,
Hashiguchi and Ichijyd [7] considered some properties that remain invariant
under a Randers change, and proved that any geodesic remains to be a geodesic
if and only if the covariant vector b;(x) is gradient.

We shall first introduce certain tensors which remain invariant by a Randers
change. In this case, it follows from (1.1), (1.2) and (1.5) 1) that f,=f,=1,
p=L/L and ¢g=L, so that (1.3) yields

@.1) ii=1i+bi .
Putting

3.2) Lij=hy/L,

we observe from (3.1) that the tensor L;; is invariant by the Randers change.
From (3.1) and (3.2) we have the fundamental theorem of a Randers change:

Theorem 3.1. The following statements are equivalent.

(1) A B-change L—L of the Finsler metric is a Randers change,
(2) 0%(L—L)/9y'dy’=0,
3 LijZLtj-

We shall call L;; in (3.2) the first fundamenial tensor of the Randers change.
From now on, we shall call a tensor which is invariant under a Randers change
an R-invariant tensor.

Since f),,hij=2Ci,,,—(Liklj—{—L,-kli), differentiating (3.2) by y* and putting
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(3.3) Lijk : :a.kLij: {Zcijk“(Lijlk+ijli'|‘Lkilj)} /L,

we get L“,ezf,-jk. This invariant tensor L;, is called the second fundamental
tensor of the Randers change.
Moreover, putting Ly:j»=0sL;;; and refferring to the T-tensor

Trija=LChifla+1nCija+12Cijn+1:Crjr+1iChin»
it is seen that

(3.4) Luije=2T nija/ L*+Scjm {2ChriCi"/ LAH(—2Cpi54n Liple/L?
—LijLne/ L} —40,Cije/ L*

satisfies Ln;j2=Lnsje, therefore we get another R-invariant tensor Lyij, which
is called the third fundamental tensor of the Randers change.

We shall consider how the fundamental and the torsion tensors change by a
Randers change. From (1.5) we have

(3.5 Zi;=pgitbib;+ il +bil)—Blil;/L, p=L/L,

and (1.6) gives

(3.6) FI=(1/ g+l —I+16Y)/1?, 0=(Lb*+B)/ Ly
Next, for the A(hv)-torsion tensor C;j,, (1.8) leads to

3.7 Cisa=pCijet(Lijmep+ Ljsmi+ Lyom;)/2 .

Contracting this by g"*, we have

3.8) Ci*y=Ci" j+(hmy+him+him™) 2L —Cy b7

—@mgm+m2h )2 Ly, mi=gtimgm;, mi=gim,.
Thus the torsion vector C;=C,’, is given by

(3.9) Ci=Ci+n+1m;/2L .

On the other hand, paying attention to (3.1), the vector m; in (1.4) 1) and
C; are rewritten in the form

(3.9) me=li—pl;, Ci=Cit(n+1)(l—pl)/2L .
Contracting (3.8) by g/ and then C,, we obtain

(3.10) Cr=Q1/w)C*+(n+1)m"/2u* L — {Cs+(n+1)m?/2L} 1"/ 1%,

@.11) C*=(1/pw)C?+(n+1){Cp+(n+1)m*/4L} / Lps?,

where C*=CiC;, Cg=C;b'.
If Cg is eliminated from (3.10) and (3.11), m" is written as a linear combi-
nation of C* C" and [*. Substituting this into m*=>b*—By?/L? we get

(3.12)  bi=2Lp(Ci—Ci/p/(n+1)+ 18/ L-+m?/2pu+2u L uC?—C?)/(n+1)3} ',

Further, substituting from (3.12) into (3.6) and putting
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(3.13) *gii=[ {g42(C'y'+C7y")/(n+1)+(4C*/(n+1)2—1/ LYy y},

we see *gti=*gii that is, *g¥ is R-invariant. Therefore, on account of this
tensor, we can derive some new R-invariant tensors, for instance,

(3.14) 1) *Liy=*g"L,;,  2) *¥L"=*g" Ly, -, etc

Let g(x, y) be the determinant consisting of components g;; of the funda-
mental tensor. It is well-known ([15]) that the determinant g of F”, obtained
from F™ by a Randers change, is given by

(3.15) g=g(L/L)"*\.
Thus g#0 implies g#0. Therefore,
(3.16) *[=L/g!"*

is an R-invariant relative scalar which was called a relative fundamental function
of weight —2/(n-+1) of F™ by Matsumoto [15]. Differentiating (3.16) by »® and
putting

(3.17) Ki=0,(log*L),
this is written as
3.17) K=1;/L=2C;/(n+1),

because of 31g=2gCi and 0;L=1l;. Therefore this vector K; is R-invariant; this
fact can be also observed from (3.9’). Moreover we differentiate K; by v’ and get

(3. 18) Kij . :3,]{1:(hL_,—lllj)/LZ—Z(T,,—ILC,—ZJC})/(H+1)L
—2CnC;™i/(n+1),

where we refer to T,;=LC;|;+Cil;4Cjl;.
As it has been seen, we obtain two systems of R-invariant quantities of F™:

(1) Ly, Liju, Luijuy vvvvvreveereeenns ,
(i) *L, K, Kyjy vovvvvvnesenseeneeonns .

Now, from these systems, we can construct many R-invariant tensors. First,
putting

(3.19) Hyiji =(Lnij+ LaiKi+ Li Ko+ LinKi)/2,
(3.3) and (3.17") lead to

(3.19" Huij=[Chij—(hs;Cr+hjnCithnCp)/(n+1)1/L,
and

(3.20) Hm'jk . :éthij:[Thijk_(hijThk+hthik+ hn:Tje)/(n+1)]/L?

_2Hijhlh/L+@(ijh) {—ijhli/L_l_Cimkahj}
is also R-invariant.



On invariant tensors 173

Secondly we contract Hy;; in (3.19) by *g"* and get the R-invariant tensor
(3.21) *H* 5 =Hp*g"* = LH*j+2Ly*C,H 3/ (n+1),
where we put H;*;=H;;g%%. (3.19") and (3.21) give the R-invariant tensor :
(3.22) Upije: =Hp b *H—Hy FHT

=Snijr/ L—=Weim {(CrraLij+CrisLaw)C/(n+1)
—(L;ChCht L sCiCi+-CP Ly hiz)/(n+1)%

Thirdly from (3.3) and (3.19") we obtain the following R-invariant tensors :

(3.23) (1) Mije:=—Lijp+2Hj0=L K4+ Li; Ko+ LK,
2) Muije: =0:Mni;=Sjm LK+ LuiKi} .

Finally (3.13) and (3.17') yield

(3.24) K*gi=0,

which will play an important role later on.

§4. Properties of the R-invariant tensors.

We shall treat C-reducible Finsler spaces. Matsumoto and Hojo [17] proved
a remarkable theorem: The metric functions of C-reducible Finsler spaces are
confined solely to the Randers metric (L=a- ) and the Kropina one (L=a?/p).

Definition 4.1. A Finsler space F* (n=3) is called C-reducible if the h(hv)-
torsion tensor C;;, is written as

Chij:(hhicj"l’ hijch"_hjhci)/(n‘l‘l) .
For Hyq; of (3.19), from the above definition we get

Theorem 4.1. The R-invariant tensor Hpi; of (3.19) vanishes if and only if
the Finsler space is C-reducible.

Corollary 4.1. A C-reducible Finsler space remains to be C-reducible by any
Randers change.

As LijzéiéjL and Kizéi log*L, from (3.3) the second fundamental tensor
L;;, is written as 0,00, L. Thus from (3.19) and Theorem 4.1 we can state

Theorem 4.2. A Finsler space F™ is C-reducible if and only if its funda-
mental function L satisfies a system of differential equations

3:0,0x L=—Gcis1 {(0:0,L)@x log*L)},
where we put *L=L/g'™** and g=det(<:1‘ja.iL2/2).

Next, we introduce
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.1) Vnisn: =04Hnij—Gaip (Hnir* Hi s— KiHn e} +2K o Hie; .

By (3.17) and (3.19’) it is written as

4.1) Vwise=Trije/ L* =G aij {hs;Tna/ L* + HinyC;— h 1 Hpi,C'} /(n-+1)
—CrHpis/(n+1).

Thus we get the R-invariant tensor V,;, in relation to the T-tensor T ,:jp.
Since Tri;xy*=0 and H;;,y*=0, contraction of (4.1’) by *gi* yields

4.2) Vit =Viais*gt=((n—1Tn;—Than)/(n+1)L
—(n—1)LH,;,C"/(n+1),

which is also R-invariant. Moreover, owing to these tensors we construct a
new R-invariant tensor

4.3) T =V 0ijetVini+VienitVisen
F28win {LiwV it LiVart/(n+1),

which, in virtue of (4.1) and (4.2), is written in the form
4.3) *Thise=[Trije—T(hixhnj+hnrhij+hiehn)/(n*—1)]/L*

—H;;Ch—Hpj3,Ci— Hip v C;— HyiiCh
Hence we get

Theorem 4.3. The T-tensor Trijr of a Finsler space is written as
4.4 Thijp=T(hixhnj+hnshist+hiphnd)/(n*—1)
+ LACiHyjr+CiHinr+CrHjin+CrHuiy)

if and only if the R-invariant tensor *Tn.;x of (4.3) vanishes.

Corollary 4.2. If the T-tensor Tnije of F™ is written as (4.4), the T-tensor
Thije of F*, obtained from F™ by a Randers change, is also written in the same
form as (4.4).

If a Finsler space F™ is C-reducible, Theorem 4.1 shows that the tensor
Hy; vanishes, and so R-invariant tensors V ;5. and *T 545, also vanish. Therefore
the T-tensor T:j: of a C-reducible Finsler space ([16]) is written as

Thijk:T(htkhhj+hhkhij+hjkhhi)/(nz—l) .

Next, we shall deal with the R-invariant tensor Upj;;, defined by (3.22). It
is obvious that Uy, vanishes if a Finsler space F* is C-reducible. Contracting
(3.22) by *g* and then *g™/, we get

4.5) Unj: =Uhijk*gik:Shj+ {(n—g)(chrjcr—chcj/(n +1))
+2Chn;/(n+1)} /(n+1), Sni=Snisrgt,
(4.6) U:=Un*g"W=L(S+n—-2)C*/(n+1)),  S=Ss;g".
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On the other hand, from the definition of (3.22), the above quantities can be
respectively written as follows :
(4.5 Unj=L?Hy, 1 Hi";8%*,
(4.6") U=L*Hp Hpijg"™ g g,

where H;,g'*=0 and H;;,y'=0 are used. We now assume that g;; is positive
definite. Then (4.6’) shows that U=0 is equivalent to H,;;=0, and (4.6) does
S+(n—2)C?/(n+1)=0. Consequently, from Theorem 4.1 we have

Theorem 4.4. A Finsler space F™ (n>2) is C-reducible if and only if the
v-scalar curvature S is given by

S=—(n-2)C*/(n+1),

provided that g;; be positive definite.

Remark. Since S=C,,,C?**—C? Corollary 4.2 resembles closely to the fol-
lowing fact: If the v-scalar curvature S is given by S=—C? and g;; is positive
definite, a Finsler space is Riemannian.

Corollary 4.3. A Finsler space F™ is C-reducible if and only if the v-Ricci
tensor Sn; is written in the form

4.7 Sri=A{n—=3)CrC;/(n+1)—Cpr;C)—2C*hn;/(n+1)} /(n+1),

provided that g;; be positive definite.

Moreover we shall give another R-invariant tensor in relation to the v-curva-
ture tensor Spie. Since Un;=U,; and U=U in (4.5), (4.6), it holds

(1) Cur,C/(n+1)=CrC;/(n+17*+{C1r;C*—CaC,/(n+1} /(n+1)
(4.8) +(Sn;=Sn)/(n—=3)4+2(C?hn;—C?hny)/(n+1)*n—3),
2) C/(n+1)=L{SL/(n—2)+C:L/(n+1)}/L—S/(n—2).
Substituting from (4.8) into (3.22) and putting
(4.9)  *Snijr: =CSnije+Wim (hiSnrthneSi;—Shizhny/(n—2)} /(n—3)]/L,
we get *S,;;,=*Spijp, that is, *Syi;. is R-invariant.

Here we introduce the concept of S4-like Finsler space ([14]):

Definition 4.2. A non-Riemannian Finsler space F" (n>4) is called S4-like,
if the v-curvature tensor Si;;, is written in the form

Lzshijk:hthik"l'hithj_hhkMij—hithk ,
where M,; is a symmetric and indicatory tensor.

Assume that F™ be S4-like. Then the tensor M;; of the above definition is
given by {S;;—Sh;;/2(n—2)} /(n—3) and accordingly (4.9) gives *S,;;,=0 imme-
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diately. Thus we have

Theorem 4.5. A non-Riemannian space F™ (n>4) is S4-like if and only if
the R-invariant tensor *Spijr of (4.10) vanishes.

Corollary 4.4. If a Finsler space F™ (n>4) is S4-like, the Finsler space F™,
obtained from F™ by a Randers change of the metric, is also S4-like.

§5. Projective Randers change.
In this section, we shall treat a special class of Randers satisfying
(5.1) a[bj—ajbiZO, i.e., Fij:(),

that is, the covariant vector b,(x) is gradient. Such a change is called a projec-
tive Randers change.

Hashiguchi and Ichijyo [7] have shown an interesting result: A Randers
change is projective, that is, any geodesic remains to be a geodesic by the
change, if and only if b;(x) is gradient.

Throughout the present section, we restrict ourselves to projective Randers
changes and from now on, we shall call a quantity which is invariant under a
projective Randers change, a projective R-invariance.

From (1.11), (1.11) 1) and (5.1) we get

(5.2) Di: =Gi—Gi=ay?, a=FEy/2L .
Since N';=0,G’, the above gives
(5.3) Dij=N"j—Nij:ajyi+a6ij, ajzc;?ja.

We consider the R-invariant vector K; of (3.17"). Differentiating covariantly
by x7, we get

(5-4) Rz‘ro: ilo‘ZKirDr—‘KrDri )

where the symbol (T) denotes the h-covariant differentiation with respect to CI
On the other hand, from /;;=L,;=0, (3.17’) yields

Kio=—2C;0/(n+1)=—2P;/(n+1),  (P;=P;,).
In the same manner, we get K;7,=—2P;/(n+1). Therefore, (5.4) is written as
(5.5) Pi=P;—(n+1akK;/2+n+Da;/2.
Differentiating this by y’, we get
(5.6) Pyy=Pyy—(n+1)(a;Ki+aKi)/2+(n+Das;/2,

where we put PijzéjPi and aij=éjai'
Next, (5.3) gives

(57) CjikzGfk+aj;,yf+a,»5ik+a,,6‘j.
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Further partial differentiation by y* yields
(5.8 Giwn=G ity +a;0inta;ndtp+a,d;.

Summing this with respect to i=/, from the homogeneity of «;,, we get

(5.9 a'jkz(cjk_ij)/(n"_l)y G ;=G
Substituting from (5.9) into (5.6), we get
(5.6") Pi;=Pi;—(n+1)(a,;K;+aK:)/2+(Gi;—Gi)/2.

Contracting this by the R-invariant tensor *g®/ given by (3.13) and referring to
G:;y*=0 and (3.24), we have

(5.10) P=P—(n+1a*K/2+G—G,

where we put P=P;*g%, *K=K;;*g" and G=G;;*g*//2. 1If we put
(5.10) 1) P=—-2(P—G)/(n+1)*K,

(5.10) is written as

(5.10") a=0—0.

For a; in (5.5), we have
(5.11) ;=00 —@)=2(P;i—P)/(n+1)+(B—D)K, .
Further, by substituting from (5.11) into (5.8), we have
612 Gir—Gix=04 _{2<Pj—Pj)+(n+1>('@—q))K,-}
=2(Pjs—P;2)+(n+1) {0 (P —D)K;4+-(D— D)K.} .
Consequently D* in (5.2) and D?; in (5.3) are respectively rewritten in the form
(5.2") Di=(0-0)y",
(5.3 D= {2(P;—P))/(n+1)+(D - D)K}} y'+(D— D)5?,
and G, in (5.7) are written as
(6.7 Gt =G+ (Gi—G)yt/(n+1)+ 2(P,— Py /(n+ 1)+(D—D)K } 67,

+ 2P =P/ (n+1)HP—O)K )} 57,

Thus from (5.3), (5.3"), (5.7) and (5.7') we obtain projectively R-invariant con-
nection coefficients as follows:

(1) *Afij: ':Nij‘}‘lij ,
(5.13) ) ) )
(2) *GjlkZGjlk'l_Ijlky
where tensors I%; and I;*, are respectively given by
(1) ItJ:'—{ZPJ/(H+1)+¢KJ}yl—‘(D5iJ,
@) I4=—[GCuy'+QCP;+n+1)DK,)i,
+@P+(n+1)PK )0 ]/ (n+1) .

(5.14)
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Moreover we can derive projectively R-invariant quantities from P; and G,,.
First substituting from (5.11) into (5.5), it is clear that the vector

(5.15) *P, =2P,/(n+1)— 0, +OK;,, @,=0,0

satisfies *P,=*P;, Therefore we immediately get a projectively R-invariant
tensor

(5.16) *P;;=0;Pi=2P;;/(n+1)—0,(OK:—3,0).
Secondly from (5.12) and (5.16) we get another projective R-invariance

(5.17) *Ujp: =G1—0, 2P+ (n+1)DK}.

Hence we obtain

Proposition 5.1. The covariant vector *P; in (5.15) and the tensor *U;; in
(5.17) are projectively R-invariant.

Next, in terms of connection coefficients (G;*;, N*;), the (v)h-torsion tensor

R;* and the hy-curvature tensor G;";, are respectively written as
Ry y=Wjm 0N ;— G N}, Gihjk:éicjhk-
From *N?; and *G;*, in (5.13), we can introduce projectively R-invariant tensors
*Rjik : quk) {ak*Nij—*Gjir*Nrk} ’ *Gihjk':éi*Gjhk .

These tensors are rewritten in the form
(5.18) *Rite =R et (I 155074},
(5.19) *Gl =G +1:" 1, Iihjkzék[ihj,

where the symbol (;) denote the h-covariant differentiation with respect to BI

We are concerned with the tensor *R,*,. If F™ is a Berwald space, that is,
G;iy=G;"4(x), then P;,=0 and G,%,,=0, therefore the scalar @ in (5.10) 1)
vanishes. Consequently from (5.14) and (5.18.) we can state

Proposition 5.2. If a space F™ is a Berwald space, the (v)h-torsion tensor
R;iy is equal to the projective R-invariant tensor *Rt,.

Next, contracting (5.18) by y’, we have
(520) *Roiszoik‘f‘ZIi;k—lik;o"l'lirlrk—szirfr,

where 2/'=J{,. Further, contracting this by L,; and then substituting from
(5.14) it is obvious that the tensor

(5.21) *Ruow: =Lni*R0ik:(Rhok+Whhk)/L
satisfies *R,,,=*Rys, where ¥ is given by

(5.21) 1) , U:=0,,—0%
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Further *R o, *g"*=*R,,,*g"* gives
(5.22) U=—(Roy—Ryo)/(n—1)+T, Roo=Ry, .
We substitute from (5.22) into (5.21), and get a projectively R-invariant tensor :
(5.23) Wir={Rror— Roohne/(n—1}/L .

We treat a Finsler space F™ (n>2) of scalar curvature K(x, y). Such a
space is characterized by the following equation :

(5.24) Ruor=L:Khy,, K=Ry/(n—1)L"
Thus from (5.23) and (5.24) we can state

Theorem 5.1. A Finsler space is of scalar curvature, if and only if the pro-
jectively R-invariant tensor Wy, in (5.23) vanishes identically.

Corollary 5.1. If a Finsler space F™ is of scalar curvature, then F", obtained
from F™ by a projectively Randers change, is also of scalar curvature.

Finally we consider the second fundamental tensor L;;, of the Randers
change. Differentiating covariantly this tensor, we get

(5.25) Lijero=Lijro—2L:j0:D™— L, juD"s— L34 D";— L ;,D"y,

where we used the relation (5.3). From L,;=0 and L;,=0, (3.3) leads to

(5.26) Lijaro=2Pije/L,  Lijeo=2Pis/L .

By means of (5.2°) and (5.3’), it is clear that the tensor

(5.27) *Pijw: =Pijp/ L—(LjxPi+ LyiPi+ Li;Py)/(n+1)
—O(Lije+ LinKi+ Ly K+ LiK)/2

satisfies *P;;,=*P;;,. Because (3.19") gives

(5.28) 2Hugu={Piss—(hesPathuPit haP)/(n+ D) /L

the projective R-invariant tensor *P;;, is rewritten as

(5.27") *Pije=2H;j00—PH,jp .

We shall introduce the concept of P-reducibility which is defined as follows :

Definition 5.1. A Finsler space is called P-reducible if the wv(hv)-torsion
tensor P;;, is written as
Pijr=(hi;PethjnPithenPy)/(n+1).

It is obvious that a C-reducible Finsler space is P-reducible. Therefore
Theorem 4.1 leads to

Theorem 5.2. A P-reducible Finsler space F™ is C-reducible if and only if
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the projectively R-invariant tensor *P;;, vanishes, provided @ +0.
Theorem 5.3. A P-reducible Finsler space F™ remains to be P-reducible by a

projective Randers change if and only if the quantity @ in (5.10) 1) is projective
R-invariant, provided that F™ be non-C-reducible.

Proof. Assume that both of two Finsler spaces F* and F"* are P-reducible.
Then (5.27’) implies (§—®)H;;,=0, and so ®=¢& holds, because of H;;,+0.

Conversely if @=® holds, (5.27") gives Hyjr0=H;jsro, S0 that the P-reduci-
bility of F* implies that of F™.

§ 6. Douglas tensor.

In the theory of projective changes in Finsler spaces, we have two essential
projective invariants, one is the projective h-curvature tensor W.";,, which is
related to a Finsler space of scalar curvature and the other is the projective
hv-curvature tensor D;";,. These tensors W;*;, and D;*;, are called the Wey!
curvature tensor and the Douglas tensor respectively.

In this section we shall deal with the projectively R-invariant tensor *G.*;,
of (5.19). By means of (5.14) 2) *G;*;, is written as

(6.1) *Gihjk:Gihjk_<Gij-kyh+Gij5hk)/(n+]-)
—0, 2P+ (n+1DPK 6"/ (n+1)
—04 2P+ (n+1)OK} 6"/ (n+1).

From *G;";, and *U,; in (5.17), we can introduce the projectively R-invariant
tensor

D"t =*Gitjp— (U 120" +*G14k0" )/ (n+1),
which, in virtue of (5.17) and (6.1), is written as
(6.2) D" =G" 11 —[Gi;x ¥+ {Gi0™} 1/ (n+1).

This tensor is nothing but the well-known Douglas tensor. We have attempted
to derive this from projective Randers change.
We now assume that the tensor *G;";, vanishes. Then (6.1) gives

6.3) Gi"j4=[Gis.x 3"+ G 0" 404 2P+ (n+ 1)K} 6%
+0, 2P4(n+ 1)K} 6%/ (n+1) .
Summing (6.3) with respect to h=~k, we get
Gi=0;2Pi+(n+1)OK}},
so that G;";, is rewritten in the form
(6.3" Gi" 1= (G y"+G ;0" 4G ri0" ;4G 0" ) /(n+1) .

Therefore, (6.2) and (6.3") imply D;*;,=0. Hence we can state
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Proposition 6.1. If the projectively R-invariant tensor *G;";, vanishes, then
the Douglas tensor D;";, vanishes.

Next, we consider a relation between the hv-curvature tensor P;*;, with
respect to CI" and the projective hv-curvature tensor D;*;,. Contracting (6.2) by
Yn, We have

(6.4) Gijr=—M+1)D 9./ L*—S i {Gisls} /L,
so that D;*;, is rewritten in the form
6.2") Dihjk:Dirjkyryh/Lz'l_Gihjk_@(ijlz) {Gijhhk} /(n+1).

Since 3kFihj=Pi”jk+Ci"k|j—Ci"stsk, the equation Gihj:Fihj"l‘Pihj, which shows
the relation between the Cartan connection CI” and the Berwald connection B[,
gives

(6.5) Gi"p=Pi* i+ Ci* 4 ;—CM Py 3, P,
(6.6) Gij=P/;;+Ci);—Ci P +0.P; .
Substituting from (6.5) and (6.6) into (6.2), we get
(6.7) h™.Di 5y =Pi" 4+ Ci* 4 j—Ci* Py 4 +-2P; ;1 y"+0, P,
—Sujn {(ijkr+Cj|k—CstPksr_i_a',Pka)hhi} /(n+1).

We shall be concerned with a Landsberg space F", which is defined by
P;*;;=0. If the Douglas tensor D;";, of this F™ vanishes, then (6.7) implies

(6.8) ChikIj:(hhicjlk+hhjckli+hhkci|j)/(n+l) »
which immediately gives
(6.9) Chljzcrnhhj/(n—]-) .

Further (6.6) and (6.9) yield G,;=C",;h;;/(n—1). Differentiating this by y* and
referl‘ing to akhij=2Ci,~k—(hiklj+hjkli)/L, we get

(6.10) ékGij: {(a.kcrlr)hij+crlr(2cijk_hiklj/L'—hjlzli/L)} /(n—1).

Owing to 0,G:;=0,Gy, (6.10) gives 9,C",=—Cr,l;/L, so that (6.10) is rewritten
in the form

(6.10") ékGij:CTIT{ZCijk_(hiklj+ hyelithide)/ LY [(n—1).
On the other hand, from (6.4) and G;;=C",h;;/(n—1), we have
(6.11) 3kGu=~C’|r(hijlk+hjklri—hulj)/(n—l)L .

Comparing (6.10") with (6.11), we obtain C7,=0, so that (6.8) and (6.9) lead to
Cijrin=0, that is, the Finsler space is a Berwald space.

Conversely, if a Finsler space F™ is a Berwald space, then the Douglas
tensor D;*;; vanishes obviously. Summarizing up all the above, we can state
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Theorem 6.1. Assume that a Finsler space F™ is a Landsberg space. The
Douglas tensor D;";. of F™ vanishes if and only if the Finsler space F™ is a
Berwald space.

§7. Decomposable tensors.

The tangent vector space F? with the origin removed at any point x of F*
is regarded as a Riemannian space with the fundamental quadratic form ds*=
gij(x, v)dyldy’. The indicatrix I, at x is a hypersurface of the Riemannian
space F? which is defined by the equation L(x, y)=1 (x is fixed) ([13)].

Definition 7.1. A Finsler tensor U;; is called indicatory if U,; satisfies
equations U;,;l*=U;/’=0.

From an arbitrary tensor U;; we get an indicatory tensor ‘U;; which is
given by
/Uij:U[m/'lli’lmj.

It is clear that the tensors h;;, Ciji, Pije, Snije and T,,;, are indicatory. From
(3.2), (3.19"), (4.4"), (4.10) and (5.23) we have

Proposition 7.1. Tensors Li;, Huijy *Trijuy *Snije, Whe and *Pyj, are indi-
catory.

Here we treat R-invariant tensors in §3. First, for the covariant vector K;
in (3.17), by applying the above indicatorization we immediately get ‘K;=
—2C;/(n+1). For the second fundamental tensor L;, of the Randers change in
(3.3), from the homogeneity we get L;,=0, and hence by applying the above
indicatorization it follows that 'L;;,=2C;;,/L. Moreover, for M;;, and M,;, in
(3.21), we have

(7.1) Ij\/[ijk:_z(hijck+hjkci+/1kicj)/(n+1)L ,
(7.2) "Muijn=Sjm {—4CrixCs/(n+1)L+hij(hnp/ L—2T 1/(n+1))/ L.

Now, for the h(hv)-torsion tensor C;j,, it is obvious that F* is Riemannian
if the tensor C;;, vanishes, and Deicke’s theorem ([12]) shows that F™ is also
Riemannian even if the torsion vector C; vanishes. Therefore for above indi-
catory tensors we can state

Proposition 7.2. (1) One of indicatorized tensors 'K; and 'M,;, vanishes if
and only if the Finsler space F™ is a Riemannian space.

(2) The indicatorized tensor 'L;;, vanishes if and only if the Finsler space
is a Riemannian space.

Proof. If 'K; vanishes, from 'K;=—2C;/(n+1) we immediately C;=0. Next,
if "M;; vanishes, in virtue of h;C*=Cj; (7.1) yields C;=0. In any case, owing
to Deicke’s theorem asserts that the space F" is Riemannian. For "Lije of (2),
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we observe that ‘L;;,=0 is equivalent to C;;,=0, so F™ is Riemannian. It is

clear that the converses of those facts are true.

Next, we will treat another hypersurface of the Riemannian space F7 called
a g-hypercone which is defined by the equation g(x, y)=c (¢=const., #0) ([24]).
The concept of g-hyperconic tensor is defined as follows :

Definition 7.2. Let V,;, be a Finsler tensor, for instance, of (0, 3)-type. If
Vijk satisfies VijkNi:VijkN'fZVijka:O, then Vijk is called a g-hyperconic
tensor, where N is the unit normal of g-hypercone, i.e., N*=C!/C, C*=C,C".

A method to derive the g-hyperconic tensor ”V;; from an arbitrary Finsler
tensor V,; is the following, similar to the case of indicatory tensor:
"Vij=VmuaN™N";,
where Nijzgij—NiNj, Nmi:gmrNri’ N,;:giij.

Now we are concerned with a Finsler tensor X;;. The g-hyperconic tensor
and the indicatory tensor derived from X;; are respectively given by

(1) "Xi=Xi;—(Ni X j4+N;Xi )+ Xg g NiNj,
(2) "Xij=Xi;— (i Xoj4+1;X10)/ L+ Xoolsl;/ L2,

(7.3)

where the suffix g stands for the contraction by N? Contracting (7.3) 2) by N°?
and then N7 successively we have

"Xoi=Xgs—Xgoli/ L, "Xgg=Xgg,
by means of N%;=0. Thus (7.3) leads to
T4 CXe)="Xej— XgoNulH Nt/ L+ X g g NeN;—(Ni X+ N; X )

Consequently, from (7.3) and (7.4) we get

Proposition 7.3. Let X;; be a Finsler tensor, for instance, of (0, 2)-type.
Then X;; can be written as

(7.5) Xij="Xoj+" Xij="( Xi ) +*Xs5,
where we put *X;;=(XzoNil;+ XogN;l:)/ L.

Remark. A (0, r)-type, for instance, Finsler tensor X;,., can be similarly
written as (7.5), i.e.,

X{j.,.k:/Xij...k+”Xij...k_”(,Xiju.k)+*Xij...k .
For tensors ‘X;; ”X;; and *X,; in (7.5), from (7.3) and (7.4) we can state

Proposition 7.4. An arbitrary Finsler tensor X;; satisfies

(7.6) @ CXip="(*X:)=0, (@2 "("Xip="("Xiy).



184 C. Shibata

Proposition 7.5. A Finsler tensor X;; is indicatory (vesp. g-hyperconic) if
and only if X;; satisfies

*Xego=0 and "Xi;="('X:;) (@resp. 'Xi;="("X:;)).
Hence we are led to the following definition :

Definition 7.3. Let X;; be a Finsler tensor, for instance, of (0, 2)-type. If
X;; is written as

(7-7) Xij:,Xij+l/Xij+*Xijy
then X;; is called a decomposable tensor.

From the above and (7.5) we have

Theorem 7.1. A (0, 2)-type, for instance, Finsler tensor X;; is decomposable
if and only if the tensor "(’'X;;) vanishes.

Remark. It is noted that Propositions 7.3, 7.4, 7.5 and Theorem 7.1 are
easily generalized for a (0, »)-type Finsler tensor.

Now, we consider Finsler spaces with the torsion tensor C;;, of which
satisfies some tensor equations ([18], [19], [20]).

Definition 7.4. A non-Riemannian Finsler space is called quasi-C-reducible
(resp. semi-C-reducible, resp. C2-like), if the h(hv)-torsion tensor C;;, is written
in the form (1) (resp. (2), resp. (3))

(1) CiijPijck"l’ijci‘i"Pkicjy
(7.8) 2) CijkZp(hijck+hjkci+hkicj)/(n+1)+qcicjck/C2: P"‘q:l ’
(3) Cii=CC,C,/C%  (C*#0).

Further, we consider, Finsler spaces in which C;;, satisfies the tensor equation
(7.9) Cijr=(Ci;+CCi+CyiCy)/C*42QC;C,C, /C,
(Ci;=CiriC7,  Q=—(1/C)CICIC*Cyj4) .
It is noted that the torsion tensor C;;, of a semi-C-reducible or C2-like Finsler
space are written in the form (7.9).
Here we deal with decomposability of some R-invariant tensors. First for

K; in (3.17"), we have "K,=[;/L and 'K;=—2C;/(n+1), so that the R-invariant
vecotr K; is written as

(7.10) Ki="Ki+"K;.

Secondly, for M, in (3.21), (7.1) and (7.2) give ”("M;;;)=0, ‘therefore this
tensor is also written in the form
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(7.11) Mijp="Mjs+"Mi;s+*Mijp .

Finally, for the second fundamental tensor L;;, of the Randers change in
(3.3), by applying the method of (7.3) we have

"("Liji)=Cije—(CijeNp+Coja Ni+Cig i N)+2C, ;g Ni NNy

therefore, which leads to ”“('L;;,)=0 if C;;, of F™ is written as (7.9). Paying
attention to N*=C?!/C, the converse is true also. Consequently from Theorem
7.1, (7.10), (7.11) and (7.12) we can state

Theorem 7.2. (1) The R-invariant vector K; of (3.17) and the R-invariant
tensor M;j;e of (3.21) are decomposable.

(2) The R-invariant tensor Ly, of (3.3) is decomposable if and only if the
h(hv)-torsion tensor Cijp of F™ is written in the form (7.9).

We consider a condition for a Finsler space to be semi-C-reducible. If F* is
semi-C-reducible, then the tensor L;;, is the decomposable tensor, because of
Theorem 7.2. Thus we obtain

Theorem 7.3. A Finsler space is semi-C-reducible if and only if the R-
invariant tensor Li;, is the decomposable tensor and the h(hv)-torsion tensor Cij
satisfies

Ci;;Cr=pC*h;;/(n+1)+{1—(n—=1)p/(n+1)} C;C;,

where p is a scalar.

§8. Relation between projective change and S-change.

We shall return to a S-change of the metric. For two Finsler spaces F"=
(M™, L) and F*=(M", L), if any geodesic on F" is also a geodesic on F* and
the inverse is true, the change L—L of the mctric is called projective. A
geodesic on F™ is given by a system of dfferential equations
8.1) dyt/dt+2Gi(x, y)=1yt, yi=dxt/dt,

where t=(d%s/dt)/(ds/dt). G¥x, y) are (2) p-homogeneous functions in y:. We
are now in a position to find a condition for a S-change to be projective. For
this purpose we deal with the Euler-Lagrange differential equations B;=0, where
B; is defined by

Bi=8;L—d(3;L)/dt.

From (1.1) and (1.2), we have Ldf,/dt+Bdf,/dt=0, so that the Euler-Lagrange
differential equations B;=0 for F" are given by

B-i:lei+2f2F0i_77lidf2/dt=0 .
In virtue of (1.2) and (1.4) 1), B; are written as

(8.2) fBi=pLB;—q,B,m™m;+ Ay,
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where the covariant vector A; is defined by

(8.3) Ai=2qFy;—qoEeom; .
From (8.2) we get

Proposition 8.1. A f-change L—L=f(L, B) of the metric 1s projective if
and only if the covariant vector A; in (8.3) vanishes identically.

Proof. Since B;=0 (resp. B,=0) are equations of a geodesic on F* (resp.
F™), we immediately obtain A,=0 if a S-change is projective.

Conversely if A;=0 holds, then (8.2) shows that B;=0 lead to B;=0. On
the other hand, we observe from (8.2) and A;=0 that B;=0 give pLB;—qoB.M™m;
=0. Contracting this by m® and referring to m*=y, pL—yg,#0, we get B,m =0,
so that B;=0 hold. Consequently any geodesic remains to be a geodesic by a
B-change.

We shall continue the discussion for the condition in Proposition 8.1, i.e.,
A;=0, which, by means of ¢g=ff, and go=/fs, is written as

(8.4) 2foF o+ foam; Egy=0.
On the other hand, (1.1) and (1.10) give
LfietBfoe=—fo, Eo=bu;y*y’.
Then, differentiating (8.4) by y/, we have
(8.5) 2foFsi+ 20mE jo+miFu)+Eoo(By:y;/ L*—msy ;—m;y;
—B8i)/ L? fost fasz Eoomnym;=0.
Because F;; in the above is skew-symmetric in indices, (8.5) leads to
(8.6) foa(MiE jo b E o)+ (f22a— fas®/ fo) Eootiiam;
+Eofo(Byiyi/ L*—miy;—m;y,—Bgi;)/ L*=0.
Contraction of this by b7 does
8.7 2f22Egot(faa—fos®/ [V Ea—3Bf22Ewe/ L*=0,

where we used y=m;bi=b*—f2/L? (#0). Moreover we contract (8.6) by g* and
get

8.8) 2f0Egot(faoe—f2:®/ foVEow—(n+1)B f2Ee/L*=0.
Comparing (8.7) with (8.8), we can conclude

8.9) (n—2)Bf2Ew=0,

therefore we are led discussions of two cases given by

(8.10) (A) f=0, (B) fo=0,

provided n>2.
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First, we consider the case (A). Since f is positively homogeneous in two
valuables L and B of degree one, we have f=L-f, that is, the S-change is
Randers, and from (8.4) we obtain F;,=0, which shows that the covariant vector
field by(x) is gradient.

Next, we shall treat the case (B). From (8.4) and (8.9) we immediately have
F;;=0 and E,=0, thus we get b;;y’=0, which implies that (3;b;—b,F;™;)y*=0.
Differentiating this by y* and referring to (3,,Fi"‘j)y"= ™ We get

(8.11) beij=bmP;™ .

Conversely, if b,(x) satisfies the equation (8.11), the symmetry property of
P;™, and P;”,=0 imply that b,(x) is a gradient vector, and E;;=0. Therefore
the covariant vector A; in (8.3) vanishes identically. Summarizing up the above,
from Proposition 8.1, we have

Theorem 8.1. A B-change L—L of the metric is projective if and only if
one of the following facts holds good :

(1) It is a Randers change and the covariant vector field b,(x) is gradient.
(2) The covariant vector field b,(x) satisfies the equation b; ;j=b,P;™;, provided
n>2.

Now the concept of a projective change is closely related to Finsler spaces
of scalar curvature. In fact, Szabd [25] showed the following :

Theorem A. Let F™ be a Finsler space of scalar curvature. Then the Finsler
space F*, obtained from F™ by a projective change of the metric, is also of scalar
curvature.

In case of a Riemannian space, “of scalar curvature” means “of constant
curvature ”.  Moreover, the v (hv)-torsion tensor P;*; of a Riemannian space
always vanishes identically, and b; ;=0 means that b,(x) is parallel with respect
to the Riemannian connection constructed from the Riemannian metric «. Owing
to Theorem A and Theorem 8.1, we can conclude

Corollary 8.1. Assume that the covariant vector field b (x) is parallel with
respect to the Riemannian connection constructed from a Riemannian metric a.
Then the Finsler space F*=(M™", (a, B)) with the (a, B)-metric is of scalar curva-
ture if and only if a Riemannian space F*=(M™, a) is of constant curvature.

Corollary 8.2. ([26]). Assume that B is a closed differential one-form. Then
a Randers space F*=(M", L+ ), where L is Riemannian, is of scalar curvature,
if and only if a Riemannian space F*=(M™, L) is of constant curvature.
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