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L et M n be an n-dim ensional differentiable m anifold and Fn =- (M ", L ) be a
Finsler space equipped with a  fundamental function L(x, y)(yz=Xi) o n  M n . For
a  differential one-form p(x, dx)=b,(x)dxi on  Mn, we shall deal with a change of
Finsler metric which is defined by

(0.1) L (x , y )--->  E (x , y )= f(L (x , y), p(x, y)),

where f(L, 13) i s  a  positively homogeneous function o f  L  an d  A o f degree one.
This is called a j9-change o f th e  m e tric . W e  have specially interesting example
of j9-change o f  th e  m etric, for instance,

(1) L (x , y )=L (x , y )+P(x , y ),

(0.2) (2) E (x , y )=L 2 (x, y)/i3(x, y),

(3) L(x, y )=D (x, y )/p 2 (x, y ).

The change (0.2) (1) has been introduced by M atsumoto [12]*. Hashiguchi
and Ichijy6 [7] nam ed it a  R anders change and  proved a  theorem which shows
a relation between a Randers change and a projective change.

N e x t, th e  ch an ge  (0 .2 ) (2 ) is  c a lle d  a  Kropina change. F o r a  8-change
L — E = f(L , 48 ), i f  L  i s  a  Riemannian metric a (x , d x )= (a „(x )d x id x ')'", then
L=f(L, A) becomes well-known (a , A )-m etric  ([5], [6]). In  particular L=a+ 48
is  a Randers m etric ([3], [9]) a n d  L=a 2 /P is  a K ropina m etric  ([11]). B oth  of
th em  a r e  c lose ly  re la ted  to  physics a n d  so Finsler spaces with these m etrics
have been  studied  by  m any authors, from  various standpoin t i n  t h e  physical
and  mathematical aspect ([3], [9], [22], [23], [26]).

In § 1, w e shall study how  th e  fundamental and the torsion tensors change
by  a j3-change o f th e  m etric . §  2  is  devo ted  to  g iv ing  transformation formulas
of the  torsion  and  the  curvature  by a fi-change of the m e tr ic . In  §  3 , we con-
sider Randers changes and give some invariant tensors under these changes, and
in § 4 we shall study some geometrical properties o f these invariant te n so rs . In
§§ 5 and 6, w e are  concerned with projective Randers changes and a lso  g iv e  a
characterization o f  t h e  vanishing Douglas te n so r  w h ic h  is  invarian t under a

*  Number in brackets refer to the references at the end of the paper.
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projective Randers change. § 7 is devoted to a  study o f  decomposable tensor.
In  th e  f in a l se c tio n  we give another example of projective change besides the
Randers change.

T h e  terminology and notations are referred to well-known Rund's book [21]
and Matsumoto's monograph [16].

T h e  author wishes to express his sincere gratitude to Professor M . Matsu-
moto fo r his valuable suggestions and encouragement.

§ 1. Changes of connections.

L e t Fn =(.1t1n , L )  b e  a n  n-dimensional Finsler space w ith  a  fundamental
function L (x , y). We consider a  ch an g e  o f  Finsler metric which is defined by
L— >L=f(L, 13), and  have another Finsler space F.— ( 1., L ) w ith L= f (L , p).

Throughout th e  present paper we shall use  the  following notations :

f ,=a par, , f 2 =a f lap , f 1 1 =a 2 f iaL aL  , etc.,

ai =alax i,

Since r = f  is  a  positively homogeneous function o f  L  and  p o f degree one, we
have

(1.1) f=f1L ±f213, 1112-1-ief22=0, Lf11+Pf12=o.

F o r th e  later use w e put

(1.2) P =f f i lL , q=f f 2 , g o =f f ..

Paying attention to /i = L ,  from (1.1) w e have

(1.3) li = f ,bi .

Differentiating this by y', we have the angular metric tensor ii i ; =L - M i P o f  Fn:

(1.4) f iii=phirEgom inif ,

where the covariant vector ni 1 is defined by

(1.4) 1) m1=bi— py1/L2.

It is noted that m i  i s  a non-zero vector orthogonal to  yi. I n  fa c t m1 = 0  gives
L 2b1 —py 1 = 0 .  We differentiate this by 31.1 a n d  g e t 3g 1 , -2L 1 i b1 d-b i y 1 =0 , which
leads to a contradiction g i i —/i 1J =0.

Now, from (1.1), (1.3), (1.4) and (1.4) 1) the  fundamental tensor
o f  P. is given by

(1.5) gii=pgii± pobib i+p_1(b ih+bgi)+P-2y o lf ,

where we put

p0=-90“ 2 2

(1.5) 1) 4-1= f f i2IL P-i=q-,-Fpf2lf  ,
q_2 =  f „— f,1 L)I L 2 , p-2=q-2+12 If  2 •
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The reciprocal tensor g  of g i ;  can be written as

(1.6)

where we put

b i= g i ib j , v=b2—P2IL2,

(1.6) 1) so=L2q0/z-pV,

s_ 2 =p_ i (vpL 2 —b 2 L 2 )17ppL ', 1-- -L '(p + vq 0 )11;2 .

From the homogeneity it follows that these quantities satisfy

q o p± q_ 1 L 2 =-0, ,

pop+ p_1L 2 = q , q3+ pL 2= f2 ,

p_113+p_2L2 =0, s o P± s_ i L 2 =q17,

s_ i b 2 4-s_ 213-=p_ 11, 17

As to the torsion tensor C iik = k (g ii/ 2 ) of Pm, from (1.5) and (1.7) we get

(1.8) Ciik=PCifki-P-1(hipnk-Fhikmi+hkimi)/2-i-P027nimimk/2,

where we put Po2=aP0ia13. Contracting this by g " ,,  we have

(1.9) ,

where we put

Vi 4 i =Q h (pCinofrn —p_iminii) — (mh /P - 14 h )(po,mimi+p_ihii)/2

(1.9) 1) — p_i(hhim i±h'iinzi)12p ,

Q
4

=  s o bh -l -s _
iyh, h h i= gh rh ir , m h = g h r

M r . .

We denote by the symbol (I) the h-covariant differentiation with respect to
the Cartan connection C r  and put

(1.10) 2E ik= bilk+bkii, 2Fik=bilk — bkii•

Now we deal with well-known functions Gi (x , y )  which are (2)p-homogene-
ous in y i  and are written as G i= r i i k y i y k /2, by putting

k= g i r (a kg jr+a jg kr— arg  0 /2  .

Owing to (1.5) and (1 .6), a  straightforward calculation leads to

(1.11) y ) : -=(7.i'kY iY k)/2=Gid-Di,

where the vector Di is given by

(1.11) 1) D i= (41P)F i0+ (pE 00-2gF robr)(s-iY i+ sob')12 ,

and the subscript 0  (excluding s o) means the contraction by y i •

(1.7)
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W e shall examine how the C artan connection CT changes by  a 3-change o f
th e  m e tr ic . L e t  C r= (F l i i k, Ni i , k )  b e  th e  C a r ta n  connection o n  th e  space
P n = ( M n ,  L ) .  For coefficients N ' i = & G ' o f  th e  non-linear connection, we dif-
ferentiate (1.11) b y  y '  and  get

(1.12)

w here the  tensor Di5 = D i  is given by

D i : =(1 / p)A i J —Qi A r i br — qbou(s -ib i  s  -2 3 ) i )

: =(1/2)E0013ii+q-Fii+FioQi — (PCip,,±V
(1.12) 1)

Ai i = A r i  7 V gS iV  i S 77L Q i— P - iy i+ p „ b i ,

B k  œ (p - i  h i ,, +p 0 2 m j m k V 2 .

H ere, for the covariant vector Q i  it is  no ted  tha t

(1.13) Q0=9, 5kgi --B i k12.
L et B P -= ( -C i i k , N 1

1 )  be the Berwald connection o n  F n .  Differentiating (1.12)
b y  y k , w e have connection coefficients -C i i k = 5 k N i

;  o f  Br which are  given by

(1.14) •Cjile: — G j i k + B j i k ,

w here G i
i

k a r e  connection coefficients of B r on F n .  Therefore from  (1.6), (1.8),
(1.9) and  (1.12) we obtain connection coefficients F i i k o f  th e  C a r ta n  connection
cr on  F. a s  follows :

(1.15)p 1 k jk7 N 'in g 1 ra— C  k i rN r j —  cj l
TN r k

= F i i k+D i ( k
w here w e put

D i i k = { g i s 1 P — Q i b s — Y s ( S - ib H - S-2Y i )}

(1.15) 1) •(kkibork+ Bskboii— Bkjbols+ FsiQ k+ FskQ i+ E kiQ s+ PC ik ,D 's

+V  j k r-D r  8—  PC sk inD m  j — V  sju tp r n  k —  PC sjraD m  lz — V  s riD m  j) •

T h e  tensor D 1
1 k ,  called th e  difference tensor, has th e  following properties :

(1.16) (1) D ;
1

0 = B 1
1

0 =D 1
1 , (2) D 0

1
0 =2D 1

Theorem 1.1. The covariant vector, the components b 1(x )  o f which are coeffi-
cients of the one-form p ,  is parallel w ith respect to the Cartan connection C r  on
F n  i f  and only if the difference tensor D 1 k o f (1.15) 1) vanishes.

Pro o f . Assume th a t th e  vector b 1( x )  is para lle l w ith  respect to  C F . Then
(1.10) shows E i i = F 1 1 = 0 , and so (1.11) 1) implies D1 =0 and Di 1 = 0 .  Consequently
(1.15) 1) leads to Di

1
k =0.

Conversely i f  Di i k  v a n is h e s , (1.16) im m ediately gives D =O. Contracting
(1.11) 1) by Yi, w e  h a v e  p E 0 0 - 2 q F r 0 br-=-0, because o f  s0 P-I-s_ I L 2 0  i n  (1.7).
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Thus (1.11) 1) reduces to Fj 0 =0 and E0 0 =0, and so (1.10) gives bi 1 5 =0.

A Finsler space Fn  is called a  B erw ald space if the Berwald connection of
F n  i s  a  linear connection, that is, connection coefficients G,ik  are functions of
the position (xi) only. As an immediate consequence of Theorem 1.1, and (1.14)
we have

Theorem 1 . 2 .  Assume that the original space Fn  is a B erw ald space and the
covariant vector b ( x )  is parallel w ith respect to the Cartan connection c r  on Fn.
Then the space P i  obtained from  F n  b y  the 13-change is also a  B erw ald space.

Corollary 1 . 1 .  Assume that the covariant vector b 1(x ) is parallel w ith respect
to the Riemannian connection on Riemannian space F n =( M n , L =a) .  Then F " =

(M n ,  L= f ( a ,  j3)), obtained from F n  b y  the [3-change, is a B erw ald space.

§ 2. Change of the torsion and the curvature tensors.

In this section, we shall consider how the torsion and the curvature tensors
change by a /3-change of the metric.

Let Fr=(F,',„ C/ k) be a  Finsler connection on the space F n  and let K
be a  Finsler tensor field, for instance, of type (1, 1). Then the h- and the
v-covariant derivatives of K  are respectively defined by

K i ilk =3K i ilax k +K m ;Fm
i k—K i . F .im k

k=5 k 1 0 .) — K i n ,C f m k+ K n W in i k y

a la X k = a / a X k — N r k a l a y r .

The torsion and the curvature tensors of Fr are written as follows :

R  k = 9 1 ( jk ){ 5 N i  jla X k } y P j i kN i  F  k i

R hi  k  — 9 1 (j k) {aFhi ilaxk +Fh 7rt ;Fmi k} +c hi  m P j n i  k

Ph i  jk - =  k F h i  j — C hi  klj + C h i m P j M  k

.5 ih j — c y  k) kC hi  j +C11. 73 kC74 .11 •

Throughout the paper, for the sake of brevity, we shall adopt the notations
S (ip?) and Vicip such that

S C i j  V i r X 1 X irY  j r  le+  X jrY  k '  + X  k r Y  j

9 1 (i j) { X  irY  k }  =  X  irY  j r k— X jr Y  k  •

Let FT  be a  Finsler connection on F ., obtained from F n  b y  a /3-change.
Then the torsion and the curvature tensors change as follows ([4]).
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(1) Ci 'tk = c .; --17 ;
(

k

(2) R j i k-=-Rj i k+ 9-1(Jk )1D i jik — (B j i r d - P i i r )D rk l ,

(3)
p i

 k k-F(A ki  j+ C le  rap '  .0+  B  k

(4) Rh, i jk = R h
1
j k + S h i 7mnD r 4  jp n  k - 9 ICjk)

• {A h i  jlk —  A h i  jil D n  k+ ( A n i j + C n i m,D m  j) A h n  k+ fl jCh m  uD n  k

(2.1) + P h i  jn p u  k— V r i  h,P j r  np n  k+ V  m i  hp  I n  k— V hi  mB i m r p '

— V  hi  mR j m  k

(5) Ph i ; 7, =Ph i .; k —Shi m k D n'; —A hi ; k k A hm j + C h m  k A

—V  h P i m  k—  Ai i  mV hm k +V k A h m  j + V  k l  + V  r r t i  hB j m  k

— V k i mhD m  j + C r i  hV k r  InD m  j — V hi  rCnt r  kp m  j

(6 ) Sh i  jk jk + 9 A (jk ) {Cm! kV hm  j — Ch m  kV 7m1 j — V m i  kV hm  j}

where tensors D i  B 1 ,,, A 1 ,,, V  ; 1 1,, A h ' j k  and V h i » ,  are respectively given by

D ' i = N i i — N (
J , B  k= 5  k D i

(2.1) 1) ./11 =Ff
i  k k H-C.i i m(Nm k — N m  k)

17 ;1 k—  C  i i A  ij  k '-'jj  k  , j 1.3  A  ikh =  - h— j k

Moreover, for the tensor A 1
k in  (2.1) 1) we get

(2.2)
(C T )  2(1; i k = — D k —C ; 1 „J)In k (B r )  A j i k -= k,

(H T ) A  j i k= H j i  k  ( = ji k — C j i mD m  k) (R I')  A  j i k= — D j i k

where R E  a n d  H E  a r e  respectively th e  Rund connection and the Hashiguchi
connection ([4], [16]). Therefore, on account of (2.2), we can derive the torsion
and the curvature tensors of each connection in the concrete form, for example,

(Case of CT)

(1) R  j i  k= R i i  k+9,1(; k) {D i  k  —(13 f i r-FP/7)p r
 k }

(2) 15 /  k — P j i  k — D j i  k+ B i i k

(3) R h i ik = R h i j* - F 2Sh i m„D m iD n k- 9I(Jk)

• {Ant»  k A  h i  jil D n  k+ D n i  jp h n  k P  j n p n  k ri npn k

(2.3) +1 7  mi  hp m  k hi mB j m  rp r  k) — V h i  irtR j m  k

(4)
 

Ph i jk — Ph i jk - 2Sh i n k D m j — A h i jk + C m i kDh m j — Ch m kD m ' j

- mi  hP j m  k—  A.! h m  k + V  k A h m  j + V  j  i  klh — V rn, 1 h13 jm  h

— V
T

 j — Cr i  ILV k r  ma r l ' j + V hi  sC777,8 kD M  j y

(5)
 

3 hi jk = Sh
1
j k + 9 1

( jk ) fcmi ixV h m  j — Ch m  kV rai  j rai kV  hm  j}

i7j1 k h =5 ij k •
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Assume that the vector b 1 (x ) is parallel with respect to the Cartan connec-
tion C T . Then Theorem 1.1 asserts that the difference tensor D i j k vanishes.
Therefore, (2.2) and (2.3) imply

(2.4) T ? k  = R h
i  k —V h i  m R j m  k •

Further we contract (2.4) b y  30' and get R o
i , k =R o

i
j k —Vo

i R i mk . Because of
Vi i k=Ci i k—Ci i k , it is clear that Vo1

m = 0 .  Consequently Rh ij k =0 and R h
1

i k =0
are mutually equivalent. Thus we have

Theorem 2.1. Assume that the covariant vector b 1(x ) is parallel w ith respect
to the Cartan connection C T .  Then the h -cu rva tu re  tensor ,Rn

i
i k  O f obtained

from  F n  by  the p - ch a n g e , vanishes if and only if the h-curvature tensor R h i  jk  of
F n vanishes.

Now the space F n  is called a  locally M inkowski space i f  F n  i s  a  Berwald
space and the h-curvature tensor R h

i  », vanishes. From Theorem 1.2 and Theo-
rem 2.1 we have

Theorem 2.2. Assume that the covariant vector b 1 (x ) is parallel w ith respect
to the Cartan connection cr on F n . I f  F n  i s  a  locally  Minkowski space, then
the space P i ,  obtained from F n  b y  the p -ch a n g e , is also locally  Minkowskian.

Next, we restrict ourselves to a  Riemannian space F n w ith  a  Riemannian
metric a .  Then Pn , obtained from Fr' by a  48-change, becomes a  Finsler space
with a  so-called (a, i3)-metric. Since c„, ; =0 and Shijk=4) in F n , the h-, the hv-,
and the v-curvature tensors of P i  are respectively given by

(1) Rhi  jk = R h i  jk + C  h i  ne R mi k + 9 1 Cik)

• {D hi le+  Dr ir i  h r  k+  C  h i  ni( D  k  D  f  DS k)}

(2) P h ii k = k D h i  j +  D  j i h m  k  D  h m i k r a  t p  j rn  k

"4 1: C k i  nip m  j + E  j i  klh ,

(3 ) S h i jk = h h k M i j — l i l i j M ik + h-  ij M hk — h i k  h j

w h e re  is  the h-covariant differentiation with respect to the Cartan connection
cr on F", and m i, , p_1{L 2 p ,v rz i j 121- L2 +(p_i+L 2 v(pPoz-3P-190)/Vz- )nzim,} /2.

Owing to Corollary 1.1 and Theorem 2.2, we obtain

Proposition 2.1 (Kikuchi ([10 ]). A  F in s le r  space Fn w ith  an (a, P)-m etric
is locally  M inkowskian if and only  if  17 ) b i = 0 and R  f k = 0  hold good, where Rh i  k
is the Riemannian curvature tensor of F"— (M", a) and 17i  i s  the covariant differ-
entiation with respect to the Riemannian connection.

Next, we consider the hv-curvature tensor 15 ,,,j ,  o f  P"—(Mn, (L , P )) . Then
(2.3) and Theorem 1.1 show that Ai k= 0  is equivalent to Pi

1 k=0 if the covariant
vector b 1 (x ) is parallel with respect to the Cartan connection C T .  Here we shall
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recall the concept of Landsberg space :

Definition 2 . 1 .  A Finsler space F l  is  ca lled  a  Landsberg space if the hv-
curvature tensor P h t j k  of cr vanishes, or equivalently P .,' k =O.

As the hv-curvature tensor P h i j k  of a Riemannian space Fn=(111 3 , a) vanishes
identically, we can state

Theorem 2 .3 .  A ssume that the covariant vector b ( x )  is parallel w ith respect
to the Cartan connection cr. Then a Landsberg space remains to be a Landsberg
space by the i3-change of  the metric.

Corollary 2 . 1 .  Assume that the covariant vector b (x )  is parallel w ith respect
to  th e  Riemannian connection constructed from a Riemannian metric a .  Then a
Finsler space with the (a, P)-metric is a Landsberg space.

§ 3. Randers change.

We consider a  special 13-change called a  R anders one w hich is defined by
L --4L =L +13 . A s  a  special case w h e re  L (x , d x )  is R iem annian , w e have a
Randers m etric . M oreover if  L  is  a Randers m etric  and the covariant vector
b (x )  of one-form p  is  gradient, then the Randers change is regarded as a gauge
change w h ic h  is  important in the quantum electrodynamics [27]. Recently,
Hashiguchi and Ich ijy6  [7 ] considered som e properties that rem ain  invariant
under a Randers change, and proved that any geodesic remains to be a  geodesic
if and only if the covariant vector b ( x )  is  gradient.

We shall first introduce certain tensors which remain invariant by a Randers
change. In  th is  case, it  fo llo w s  fro m  (1.1), (1.2) and (1.5) 1) th a t f , =- f 2 =1,
p= L IL  and q=1., so  tha t (1.3) yields

(3.1) .

Putting

(3.2) ,

w e observe from  (3.1) th a t the tensor L i ;  i s  invariant by  the Randers change.
From  (3.1) and (3.2) w e have the fundamental theorem of a Randers change :

Theorem 3.1. The following statements are equivalent.
(1) A  13-change of  the Finsler metric is a Randers change,
(2) a2(L—L)/ay iay i=0,
(3) L i i ="L i i .

W e shall call L, 5 in (3.2) the f irst fundamental tensor of the Randers change.
From now on, w e shall call a  tensor which is invariant under a Randers change
an R -invariant tensor.

S in c e  khi,=2Ciik — (L,,k/.1
- F-L i k /,), differentiating (3.2) b y  y k and putting
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(3.3) L k ik k L i j=  { 2 C i jk — ( L i i l k +  L jk l i+  L  k i l j ) }  1 L ,

we get L iik = L i i k . This invariant tensor L i . ;  k is called the second fundamental
tensor of the Randers change.

Moreover, putting L h i jk = h L i j l e  and refferring to the T-tensor

Th,iik=- LChiiik±/hCiik - N kCiih±/iChjk+/;Chik,
it is seen that

(3.4) L hiik -= 2T it..k/L 2-i-(iik ){2C hriC irk/L + (-2C hii+ /hL ii)/h/L 2

—L i i L n k / L } -4 4 ,C i j k /L 2

satisfies L h ijk =  L h i j k ,  therefore we get another R-invariant tensor L h i j k ,  which
is called the third fundamental tensor of the Randers change.

We shall consider how the fundamental and the torsion tensors change by a
Randers change. From (1.5) we have

(3.5) g i j= L  ,  t t=  LI L ,

and (1.6) gives

(3.6) g i i= a 1 p ) g i j+ a v i i i— ( i ib i+ l ib i v  /12, c o = ( L b 2 +13)1
Next, for the h(hv)-torsion tensor C i j k ,  (1.8) leads to

(3.7) C i j k = t e C i j k + ( L i j M k +  L i k m i + L k i m ; )I2

Contracting this by g h k ,  we have

(3.8) C ih i- -C ih i+ (h 'i'm id -h ilm i± h iim h )/ 2L — C orbr/ h/ p

—(2m i m i + m 2 h 1 i )lh12LÉ2 2 , m 2 =  giim i m ;  , m i =

Thus the torsion vector Ci =C i r , is given by

(3.9) C' i = C i ± (n + 1)m  i l2 L

On the other hand, paying attention to (3.1), the vector mi  i n  (1.4) 1) and
Ci  are  rewritten in the form

(3.9') C i =Ci+(n +1)(1i— .

Contracting (3.8) by g i j  and then C h ,  we obtain

(3.10) C h= (11p)C h+ (n+ 1)nzhap2L —  {C  + (n  +1)m 2 21,} l h  I tt 2 ,

(3.11) C2=-(1/p)C2+(n +1) {C + (n + 1)m 2 14LI 1 L /12 ,

where C2 =- C1Ci ,  Cp=- Ci bi.
If C g  is eliminated from (3.10) and (3.11), mh is written a s  a  linear combi-

nation of Ch , C h and lh • Substituting this into mi=bi—pyi/Lz, we get

(3.12) b 1 = 2 L p 2 (C'—C1 /p1(n+ 1)±  { 13 I L ±m 2 12/1+2pL 2 (a C 2 —C2 )I(n  + 1) 2 1 li.

Further, substituting from (3.12) into (3.6) and putting
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(3.13) *gi'=-L {g 1 H-2(C1 y 1 +Cly 1)1(n+1)±(4C 2 /(n ± 1)2 —  1 / L2 ).Y

we see *g il= *g" , that is, *gi.' is  R-invariant. Therefore, o n  account o f  this
tensor, we can derive some new R-invariant tensors, for instance,

(3.14) 1) *L i,=*gtr L ,,, 2 )  *L h , k - - *e r  L  k, • •• , etc.

Let g(x , y ) be the determinant consisting of components g „  o f  th e  funda-
mental te n so r . It is well-known ([15]) that the determinant g  of Pm, obtained
from F n b y  a Randers change, is given by

(3.15) g-•=g(L  I L)n+1 .

Thus g# 0 implies Therefore,

(3.16) *L = L ig iin + i

is an R-invariant relative scalar which was called a  relative fundamental function
of weight — 21(n+1) of FT' by Matsumoto [1 5 ] . Differentiating (3.16) by y i  and
putting

(3.17) K1=61(1og*L),

this is written as

(3.17') K i=lil L -2 C i l(n +1 ),

because of and 61 L=l 1 .  Therefore this vector K i  is  R-invariant ; this
fact can be also observed from (3 .9 '). Moreover we differentiate Ki  b y  y i  and get

(3.18) :  --AK i =(h i i —l i l. f )1L 2 -2 (T o —l i Ci - 1 ) Ci )/(n+1)L

—2C.Ci mi /(n+1),

where we refer to
A s it has been seen, we obtain two systems of R-invariant quantities of F n

(i) L1 , L IJk , L h tijk ,

(ii) *L , K t , K „, ......................................

Now, from these systems, we can construct many R-invariant tensors. First,
putting

(3.19) H h i j :  — (L h ij+ L h l• K j+ L ijK h + L jh K i) 1 2

(3.3) and (3.17') lead to

(3.19') H h i;= [C h ii— (h iiC h -F h ih C i± h n iC ;)/ (n + 1 )]/ L ,

and

(3.20) H h ijh : kH h ij=[T  h i jk — ( h i jT  h k +h h iT ik + h h iT  jk ) 1 ( n + 1 )11

L + S ( i j h )  { - 1 - l ik h / i/ L + C erL k lin ih j}

is also R-invariant.
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Secondly we contract Tim ;  in  (3.19) by *g"k and get the R-invariant tensor

(3.21) *Hikj: =1-1"i h i * g "=L H i
k

i +2L y k C.Hi ri l(n+1) ,

where we put I l i
k

i =H i „gs k . (3.19') and (3.21) give the R-invariant tensor :

(3.22) U h ijk  :  = H h r k* H i r j — H h ,j * H i r

= -S h ijk/  L — W ( j k ) { ( C h r h L i  ± C r i iL h k )C r / (n + 1 )

— ( L i jC h C k + L h k C iC j+ C 2 L h k h i j ) / (n + 1 ) 2} •

Thirdly from (3.3) and (3.19') we obtain the following R-invariant tensors :

(3.23) (1) M o k  :  = — L i jk + 2 H i jk =  k tK i+ L u K k + L ,

(2) M h ijk  — 5  h M h tij —  (  h ) { L h ' k K j +  L i t  Kjk} •

Finally (3.13) and (3.17') yield

(3.24) g = O ,

which will play an important role later on.

§  4 . Properties of the R-invariant tensors.

We shall treat C-reducible Finsler spaces. Matsumoto and 116j6 [17] proved
a  remarkable theorem: The metric functions of C-reducible Finsler spaces are
confined solely to the Randers metric (L =a+p )  and the Kropina one (L =a 2 / ) .

Definition 4 .1 .  A Finsler space F n  (n 3) is called C-reducible if the h(hv)-
torsion tensor C i jk  is written as

Ch i ; =(h h i Ci ± h o Ch +h i h Ci )/(n+1).

For H h i j  of (3.19), from the above definition we get

Theorem 4 .1 .  The R-invariant tensor H h i j  of  (3.19) vanishes if  an d  only  if
the Finsler space is C-reducible.

Corollary 4 .1 .  A  C-reducible Finsler space remains to be C-reducible by any
Randers change.

As L i i = i 5J L  and K i =5 i  log*L, from (3.3) the second fundamental tensor
L i j k  is written as aiai akL. Thus from (3.19) and Theorem 4.1 we can state

Theorem 4 .2 .  A  Finsler space F n  i s  C-reducible if  an d  on ly  i f  its f unda-
mental function L satisfies a system of  differential equations

5; 5 k L = — S(0 k) L )(k  log* L)} ,

where we put * L = L  giin+ 1 and  g=det(M i L 2 /2).

Next, we introduce
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(4.1) V  h i » ,  : k l i h i j — ( h i j ) { H h i r * H j r  k — h j k }  + 2 K  k l i h

By (3.17') and (3.19') it is written as

(4.1') V  h ijk — T  h i jk i  L 2f h iiT n k IL 2 +1 1 h k C i— h ik H h irC rl/ (n - f -1 )

— C h lin ii l(n + 1 ).

T hus w e get th e  R-invariant tensor V  h i j k  in relation to the  T-tensor T h j k.
Since T h iik y '= 0  and I l i i k y k = 0 , contraction of (4.1') by * g i k  yields

(4.2) V h d  :  = V  h  k*g i k = ((n -1 )T h ,— T h h 2 )1(n+ 1)L

— (n-1 )L H h „C rA n+ 1),

which is also R -invariant. Moreover, owing to these tensors we construct a
new R-invariant tensor

(4.3) 4*Thuk —V h i jk + V  k h i j + V  j k h i+ V  i j k h

+ 2 S (h ip { L 1 k V  h  L t i j V  h k }  1 (n+ 1 ),

which, in virtue of (4.1) and (4.2), is written in the form

(4.3') * T h i j k h ijk T (h  ih h hj +  h h k h h jk h  h i ) / ( n  2 -1 )1/L 2

—  kCh —HhikCi —Hih kCi—HhiiCk •
Hence we get

Theorem 4 .3 .  The T -ten so r  T h ', of a F in s le r  space is written as

(4,4) T  h i j k = T ( h i k h h i +  h h h h i i + hi  h i)1(n 2 —1)

+ L 2 (C iIlk ik+ C illihk+ C hH jih+ C alltij)

if and only i f  the R -in va r ia n t tensor *T o f (4.3) vanishes.

Corollary 4 .2 .  If the  T -ten so r  T  h i jh  of F n  is written as (4.4), the T -ten so r
T h i j h  of F, obtained from F n  by a Randers change, is also written in the same
form  as (4.4).

I f  a  Finsler space F n  i s  C-reducible, Theorem 4 .1  show s that th e  tensor
H h id  vanishes, and so R-invariant tensors V  h , d k and *T h i , k also vanish. Therefore
the  T-tensor T h 1 k  of a  C-reducible Finsler space ([161) is written as

T i w k
-=- 7 ( h , k h h ,d -h h k h „ -k h , k h h ,)1 (n 2 - 1 ) .

Next, we shall deal with the R-invariant tensor U  h t .; h  defined by (3.22). It
is obvious that U M .' ' , vanishes if  a  Finsler space F n  is C-reducible. Contracting
(3.22) by * gsk  and then * g h l ,  we get

(4.5) U  h j :  = U h i jk * g i k  =
S k i +  {(n —3)(CnriCr—ChCiAn +1))

+2C 2 h hjA n  +1)1 1(n+ 1 ) , S h i= S h iik g i k ,

(4.6) U : =- U h i * gn i L (S + (n  — 2)C 2 1(n +1)) , S=- S l o e  .
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On the other hand, from the definition of (3.22), the above quantities can be
respectively written as follows :

(4.5') Un i = L 2 H,„ k H i ri g i k ,

(4.6') U =  
k lim iign n  g r ' g k ) ,

where Hu -k g '= 0  and 1-1„ k y i = 0  are used. We now assume that g i f  i s  positive
definite. Then (4 .6 ') shows that U = 0 is equivalent to l i h ,, = 0, and (4.6) does
S + (n -2 )C 2/ (n + 1 )= 0 . Consequently, from Theorem 4.1 we have

Theorem 4 .4 .  A  Finsler space Fn (n >2) is  C-reducible i f  and  only  if  the
v-scalar curvature S is given by

S= —(n-2)C 21(n+1) ,

provided that g i ;  be  positive definite.

Remark. Since S=C a h ,Ca"—C 2 ,  Corollary 4.2 resembles closely to the fol-
lowing fact :  If the v-scalar curvature S is given by S ----C 2 and g „  is positive
definite, a  Finsler space is Riemannian.

Corollary 4 .3 .  A  Finsler space F 3  i s  C-reducible i f  and only  i f  th e  v-Ricci
tensor S k i  is w ritten in the form

(4.7)S , =  {(n-3)(C h Ci l(n+1)—C h r i C )-2 C 2 hh il(n+1)} An +1) ,
provided that g i i  be  positive definite.

Moreover we shall give another R-invariant tensor in relation to the v-curva-
ture tensor Sh „ h . Since U h ,= U h ,  and U =E l in (4.5), (4.6), it holds

(1) Ch T ,CrAn+1)=C h C2 1(n+1) 2 + {C hr,Cr — C I:C. A nd-1» A n-El)

(4.8) ±(Sh,—Sh,)1(n-3)+2(C2hh,—C2hh,)1(n +1) 2 (n —3) ,

(2) C2 1 (n + 1 )= L {S L I(n -2 )+ C 2 L/(n+1)}1L—S1(n-2).

Substituting from (4.8) into (3.22) and putting

(4.9) * Shi,h:—E.She,k+ 91(3k){ht,Shh±hhhS„, — Shz,hhkAn - - 2)}1(n - 3)]1L,

we get *Shi,h=*Shi,h, that is , *S h i p, is R-invariant.
Here we introduce the concept of S4-like Finsler space ([14]):

Definition 4 .2 .  A non-Riemannian Finsler space F n  (n >4) is called S4-like,
if the v-curvature tensor S h o k  is written in the form

L
2
S h ijk

=
 h hj M i  hikMni — hhkMii—huMnk

where is a  symmetric and indicatory tensor.

Assume that Fn be S4-like . Then the tensor M i ,  of the above definition is
given by IS i i —Sh 1,/2(n-2)1/(n-3) and accordingly (4.9) gives * 5hijh=0 imme-
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d ia te ly . Thus we have

Theorem 4.5. A  non-Riemannian space F 3  (n> 4) is S 4-lik e if and  on ly  i f
the R -invariant tensor *S h i i k  o f  (4.10) vanishes.

C oro llary 4 .4 . I f  a  Finsler space Fn (n >4) is S 4-lik e, the Finsler space F .,
obtained f rom  Fn by  a Randers change of the m etric, is also S4-like.

§ 5 .  Projective Randers change.

In  this section, we shall treat a  special class of Randers satisfying

(5.1) , e., F„= 0 ,

that is, the covariant vector b 1 (x ) is  gradient. Such a change is called a  projec-
tiv e Randers change.

Hashiguchi a n d  Ich ijy6 [7] h a v e  shown an  interesting result : A Randers
change is  projective, th a t is, any geodesic rem ains to be a  geodesic by the
change, if and only if b 1 (x ) is  gradient.

Throughout th e  present section, we restrict ourselves to projective Randers
changes and  from now on , we shall call a  quantity which is invariant under a
projective Randers change, a projective R-invariance.

From (1.11), (1.11) 1) and  (5.1) we get

(5.2)D : a=E ° 0 12L

Since N i 5 =-1 5 G ', th e  above gives

(5.3) Di,=N i,— a,=A ice.

We consider th e  R-invariant vector K i  of (3.17'). Differentiating covariantly
by x i, we get

(5.4) R 1 0 K 1 10-2K1rDT— K,Dr1,

where th e  symbol (T) denotes the h-covariant differentiation with respect to cr.
O n the other hand, from i 1 i5 =L, 5 =0, (3.17') yields

K i 10= - 2C110/(n+1)= - 2P1l(n+1), (Pi = P i rr) •

In  the  same manner, we get ki-ro-=-2/5 1/(n+1). Therefore, (5.4) is written as

(5.5) A=P1— (n+1)aK1/2-1-(n+1)ai/2

Differentiating this by y 5 ,  we get

(5.6) P15=Pii— (n+1)(a5K 1d-aK ii)/2+(n+1)a1512,

where we put P i i =& P i  a n d  a 1 5 =5 5 a i .
Next, (5.3) gives

(5.7)
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Further partial differentiation by y" yields

(5.8) -C kh = Gj i  kh+ ajk hY i + a jk a i h ± a jh a i k+  a kht3 i j •

Summing this with respect to i=h, from  the homogeneity of a s k , w e get

(5.9) a jk = ( -0..jk G jk )/ (n  + 1) G ir jr— G ij

Substituting from (5.9) into (5.6), we get

(5.6') P1T=P1i—(n+1)(aiK1-FaK1i)/2+(G1i—Gii)/2.

Contracting this by the R-invariant tensor *gii given by (3.13) and referring to
Gi i y 1 =0 and (3.24), we have

(5.10) P= P— (n +1)a* K /2+ — G ,

where we put P=P i i *gii, *K = K i i * g i i  and G=G i i * g i i/ 2 .  If w e put

(5.10) 1) 0= —2(P—G)I(n+1)*K,

(5.10) is written as

(5.10') a= .

For a i  in  (5.5), w e have

(5.11) ai= 5 i ( — 0)=2(P i —Pi )1(n -1-1)+ (0 — (P)Ki  .

Further, by substituting from (5.11) into (5.8), we have
-Cjk — GPt=5k12(13, — P ,)+ (n + 1 )(0 - 0 )K ,}

(5.12)
=2(Pik —Pik)+(n +1) 151,(0 — 0)1-Cif-KO — CA - JO

Consequently Di in (5.2) and Di ;  in  (5.3) are respectively rewritten in the form

(5.2') D 1=(0-0)y 1,

(5.3') Dif= 12(p y —P1 )1(n +1)+(0 — )K 5} y1 + ( — b )ô ,

and 6 , i
k in  (5.7) are written as

(5.7') Cj i k=Gj i k+ ( jk — Gik)Y i l(h+ l)d -  (2(Pi— P1)1(n+1)+(0-0)K116' k

+ 12 (P k P  ( n  + 1 )  +( 0 - 0 ) K k }51, .

Thus from (5.3), (5.3'), (5.7) and (5.7') we obtain projectively R-invariant con-
nection coefficients as follows:

(5.13)

where tensors P

(5.14)

(1)

(2) *G i
i k—G i

i  k+ I  j i  k

and I •i k a re  respectively given by

(1) I i i =—{2P;/(h+1)+0Kil

(2) i i 1 k=—[GikY 1 -K2PJ-1-(n+1)0K.05 1 k

-i-.(2Pk+(n +1)0K 05 i ,]1(n+1) .
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Moreover we can derive projectively R-invariant quantities from P i  a n d  Gil,
First substituting from (5.11) into (5.5), it is clear that th e  vector

(5.15) * Pi:=2 Pil(n +1 )-0 i-FO K i,

satisfies *P i =*P i . Therefore we immediately get a  projectively R-invariant
tensor

(5.16) * Pi;=;Pi=2 Pi;/(n +1 ) 4 ( 0 K i - 6 i 0 ) .

Secondly from (5.12) and  (5.16) we get another projective R-invariance

(5.17) */./ik : = G k — k { 2 P ;+( n +1 ) 0 K ;} .

Hence we obtain

Proposition 5.1. The covariant vector *P i in  (5.15) and the tensor *U
(5.17) are projectively R-invariant.

Next, in  terms o f connection coefficients (G f i k , N i ; ), th e  (v)h-torsion tensor
R i i k a n d  th e  hv-curvature tensor G k  a r e  respectively written as

R k = 9 1 (jk )(ak N i j — C j i ,N r  k} Gi k •

From *Ni ;  a n d  *G i i k i n  (5.13), we can introduce projectively R-invariant tensors

*Ri k : (j h) tak*Nii— *G.iir*Nrkl, *G i h  k  -6  G j h  k •

These tensors a re  rewritten in  the  form

(5.18) *Rii k = R ; i  k+9 “ k )  J; k+1 / J r k}

(5.19) hT h

where the  symbol (; ) denote the h-covariant differentiation with respect to BE.
We a re  concerned with th e  tensor *W k .  I f  F n  is  a  Berwald space, that is,

Gi i
k = G , i

k ( x ) ,  then Pi i k= 0  a n d  Gi
i

k h = 0 ,  therefore t h e  scalar 0  in  (5.10) 1)
vanishes. Consequently from (5.14) and (5.18.) we can state

Proposition 5 .2 .  If  a  space F n  i s  a  B erw ald space, the (v)h-torsion tensor
R i i k is equal to the projective R -invariant tensor *R ; i k .

Next, contracting (5.18) by we have

(5.20) * Ro i k=R o i k+2 1 i
;  k k; 0+I ' Pk  — 2Ik i

r l r
,

where 2 P = 1 .  Further, contracting this by L h i ,  a n d  then substituting from
(5.14) it is obvious that th e  tensor

(5.21) *Rhok : —L h i  R ek — (R hoh+ T hhk )/ L

satisfies *R hok= *R hok , where Y.  is given by

(5.21) 1) : =4 ,0 -0 2 .
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Further *Rhok*V "=*R h o h * g h k  gives

(5.22) V= — (R „— R 00)1 (n -1 )± ? , R00=RD'0r .

We substitute from (5.22) into (5.21), and get a projectively R-invariant tensor :

(5.23) Wkk— {Rhok — RoohhkAn - 1)}1L

W e trea t a  F in s le r  space F n  ( n > 2 )  o f  scalar curvature K (x , y). Such a
space is characterized by th e  following equation:

(5.24) Rhok=L2Khnk K = R 00 l(n -1 )L 2 .

Thus from (5.23) and (5.24) we can state

Theorem 5 .1 .  A  F in s le r  space is of scalar curvature, if  an d  only if  th e  pro-
j e c t i v e l y  R - in v a r ia n t  tensor W  hk  in  (5.23) vanishes identically.

Corollary 5 .1 .  I f  a  F in s le r  space F n  is of  scalar curvature, then F., obtained
f rom  F n  by  a p r o j e c t i v e l y  Randers change, is also o f  scalar curvature.

Finally w e consider th e  se c o n d  fundamental tensor L  k  of the Randers
change. Differentiating covariantly this tensor, we get

(5.25) L i kTO —  Lijk10 - 2 L i jk ,D r —  L r ik p r i — k p r i jr p r  k

where we used the  re la tion  (5 .3 ). From L 1 = 0  an d  L i p k =-0, (3.3) leads to

(5.26) riik -r0 -2 -P ok/L , L i jk l o - 2 P i J k l  L  .

By means of (5.2') and (5.3'), it is clear that th e  tensor

(5.27) *P =
POI,/ L — ( L jk P i+  k iP j+  L i jP  k ) / ( n + 1 )

— 0 ( L i jk +  L ik K i+  L k i K i + L o K k ),12

satisfies * P iik = * P iik . Because (3.19') gives

(5.28) 2Hiikio= {Piik — (h oP k + h ik P id - hkiPi)1(n+1)} IL

the projective R-invariant tensor * P rew ritten as

(5.27') * P i j k = 2 H i j kl 0 0 H ij k  •

We shall introduce the concept of P-reducibility which is defined a s  follows :

Definition 5 .1 .  A  F in s le r  space is  ca lled  P - r e d u c ib l e  if the v(hv)-torsion
tensor P i » , is  written as

P,,k=(hi,Pk-F-h 3 kPi± hkhP ,)/ (n+ 1).

It is obvious that a C -reducible  F insler sp ace  is  P -reducib le . Therefore
Theorem 4.1 leads to

Theorem 5 .2 .  A  P -r ed u c ib le  F in s le r  space F n i s  C -r ed u c ib le  i f  and only  if
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the p r o je c t i v e ly  R - in v a r ia n t  tensor *Pi » , vanishes, provided 0 * 0 .

Theorem 5 .3 .  A  P -r ed u c ib le  Finsl e r  space Fn rem ains to be P -r ed u c ib le  by a
projective Randers change if  and only if  the  quantity  0  in  (5.10) 1) is projective
R -in va r ia n t, provided that F n  be non -C -redu cib le.

Pro o f . Assume that both of two Fins ler spaces F n  and  F n  a re  P-reducible.
Then (5.27') implies ( 0 - 0 ) H , , k = 0 , and so 0 = 0  holds, because of Hi j k *O.

Conversely i f  0 = 0  holds, (5.27') gives Hi,kio=171,k1-0, so that th e  P-reduci-
bility of F n  implies that of F .

§  6 . Douglas tensor.

In  the  theory of projective changes in Finsler spaces, we have two essential
projective invariants, one i s  the projective h-curvature tensor W,", k ,  which is
related to a  Finsler space o f scalar curvature a n d  th e  other is the projective
hv-curvature tensor D ,', k . These tensors Wi h, k and  D i

h
i k  a r e  called th e  Weyl

curvature tensor and  the  Douglas tensor respectively.
In  this section we shall deal with th e  projectively R-invariant tensor *G 11.7 k

o f (5.19). By means o f (5.14) 2) *G i h, k is written as

(6.1) k)/ (n +1)

—à It {2P,+ (n+ 1)0K ,} d ( n - 1- 1)

- k {2P,+ (n+ 1)0K 1 } 6 " ,l(n+ 1 ).

From *G, h , k  a n d  *U i , in  (5.17), we can introduce th e  projectively R-invariant
tensor

Dihik : =*Gi'ik—(*Uika h id-*Gik5';)/(n+1),

which, in  virtue o f (5.17) and (6.1), is written as

(6.2) Dihik=Gi4ik— CGii•kyhd-ciik){G1i5hk}]/(n+1).

T his tensor is nothing b u t th e  well-known D ouglas tensor. We have attempted
to derive this from projective Randers change.

We now assume that th e  tensor *G i hj k  vanishes. Then (6.1) gives

(6.3) G ihp ,= -[G ii.k y'+ G ii5hk4k12P i-1 -(n+ 1)0K il a";

k 1213) ±(n + 1 )K  5 4  til l(n  + 1 ) •

Summing (6.3) with respect to h = k , we get

Gi i =5 ;  {2Pi +(n +1)0K i } ,

so that G i l '  jk is rewritten in  the  form

(6.3') G ih ik = (G ii.k yh+ G iP k + G ahi+ G k icrii)/ (7/ ± 1).

Therefore, (6.2) and  (6.3') imply D 1
h5 k = 0 .  Hence we can state
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Proposition 6 .1 .  If  the  projectiv ely  R -inv ariant tensor *G i hi k  vanishes, then
the Douglas tensor D i h  jk  vanishes.

Next, we consider a relation between the hv-curvature tensor P i l l  jk  with
respect to CF and the projective hv-curvature tensor D i n j k . Contracting (6.2) by
y h ,  we have

(6.4) G i i .k = — ( n + 1 ) D i r ik Y r I L 2 — ( i jk )  {G U I  / L

so that Di h
i k is rewritten in the form

(6.2') D ih jk = D ir jk Y r Y i lL 2 + G t ih jk — C i jk ){ G i ih h k }  1 (n +1 ).

S ince kF i h j = P i h jk + C i h k1j—Cti h sP j 3 k , the equation G i hi = F i hj + P i hi ,  which shows
the relation between the Cartan connection CT' and the Berwald connection B r,
gives

(6.5) G i h i k = - P i h jk + C i h k l j— C i h s P lk 4 k P i h j ,

(6.6) Gii—Pirjr+Ciii—CirsPjsr+arpirj.

Substituting from (6.5) and (6.6) into (6.2'), we get

(6.7) h h rDirjk— Pi h jk +C i h kIj—Ci h sPI k+2PijkY k 4 k P i n j

— S ( i j k ) { ( P j r  kr + C il k — C j r  sP le s r4 r P j r  k)h h  1 ( n + 1 ) .

We shall be concerned with a Landsberg space F n ,  which is defined by
P i h'ik = 0 .  If the Douglas tensor D i h  jk  of this F n  vanishes, then (6.7) implies

(6.8) C h i  k 1j — (hkiCjI k ± h h jC k l i + h h kCilj)/ (n +1) ,

which immediately gives

(6.9) Chi j =  C r  irh  h j/ (n  — 1) •

Further (6.6) and (6.9) yield G i i =C r I r h o l ( n - 1 ) .  Differentiating this by y k  and
referring to k h ii .- -2 C 1 i k— (hik / i d - h i k / 1 )/ L , we get

(6.10) O k C r i r ) h i r l - C r i , ( 2 C i ik  — h i k l i / L)}

Owing to & G i i = k ; G i k , (6.10) gives . . i C r i r = — C r i ,./i / L ,  so that (6.10) is rewritten
in the form

(6.10') & G i j— C r I r i 2 C i jk — ( h ik i j+ h  jk l i+ h i j i  k V L I I ( n - 1 ) .

On the other hand, from (6.4) and G i i
-=- Cr i r h i i l ( n - 1 ) ,  we have

(6.11) h kili)1(n - 1)L .

Comparing (6.10') with (6.11), we obtain Cr1,=- 0 , so that (6.8) and (6 .9 ) lead to
C i , k ,h = 0 ,  that is, the Finsler space is a  Berwald space.

Conversely, i f  a  F in sle r space F n  i s  a  Berw ald space, then the Douglas
tensor D t h  jk  vanishes obviously. Summarizing up all the above, we can state
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Theorem 6.1. Assume that a Finsle r space F "  is  a Landsberg space. The
Douglas tensor D i ", ;,  o f  F "  vanishes if a n d  only if the Finsle r space F 3  is  a
B erw ald space.

§ 7. Decomposable tensors.

The tangent vector space F",,' with the origin removed at any point x  of F '
is regarded as a Riemannian space with the fundamental quadratic form ds 2 =
g i ,( x , y )d y id y l. T he indicatrix I x  a t  x  i s  a  hypersurface of the Riemannian
space F 'xi  which is defined by the equation L (x , y )=1  (x  is fixed) ([13)].

Definition 7.1. A  Finsler tensor U t i  is  c a l le d  indicatory i f  Lri ;  satisfies
equations U i i /1 =U j i /j=0.

From an  arb itrary tensor U i ;  w e  g e t  an  indicatory tensor 'Ll i ;  which is
given by

It is clear that the tensors h 1 5 , C 1 5 k ,  P i p e ,  S h i j k  and 7
'
 h i j k  are indicatory. From

(3.2), (3.19'), (4.4'), (4.10) and (5.23) we have

Proposition 7.1. Tensors L Hhj i , *T  h i j i t y  
*

S h i j k ,  W h i t  and * P in d i-
catory.

Here we treat R-invariant tensors in §  3 . F irst, for the covariant vector IC,
in  (3.17'), by app lying the above indicatorization we immediately get 'K ,=
—2C,/(n+1). For the second fundamental tensor L t j k  of the Randers change in
(3.3), from the homogeneity we get L t o 0 = 0, and hence by applying the above
indicatorization it follows that 'L15k=2C1 5 k / L .  Moreover, for A i l , and MI, „ ,  in
(3.21), w e have

(7.1) //1//ijk =-2(h„C k +h,k C i± hk ,C 3)1(n+1)L

(7.2) i M i t t j k =  ( t j h ) {
- 4

C h  kCil(n+1)L+11„(li n k l L -2T  nk l(n+1))1 L 2 1.

Now, for the h(hv)-torsion tensor Ci , k ,  it is obvious that F "  is Riemannian
if  th e  tensor C y j k  vanishes, and Deicke's theorem ([121) shows that F 4  is also
Riemannian even if the torsion vector C , vanishes. Therefore for above indi-
catory tensors we can state

Proposition 7.2. (1) One of indicatorized tensors 'I-C1 and '
A l i j k  vanishes i f

and only if the Finsler space F "  is a Riemannian space.
(2) The indicatorized tensor 'L i » , vanishes if and only if  th e  Finsler space

is a Riemannian space.

P ro o f. If vanishes, from 'I f i = —2Ci /(n +1) we immediately C i =--0. Next,
if 'Mlijk vanishes, in virtue of h 1 5 C1 =C 5 ,  (7.1) y ie ld s C ,= 0 . In any case, owing
to Deicke's theorem asserts that the space F "  is Riemannian. For 'L i p , of (2),
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w e observe that 'L 1 1 ,,= 0  is equivalent to C,,,,=0, so F"  is Riemannian. It is
clear that the converses of those facts are true.

Next, we will treat another hypersurface of the Riemannian space Fix'  called
a  g-hypercone which is defined by the equation g(x , y )=c (c=const., #0) ([24]).
The concept of g-hyperconic tensor is defined as follows :

Definition 7.2 . Let Vi » ,  be a  Finsler tensor, for instance, of (0, 3)-type. If
V i,,, satisfies V1ikN 1 =V 1ikN i=V okN k = 0 ,  then Vi » ,  is called  a  g-hyperconic
tensor, where N i is the unit normal of g-hypercone, i. e ., N 1 =C 1 1C, C 2 =C i Ci.

A  method to derive the g-hyperconic tensor "V i i  from a n  arbitrary Finsler
tensor Vi ;  is  the following, similar to the case of indicatory tensor :

where N i j =g i . i —Ni N i , Nm i =g 1"1"Nr i , N i =g i i Ni.
Now we are concerned with a  Finsler tensor X i ,. The g-hyperconic tensor

and the indicatory tensor derived from X i ;  a re  respectively given by

(7.3)
( 1 )  "X 0 =X i i —(Ni X „±./V i X i g )+X g g N i N J ,

(2) 'Xi;=Xi;—(/iXork/iXio)/L-f-X00/i/i/L 2 ,

where the suffix g  stands for the contraction by A li. Contracting (7.3) 2) by N'
and then N ' successively we have

'X „=X g i —X g o l; IL , 'X g g = X „,

by means of N il i =  .  Thus (7.3) leads to

(7.4) "('Xi;)='Xi; — X g o (N i l i +N i l i )1 L+ X  „N i N ; —(Ni X g  i + N ; X i  g ) .

Consequently, from (7.3) and (7.4) we get

Proposition 7.3. L e t X i ,  b e  a Finsler tensor, f o r instance, of  (0, 2)-type.
7hen X i , can be written as

(7.5)

where we put *X „=(X g o N 11,± X o g N,1,)1L.

Remark. A  (0, r)-type, for instance, Finsler tensor can be similarly
written as (7.5), e.,

X i i . . . k - '  X i j . . . k ± " X t . f m k ) ± *  X i j • • • 1 4  •

For tensors "Xi; and *X i ;  in  (7.5), from (7.3) and (7.4) we can state

Proposition 7 .4 . A n arbitrary  Finsler tensor X i ;  satisfies

(7.6) (1) '(*X 0 )="(*X i j )=0, (2) '("X ij)="('X i;).
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Proposition 7 .5 .  A  Finsle r tensor X i ;  is ind icatory  (resp. g-hyperconic) if
and only i f  X i ;  satisfies

*X g0=0 a n d  "X i i ="('X i i ) ( re s p .  'X i i ='("X “)).

Hence we are led  to  the following definition :

Definition 7 .3 .  Let X i ;  b e  a  Finsler tensor, for instance, of (0, 2)-type. If
X i s i is  w ritten  as

(7.7)

then  X i ;  is called  a  decomposable tensor.

From  the above and (7.5) w e have

Theorem 7 .1 .  A  (0, 2)-type, for instance, Finsler tensor X i ;  is decomposable
if and only if the tensor "('X i i ) vanishes.

Remark. I t  i s  n o te d  th a t  Propositions 7.3, 7.4, 7.5 and Theorem 7.1 are
easily generalized for a (0, r)-type Finsler tensor.

Now, w e con sid e r Finsler sp aces  w ith  the torsion tensor Col, of which
satisfies some tensor equations ([18], [19], [20]).

Definition 7 .4 .  A non-Riemannian Finsler sp ace  is  ca lled  quasi-C-reducible
(resp. semi-C-reducible, resp. C2-like), i f  the h(hv)-torsion tensor Ci » ,  is written
in the form  (1) (resp. (2), resp. (3))

(1 )  C ijk =
P iiC k + P ik C i+ P k iC i

(7.8) (2) Co k =P(hiiCk  hik Ci+h k  iC;)/(n 1)-FqCiC; Ck P-Fq=1

( 3 )  Ci i k =C i Ci Ck / C z ,  (C2 =0).

Further, we consider, Finsler spaces in which C ijk  satisfies the tensor equation

(7.9) C ijk -= (C o+ C ik C i+ C 0 1 C jV C 2+ 2 Q C 1 C 1 C 0 / e,

Q=— (11C 8 )CiCiCkC i i k ) •

I t  is  n o te d  th a t  the torsion tensor Ci » ,  of a semi-C-reducible or C2-like Finsler
space are w ritten  in the form  (7.9).

Here we deal with decomposability of som e R-invariant te n so rs . F irs t  for
Ki in  (3.17'), w e have "K i =l i l L  and 'K i = —2Ci An+1), so  tha t the R-invariant
vecotr Ki  is  w ritte n  as

(7.10) .

Secondly, for Ali», in (3.21), (7.1) and (7.2) g iv e  "('M0 J 0 )= 0 , therefore this
tensor is also w ritten in the form
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(7.11) M i j k — W i j k ± m  M i j k ±
*

M i j k  •

Finally, for the second fundamental tensor L i i k  of the  R anders change  in
(3.3), by applying the  method o f (7.3) we have

"('L i j k )=C i p, (Cl j g N k +C g ikNi+Ci g  k N i )±2C, g ,N i N i N k

therefore, which leads to "('L1»,)=-0 if  Ci p, o f F n is w ritten  a s  (7.9). Paying
attention to AT1 =C 1 1C, the converse is true also. Consequently from Theorem
7.1, (7.10), (7.11) and (7.12) we can state

Theorem 7 .2 .  (1) The R-invariant vector K i  o f  (3.17) an d  the R-invariant
tensor Miik o f (3.21) are decomposable.

(2) The R-invariant tensor Li», Of (3.3) is decomposable if and  only  if the
h(hv)-torsion tensor C i j k  of Fn is w ritten in the f orm  (7.9).

We consider a condition for a  Finsler space to be semi-C-reducible. If  Fn is
semi-C-reducible, then  t h e  tensor L , J k  i s  th e  decomposable tensor, because of
Theorem 7.2. Thus we obtain

Theorem 7 .3 .  A  Finsler space is semi-C-reducible if and  only  if  th e  R-
invariant tensor L i j k  is the decomposable tensor and the h(hv)-torsion tensor C i j k

satisfies
CiirCr=pC2hiiI(n+1)+ I1—(n-1)pAn+1)}

where p is a scalar.

§  8 . Relation between projective change and /9-change.

We shall return to a  /3-change of the  m etric . F or two Finsler spaces Fn .=
(Mn , L ) and  Fn  =(M", L), if  any geodesic o n  Fn is  a lso  a  geodesic o n  Fn  a n d
th e  in v e rse  i s  true , the  change  o f  t h e  m ctric is called projective. A
geodesic on  Fn  is g iven  by a  system of dfferential equations

(8.1) dy1ldt+2G1(x, y)=z-y', y '=-dx ildt ,

where r=-(d 2 sIdt)1(dsldt). G '(x , y ) are  (2) p-homogeneous functions in  y '.  We
a r e  now in  a  position  to find a condition for a p-change to be projective. For
this purpose we deal with the Euler-Lagrange differential equations B 1 -=-0, where
B , is defined by

B,=a,L—d(1L)Idt.

From (1.1) and (1.2), we have L d f 1 /d t+ 13df 2 Id t=0 , so that the Euler-Lagrange
differential equations B 1 = 0  fo r  Fn a r e  given by

B i= iB id-2f 2Foi—mid f,Id t= 0 .

In  virtue o f (1.2) and  (1.4) 1), B i  a r e  written as

(8.2) f  Li=pLB,—q0B,2nrm,±Ai,
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where the covariant vector A , is defined by

(8.3) A  =- 2q F0 , — q0 E 0 o m, .

From (8.2) we get

Proposition 8 .1 .  A  p-change L — > = f  (L , P) o f  th e  m etric  is  projectiv e i f
and only  if  the covariant vector A i  i n  (8.3) vanishes identically.

P ro o f .  Since B i =0 (resp. B 1 =0) a re  equations o f  a  geodesic o n  F "  (resp.
F 4 ) ,  we immediately obtain A1 = 0  i f  a  p-change is projective.

Conversely i f  A ,= 0  holds, then (8.2) shows that B i = 0  lead to B 1 = 0 .  On
th e  other hand, we observe from (8.2) and A,=0 that B 1 =0 give pL B 1 —q0 B r ill5n 1

= 0 .  Contracting this by in' and referring to m 2 =v , pL — v q 0 # 0 ,  w e get Bdn'=0,
so that B1 = 0  h o ld .  Consequently any geodesic remains to be a  geodesic by a
p-change.

W e sh a ll continue the discussion for the condition in Proposition 8.1, i. e.,
Ai = 0 , which, by means o f q = f f ,  and g0=ff22, is written as

(8.4) 2f 2Fio+ f  2 ,7ni E o 0 =0 .

O n the other hand, (1.1) and (1.10) give

L  f 3 f222 f 22 7 E 0 0  b i  ELY

T hen, differentiating (8.4) by y ',  we have

(8.5) 2f 2 F i { 2(m 1E ,o+m ,F1o)+E 00(PY  ',I 1, 2 — miy,—

Pg„)1 f22+ f2 ,2 E 0 om in z ,=- 0 .

Because F1 i n  t h e  above is skew-symmetric in indices, (8.5) leads to

(8.6) f 22(7777,E 3 0+  rn,,E 10)+(f 222 —  f 222 1 f2)E00772,M j

±E00f22(13Yih/L 2 — miyi — rniy, - 43gi,)/ L 2 =0.

Contraction of this by bib/ does

(8.7) 2f 2 2 E po+(f 222 —  f z2 2  1  f 2 )1 , E 00 — 3 P f 22E001 Lz =0,

where we used v=m 1 b1 =b 2 -- 132 /L 2 ( # 0 ) .  Moreover we contract (8.6) by g i i  and
get

(8.8) 2f „E pa-H( f  222 —  f . 2 1 f 2)vE00—(n + 1)43f 22E00/L 2 =0 .

Comparing (8.7) with (8.8), we can conclude

(8.9) (n — 2)3f 22E00=0 ,

therefore we are  led discussions of two cases given by

(8.10) (A )  f22 y (B )  f  22 0

provided n >2.
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First, we consider th e  c a se  (A ). Since f  is positively homogeneous in  two
valuables L  a n d  43  o f  degree one, we have f = - L + ,  that is , th e  i3-change is
Randers, and from (8.4) we obtain F 0 =0, which shows that the covariant vector
field b (x )  is  gradient.

Next, we shall treat the  case (B ). From (8.4) and (8.9) we immediately have
F=O  a n d  E00 = 0, thus we get bi 1 5 y'=0, which implies that (a,bi—bn,Fim,) y i =0.
Differentiating this by yk and  referring to ( k F,m,)y 1 = P 3

771 k, we get

(8.11) b k  •

Conversely, if  bk (x ) satisfies th e  equation (8.11), th e  symmetry property of
P j r n  k  and P,m0 =0 imply that bk (x ) is  a  grad ien t vector, and  E, 0 = 0 .  Therefore
the covariant vector A i  in  (8.3) vanishes identically. Summarizing up th e  above,
from Proposition 8.1, we have

Theorem 8.1. A p-change L—>f., of the m etric is projective if and only  i f
one of the follow ing facts holds good:

(1) I t  is  a Randers change and the covariant vector field b i (x ) is gradient.
(2) The covariant vector field b 1 (x) satisfies the equation bi ,i =b m P i nti ,  provided

n >2.

Now the concept of a projective change is closely related to Finsler spaces
o f scalar curvature. In  fac t, Szab6 [25] showed th e  following :

Theorem A .  Let Fn be a Finsler space of  scalar curvature. Then the Finsler
space P., obtained from Fn by  a projective change of the m etric, is also of scalar
curvature.

I n  c a s e  o f  a  Riemannian space, "of scalar curvature" means "of constant
curvature ". M o reo v e r , the y (hv)-torsion tensor P,,h, o f  a  Riemannian space
always vanishes identically, and b11 ,= 0 means that b (x )  is parallel w ith respect
to the Riemannian connection constructed from th e  Riemannian metric a .  Owing
to Theorem A  and  Theorem 8.1, we can conclude

C oro llary 8 .1 . Assume that the covariant vector f ield b 1 ( x )  is paralle l w ith
respect t o  the R iem annian connection constructed f rom  a R iem annian m etric a.
Then the Finsler space Pn=(M n, (a, P)) w ith the (a, p)-metric is  of scalar curva-
ture if and only  if  a  Riem annian space Fn -= (M ", a )  is  of constant curvature.

C oro llary 8 .2 . ([26]). Assume that P  is  a closed dif ferential one-form. Then
a Randers space Pn=(Mn, L+13), w here L  is R iem annian, is of scalar curvature,
if and only  if  a  Riemannian space Fn=(Illn , L ) is  of constant curvature.
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