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Introduction.

I n  a n  attem pt to  get th e  metaplectic groups of "higher degree ", Kubota
presented a W eil type representation f o r  SL (2 , C ) i n  t h e  p ap ers [7 ]-[10 ]. A
similar construction of the covering groups o f S L(2, R) was obtained by Yama-
zaki [16]. Briefly speaking, they replaced the role of the Fourier transformation
in the construction of so-called W eil representation [14] by that o f th e  Fourier-
Bessel transformation. I n  t h e  present paper w e treat th e  c a s e  o f  th e  real
symplectic group Sp(m, R), using the Bessel functions of matrix argument defined
by Herz [5]. W e start from a certa in  family o f unitary operators defined on an
open dense subset of Sp(m , R ). Then this family determines a projective unitary
representation o f  Sp (m , R ). F o r  a  closer investigation of matters, we introduce
a  fac to r se t fo r the  universal covering group of Sp(m, R), which can be computed
explicitly. The purpose of the present paper is to study such a  family of unitary
operators in  connection with the factor set.

L e t  u s  explain  our results in  m o re  detail. Let S m (R ) be th e  space o f all
m x m real symmetric m atrices and P,„ the  space o f  all m  x m  positive definite
real symmetric m atrices. F o r 5> —1, we denote by L ( P m )  the H ilbert space of
square integrable functions on  P„, with respect to th e  measure (det x) ô dx, where
d x  i s  th e  re s tr ic tio n  o f  usual Lebesgue measure on  Sn i (R ) .  We denote three

types of elements in  s y m , R ) by d (a )= (
a 0

)
1 b d i ( c )= (0 -

1
t(b)=(0

1)'0
fo r  a, cEGL(m , R ) and  bE S „,(R ). Corresponding to these elements, we define
three types of unitary operators o n  Lg(pn ) a s  fo llow s. F o r çoE LS(P„,),

da(a)ço(x)=ça(tax a) I det a}"P (aEGL(m, R)),

to(b)q(x)=ç&(x) etr ( — 1 bx) (b E S„,(R)),

Oc)g)(x)=so*(c - 1  xe c- 1 )1det c 1- 5 - P ( C  G L(m, R)).

Here p=(m+1)/2, etr(a)=exp(tr(a)), and ço* is the Hankel transform of ço defined
by

S0*(x)=1,,,,,y0(y)As(xy)(det y)ôdy



106 T . Umeda

with the Bessel function A s o f Herz [ 5 ] .  On the other hand, put

f 2 _ { (¢  db)
E Sp ( n, R ); det c#0}- .

Then any element a  in  Q is uniquely decomposed in  th e  form a=t(b1)cl /(c)t(b2).
Using this decomposition fo r  o- E Q, we define a  unitary operator r 5(o-) o n  1,3(13 ,,)
by ra(u)=Z-3(b1)d(c)t5(b 2). L et us now state our first theorem

f a  h ( a '  b '\  u „ ( a "  b")Theorem 3 .2 .  L et a
=b e  t h r e e  e l e m e n t sd ' ) c "  d "

in  D., such that cr"=o- o-'. T hen it holds that

rs(o- )rs(o- ') =1-s(a")es(sgn(c'c"c' - ')),

w here e3(C)=- exp (V -1  (6 + -p )C ) an d  sgn b (b S,„(R)) i s  th e  in d ex  o f  inertia2
o f  b.

From this theorem, we see that r a determines a projective unitary represen-
tation o f Sp(m, R), so that we obtain a  unitary representation of the  universal
covering group o f Sp(m , R ). To investigate this representation, we describe the
universal covering group o f  Sp(m , R) using a n  explicit fa c to r  s e t , which we
denote by A(a, a '), (a, a 'E S p (m , R )). F or example, we have an expression

1(5.1) A(a, ISgn(c)—Sgn(c")+Sgn(c')—Sgn(cic"c'-')}

fo r  a ,  a ',  a "  in  Theorem 3 .2 . (For th e  definition o f Sgn, see § 5). N ow , for a
positive integer q, we consider the central extension G , o f Sp(m, R) by Z  with
the  factor set qA(o- , a'). Here G, is a  group with th e  underlying se t s p (i il, R)
x Z  a n d  th e  group operation (a, n)(a ', n ')= (o - a', n±n'd-qA(o - , o- ')). Then G,
fo r q=1 is by definition t h e  universal covering group o f  Sp(m , R ). F o r th e
structure of G1,  we see in Proposition 6.1 that G , is a  semidirect product o f  G1
and Z l q Z .  Further in Proposition 6.2, we determine th e  n o rm a l subgroups of
G5. F o r  th e  representation o f  G,, from Theorem 3.2 and  (5.1), we obtain the
following

Theorem 6.3. F o r 3> —1, th ere  ex is ts  a n  irreducible unitary  represen-
tatio n  U5,5 o f  G , o n  th e  H ilb e rt  space L ( P m )  su c h  th at f o r (a, n)EG g w ith

U5, ((a, n))=1- 0( a )e s ( - -4q n—Sgn(c)) .

By virtue o f th e  explicit factor set, we can specify th e  group o f  operators
o n  U P . )  generated by th e  s e t  Irga) ; E S21 as II4,5(G4) for in odd, and U2,6(G2)
fo r rn even (Proposition 6.6).

T he  equivalence o f th e  representation 1 1 1 ,3  to  re la tive holomorphic discrete
series representation of the universal covering group o f s p ( m ,  R ) is given by the
Laplace transform ation. Therefore U 1 , 5  is found to be essentially the  same as
that obtained in  Yamada [15, Th. 3.5].

=  a  h(  
d )

E D ,



Covering groups of the real symplectic groups 107

The contents of each section are as follows. § 1 is a  preliminary and § 2 is
a summary of the necessary facts about the Bessel functions of H erz. In  §  3 , we
compute the factor associated with the family of operators fr 5 (u) ; a E .  I n  §  4 ,
we define and compute an  explicit factor set A(o- , o-'), and describe th e  universal
covering group o f  Sp(m , R ) by it. Gathering these results in §§ 3-4, we obtain
unitary representations of the universal covering group o f Sp(m , R ) in  §  5 . §  6  is
devoted to study o f  th e  group G . § 7  is a  remark on the relation to relative
holomorphic discrete series representations. I n  Appendix, we give a  sufficient
condition that th e  c o m m u ta n t  o f  a  c e r ta in  s e t  o f  operators o n  L 2 (X ) is the
algebra of multiplication operators.

T h e  author wishes to express his thanks to Professor T .  Hirai f o r  his
constant encouragement and various advices.

§ 1. Notations and preliminaries.

1 . 1 .  We denote by Z , R , and C, respectively, th e  r in g  o f  integers, the  real
number field, and  the  complex number field. Also we use the notation  M m (F)
and  GL (m , F) fo r the  to ta l matrix algebra and the general linear group of degree
in with entries in  F, where F =R  o r  C .  F o r a  matrix a, ' a  i s  th e  transposed
o f  a .  We denote by 1„, or 0„, the unit matrix or the  zero  matrix o f  degree in.
F or zE  M „,(C), Re z  or Im z  denotes th e  real o r th e  imaginary part o f z : Re z,
Im z E M ,(R ), z -=R e z +-V -11m z . T h e  group o f  rea l o r  complex orthogonal
m atrices and the group o f unitary matrices of degree ni a re  denoted by 0(m, R),
0(m , C ), a n d  U(m ) respectively. Moreover we u s e  th e  following spaces of
matrices :

S,,,(R): th e  space o f all m x m  real symmetric matrices,
S„,(C) : the space o f all m x m complex symmetric matrices,

P„,: th e  space o f all in x in  positive definite real symmetric matrices,
: the Siegel upper half space of degree in, { zES ,„(C); Im zEP„,}

F o r aGS„,(R), we write a >0 i f  a is positive definite. A s  usual det a  o r  t r  a
means th e  determinant o r th e  trace  o f a. Following Herz [ 5 ] ,

 w e w rite etr(a)
=exp(tr a).

1 .2 .  Throughout this paper, we fix an integer m > 0  and  use  the  letter p for
(m +1)/2  consistently, p=(i7/+-1)/2.

O n  th e  vector space S,„(R), we define th e  measure d x  a s  H i „ d x „ .  Here
t h e  coordinate x.„, is taken from  th e  components o f x =(x j ,) , and  d x „ is the
Lebesgue measure on  R.

Let GL(m, R) act on S .(R ) by x■---÷t axa= xa (xES„,(R), aE GL (m, R)). Then
Pm ,  is an  open  o rb it. It is easy to see that the m odule of the linear transforma-
tion x ,—>x" w ith  respect to th e  measure d x  is  Idet al 2 P, i .e . ,  dx a=ldet arPdx .
So we have  a  GL(m, R)-invaritnt measure (det x) - Pdx  on  P„,.

O n the other hand, every element x eP,,, is diagonalized b y a n  element in
0 (m , R ) . Using the eigenvalues of x , we can write th e  measure d x  in  the  form



108 T . Umeda

d x —t; dt, • • • dt.du

H ere  x = tu tu , t=diag(t i , • • , uE 0 (m , R ), a n d  d u  i s  a  H aar m easure  on
0 (m , R ). Since 0(m , R ) is  compact, the absolute convergence of an integral with
respect to  d x depends only on  the  part 11<.i ti — t ;  dt, • • d t . .  For example, the
integral

.ç (d e t(x Q + y))-'cly

is absolutely convergent if Re a>771. fo r  a  fixed x,,EP..

1 .3 .  A s in  H erz [5 ] , w e m ake the  following convention.
A  complex analytic function f  on S m (C) is  c a lle d  symmetric i f  it satisfies

f(tu zu )=  f(z ) f o r  a l l  u  0(m, C ) .  A  sym m etric function f ( z )  is actually  an
analytic function o f  m elementary symmetric functions o f  z, s i =tr z, s 2 , ,
=det z. Using this fac t, fo r  a  symmetric function f ,  w e ex tend  its  dom ain  of
definition from  S m (C ) to M m (C) n a tu ra lly . T h e n  w e  se e  f (tz )=  f (z ) and  f(zw)
=  f (w z ). M oreover, it is useful to note the fo llow ing . L e t  x e l3 „, and  x 1 1 2  b e
the positive definite square root o f  x .  T hen  x " 2.z.x1 1 2 ES,„(C) fo r zES,,(C ), and
w e have f(xz)= f(zx)-= f(x 1 1 2 zx" 2 ).

§ 2. Bessel functions o f matrix argument.

In  th is section we summarize some results o f  Herz [5].

2.1 . Definition of the Bessel functions.
Let ô  b e  a  complex number with Re 5>p —1. The Bessel function A3(x)

(x S,,,,(C)) is defined as

(2.1) An-(x)=(27V —1) -7 7 1 P etr(z—xz-')(det 2) - ' - Pdz
Re z--- x0>0
zES n y  (C)

Here th e  integral should t e  understood as

(27r) -1 7 ' 2' .ç etr(z — xz - 1 )(det z) - ' -- Pd y ,s m  (R)

w ith  the variable z= x o +  V -1 y  fo r  a  fixed x o P i n ,  and w e take th e  branch of
the function (det z) - 6 - P for Re z> 0 determined by (det 1.) - 3 - P= 1. Since etr(z—xz - ')
is bounded in z= x 0 +  V -1 y, the integral (2.1) converges absolutely for Re 5> p -1 .
A nd by  th e  Cauchy's theorem, (2.1) is independent of x 0 E P „,. Moreover we can
see that for any fixed x 0 E/3

m , etr(z— xz - 1 ) is uniformly bounded in  z= x 0 + -V-1 y
whenever x  varies in  a  com pact subset o f  S in (C ) .  Therefore Ab(x) is an  entire
function i n  x  a n d  analy tic  i n  5  f o r  Re3>p — 1. In addition, for R e5> p-1 ,
A (x )  is bounded in X P m  a n d  vanishes at infinity.

T he  analytic continuation in ô  o f  A -( x )  is  c a r r ie d  o u t  b y  t h e  differential
recurrence formula :

(2.2) D((det x)'116(x))=(det x)'1213_1(x),
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a 1 .
where D=det(27„ a x ,  ), 27, 3=1 if i-=i, and -= —

2  
if  i # 1 .  It can be shown that

A a is analytically continued to  all b e C ,  so that A ( x )  is en tire in ô  and x
simultaneously.

For Re 5>p-1, (2.1) shows that A l (x )=0(etr( xl)), and the same estimate
holds also for all derivatives of A i,(x ) . H ere x  is the positive definite hermitian
matrix which satisfies xi 2 =-̀ 5-cx.

From the definition (2.1), we see that As(x) is symmetric. So we can extend
the function As(z) for a ll zEM„,(C).

The very important formula A a is the Laplace transform of (2.1) :

(2.3) etr( — xz)A a.(x y)(det d x =etr(— y z - 1 )(det
Pv

This converges absolutely for a ll y  E P , Re z > 0, and Re 5> —1. Formulae in
the following subsections 2.2 and 2.3 are essentially based on (2.3).

R em ark . For m=1, the relation of A ( x )  to  the ordinary Bessel function

J(x )  is given by Ja(x )=A 0( 71 x 2) ( ) ' . (c.f. Watson [13, 6.2])

2.2. The Hankel transform . L e t  ô  be a real number greater than —1. We
denote by L (P m ) the Hilbert space of all square integrable functions on P .  with
respect to  th e measure (det x)3 c/x. Let ,us consider th e linear transformation
with integral kernel 116 (xy ):

(2.4) 40*(x)=).p.go(Y)Agxy)(det y) 3 dy .

Proposition 2.1 (C.f. Herz [5, Theorem 3.1]). The transform ça ,-->yo* on the
space of continuous functions with compact supports can be extended on the whole
L(Pm ) as a unitary  operator, and go**-=ço. T he integral expression (2.4) is valid
fo r ço i,g(pn ,) whenever it is absolutely convergent.

2.3. Weber's second exponential in tegral. For Re a> — 1, a, be P,„ and
Re z> 0, we have an integral formula which converges absolutely (Herz [5, (5.8)]).

(2.5) etr(—xz)24.6(ax)A(bx)(det x) 5 d x

=etr(—(a +b)z - ')A3(— az - ibz - 1 )(det

Here the branch of (det z) - 3 - P for Re z> 0 is determined by (det l n„) - a- P=1.

§ 3. W eil type factor of a fam ily of unitary operators.

3.1. Let 3 be a  real number greater than —1. On the analogy of Weil [14],
Kubota [9], and Yamazaki [16], we define the following three types of unitary
operators on .up i n ). For st2E L(p„,),
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db(a)go(x)=Ço(taxa)Idet a j"P (a E GL(m, R)),

to(b)g9(x)=ça(x) etr(V -1bx) (b Ss„,(R)),

Gc)ço(x)=y*(c - 1  xtc - 1 )1det c (c E  G L(m, R)).

Here go* is defined in  2.2.
I n  t h e  fo llow ing w e often  denote  these operators a s  d (a ), t(b ) and d'(c)

without the  param eter ô in case there  is no  fear of confusion.

Proposition 3 . 1 .  Let bEGL(m , R) be sy m m etric. T hen w e hav e

(di,(—b - 1 )16(b))' =exp( ,\/ -1  (5+  p ) sgn b) .

Here sgn b is  the index of inertia of b, j .  e . ,  the dimension of positive eigenspace
of b minus that o f negative one.

P ro o f .  W e show  the equality

(d'(—b - 1 )t(b)) 2 =t(—b)d/(b - 1 )exp( ,\/-1 1
2= (3+ p) sgn .

L et us compute 1. - -=(d'(—b - 1 )t(b ))`*(x) fo r  a  continuous function go o n  P n , with
com pact support. Put

0(x 1, x 2)=go(x,) etr(-\/-1 bx).,46(x 1 bx 2 b)(det x1)3

x etr(A/ —1 bx2)A6(x2bxb)(det x2) .
Then we see formally

/= I det b 12P+1 0(x1, X 2)C1X 1 P X 2 .
P m  P m

T o  b e  p rec ise , w e  co n sid e r  th e  integral I ,  w ith  convergence factor etr(—E x2),
>0,

I s =ldet bl 2 P+2 5 e t r ( - 6 , x 2 ) 0 ( x 1 ,  x2)dxi)dx2 •
, P m  P m

T hen  by  Fubini's theorem,

I ,=  Idet bl 2 P+2 ' dx i .çetr(—sx 2 )(1)(x l . x2)d x2

= idet bl 2 P + 2 i9 ( x  etr(-\/-1 bx i )(det x i )5  d x

x  etr((— s+ 'V —1 b)x 2 ),46(x 2 b xb)A6(x i bx 2 b)(det x 2 )5  d

B y the W eber's second exponential integral (2.5), integral .Ç•dx, is equal to

etr(— b(x +x i )bz.71 )A(—bxbz:ibx i bz»)(det z s ) - ô - P,

where z s =e— A,/-1b. Therefore,
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I= I  det 61223 +2 3  etr(œbxbz»)(det

x .çç.(x i ) etr(b( -1  —z.Vb)x i )Aa(—bz»bxbz'bx,)(det x1) 3 d xi •

Letting E  tend to  zero, w e  have

1= Idet bl 2 P+2 'ç9*(bxb) etr(— A./-1 bx)x lirn (det

=t(—b)d'(6 - 9yo(x)x Idet bla" urn (det

Recalling t h e  choice o f  t h e  branch f o r  (det z) - 3 - P, we can easily compute the
factor :

lim I det z,1 5÷P(det z,) -5 - P=exp(A/-1 (a+p) sgn b) .

Thus we obtain the assertion. Q.E.D.

3 .2 .  L et us consider th e  real symplectic group of degree m in the usual form,

sp(in, R )=  (a EGL(2nz, R) ; J a = f
r s (

0 .  — 1 .

1 7 )2

( a  h
W e w rite  a

= u s i n g  the
d)

.denote c = c (u ) .  W e put

77/X 711 block components a, b, c, dEM 7,(R ), and

D= sp(n, R) ; det c(a)#01.

Moreover we define three types of elements in  Sp(m, R) a s  follows :

a  0 . b ,
d (a )= ( 0 .  a _,), t ( b ) = ( o n , ,  d (c)= CO .

fo r  a, cEGL(m , R ) and  bE
It is  easy  to  see  tha t every  0.E Q can be written uniquely in  th e  form

(3.1) o-=t(bi)d/(c)t(b,), b 1, N G S .(R ), C E G L(m , R ) .

a  b
In  fac t, fo r 0-= ( 

d ) '  
w e have bi = a c '  and b2 =c - 1 d .  Using the decomposition

(3.1) fo r  0-E [2, we define a  unitary operator r(a)-=ra(o- )  o n  a l ' 7„,) by

(3.2) rir(a)=ta(bi)d(c)ta(b2) •

L et us pu t e,3(C)=exp(%/-1 2-2r-o + p )c ) for C E  C.

Theorem 3 .2 .  L e t  a, a ',  a"  be three elemeuts in Q such that a "= o -a '. Then
it holds that

ri;(a)r,7(a')=ra(o-legsgn(c-1c"c'-1)),

where a '  b'
here a= \c d l' d')' a"=(ca„" db:)

F or the  proof o f Theorem , we prepare a  computational lemma.
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Lemma 3.3 . Let t f z f ,  c , c ' G L (m , R ). Then we have

(3.3) d '(c)t(f)(1/(6=t(fi)d/(c fc ')t(f),

(3.4) d'(c)t(f)d/(c')=t(f i)d'(c f c')t(f )ea(sgn f ) ,

where f 1 = - - t c ' f - lc - '  and f .= . —c' - 1

P ro o f. It is  easy  check the following equalities.

( 1 ) d(a1)d(a2)=d(a1a2), d(a) - 1 =d(a - 1 ),

( 2 ) t(bi)t(b2)=t(b1+b2), t(b) - ' =t(—b),

( 3 ) d'(c1)d/(c2)=d(--tc1c2), d'(c) - 1 =d'(—`c),

( 4 ) d(a)t(b)d(a)-1=t(abta),

( 5 ) d(a )d/(c)=d '(a -'c), d '(c)d (a )=d '(ca ).

By a simple computation we see that there hold the equalities in which d, t, d '
are substituted by d , t , d ' respectively.

(1') d(a1)d(a2)=d(a1a2), d(a)'=d(a - 1 ),

(2') t(b1)t(b2)=t(b1-kh2), t(b) - 1 =t(—b),

( 3') d'(c i )(1/(c2 )= d ( - 2 cT1 c2 ), d ' ( c ) - 1 =d'(—tc),

( 4') d(a)t(b)d(a) - ' -=t(abt a),

( 5') d (a )d / (c )=C ta 'c ), d '(c )d (a )=d '(ca ).

Moreover, recalling the equality (d'(— f - l)t(f)) 3 =1 , or

t ( f )= c r ( f - l )t( —  f )d '( f ') t ( —  f )d '(f - 1 ),

w e ge t by  (1) , --(5)

di(c)t(f)d '(c ')=d 1 (c )d '(f - 1 )t(— f)d'(f - l )t( —  f )d '(f - l )d'(e')

= d(-- 2 c - 1  f - 1 )0— f)d'(f - 1 )0— f)d( —  f c')

fc ')O — c ''f - i t c1 - 1 )

= t(f 1 )(1/(c f c')t(f).

This proves the equality (3.3). The second equality (3.4) can  be  ob ta ined  in  a
parallel w ay . In  fac t, instead  of (d'(— f - l)t(f)) 3 = 1 , w e  have only to use the
equality (d'(— f - 1 )t (f ) ) 3 =egsgn f), which was shown in Proposition 3.1.

Q.E.D. for Lemma 3.3.

Proof of Theorem 3.2. Let the decomposition of j ,  u', a" be cr=t(b1)d'(c)t(b2),
od=t(bOd'(c')t(N ), u"=t(bnd '(c")t(bn. W e  have b2 +M=c - 1 c"c' - ', because c "=
ca '±dc', b = a ' c ' ' .  Put f= 6 2 -Fbi -=c - 1 c"c/ - 1 . Then f  is symmetric
and
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a" -= u a' =t(b i )d (c)t(b 2 )t(bpd '(c TOD

=t(b i )cr(c)t(f)cr(Ot(N) •
So by (3.3), we get

o-" =Obi+ f f ci)t(f ,

w here  f f - lc - ' and T h e  uniqueness o f  t h e  decom-
position shows th a t b/=b i + f 1, f.-k14, an d  c"=c f c '. So by definition,

r(o")=-- t(b i + f i )cl' (b f c')t(f -F1)D .

O n the other hand, w e have

r(o)r(u ')=t(b i )d'(c)t(b 2 )t(bpd'(c/)t(N)

=- t(b i )d'(c)t(f)d'(ci)t(N) •
T hen by  (3.4), we get

r(o- )r(o. ') =t(bi)l(f 1)(1'(c f c')1(f )t(t)ea(sgn f)

=t(b i + f i)crc f ci)t(f +b)e,3(sgn f)

=r(o")e 5 (sgn f) .
Hence th e  theorem. Q. E. D.

§ 4. A factor set for the universal covering group o f Sp(m, R).

I n  th is  section we describe th e  univarsal covering group o f  Sp(m, R) using
a factor se t, which is convenient fo r our purpose. W e give som e explicit com -
putations for the  fac tor se t, too.

4.1 . We introduce th e  following notations.

(1) F o r  CE C ,  C * 0 ,  w e  c h o o s e  t h e  p rin c ip a l v a lu e  o f  its argum ent as
—7.c Arg C<7.
(2) F o r aEM„,(C), w e put

A rg(a)=  E Arg p ,

where th e  summation is taken over all non-zero eigenvalues p o f  a  with multi-
plicities.

Remark 1. F o r a  Sm (R ), w e have

A rg(a)=  7C (sgn( a )— rank( a )) .

2 .  I f  a E M m (R ), then  Arg( a) E

4.2 . A  decomposition for elements in Sp(m, R).
Following W eil [14 , C h. V , nos 46-47, Prop. 6, C o rs  1  &  2 1,  w e exp la in  a

" normal "  fo rm  f o r  o Sp (m , R ), w hich generalizes the  expression  (3 .1 ) for
elements o f  Q.
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L et a = ( a  b )  w ith  a, b , c , dE ill n (R ), and ra n k (c )= r . L et V  be  th e  space
c  d

o f  row vectors o f  d im en sio n  m . L e t V i C V  b e  th e  r a n g e  under right m ulti-
p lic a tio n  b y  c, a n d  V ,  the  o rthogonal complement o f  V ,  i n  V .  We choose
orthonormal basis u „ • • ,  u ,  o f V ,  a n d  u ,,, •••  , u n , o f  V , .  A n d  w e  m a k e  a
m atrix  u  by arranging u 1 , ,  u n  in  m columns in th is o rder. T hen  u  0(m , R ).
Moreover we put

(4.1) e i=(
1 ,  

0 e 2 = 1 , , , — e i - = (
o r

ini-r),.  

In  th is situation, a  can be w ritten in  th e  form

E , = - (
e 2

ei e 2

(4.2) a=d(u-')t(g)d(t2-1)E,t(h)d(u),

where g, I2ES 7m (R), e i h e ,=h , 2 E G L (m , R ). Moreover fo r  a  fixed u , th e  decom-
position is unique.

N e x t le t  u s  lo o k  o v e r  h o w  g ,  h ,  2  change in  case u  is  rep laced . If  we
choose another orthonormal basis of V, and V , and make th e  m atrix  u ' a s  above,
then  v =u 'u - i  is  o f  th e  form

V = C1
 

V i v
1 E 0 ( r,  R ) ,  t'2 E  0 ( M - r ,  R ).

So w e see v - 'e ,v =e ,, i r 1e2v-=e 2 ,  d(v - 1 )E r d(v )=E n . Using this, we get easily

(4.3) 2-=v-12'v,

w here  a-=d(u' - ')t(g')d(t2' - ') E r t(h ')d(u ') is  the  decomposition corresponding to u'.

4 .3 .  F o r  = ( a  
d )

ES p(m , R ) and zE , ., we put J(o- ,  z ) =c z ± d .  It is w ell

know n that J(cr, z ) is invertible. It can be w ritten in  term s o f th e  decomposition
•(4.2) as

f ia, z )=u - '2(e1(uz`u+h)-±e2)u

because c=- u - 1 2e 1 u , d =u - 1 2(12-1-e2)u.
Now we define, using (4.2),

(4.4) A f ia, z )=A rg(2)+A rg(e 1 (uz t u+h)-he 2 )

Recalling (4.3), w e see easily that this does not depend o n  th e  choise o f  u ,  so
th a t A f (a, z ) is defined a s  a  function o f  a  and z.

L et a E S 2 ,  e ., ran k (c )= m . T h e n , f ro m  t h e  decomposition (3 .1), w e can
choose u=1„„, and get

(4.5) A J(o-, z )=A rg(c)+A rg(z +c - 'd ) .

L e t  c = 0 , i.e., 0 
b

. T h e n  w e  c a n  a ls o  c h o o s e  u = 1 ,„  a n d  get

A ficr, z )=A rg(ta - 1 )=A rg(a - 1 ).
The important property o f  A l(a, z ) is  th e  following.
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Proposition 4.1. F o r a  f ix ed  aESp(m , R ), the f unction  AJ(o-, z) o f  z  is
continuous O n •

P ro o f .  L et us w rite uztu=(
z ,  *

z i ES,(C). It is easy to see z i E.f)r . S ince*  *
ei he i = h , th e  matrix h  is  o f th e  form ( 121

0 . - , ), h i E S r (R ). T hen  w e have

ei(uz t ud- h) - ke2= 0 1 .
*

-ri •

Therefore we have only to consider the eigenvalues o f z1 +121. Since
its eigenvalues a re  in  th e  complex upper half plane By definition, whenever
ite i s  in th e  map 1i ,--iArg p  is continuous. Thus th e  continuity o f th e  map
z—>Arg(z i + h ,) is verified, because the roots of a polynomial depend continuously
on  its coefficients. Q. E. D.

4.4 . L et us pu t j(o , z)=det z). Then we see

(4.6) z )=  i(a , exp('V---1 AJ(Gr, z)).

O n the other hand , fo r a, a 'ESp(m , R ), zE ,N , we have

(4.7) z)=J(o-, z )  a n d  j(o -a ', z )= j(o -, o-tz)j(cr', z).

Here the action of Sp(m, R) on .N  is given by

T z= (a z+ b )(cz+ d )', 7 .= ( c
ci

 d
b )ESp(m, R).

Now we consider

1(4.8) A(o-, a' ; z)= -
2 7 r

(AJ(o-, ez)—AJ(cra', z)+AJ(a', z)).

From (4.6) and (4.7), we see that exp(27A/-1A(o-, a' ; z))=1, so that A(o-, cr' ; z)
E Z .  O n  th e  other h a n d , b y  Proposition 4.1, A(u, ;  z )  is continuous i n  z.
Therefore me find that A(o-, a' ; z) does not depend on  z Eb n i . So  w e w rite  it
by A(cr, a ') instead.

B y  a  sim ple  com puta tion , the  following cocycle condition for A(o-, a ')  is
verified :

A(ao-', o-")+A (a , o -') =A(cr, cr' a")+A(o-', a").

N ow using this fa c to r  s e t  A(u, o-'), we construct a  cen tra l ex tensio n  G , of
s p ( n ,  R ) a s  fo llow s. A s  a n  underlying s e t ,  w e take  G ,= S p (m , R )x Z . The
group operation in  G, is given by

(a, n)(o-', n')=(ao-', n-Pn'±A(a, a')) .

Proposition 4.2. T he group G, is the universal covering group of Sp(m, R).

P ro o f .  T his can be seen by restricing the  fac tor se t on  the  m axim al com-

pact subgroup K=-- -L a
 d

b ) G L(2m, R); a- HV —1 bEU(m)}. But we give here
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another proof in  order to  mention the topology on  the  covering group.
L e t  u s  rea lize  t h e  universal covering group Sp(m, R) -  o f  Sp(m, R) as in

Kashiwara-Vergne [6, (3 .5 )1 :  Sp(m , R ) - -={(a, L e ) ; aeSp(m , R ), L ,E_C ,} en-
d o w ed  w ith  t h e  group operation (a , L c )(o-', L )= (a ", L e .) w ith  o-"= o -o- ' and
L„.(z)=L„(a 'z)± L a

, (z). H ere L ,  is  an  element o f  a  fam ily  L ,, o f  functions on
given a s  fo llo w s. F o r any fixed aeSp(m , R), L,(z)=log j(cr, z), w here  the

values of logarithm a re  taken in  such a  w ay that w e get a univalent continuous
function on  the  simply connected domain  Note th a t  L,, is determined by its
value a t  z= A/-1 , and  th a t th e  topology o n  Sp(m, R) -  is  g iv e n  a s  th e  induced
topology from Sp(m, R)x C  t o  {(a, L ,(A / -1 ))} .  Now, w e  pu t fo r aeSp(m, R),
s(a)=(a, log /(0- , z)I +'\/-1 A fic ,  z )) .  T h e n  Proposition 4.1 show s that s (a )E
Sp(m, R) - , s o  t h a t  s  gives a cross section from  Sp(m, R) to  Sp(n2, R) - . It is
e a s y  to  s e e  th a t  s(o- o- ') - 1 s(o-)s (e )= (1 , 27rA/-1 A (a , a ')).  T h u s  th e  fac to r  se t
A(o-, a ')  determines th e  universal covering group o f  Sp(m, R).

L et Q ' be th e  se t o f  o-EQ  such that c(a) has no negative eigenvalues. Then
w e  s e e  f ro m  (4.5) t h a t  th e  c ro ss  se c tio n  s  is continuous o n  Q', so  tha t the
topology on  the  subset I(o- , n)eG i ;  a e Q ', n e Z I is  the  d irect product topology
o f  Q ' and Z. Q. E. D.

4 .5 .  A  com putation o f  A(a, a ') f o r  a  generic case.
Here we compute A(a, a ') for the case th a t a, a ', a"=o - a 'e ,(2 . T he  idea is

s im p le . In  th e  definition (4.8), we specialize z  a s  A/ —1 09.
(  h a ' b'a a ,  ( a "  b"A s before, w e w rite a

=
d ')' d " ) .  In the form ula

(4.5) fo r 0- E Q, put z=-\/ —lt (t: positive real number) and  le t t  tend to infinity.

T hen  w e ge t AJ(o- , ,\/-100)=Arg(c)+ 7
2-1 m, whence

(4.9) —AJ(o-", — 100)+AJ(a ', -\/-100)=— Arg(e")+Arg(c').

'Fhere remains to compute AJ(a, a'(\/ —100)). We see that c'("./ -1  t) =a 'c ' - ' +e(t)
w ith  e(t)e ,N  and lim  s(t)=0. Therefore by (4.5),

AJ(a, o- W -1 0 )= A rg (c )+ A rg (a 'c ' - i-Fe(t)-Fc - id)

=- Arg(c)+Arg(c - ic"c' - l±e(t)).

T he  following lemma leads u s  to  the conclusion.

Lemma 4.3 . Le t th=heG L(m , R ) .  Fo r e ( t )e „ ,  w ith  lim e(t)=0, w e havet-+-
lim  Arg(h±s(t))=— Arg(h) .

P ro o f .  Since /7.-1-5(t) ,„  i t s  eigenvalues a r e  in  t h e  complex upper half
p la n e . O n  th e  o th e r  hand, the eigenvalues o f  h  are non-zero real numbers, to
which th e  eigenvalues of h + ( t )  tend as t--H--00. According a s  th e  eigenvalue
of h + ( t )  tends to  a positive or negative real number, its Arg tends to  0 o r  7r
respectively . B y defin ition, A rg  o f  a  positive real number is 0 and tha t of a
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negative one is  — 7r. Therefore we see that Arg(h+e(t)) tends to —Arg(h).
Q. E. D.

From this lemma, putting h= c - 1  c"c' - 1 ,  we see that AA°. , ()A V  —1t)) tends
to Arg(c)—Arg(c - 1 c"c/- 1 ) as t  tends to infinity. Gathering this and (4.9), we get
the following.

Proposition 4 .4 .  Let a, a ', a "= a o -'E D . Then

A(a, u ')= 
-
2
- t
7c lArg(c)—Arg(c")+Arg(c')—Arg(c - i c"c ' 1)}.

4 .6 .  In the remainder o f th is  section, we m ake preparations fo r §§ 5-6.
First we give a  computation of AJ(o- , 2) by reduction to lower dimensional case,
when a and z are written in the form of a d irect sums o f lower dimensional
ones. Next we compute A(a, a')  for a, a ' in the maximal compact subgroup of
Sp(l, R).

Let c r " '= (
( 1 (

t.
)  b

c d(1)
( i

)E  s p o i l " ) ,  R), and z" )( i = l ,  2 ) .  We put a( 1 )-î a 
(2)

( z) ( a  b\ w ith  a=a ( i) e a ( 2 ) , b=b(i)EDbm, c=c(i)EDc , 2), d = d m e d ( 2 ) .  Here
cl) (a (1 ) 0

a w e a ("  means the direct sum of matrices 0  a ) .

Proposition 4 .5 .  It holds that
AA,(1):11.0. (2) ,  z (i)EDz (2)) _ A j ( 0.(1) ,  z o)) + Ap o . (2), z 2 )

Corollary 4 .6 .  Let oT) sp(771 ( , ), R) (i, j=1, 2). Then

A(oi l q , a. 2 q 0 2 ) ) = A(ui l )  , (49+ A (0 - 12 ) , 0 2 ) )

Proo f  of Proposition 4.5. L et r" ) =ran k (c (a )) (i= l, 2 ), and  put m =
(fl(1 )-Fm 2 ), r=rw -Fr( 2 ). We denote the matrices appearing in the decomposition
(4.2) for a" )  b y  the suffixed letters such as u"), gw, h ,  A .  Similarly we use
the notations eji) j = 1 ,  2) for the matrices that define E r (1) in (4.1). Then we
have

am-11am =d(uV)t(go)d( t 2V)Ft(ho)d(a0)

w h ere  uo =u ( neu ( 2 ) , go=  g( 1 )EDg(2 ), h0=h")(1)11 1 2 ), A0 = 2 -e 2 (2 ), an d  F =
E 0 -Î-E m . L e t  vE0(m, R) be a permutation m atrix  such  that v(e11 ) --Fe12 ) )v - 1

-=e1, th en  w e  have v(e 11 -Fe 2 )v - 1 =e2 and d(v)F d(v - ') = E r . Here e1 , e 2 are as
in (4.1). Hence

a(1q a  ( 2 )  =  d(u - i)t(g)d( 1 2 1 )E r gh )d(u)

with u=vu o, g=vg ov- ', h=vh 0v- 1 , 2=v2 0v- '. It is easy to verify that this gives
the decomposition (4.2) for a( 1)-T-o- ( 2 ) . So by definition (4.4), we get

AJ(0- ( 1 ) -- sho- ( 2 ) , z ( 1 ) e z ( 2 ) )=Arg(2)+Arg(e i (u(z ( 1 ) @z ( 2 ) ) t u- Fe2)),

and for the first term in the right-hand side

Arg(2)=Arg(v(2" ) EDA( 2 ) )v - 1 )= Arg(21))+Arg(2(2)),
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and similarly fo r the  second  te rm . Therefore

A j( a c u ; 0 .(2) , z (1) @ z (2)) - A  j ( 0.(1) , z (1))+A A , (2) , z (2)) . Q. E. D.

—sin 0 ) andcos 0
1 ic )B (0, 0')— (Arg e s 'i° +A rg  e " - '° ' —Arg °÷60).

27r

Then w e see fo r  —7-c 0 , 0 '<7 r,

P u t  k ( 0 ) = (
cos 0
sin 0

  

if 7r 0 +0 '
if --7-r 0-1-0'<rc
if 0+0 ' < - 7C.

B (0 , 0 ')=
—1

  

Proposition 4 .7 .  A (k (0), k (0'))=-B (0, 0 ').

P ro o f. It suffices to show A J(k (0 ) , -V -1 )=0  for 0 < T r. F o r  0 = 0  or
0 = -7 r , th is  e q u a lity  is  o b v io u s . F or the  case  — z <0 <7 r, 0 # 0, w e have the
decomposition (4 .2) fo r  k ( 0 )  w ith  r=1,  u = 1 , g = co t 0, h -=cot 0, a n d  2=sin 0.
Then by definition (4.4), w e  g e t  A J(k (0 ), - \/-1 )=A rg (sin  0)+Arg(A/ —1+cot 0)
= 0 .  Hence the proposition. Q. E. D.

P u t k (01, ••• , 0 .)=k (01)4 1 ••• :4 ( 0 , 2 ) .  Then from  C orollary  4 .6  and  Prop-
osition 4.7, we see

Proposition 4 .8 .  It holds that

A (k (0 1, ••• , 0„,), k (0;, ••• B (01, O ).

Corollary 4.9. We have A (E,-, E r )= r ,  especially f or r=m , A (d'(1), d '(1))-=m .
Moreover we have A ( -1 2„„ - 12,0= - 772.

§ 5. Representations o f  th e  universal covering group o f  S p(m , R).

First w e recall a  general proposition about generators o f  a  group and  their
relations, which is found in W eil [14 , Lemme 6].

Lemma 5 .1 .  L et G  be a group, and U  a  subset of  G  such that the condition
U - ' n U a r l U b n U c # 0  holds f o r arbitrary elements a, b , c  i n  G .  L e t G ' be a
group an d  )7 a  map from U  to G ' satisfying the relation )7(uu')=)7(u))7(u') f or
u , u ',  Then )7 is uniquely extended a s  a  gronp hom om orphism  from  G
to G'.

Note th a t the condition for U  is satisfied when U  is  an open dense subset of
a  topological group G.

L et us introduce a  n o ta tio n . F o r  a M „„(C), w e put

Sgn(a)= 1 Arg(a)+rank(a).
7r



Covering groups of the real symplectic groups 119

If a is real symmetric, Sgn(a) coincides with Sgn(a) as in Remark 1 in §  4 . Note
that Sgn(a)E Z  for a E M n i (R).

U sing th is notation S g n , we can rewrite the formula in Proposition 4.4 as
follows.

1
(5.1) A (o - , a')=-

4  
{Sgn(c)—Sgn(c")+Sgn(c')—Sgn(c'c"c' - ')}.

W e describe th e universal covering group o f S p(m , R ) as th e  group G,
defined by the factor set A (a, a ') as in Proposition 4.2.

Theorem 5 .2 .  For 3> — 1, there exists a unitary representation U s  o f  G , on
the Hilbert space U P„,)  such that fo r  (a, n )E G , w ith aES2,

U s(a, n)=r s (a)e s (-4n— S gn(c(a))).

Here r ( a )  is defined in  (3.2).

Pro o f . By Lemma 5.1 , it is enough to see that Us(a, n)U3(a', n')-=Us(o - ", n")
for a , a ', a " =a a 'E Q ,  and n "=-n d -n '± A (a, a ') .  W e w rite  c=c(a), c '=c(o.'),
and c"=c(o - "). Now by definition,

Us(cr, n)U6(o- ', n ')=r(a)r(a')e s(-4n  —4n ' —Sgn(c)—Sgn(c'))

W e have r(o-)r(a9=r(a")es(Sgn(c - lc"c' - ')) by Theorem  3 .2 ,  and  4A (a, a')=
Sgn(c)—Sgn(c")+Sgn(c')—Sgn(c'c"c' - ' )  by (5.1). So we get

Us(o- , n)U3(o- ', n ')=r(a")es(-4 n  — 4n'-4A(a, a') —Sgn(c"))

=r(a")es(-4n"— S gn(c"))=U s (a", n").

This representation is strongly continuous, because it is continuous on the
subset {(a, n) ; o-ES 2', nEZ } . Q. E. D.

Proposition 5.3. The representation Us (a> — 1) o f G , is irreducible.

Pro o f . W e show th a t a  bounded linear operator T  on L ( P m )  commuting
with every U6(cr, n) is  a  scalar operator. Since T  commutes w ith  t(b )  for all
bES m (R ) ,  T  is  w r itte n  in  th e  form  T ço(x )=f (x )ço(x ) (y oEL (P„,)) for some
essentially bounded function f ( x ) . (For its proof, see Appendix.) On the other
hand, T  commutes with d (a)  for a ll aE G L (m , R ) . So the function f (x ) satisfies
the condition th at f (x )=- f ( tax a)  for a l l  aE G L (m , R ) . Since G L (m , R ) acts
transitively on Pm  b y  x ,— >taxa, the function f (x )  must be a constant.

Q. E. D.

Let us determine the kernel Ker U 5 of this representation U s .  Note th a t a
normal subgroup o f G,'- 'Sp(m , R ) -  is e ither equal to  G , itself or contained in
the centre, and that the centre of G, is {(+ 1, n ) ; n E Z } .  Since Ker U3 is  normal,
w e  have only to compute U6(1, n ) and U3(- 1 ,  n ) .  From Corollary 4.9, we see
(- 1 ,  n)=(cl/(1), n— m)(d'(1), 0), so that
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U5(-1, n)=UB(d'(1), n—rn)U6(d/(1), 0)

-=c1/(1)c1/(1)e3( — 4 n +4m —m)e6(—m)=ea( — 4 n +2m) .

Moreover, we see also from Corollary 4.9, (1, n)=(-1, n+m)(-1, 0), so that

U5(1, n)=U6(-1, n+m)11 6 ( -1 ,  0)

=e 6 ( — 4 n — 4m ± 2m)e6(2m) = ed ( —4n) .

Thus we have the following.

Proposition 5.4. The kernel of the representation U 5 of G , is given as

Ker U 5= {(1, n) ; (a - p)n i( —1, n) ; (a p)(n — m
2  )E Z1- .

L et G5 be the im age of G, under U 5 .  Since the  representation //0 is irredu-
cible, th e  im age  o f the  cen tre  o f G , under U 5 co incides w ith  t h e  s e t  o f  all
scalar operators i n  G 5 .  W e see  th a t G 5  is generated by the  se t o f operators
{r6(a)e3(—Sgn(c(o-))) ; a E .(21 , because G, is generated by th e  s e t  {(a, 0) ;
In  the  next section we determine th e  group generated by t h e  s e t  o f  operators
{r6(0-) ; a f2}.

§ 6. Certain central extensions of Sp(m, R) and their representations.

6 .1 .  L e t  q  b e  a  p o s it iv e  in teger . I n  th is  section w e stu d y  the central
extension G, o f Sp(m, R) by Z  with the  factor set qA(a, a') (a, o-'ESp(m, R)).
Here G, is by definition a  group with th e  underlying se t Sp(m , R )xZ and the
group operation (a , n )(e , n ')= (aa ', n -Pn 'd -qA (a , a ')). A s we see in Proposition
4.2, G, is equal to t h e  universal covering group o f  Sp (m , R ). To avoid any
confusion, we denote a n  element in  G, by (a, n), throughout this section.

In  c a s e  q  devides q ',  consider t h e  natural injection J 5, q , fro m  G, to

defined by n),-=(o, n )  .  Then through we can (and do) identify
q'

G, with a norm al subgroup of G q  o f  in d ex  q'/q.

Proposition 6.1. The group G, is isom orphic to a semidirect product of G,
and Z/qZ.

P ro o f .  I t  is enough to find a  subgroup 1-4 o f G, such that H, Z Iq Z  and

Gi n H ,=  {(1, 0)}. P u t  k 5 = k( ,, 0„  0 ) .  (See 4.6 fo r  n o ta tio n .)  Then from
q

Proposition 4.8 we see

(i) A(122 , k 2 ) = -1 ,
(ii) for q 3 and

{ 1 if l =q 0

A(k,, k0-=
0 if /#g0.
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q g -1
Here we p u t q0 =- — 1  fo r g even, and go =  fo r g odd . Now, let H, be the

2
subgroup o f G , generated by K 2 w ith  tr,=(k g , 1), fo r q=2 and  K ,=(k ,, —1), for
q - 3. Then from ( i) and  (ii) we see that 11, is  o f order g , a n d  th a t Eq i s  of
th e  form  (4  1 ') ,  w ith  l' () mod q  for Therefore s a t i s f i e s  the
required conditions, and w e have proved the proposition. Q. E. D.

W e give here some remarks. I f  m is  odd , then  G , is isomorphic to the
d irec t product group Gi x Z  I2 Z . In  fac t, p u t H = {(1, 0) 2 , (-1, m) 21. Then by
Corollary 4.9, H  is  a  subgooup o f  G , o f  order 2. C learly H  is contained in
th e  c e n tr e  o f  G , .  In  c a s e  n i  is odd, w e have G1 l -1H= {(1, 0)2}, whence G2

=

Gi H - Gi x H.
In  general, th e  centralizer o f  G, in  G , is  the  centre  of G2 ,  which is given

a s  {(+1, n) 2 ; n e Z } .  I t  is  e a sy  to  s e e  th a t  th e  cen tre  o f G, contains a  non-
trivial element o f finite order if  an d  only if  gm  is  even . A nd when gm  is even,
(-1, qm/2) 2 i s  t h e  on ly  non-trivial element o f  finite order contained in  it .
Therefore G , is expressed a s  a  d ir e c t  product o f G, a n d  a  subgroup o f G , if
and only if  m is odd and  q=2.

6.2. N orm al subgroups o f  G2 . Here we determine th e  n o rm al subgroups
o f G2 .

Proposition 6.2. L e t N  b e  a normal subgroup o f  G2 . Then we have the
following two cases: (i) N =G t fo r  some divisor 1 of g , or (ii) N  is contained in
the centre of G2 .

Pro o f . P u t N 1 =Nr1G 1 . Then N IN , is canonically isomorphic to the image
o f N  under the projection of G , to G ,IG ,=Z Ig Z . Therefore N IN , i s  a  cyclic
group . L e t I  be th e  order o f N IN ,. Take a  e E G ,  such that EN, is a  generator
o f N IN ,. Then we have N=U1: 14V N I. On the other hand, since N , is  a normal
subgroup of R ) - ,  w e  h a v e  two cases : ( i ) N 1 =- G1 ,  o r  (ii) N ,  is
contained in the centre of G1 . In case (i ), we have N =G I . In  fac t, since N/Ni
and G 1 /G 1 h a v e  t h e  same order in  the  cyclic group G 2 /G Î ,  they coincide with
each other. It follows from this that N =G1, because N  and  G1 contain NI=Gi.

L et us consider th e  case (ii). It suffices to show that e  i s  in  the centre  of
G , .  A s N  is  normal, we see aea - icN-=U1Z.1e i N 1 f o r  aE G i . So we can write
it a s  aect - 1 =- Ei ( a) v(a) with i(a)c  Z , 0 i(a)<1  and v(a) N1. Consider paEct - '13- 1

fo r p E c i .  Then we obtain e i f̀ia ) - "P"`" ) =v(P)"" ) v(a)v(i3a) - 1 ENI, so that i(pa)
=i(p)i(a) mod 1. Therefore th e  map a■-4i(a) mod 1 i s  a  group homomorphism of
G, to (Z / /Z )x . O n the other hand G, is equal to its commutator g ro u p . So we
see i(a)--E-_-- 1 mod 1 fo r a ll aE G i . From this and 0 .i( a) <I , w e fin d  th at i(a)=1
f o r  a l l  ac G i . A t  t h e  sam e tim e w e h a v e  proved that v(pa)=v(p)v(a) for
a, pcG i . N ow , le t us write 2.)(a)=(v0(a), n(a)),. Since v(a) i s  in the centre of
G2 , v0(a)=-1-1. Then we have vo (a)=1 fo r a ll aE G i  b y  th e  same reason above.
G athering these, w e see aea - 1 -=ev(a) with v (a)=(1, n(a)),. Consider th e  /-th
power of this equality. Then noting that e ' i s  in  th e  c e n t r e  o f  G2 ,  we get
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(1, 0) 1 =i)(a) 1 =;(1, ln (a)) ,, whence n (a)= O . C onsequently 2.)(a)-= (1, 0), for all
aEG i . Thus we see that e  commutes with all elements in GI , so  that e  i s  in
the centre of G,. Q. E. D.

6 .3 .  Representations Now, we consider representations of G, similarly
as in Theorem 5.2.

Theorem 6 .3 .  For 3 >-1 , th e re  e x is ts  an irreducible unitary  representation
U 4 ,1  o f G , on the Hilbert space L (Pm ) such that for (a , n ) ,E G , w ith o- ES2,

U,,a((o-, ii),)=r6(o-) e a ( - -L n -S g n (c (a)) ) .

This is proved quite similarly as Theorem 5.2.

putations for Proposition 5 .4 , w e  c an  show U ( (

LT„,3((1, n),)=e 6( - -
4

n ) , because (- 1 ,  n) 1 =(d '(1 ) , n -

(-1 , n ± q m ) 1 (- 1 ,  0 ) , .  So we have

Proposition 6.4. The hernel o f  the representation U q ,6  o f G , is giv en as

Ker 11-
1 ,1 ={ (1, n),; (5-1-p)- n),; (3+p)(  q

n m
2 )w z } .

Remark. The representations U 4 ,1  are compatible w ith  the inclusion j,,,,
G,->G, , ,  namely

6 .4 .  In the following, we determine the group generated by the operators
ra(a), a E S 2 . Note that r4(a)=U4,3((u, - Sgn(c))4) with c =c (a)  for o-E Q .  So we
determine the subgroup of G 4  generated by the set { (a, - S g n ( c ( a ) ) ) 4 ;  acS21.

Proposition 6.5. The subgroup o f G 4  generated by  the set { (a, - Sgn(c(a)))4;
o- E,Q1 is equal to G 4  i f  in  is  odd , and equal to G 2 i f  in is even.

P ro o f . Let G be the subgroup of G 4  generated by the set {(a, -Sgn(c(o -)))4;
a E D I . Put ur= k(04 , •• , 0 . )  (see 4 .6 ) w ith  0 1 =  ••• =0„.=27r/3, • • •  =0,„
= - 2 7 / 3 .  Then u,ES2 and Sgn(c(u r ))= 2 r- in ,  whence (u „ m -2 r) 4 E G .  On the
other hand, using Proposition 4 .8 , w e  g e t  (u „ in -2 r)=(1 ,  2 r-m ) 4 . T herefore
G contains (1, 2 r-m ) 4 . I n  c a s e  n i  is  o dd , tak in g  r  w ith  2r -in = 1 , we have
(1, 1) 4 E G . This shows that GD(1, n) 4 for n EZ, so that G contains all elements
of the form (a, n) 4 w ith  aES 2 and n  E Z . Therefore G =C , for in odd.

In case in is even, since Sgn(c(a)) for crES2 is even, we have GEG 2 . On

the other hand, putting r = i-  + 1 ,  we see (1, 2) 4 E G . So G contains all elements

of the form (a, 211) 4 w ith  o- ,(2 and n  E Z . Therefore G=G 2 for in even.
Q. E. D.

Moreover similarly as corn-

- 1 ,  n),) -= e 6 ( - -
4

n+2m )  and

qm) 1 (d'(1), 0 ) , and (1, n),=

Let G 4 ,1  be the image of G , under the representation U4 ,13. Then we have
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Gq ,5 Gq /K er /4  a. F ro m  Proposition 6.5, we obtain the following.

Proposition 6.6. The group generated by  the set of operators Irga); o' S21
on the Hilbert space L ( P m )  is equal to G4 ,5  i f  m  is odd, and equal to  G2 ,5 i f  771

is even.

§ 7. Relation to  relative holomorphic discrete series representations.

For yoEL(P„,), we define the Laplace transform ço of ça as

'ç6(z)= p n i ço(x)etr(A/-1 xz)(det x)'clx

This integral converges absolutely for every z .„„ so that ço i s  a  holomorphic
function on ,f)„,. We denote by  gc5  th e  im age  o f L(13 ,n )  under the Laplace
transformation. By the isomorphism : Lg(p.)-,N,, w e transfer th e  operators
ch(a), to(b), d(c), and r6(a) from L (P m ) to g 5, whicw we denote by  5 (a), 43(b),
d (c ) , and ; 5 (a) respectively.

It is easy to see that

44(a)0(z)=Idet al - 6  P ço(a'z  2 a - 1 ),

i 6 (b)»0(z)="y6(z+b).

From the formula (2.3), we see

(4(1)ça(z)=(det v z
 1 )  P  (—  2 - 1 ) .

liM ÇO(2)=Idet cl - ' 2)(clet 

because ch(c)=c13(tc - 1 )4(1).
L et u s consider an  anti-automorphism of Sp(m , R ) defind by o- ,--°a=- ItaI,

where 01:).
c  

t
a

W e see  ° a - - ( t d  
b )

 for
t
o r  = ( a  h

c d i .
 N o te  a lso  th a t ° a=

On,where J 1 ---, ( 0 J .  T h e n  w e  have for o-.

i:6 (o-)ç5(z)ed (—Sgn(c(a))).=j(° z) (° a, z).

Here K a ,  z) - ' 13 =-1j(°a, z)1 - 5 - 1 ) e x p ( - - V - 1 ( 6 + p ) A J ( ' z)). It tu rn s out from
this that our representation 173 of Gi

-=Sp(m, R) -  in  Theorem 5.2 is essentially
identical with that constructed in the paper of Yamada [15, Th. 3 . 5 ] ,

 in  which
Sp(m, R) -  is treated in more abstract manner than the present paper (see the
proof of Proposition 4.2).

We note here that the formula (2.3) is  a  key in deducing the properties of
the Bessel function ;15. So we implicitly used the realization of the representa-
tion on the space c9C3 . If we work on C5 not on Lg(em ), the proof of Theorem 3.2
is reduced to a  computation on j(°o-, z) - 3 - P, which follows from Proposition 4.4.

So we have
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Appendix. On commutant of a certain set of operators on L 2 (X).

L et (X , T , p ) be a  measure space, and put T o = {B c T  ;  p ( B ) < 0 0 } . In  this
Appendix, we assum e that th e  measure space is localizable. Here (X , T , p ) is
said to be localizable if  it satisfies th e  fo llow ing. L e t IsoA  ; A c T ol  be a  family
o f functions such that WA is  a  measurable function on  A  and  that soA (x)=ço i 3 (x)
holds for almost all xw A n B , then there exists a  locally measurable function yo
on X such that fo r every A E T o ,  yo(x)=çoA (x ) holds fo r  alm ost all x c A .  Note
that any o--finite measure space is localizable.

We denote by L °°(X ) the set of all locally measurable functions f  on  X  such
that ess. sup I f  (x )I is bounded fo r A E T Q. F o r f  L " ( X ) ,  we denote by M f  th e
multiplication operator o n  L 2 (X ) defined by IVI AD= f  (s o c  L 2 (X)).

Theorem. L et ,11 be a linear subspace of  L°°(X) satisfy ing the following con-
dition:

(C )  every  f E  Lee(X) can be approx im ated on an y  B E T ° by  elem ents in  i in  th e
sense of  convergence in measure.

I f  a  bounded linear operator T  on L 2 (X ) commutes w ith M e  f o r  a l l  w c-4 , then
T  is  a m ultiplication operator.

P ro o f .  We devide th e  proof into th e  following two steps.
( 1 ° )  I f  T  commutes with M ,  fo r  a l l  çoc,J1, then T  commutes with M f  f o r  all
f E L "(X ).
(2 0 ) I f  T  commutes with M f  for a ll f E  L °°(X ), then T  i s  o f  th e  form M n  for
some h E L - (X).

The step (2°) is  a  well-known fact that {M f  ; f E  L "(X )}  is  a maximal abelian
subalgebra in  the  algebra of all bounded linear operators o n  L 2 (X ) .  So we prove
here th e  step (1°) only.

L et us prove (1°) by contradiction. Suppose there exist a n  f  L " ( X )  and a
çbwL 2 (X ) such that a=11(TMf—MfT)çbII.L2(x) i s  p o s it iv e . L e t  E  b e  a positive
number. Then there exists a BwJ3 0 such that

(T.M f  —Mf  T)0 IlSbIlL2(Bc)_ , and II TO II L 2( B o).

Here B C  denotes th e  complement of B in X .  O n the other hand, by the  absolute
continuity of indefinite integral, there exists a  5> 0 such that II(TMf —M f T)011„ L 2  (e)

110111.2(e) E, a n d  17011..L2 (e) - hold for arbitrary e Q30 w ith  p(e) 5 . We fix
these B  and 5. By the condition (C) on t, there exist çoEit and  e B  such that
sup I f(x ) — go(x)I s  and p ( e ) ô .  P u t  B i =  B \e. L e t Xi b e  th e  characteristic
xEB\e
function o f .131 . We put Oi =0X, and  0 2 = 0 - 0 1 . T hen w e have 1162„II/.2(x) 2s.
Hence on one hand,

„, .- 

TM f  —  M f  T  sbl I L.2 (Bi ) II (T M f — T )  I 11,2(B) —  (TMf — Mf TV II 1.2(e)

a -2 s  .
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O n  th e  other h a n d , since T M ,=- M ,T , we see T M f  —Mf T -=T M f _„—M f _,T .
Therefere we have

11(T f  — M fT)011 L2 (Bi) 1 1 7  M f - M f ?Will L2 (B  +11(T M f - Mf T)0 211 L2 (B1)

5-11(T M f M f -Ç,T)0111L2(13,)+ 2 6 11T M f - M fT il

"L2(B,)+11 A 4 . f - y0T 0111L2 (B,)

+2617Mf  —Mf T 11.

Note that ,1114f -p0111L2 (X) -5. 6 110111L2 (X) -611011L2(X), because 0 ,  i s  z e ro  outside B1.
(Note also IlMf T0,11„ 11 TO142(B1) 17110L2x)• Consequently we get

11(TMf—MfT)042(s 1)526(11T1111011L2(x)+11TMf — MfT11).

Since e >0 can be chosen small enough, this gives a contradiction. Q.E.D.

C o ro lla ry . Let it be a linear subspace of  L 0 0 ( X )  satisf y ing the condition (C).
Let 91 be the algebra generated by  ,A  and the com plex  conjugate of 4 . T h e n  9 1
is dense in L °°(X ) w ith respect to  the weal?* topology.

P ro o f .  Recall th e  theorem o f Fuglede : if  N  and  T  a r e  bounded operators
o n  a  Hilbert space and  N  is  normal, then T N =N T  implies T N * =N * T  (see e.g.
Stfatilà-Zsid6 [11, 2.31]). From this and 114 =111,-„ we see that a bounded operator
T  o n  L 2 (X ) commutes with M , for all çc 2X i f  T  so does with M, for all yoE,61.
Then Corollary follows from von Neumann's double commutant theorem.

Q. E. D.

R e m a rk . In the condition (C), the family T o can be replaced by a  subfamliy
</C of To satisfying th e  following (*).

(*) F or any BET °, there exist a  countablly many K J C  a n d  a  locally null set
N such that B C N U (U

F or example, in  the  case  where itt is a Radon measure o n  a  topological space
X , th e  family ,X  of a ll compact subsets of X  satisfies (*).
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