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Introduction.

In an attempt to get the metaplectic groups of “higher degree”, Kubota
presented a Weil type representation for SL(2, C) in the papers [7]-[10]. A
similar construction of the covering groups of SL(2, R) was obtained by Yama-
zaki [16]. Briefly speaking, they replaced the role of the Fourier transformation
in the construction of so-called Weil representation [14] by that of the Fourier-
Bessel transformation. In the present paper we treat the case of the real
symplectic group Sp(m, R), using the Bessel functions of matrix argument defined
by Herz [5]. We start from a certain family of unitary operators defined on an
open dense subset of Sp(m, R). Then this family determines a projective unitary
representation of Sp(m, R). For a closer investigation of matters, we introduce
a factor set for the universal covering group of Sp(m, R), which can be computed
explicitly. The purpose of the present paper is to study such a family of unitary
operators in connection with the factor set.

Let us explain our results in more detail. Let S,(R) be the space of all
mXm real symmetric matrices and P, the space of all mXm positive definite
real symmetric matrices. For d>—1, we denote by L} P.) the Hilbert space of
square integrable functions on P, with respect to the measure (det x)°d x, where
dx is the restriction of usual Lebesgue measure on S,(R). We denote three
types of elements in Sp(m, R) by d(a)z(a 0 ) t(b)z(1 b) d’(c):(0 —tc-l)

’ 0tat/ 0 1 ¢c 0
for a, ce GL(m, R) and beS,(R). Corresponding to these elements, we define
three types of unitary operators on L}(P,) as follows. For p& L}(Py),

ds(a)p(x)=¢(‘axa)|det a|®*? (aeGL(m, R)),
ts(D)p(x)=¢p(x) etr(v/—1bx) (beSn(R)),
di(c)p(x)=p*(c 'x'cY)|detc| %7 (ceGL(m, R)).
Here p=(m+1)/2, etr(a)=exp(tr(a)), and ¢* is the Hankel transform of ¢ defined
by
o*(x)=, o) Asxy)det yydy
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with the Bessel function A; of Herz [5]. On the other hand, put
a b
9_{(c d)‘ESP("l, R); det c;EO} .

Then any element ¢ in £ is uniquely decomposed in the form o=t(h,)d’(c)i(b.).
Using this decomposition for o2, we define a unitary operator r;(¢) on L¥P,)
by rs(a)=ts;(b)ds(c)ts(b,). Let us now state our first theorem :

Theorem 3.2. Let o:(g 5), o’=(21,/ 5:), a”z(f,:, 5:) be three elements

in Q such that o”=00’. Then it holds that

”ar-1

ri(o)rs(a’)=rs(a")es(sgn(c c”c’ ™)),

where ea(C)zexp(«/——l—g(B—i—p)C) and sgnb (b€S,(R)) is the index of inertia
of b.

From this theorem, we see that r; determines a projective unitary represen-
tation of Sp(m, R), so that we obtain a unitary representation of the universal
covering group of Sp(m, R). To investigate this representation, we describe the
universal covering group of Sp(m, R) using an explicit factor set, which we
denote by A(oc, ¢), (g, c’Sp(m, R)). For example, we have an expression

6.1 Ao, )= % {Sgn(c)—Sgn(c¢”)+Sgn(c’)—Sgn(c™'c” ¢’ 1)}

for o, ¢/, ¢” in Theorem 3.2. (For the definition of Sgn, see §5). Now, for a
positive integer ¢, we consider the central extension G, of Sp(m, R) by Z with
the factor set gA(o, o’). Here G, is a group with the underlying set Sp(m, R)
X Z and the group operation (g, n)(¢’, n')=(co’, n+n’+qA(s, ¢’)). Then G,
for g=1 is by definition the universal covering group of Sp(m, R). For the
structure of G, we see in Proposition 6.1 that G, is a semidirect product of G,
and Z/qZ. Further in Proposition 6.2, we determine the normal subgroups of
G, For the representation of G, from Theorem 3.2 and (5.1), we obtain the
following

Theorem 6.3. For 0>—1, there exists an irreducible unitary represen-
tation Uqgs of G, on the Hilbert space L§(Pn) such that for (o, n)eG, with
a b
0_(0 d)E.Q, )
U, (o, n))=1’5(0)ea(—?n—5gn(c)) .

By virtue of the explicit factor set, we can specify the group of operators
on L¥Pn) generated by the set {rs(c); o€ @} as U, «G,) for m odd, and U, §G,)
for m even (Proposition 6.6).

The equivalence of the representation U, ; to relative holomorphic discrete
series representation of the universal covering group of Sp(m, R) is given by the
Laplace transformation. Therefore U, ; is found to be essentially the same as
that obtained in Yamada [15, Th. 3.5].
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The contents of each section are as follows. §1 is a preliminary and §2 is
a summary of the necessary facts about the Bessel functions of Herz. In §3, we
compute the factor associated with the family of operators {rs(¢); c€2}. In §4,
we define and compute an explicit factor set A(s, ¢’), and describe the universal
covering group of Sp(m, R) by it. Gathering these results in §§ 3-4, we obtain
unitary representations of the universal covering group of Sp(m, R) in §5. §6 is
devoted to study of the group G, §7 is a remark on the relation to relative
holomorphic discrete series representations. In Appendix, we give a sufficient
condition that the commutant of a certain set of operators on L2 X) is the
algebra of multiplication operators.

The author wishes to express his thanks to Professor T. Hirai for his
constant encouragement and various advices.

§1. Notations and preliminaries.

1.1. We denote by Z, R, and C, respectively, the ring of integers, the real
number field, and the complex number field. Also we use the notation M, (F)
and GL(m, F) for the total matrix algebra and the general linear group of degree
m with entries in F, where F=R or C. For a matrix a, ‘a is the transposed
of a. We denote by 1,, or 0, the unit matrix or the zero matrix of degree m.
For zeM,(C), Rez or Im z denotes the real or the imaginary part of z: Re z,
ImzeM,(R), z=Rez++/—1Imz The group of real or complex orthogonal
matrices and the group of unitary matrices of degree m are denoted by O(m, R),

O(m, C), and U(m) respectively. Moreover we use the following spaces of
matrices :

Sa(R): the space of all mXm real symmetric matrices,

Sx(C): the space of all mXm complex symmetric matrices,
P, : the space of all mXm positive definite real symmetric matrices,
On ¢ the Siegel upper half space of degree m, 9,={z€S,(C);ImzEP,}.

For aeS,(R), we write a>0 if a is positive definite. As usual deta or tra
means the determinant or the trace of a. Following Herz [5], we write etr(a)
=exp(tr a).

1.2. Throughout this paper, we fix an integer m>0 and use the letter p for
(m+1)/2 consistently, p=(m-+1)/2.

On the vector space Sn,(R), we define the measure dx as Il;s;dx;;. Here
the coordinate x;; is taken from the components of x=(x;;), and dx;; is the
Lebesgue measure on R.

Let GL(m, R) act on Sy(R) by x—taxa=x% (x€SH(R), acGL(m, R)). Then
P, is an open orbit. It is easy to see that the module of the linear transforma-
tion x—x® with respect to the measure dx is |det a|??, i.e., dx®=|det a|?”d x.
So we have a GL(m, R)-invaritnt measure (det x)"?dx on P,.

On the other hand, every element x< P, is diagonalized by an element in
O(m, R). Using the eigenvalues of x, we can write the measure dx in the form



108 T. Umeda
dx=Tlicjlt:i—t;|dt, - dtndu.

Here x=‘'utu, t=diag(t;, -+, tn), u€O(mn, R), and du is a Haar measure on
O(m, R). Since O(m, R) is compact, the absolute convergence of an integral with
respect to dx depends only on the part TTic;|t;—¢;]d¢t, - dtn. For example, the
integral

SP (det(xo++/—1 y)-*dy
is absolutely convergent if Re a>m for a fixed x,EPy,.

1.3. As in Herz [5], we make the following convention.

A complex analytic function f on S,(C) is called symmetric if it satisfies
fCuzu)=f(z) for all uO@n, C). A symmetric function f(z) is actually an
analytic function of m elementary symmetric functions of z, s,=trz, s, -, Sp
=det z. Using this fact, for a symmetric function f, we extend its domain of
definition from S,(C) to M,(C) naturally. Then we see f(‘z)=f(z) and f(zw)
=f(wz). Moreover, it is useful to note the following. Let x=P, and x? be
the positive definite square root of x. Then x'2zx'2€S,(C) for z€S,,(C), and
we have f(xz)=f(zx)=f(x%zx'?).

§2. Bessel functions of matrix argument.

In this section we summarize some results of Herz [5].

2.1. Definition of the Bessel functions.

Let ¢ be a complex numkter with Red>p—1. The Bessel function As(x)
(xeS,(0)) is defined as
@.1) Aa(x):(Zn\/—_l)"”S etr(z—xz-Y)(det 2)-3-?dz .

Re 2=2(>0
€8y (C)

Here the integral should te understood as
-mp -1 —6-
27) Ssm(metr(z xz 1)(det z2)7%"Pdy,

with the variable z=x,++—1y for a fixed x,€P,, and we take the branch of
the function (det z)~?-? for Re z>>0 determined by (det 1,,)--?=1. Since etr(z—xz"?)
is bounded in z=x,++/—1 y, the integral (2.1) converges absolutely for Re 6> p—1.
And by the Cauchy’s theorem, (2.1) is independent of x,=P,. Moreover we can
see that for any fixed x,E Pn, etr(z—xz~) is uniformly bounded in z=x,++—1 y
whenever x varies in a compact subset of S,(C). Therefore A;(x) is an entire
function in x and analytic in § for Red>p—1. In addition, for Red>p—1,
Ayx) is bounded in x€ P, and vanishes at infinity.

The analytic continuation in 6 of Aj(x) is carried out by the differential
recurrence formula:

(2.2) D((det x)°Ag(x))=(det x)*"*As-1(x),
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1
2
A; is analytically continued to all C, so that As(x) is entire in d and x
simultaneously.

For Red>p—1, (2.1) shows that As(x)=0O(etr(|x|)), and the same estimate
holds also for all derivatives of A;(x). Here | x| is the positive definite hermitian
matrix which satisfies |x|?=‘%x.

From the definition (2.1), we see that A;(x) is symmetric. So we can extend
the function As(z) for all ze M, (C).

The very important formula A, is the Laplace transform of (2.1):

where D:det(r;fj%), yy;=1 if i=j, and = if 7#j. It can be shown that
ij

2.3) SP etr(—x2) As(x y)(det x)0d x =etr(— yz-1)(det z)-3-7.

This converges absolutely for all yeP,, Rez>0, and Red>—1. Formulae in
the following subsections 2.2 and 2.3 are essentially based on (2.3).

Remark. For m=1, the relation of As(x) to the ordinary Bessel function

Ji(x) is given by jg(x)ZA,;(%ﬁ)(%)&. (c.f. Watson [13, 6.2])

2.2. The Hankel transform. Let ¢ be a real number greater than —1. We
denote by L% P,) the Hilbert space of all square integrable functions on P, with
respect to the measure (det x)°dx. Let us consider the linear transformation
with integral kernel As(xy):

(2.4 0=, p()Axy)det ydy.

Proposition 2.1 (C.f. Herz [5, Theorem 3.1]). The transform @—@* on the
space of continuous functions with compact supports can be extended on the whole
L3(Pn) as a unitary operator, and ¢**=¢. The integral expression (2.4) is valid
for o= Li(Pn) whenever it is absolutely convergent.

2.3. Weber’s second exponential integral. For Red>—1, q, beP,, and
Re z>0, we have an integral formula which converges absolutely (Herz [5, (5.8)]).

(2.5) SP etr(—xz)Asax)Asbx)(det x)°d x

=etr(—(a+b)z ) As(—az bz })(det 2)~%-7.

Here the branch of (detz)=?-? for Re z>0 is determined by (det 1,)-%-?=1.

§3. Waeil type factor of a family of unitary operators.

3.1. Let J be a real number greater than —1. On the analogy of Weil [14],
Kubota [9], and Yamazaki [16], we define the following three types of unitary
operators on L3(P,). For ¢ L}(Pn),
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di(a)p(x)=¢(‘axa)|det a|*? (aeGL(m, R)),
ts(b)p(x)=e(x) etr(v/—1bx) (beSn(R)),
di()p(x)=¢*(c'x'c7?)|det ¢| -7 (ceGL(m, R)).

Here ¢* is defined in 2.2.
In the following we often denote these operators as d(a), t(b), and d’(c)
without the parameter 0 in case there is no fear of confusion.

Proposition 3.1. Let be GL(m, R) be symmetric. Then we have
7 - S 7r -~
(di(—b1s(b)y =exp(v/ =17 (3+p) sgn b) .

Here sgnb is the index of inertia of b, i.e., the dimension of positive eigenspace
of b minus that of negative one.

Proof. We show the equality
(d (—b)tB) =(—b)d (b exp(v' =1 %(5+ p)sgnb).

Let us compute [=(d’'(—b ")t(b))*¢(x) for a continuous function ¢ on P, with
compact support. Put

D(x,, x:)=¢(x,) etr(v' —1 bx) As(x,bx,b)(det x,)°

xetr(v/—1 bx,) As(x.bxb)(det x,)°.
Then we see formally

[=|det bI“’”"SPm(SPm(D(xI, x)dx;)d .

To be precise, we consider the integral /. with convergence factor etr(—ecx,),
£>0,
=ldetb|*>*?| (| etr(—ex)®(x,, x)dx,)dx, .
JPp NPy
Then by Fubini's theorem,

IszIdetbl2P+25delgetr(—sxz)@(x,, x2)d xs
=det b]*7**[p(x,) etr(v/ =T bx,)(det x.Vdx,

X Setr((— e+ =1b)x,)As(x:bxb)As(x 1bx,b)(det x,)’d x, .

By the Weber’s second exponential integral (2.5), integral g-dx2 is equal to
etr(—b(x+x,)bz)As(—bxbz'bx,bz:*)(det z.)-%"?,

where z.=e—+/—1b. Therefore,
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I.= |det b|2?+% etr(—bxbz:*)(det 2.)°-7
x Sgo(xl) etr(b(v/ =T —z710)x,) As(— bz 'bxbz b, )(det x,)d x, .

Letting ¢ tend to zero, we have

I=|det b|2P*Pp*(bxb) etr(—+/ —1 bx) X lirrol (det z,)"%-?
=t(—b)d'(b-)p(x)X |det b|*+? l:i_l:lol (det z.)%->.

Recalling the choice of the branch for (detz)™%-?, we can easily compute the
factor :

lim | det z,|*+2(det 2)7 r=exp(+/ =1 %(aw) sgnb).
Thus we obtain the assertion. Q.E.D.

3.2. Let us consider the real symplectic group of degree m in the usual form,

Sp(m, R)={o=GL@2m, R);‘aJo=]}, j:((l)"‘ —(l)m)eMm(R).

We write 0=<? 3) using the mXm block components a, b, ¢, d € Mn(R), and
denote c=c(s). We put
R={ceSpim, R);det c(c)#0}.

Moreover we define three types of elements in Sp(m, R) as follows:

o= S = 1) wo= ),

for a, ce GL(m, R) and beS,(R).
It is easy to see that every =2 can be written uniquely in the form

(3.1) o=t(b))d’(c)t(bs), by, b,ESK(R), c€GL(m, R).

In fact, for a=<£Z 3), we have b,=ac! and b,=c~'d. Using the decomposition
(3.1) for ¢, we define a unitary operator r(g)=rs(g) on Lj(Pn) by

(3.2) ry(a)=tsb,)ds(c)ts(bs) .

Let us put exQ)=exp(v'—1 %(5+ pX) for CeC.

Theorem 3.2. Let o, o', 6” be three elemeuts in 2 such that ¢”=o00’. Then
it holds that
ri(o)rs(c’)=ric")es(sgn(c 'c"c’"")),

where a:(? 3), 0’———(?; [lz):)’ o”=(g,:/ 5:1)

For the proof of Theorem, we prepare a computational lemma.
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Lemma 3.3. Let ‘f=f, ¢, c’€GL(m, R). Then we have
3.3 d(e(fd () =t(f)d" (cfeN(f2),
(3.4) ad' (O Hd' () =t(fod (c fc)H(f2les(sgn ),

where fi=—"'c¢f ¢t and fi=—c' " f i/

Proof. 1t is easy check the following equalities.

(1) d(a)d(az)=d(a1a,), d(a)'=d(a™),

(2) 1b)t(b)=1(bs+Ds),  t(b)"'=t(—b),

(3) d’(c))d"(c)=d(—"ci'cy), d'(e)'=d"(—‘c),
(4) d(a)t(b)d(a)'=t(ab'a),

(5) d(a)d’(c)=d’'("a"'e), d'(c)d(a)=d'(ca).

By a simple computation we see that there hold the equalities in which d, ¢, d’
are substituted by d, ¢, d’ respectively.

(19 d(a))d(a,)=d(a,a:), d(a)"*'=d(a™),

(27 t(0)E(by)=1(bi+bs), Eb)'=E(—D),

(3 d'(c)d’(c)=d(—="ci'cs), d'(c)'=d'(—"0),
(47) d(a)t(b)d(a)'=t(aba),

(59 d(a)d'(c)=d'(*a 'c), d'(c)d(a)=d'(ca).

Moreover, recalling the equality (d’(—f")t(f))*=1, or
HN)=d'(f =N (fN—=NHd' ([,
we get by (1)~(5)
d’'((N)d'(c)=d"()d’(f (= )d'(f (= )d’(f)d'(c")
=d(=e fOH=d (f = d(—fc")
== fTleNd(=te T f A (f)A(— fe it (—c T )
=t(fod (cfc(f2).

This proves the equality (3.3). The second equality (3.4) can be obtained in a
parallel way. In fact, instead of (d’(—f )t(f))*=1, we have only to use the
equality (d’(—f)t(f))*=es(sgn f), which was shown in Proposition 3.1.

Q.E.D. for Lemma 3.3.

Proof of Theorem 3.2. Let the decomposition of o, ¢’, ¢” be a=t(b,)d’(c)t(b,),
o’=t(b1)d’(c)t(bs), o”=tb!)d'(c”)(bY). We have b,-+b;=c'c”c’"?, because ¢”=
ca’+dc’, by=c'd, bj=a’c’"'. Put f=b,+bj=c'c¢”c’"’. Then f is symmetric
and
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o”=00'=t(b))d"(c)t(b)t(b1)d’(c")t(bs)

=t(by)d’(c)t(f)d (c")t(bs) .
So by (3.3), we get
o”=t(b,+ f1)d (c fc"NM(fi+b2),

where f,=—‘'¢"'f ¢ ' and fi=—c’"'f 1%’ The uniqueness of the decom-
position shows that by=b,+f,, by=f;+b; and ¢”"=cfc’. So by definition,

r(a”)=tb+ f)d'(bfc)E(f:+bz) .
On the other hand, we have
r(o)r(a’)=t(b,)d’(c)t(bo)t(b1)d’ ()t (b2)
=Hb)d () f)d’ (¢ (bz) .
Then by (3.4), we get
r(o)r(a”)=tbI(f)d (c fe ([t (boex(sgn f)
=+ fod (c feH(f3+br)es(sgn f)

=r(c”")es(sgn f).
Hence the theorem. Q.E.D.

§4. A factor set for the universal covering group of Sp(m, R).

In this section we describe the univarsal covering group of Sp(m, R) using
a factor set, which is convenient for our purpose. We give some explicit com-
putations for the factor set, too.

4.1. We introduce the following notations.

(I) For {=C, {+0, we choose the principal value of its argument as
—rZArgl<m.
(2) For aeM,(C), we put

Arg(a)= %) Argp,

where the summation is taken over all non-zero eigenvalues g of a with multi-
plicities.

Remark 1. For a=S,.(R), we have
Arg(a)= %(sgn(a)—rank(a)} .
2. If aeM,(R), then Arg(a)ernZ.

4.2, A decomposition for elements in Sp(m, R).

Following Weil [14, Ch. V, n° 46-47, Prop. 6, Cor’'s 1 & 2], we explain a
“normal” form for o=Sp(m, R), which generalizes the expression (3.1) for
elements of Q.
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Let a:(f (I;) with a, b, ¢, deM,(R), and rank(c)=r. Let V be the space

of row vectors of dimension m. Let V,CV be the range under right multi-
plication by ¢, and V, the orthogonal complement of V, in V. We choose

orthonormal basis u,, -+, u, of V; and u,4;, -+, un of V,. And we make a
matrix u by arranging u,, -+, u, in m columns in this order. Then ueO(m, R).
Moreover we put

1 0 e, —e
4.1 =("y ) e=ta—e=(" ) E=( ).
@D é Om—r) CeminTl ( Lo-r (el e,

In this situation, ¢ can be written in the form
4.2) o=d(u (g d(*AEt(h)d(u),
where g, he S,(R), e;he,=h, 2eGL(m, R). Moreover for a fixed u, the decom-
position is unique.
Next let us look over how g, h, 2 change in case u is replaced. If we

choose another orthonormal basis of V, and V, and make the matrix u’ as above,
then v=u’u"' is of the form

vz(”‘ ) 0,€0(r. R), 1,€00n—r, R).
Vs

So we see v lew=e,, vie,w=e, dw )E,d(v)=FE, Using this, we get easily

4.3) g=v7g'v, h=v"'h’v, A=v'2v,

where o=d(u' "\t(g)d(A )Et(h’)d(u’) is the decomposition corresponding to u’.

4.3. For a:(f j)eSp(m, R) and z€ 9, we put J(o, z)=cz+d. It is well

known that J(o, z) is invertible. It can be written in terms of the decomposition
(4.2) as
J(o, 2)=u""e;(uztu+h)+e)u,

because c=u"'Ae,u, d=u"'A(h+ey)u.
Now we define, using (4.2),

4.9) AJ(e, 2)=Arg(A)+Argle,(uz'u+h)+e;)

Recalling (4.3), we see easily that this does not depend on the choise of u, so
that AJ(o, z) is defined as a function of ¢ and z.

Let o€, i.e., rank(c)=m. Then, from the decomposition (3.1), we can
choose u=1,, and get

(4.5) AJ(o, z)=Arg(c)+Arg(z+c'd).
b
a—l
AJ(a, z)=Arg(ta ')=Arg(a™).
The important property of AJ(g, z) is the following.

Let ¢=0, i.e., 02(81 ) Then we can also choose u=1, and get
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Proposition 4.1. For a fixed e=Sp(m, R), the function AJ(e, z) of z is
continuous on Hn.

. z, * . .
Proof. Let us write uz‘uZ(*l *) z,€5.(C). ltis easy to see z;,€9,. Since

. . h
e,he,=h, the matrix h is of the form ( ‘0 ) h,eS,(R). Then we have
m-r

zi+h, * )

0 1n/~
Therefore we have only to consider the eigenvalues of z,+#h,. Since z,+h,€9,,
its eigenvalues are in the complex upper half plane $,. By definition, whenever
© is in 9, the map p—Arg ¢ is continuous. Thus the continuity of the map
z—Arg(z,+h,) is verified, because the roots of a polynomial depend continuously
on its coefficients. Q. E. D.

e,(ztz‘u+/z)—|—e2=(

4.4. Let us put j(o, z)=det J(s, z). Then we see
(4.6) ila, 2)=1j(o, 2)|exp(v' =1 A (0, 2)).
On the other hand, for o, ¢’€Sp(m, R), z€9,, we have
“.7 Jlaa’, 2)=J(o, 0'2)J(6’, z) and j(oo’, 2)=j(a, 6’2)j(0’, 2).

Here the action of Sp(m, R) on 9, is given by

tz=(az+b)cz+d)™!, z=<g 3)651}(711, R).
Now we consider
(4.8) Ao, o 2)‘—“%(/1](0, d'z2)—Af(oa’, 2)+AJ(a’, 2)).

From (4.6) and (4.7), we see that exp@rzv/—1 A(s, ¢’ ; 2))=1, so that A(e, ¢’ : 2)
=Z. On the other hand, by Proposition 4.1, A(g, ¢’;z) is continuous in z.
Therefore we find that A(g, ¢’ ; z) does not depend on z€9,. So we write it
by A(e, ¢’) instead.

By a simple computation, the following cocycle condition for A(g, ¢’) is

verified :
Aloc’, 6”)+ Ao, ¢ )=A(e, a’'c”)+Alc’, a”).

Now using this factor set A(g, ¢’), we construct a central extension G, of
Sp(m, R) as follows. As an underlying set, we take G,=Sp(m, R)xXZ. The
group operation in G, is given by

(o, n)(o’, n)=(a0’, n+n'+A(g, a").
Proposition 4.2. The group G, is the universal covering group of Sp(m, R).

Proof. This can be seen by restricing the factor set on the maximal com-

a —z)eGL(Zm, R); a++/—1 beU(m)}. But we give here

pact subgroup K= {(b



116 T. Umeda

another proof in order to mention the topology on the covering group.

Let us realize the universal covering group Sp(m, R)~ of Sp(m, R) as in
Kashiwara-Vergne [6, (3.5)]: Sp(m, R)~={(e, L,); 6€Sp(m, R), L, L,} en-
dowed with the group operation (¢, L,)¢’, L, )=(¢”, L,.) with ¢”=0g¢’ and
Ls(z)=L,(0'2)+ Ly (z). Here L, is an element of a family .£, of functions on
. given as follows. For any fixed 6=Sp(m, R), L,(z)=log j(o, z), where the
values of logarithm are taken in such a way that we get a univalent continuous
function on the simply connected domain §,. Note that L, is determined by its
value at z=+/—1, and that the topology on Sp(m, R)~ is given as the induced
topology from Sp(m, R)XC to {(s, L,(~—1)}. Now, we put for c€Sp(m, R),
s(o)=(o, log|j(o, 2)|+~ —1 AJ(c, 2)). Then Proposition 4.1 shows that s(o)e
Sp(m, R)~, so that s gives a cross section from Sp(m, R) to Sp(m, R)~. It is
easy to see that s(oo’) 's(a)s(e”)=(1, 2/ —1 A(a, ¢’)). Thus the factor set
A(o, ¢’) determines the universal covering group of Sp(m, R).

Let £’ be the set of =2 such that c(s) has no negative eigenvalues. Then
we see from (4.5) that the cross section s is continuous on £’, so that the
topology on the subset {(¢, n)EG,; 0€L2’, n€Z} is the direct product topology
of Q' and Z. Q.E.D.

4.5. A computation of A(s, ¢’) for a generic case.
Here we compute A(e, ¢’) for the case that ¢, 6/, 6”=006’€ 2. The idea is
simple. In the definition (4.8), we specialize z as v/ —1co.
. _/a b ,_(a’ b ,_(a’ b
As before, we write a—(c d>’ g —(c’ d’)’ g —(c” d”)' In the formula
(4.5) for o€, put z=+/—1¢ (¢: positive real number) and let ¢ tend to infinity.

Then we get AJ(o, \/—_loo)zArg(c)—I—%m, whence

(4.9) —AJ(6”, vV—10)+AJ(6’, v/ —1co)=—Arg(c")+Arg(c’).
There remains to compute AJ(c, o'(v/ —100)). We see that ¢'(v —1t)=a’c’ " +¢(t)
with e(t)e9,, and tlim e(t)=0. Therefore by (4.5),
—+o0
AJ(o, o'(v—=1t)=Arg(c)+Arga’c’ ' +e(t)+c1d)
=Arg(c)+Arg(cic”c’ He(t)) .
The following lemma leads us to the conclusion.
Lemma 4.3. Let th=heGL(m, R). For et)eHn with zllrl’l e(t)=0, we have
tlim Arg(h+e(t)=—Argh).
— 400
Proof. Since h+e(t)eDn, its eigenvalues are in the complex upper half
plane. On the other hand, the eigenvalues of h are non-zero real numbers, to
which the eigenvalues of h+e(f) tend as t—+4oco. According as the eigenvalue

of h+e(t) tends to a positive or negative real number, its Arg tends to 0 or =
respectively. By definition, Arg of a positive real number is 0 and that of a
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negative one is —x. Therefore we see that Arg(h-+e(t)) tends to —Arg(h).
Q. E.D.
From this lemma, putting h=c"'c”¢’"!, we see that AJ(s, o’/(~/—11t)) tends

to Arg(c)—Arg(c™*c”c’"*) as t tends to infinity. Gathering this and (4.9), we get
the following.

Proposition 4.4. Let o, 0/, 6"=00'€R. Then
Ao, a’)z—zl? {Arg(c)—Arg(c”)+Arg(c’)—Arg(cc”c’ M)}

4.6. In the remainder of this section, we make preparations for §§5-6.
First we give a computation of AJ(o, z) by reduction to lower dimensional case,
when ¢ and z are written in the form of a direct sums of lower dimensional
ones. Next we compute A(eg, ¢’) for ¢, ¢’ in the maximal compact subgroup of
Sp1, R).

a(i) b(i)

Let a‘i’z(cm d(i))ESp(m‘“, R), and z¥ €9, @ (=1, 2). We put oW Fg®
___(Ca 3) With a:a(l)@a(Z)y b:b(l)@bﬂ), c:c(l)®c(2), d:d(l)@d(?). Here

. . a® 0
aV@®a® means the direct sum of matrices (0 a”’)'

Proposition 4.5. It holds that
A](UU)_’F_GQ)’ ZO@zP)=AJ(c®, zV)+AJ(c @, z?).
Corollary 4.6. Let d{?Spim®, R) (i, j=1, 2). Then
A(a{”-’l\—a{”, 052)_’[_@2)):14(0]0)’ o)+ A, o).

Proof of Proposition 4.5. Let r®=rank(c(¢?)) (=1, 2), and put m=
mP4m®, r=r®4r®, We denote the matrices appearing in the decomposition
(4.2) for ¢® by the suffixed letters such as u®, g®, A®®, 2, Similarly we use
the notations e (¢, j=1, 2) for the matrices that define E.® in (4.1). Then we
have

0D F 0@ =d(uzt(g))d(‘A")F t(ho)d(u,),

Where U(}:u(])®u(2), g(!:g(l)®g(2)y hozh(l)@h@)’ /20:2(1)@2(2)’ and F:
E,w+E,». Let v€0(m, R) be a permutation matrix such that v(e®+e®)p!
=e¢,;, then we have v(e{’+ef?w '=e, and dW)F d(v-')=E,. Here e,, e, are as
in (4.1). Hence

oD F 0@ =du(g)d(‘A)E,t(h)d(w)

with u=vu, g=vgw™, h=vhw™, 2z=vidw™’. It is easy to verify that this gives
the decomposition (4.2) for a“’—’l\-a‘z’. So by definition (4.4), we get

AJ(e®Fa®, z20@z®)=Arg(A)+Arg(e;(u(z "Dz @) utey),
and for the first term in the right-hand side
Arg(D)=Arg(v(APHA® ) )=Arg(2")+Arg(1®),



118 T. Umeda
and similarly for the second term. Therefore
Aj(a(l’—T—a(z), z“’@z(Z))ZA](U(”, Z(”)-i-Af(o(z’, 2@, Q.E.D.

cos  —sin 0) d

Put k(m:(sin 7 cos 8

B(ﬁ, 0’):%(Arg es/:lro_i_Arg e\":To‘ _Arg e\’——l(9+0’)) .

Then we see for —x<86, 0'<n=,
1 if =7=60+6'
B, 6H)={ 0 if —z=6+6'<=x
-1 if 040'<—~.

Proposition 4.7. A(k(6), k(8"))=DB(0, 6’).

Proof. 1t suffices to show AJ(k(#), vV —1)=8 for —x<f<z. For =0 or
6=—mr, this equality is obvious. For the case —x<6<rm, 0+0, we have the
decomposition (4.2) for 2(8) with r=1, u=1, g=cot @, h=cot §, and A=sin 6.
Then by definition (4.4), we get AJ(k(0), v —1)=Arg(sin 6)+ Arg(~/—1+cot 6)
=¢. Hence the proposition. Q. E.D.

Put k(8 -, 0m)=k(01)—T— -|A—/e(6'm). Then from Corollary 4.6 and Prop-
osition 4.7, we see

Proposition 4.8. [t holds that
A(k(By, -+, On), k(GY, -, 00)=27 B(O:, 67).

Corollary 4.9. We have A(E., E,)=vr, especially for r=m, A(d'(l), d’(1))=m.
Moreover we have A(—1lsm, —lom)=—m.

§5. Representations of the universal covering group of Sp(m, R).

First we recall a general proposition about generators of a group and their
relations, which is found in Weil [14, Lemme 6].

Lemma 5.1. Let G be a group, and U a subset of G such that the condition
U NUanUbNUc+# @ holds for arbitrary elemenis a, b, c in G. Let G’ be a
group and n a map from U to G’ satisfying the relation n(uu’)=n(u)p(u’) for
u, u’, uw'€U. Then v is uniquely extended as a gronp homomorphism from G
to G'.

Note that the condition for U is satisfied when U is an open dense subset of
a topological group G.
Let us introduce a notation. For a=M,(C), we put

Sgn(a)z%Arg(a)-l—rank(a).
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If a is real symmetric, Sgn(a) coincides with Sgn(a) as in Remark 1 in §4. Note
that Sgn(a)eZ for ac M, (R).

Using this notation Sgn, we can rewrite the formula in Proposition 4.4 as
follows.

(6.1) Ao, ‘7/)='Lll‘{SgH(C)—*Sgn(c”)+Sgn(c’)—Sgn(c“c”c"‘)}.

We describe the universal covering group of Sp(m, R) as the group G,
defined by the factor set A(s, ¢’) as in Proposition 4.2.

Theorem 5.2. For 6> —1, there exists a unitary representation Us of G, on
the Hilbert space L¥P,) such that for (o, n)eG, with 6 <=2,

Us(o, n)=ro)es(—4n—Sgn(c(a))) .
Here rs(o) is defined in (3.2).

Proof. By Lemma 5.1, it is enough to see that U;(g, n)Us(c’, n')=Uj(¢”, n”)
for o, ¢/, 0"=00’€R, and n’=n+n'+A(o, ¢’). We write c=c(o), ¢'=c(o’),
and ¢”=c(¢”). Now by definition,

Us(o, n)Us(a’, n')=r(o)r(c")es(—4n—4n’—Sgn(c)—Sgn(c’)).

We have r(o)r(e’)=r(c")es(Sgn(c*c”c’"*)) by Theorem 3.2, and 4A(e, ¢')=
Sgn(c)—Sgn(c”)+Sgn(c’)—Sgn(c*c¢”c’™) by (5.1). So we get

Us(a, n)Us(o’, n')=r(c")es(—4n—4n’—4A(g, ¢’)—Sgn(c”))
=r(c")es(—4n"—Sgn(c”))=Us(a”, n”).

This representation is strongly continuous, because it is continuous on the
subset {(o, n); o€, neZ}. Q. E. D.

Proposition 5.3. The representation U; (0> —1) of G, is irreducible.

Proof. We show that a bounded linear operator T on L3(P,) commuting
with every Us(o, n) is a scalar operator. Since T commutes with #(b) for all
beSn(R), T is written in the form Te(x)=f(x)p(x) (ps L¥(Pn)) for some
essentially bounded function f(x). (For its proof, see Appendix.) On the other
hand, T commutes with d(a) for all a€GL(m, R). So the function f(x) satisfies
the condition that f(x)=f(*axa) for all a=GL(m, R). Since GL(m, R) acts
transitively on P, by x—‘axa, the function f(x) must be a constant.

Q. E. D.

Let us determine the kernel Ker U; of this representation U;. Note that a
normal subgroup of G,=Sp(m, R)~ is either equal to G, itself or contained in
the centre, and that the centre of G, is {(+1, n); neZ}. Since Ker U; is normal,
we have only to compute Us(l, n) and Us(—1, n). From Corollary 4.9, we see
(—1, n)=(d’1), n—m)(d’(1), 0), so that
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Us(—1, n)=Usd’(1), n—m)Usd’(1), 0)
=d’'(1d’'(1)es(—4n+4m—m)es(—m)=ezs(—4n+2m) .

Moreover, we see also from Corollary 4.9, (1, n)=(—1, n+m)(—1, 0), so that
Us(1, n)=Us—1, n+m)Us(—1, 0)
=es(—dn—4m—+2m)e;2m)=es(—4n) .
Thus we have the following.
Proposition 5.4. The kernel of the representation U;s of G, is given as
Ker Us={(1, n); (5+p)neZ}u{<—1, n; (5+p)(n——7;—)eZ} .

Let G5 be the image of G, under U, Since the representation U; is irredu-
cible, the image of the centre of G, under U; coincides with the set of all
scalar operators in Gs. We see that G; is generated by the set of operators
{rs(a)es(—Sgn(c(a))) ; o= 2}, because G, is generated by the set {(g, 0); o= 2}.
In the next section we determine the group generated by the set of operators
{ro(o); o2},

§6. Certain central extensions of Sp(m, R) and their representations.

6.1. Let ¢ be a positive integer. In this section we study the central
extension G, of Sp(m, R) by Z with the factor set qA(s, o’) (g, 6’Sp(m, R)).
Here G, is by definition a group with the underlying set Sp(m, R)XZ and the
group operation (o, n)(o’, n’)=(ca’, n+n’+qA(s, ¢’)). As we see in Proposition
4.2, G, is equal to the universal covering group of Sp(m, R). To avoid any
confusion, we denote an element in G, by (g, n), throughout this section.

In case ¢ devides ¢’, consider the natural injection j,, from G, to Gy

’
defined by j,, (0, n),,z(a, %—n)q Then through j, 4, we can (and do) identify

G, with a normal subgroup of G, of index ¢’/q.

Proposition 6.1. The group G, is isomorphic to a semidirect product of G,
and Z/qZ.

Proof. 1t is enough to find a subgroup H, of G, such that H,=Z/¢gZ and
G:NH,={(, 0);}. Put quk(z%, 0, -, 0). (See 4.6 for notation.) Then from
Proposition 4.8 we see

(i) A(k,, ky)=-—1,

(ii) for ¢=3 and 1=/=¢—1,
if lqu

1
Ak, ké)Z{
0 if l#gs.
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Here we put q(,:%—-l for ¢ even, and ¢,= q;l for ¢ odd. Now, let H, be the

subgroup of G, generated by &, with k,=(kg, 1); for ¢=2 and k,=(k, —1), for
¢=3. Then from (i) and (ii) we see that H, is of order ¢, and that x is of
the form (ki '), with /20 mod ¢ for 1=/=<¢—1. Therefore H, satisfies the
required conditions, and we have proved the proposition. Q. E. D.

We give here some remarks. If m is odd, then G, is isomorphic to the
direct product group G,xZ/2Z. In fact, put H={(1, 0),, (—1, m),}. Then by
Corollary 4.9, H is a subgooup of G, of order 2. Clearly H is contained in
the centre of G,. In case m is odd, we have G,N\NH=/{(1, 0),}, whence G,=
G, H=G, X H.

In general, the centralizer of G, in G, is the centre of G, which is given
as {(£1, n),;neZ}. It is easy to see that the centre of G, contains a non-
trivial element of finite order if and only if ¢m is even. And when ¢m is even,
(—1, gm/2), is the only non-trivial element of finite order contained in it.
Therefore G, is expressed as a direct product of G, and a subgroup of G, if
and only if m is odd and ¢=2.

6.2. Normal subgroups of G, Here we determine the normal subgroups
of G,

Propesition 6.2. Let N bz a normal subgroup of G, Then we have the
following two cases: (i) N=G, for some divisor | of q, or (ii) N is contained in
the centre of G,

Proof. Put N;=NNG,;. Then N/N, is canonically isomorphic to the image
of N under the projection of G, to G,/G,=Z/qZ. Therefore N/N, is a cyclic
group. Let / be the order of N/N,. Take a £€G, such that &N, is a generator
of N/N,. Then we have N=\JiZ} £‘N,. On the other hand, since N, is a normal
subgroup of G,=Sp(m, R)~, we have two cases: (i) N,=G,, or (ii) N, is
contained in the centre of G,. In case (i), we have N=G,. In fact, since N/N,
and G,/G, have the same order in the cyclic group G,/G,, they coincide with
each other. It follows from this that N=G,, because N and G, contain N,=G,.

Let us consider the case (ii). It suffices to show that & is in the centre of
G, As N is normal, we see afa*eN=\J!Z} &N, for a=G,. So we can write
it as aba™'=£"Yy(a) with i(a)eZ, 0=<i(a)<! and w(a@)eN,. Consider Bafa™*f?
for B€G,. Then we obtain §iF® -1 i@ =By @y (g)y(fa)'EN,, so that i(fa)
=i(B)i(e) mod [. Therefore the map a—i(a)mod/ is a group homomorphism of
G to (Z/IZ)*. On the other hand G, is equal to its commutator group. So we
see (a)=1mod/ for all a=G,. From this and 0=<i(a)</, we find that i(a)=1
for all a€G,. At the same time we have proved that v(Ba)=v(B)v(a) for
a, B€G,. Now, let us write v(a)=(vi(a), n(a)),. Since v(a) is in the centre of
Gg vola)==%1. Then we have y,(a)=1 for all =G, by the same reason above.
Gathering these, we see afa'=&u(a) with v(a)=(1, n(a)),. Consider the I-th
power of this equality. Then noting that &' is in the centre of G, we get



122 T. Umeda

(1, 0)g=v(e)' =(1, In(a)),, whence n(a)=0. Consequently wv(a)=(l, 0), for all
a€G;. Thus we see that & commutes with all elements in G,, so that € is in
the centre of G,. Q. E. D.

6.3. Representations U, ;. Now, we consider representations of G, similarly
as in Theorem 5.2.

Theorem 6.3. For 6>—1, there exists an irreducible unitary representation
U, s of Gq on the Hilbert space LY Pyn) such that for (o, n),€G, with 68,

Usilla, md=ria)es —+n—Sgn(c(a)) .

This is proved quite similarly as Theorem 5.2. Moreover similarly as com-
putations for Proposition 5.4, we can show U, s(—1, n)q):eé(—%n-i—Zm) and
U, 1, n)q>=e5(—%n), because (—1, n);=(d'(1), n—gm)y(d’(1), 0), and (1, n),=
(=1, n4+gm),(—1, 0),. So we have

Proposition 6.4. The hernel of the representation Uy s of G, is given as

Ker UM:{(L g (5—{—1))% ez}u{(—l, n)g: (5+p)<% —%)ez} .

Remark. The representations U, ; are compatible with the inclusion j, . :
G—Gy, namely U, s=Uy 5°7q.q-

6.4. In the following, we determine the group generated by the operators
ri(o), €. Note that ry(o)=U, s((6, —Sgn(c)),) with c=c(s) for s=2. So we
determine the subgroup of G, generated by the set {(¢, —Sgn(c(0))),; c=2}.

Proposition 6.5. The subgroup of G, generated by the set {(c, —Sgn(c(o))),;
o€} is equal to G, if m is odd, and equal to G, if m is even.

Proof. Let G be the subgroup of G, generated by the set {(¢, —Sgn(c(o)))s;
csQ}. Put u,=k(,, -, 0,) (see 4.6) with ,= --- =6,=2r/3, O,p1= - =0n
=—2r/3. Then u.€£ and Sgn(c(u,)=2r—m, whence (u,, m—2r);G. On the
other hand, using Proposition 4.8, we get (u,, m—2r)i=(l, 2r—m),. Therefore
G contains (1, 2r—m),. In case m is odd, taking » with 2r—m=1, we have
1, ),eG. This shows that G=(1, n), for neZ, so that G contains all elements
of the form (o, n), with 02 and n€Z. Therefore G=G, for m odd.

In case m is even, since Sgn(c(s)) for o€ is even, we have GCG,. On

the other hand, putting r:-%l—-}-l, we see (1, 2),€G. So G contains all elements

of the form (o, 2n), with =2 and neZ. Therefcre G=G, for m even.
Q.E.D.

Let G, be the image of G, under the representation U, ; Then we have
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G, 5=G,/Ker U, ;. From Proposition 6.5, we obtain the following.

Proposition 6.6. The group generated by the set of operators {ry(o); o< 2}
on the Hilbert space LY Prp) is equal to G, if m is odd, and equal to G s if m
s even.

§7. Relation to relative holomorphic discrete series representations.

For p= L}(P,), we define the Laplace transform ¢ of ¢ as
gb(z):SP o(x) etr(v/—1 xz)(det x)’dx .

This integral converges absolutely for every z€®,, so that ¢ is a holomorphic
function on $,,. We denote by %; the image of Lj(P,) under the Laplace
transformation. By the isomorphism ~: L} P.,)—4; we transfer the operators
ds(a), tib), dj(c), and rz(o) from L P,) to ;s whicw we denote by dya), £5b),
dj(c), and rs(a) respectively.

It is easy to see that

di(a)p(z)=|det a| " ?@(a"'z'a™),
t5(0)p(2)=(z-+b) .

From the formula (2.3), we see

&é(l)go(z)=(det%__l)_5_p¢(_z—1) )
So we have

~ -4~
di(e)p@)=|det | -2(det E) T g(—cmiz e,

because dj(c)=ds(*c)dj(L).
Let us consider an anti-automorphism of Sp(m, R) defind by o—°c=i‘cl,

where [:(0’" lm). We see °0=(:f :2) for cr:(g 5) Note also that ‘o=

1n On 1. 0,

Jio71],, where j‘:(O 1) Then we have for o=,

ri(0)@(2)es(—Sgn(c(a))=7("c, 2)0?3(°a, 2).

Here j(°o, 2)"-?=|j("0, 2)| * P exp(—v —1(6+p)AJ(°0, 2)). It turns out from
this that our representation U; of G,=Sp(m, R)~ in Theorem 5.2 is essentially
identical with that constructed in the paper of Yamada [15, Th. 3.5], in which
Sp(m, R)~ is treated in more abstract manner than the present paper (see the
proof of Proposition 4.2).

We note here that the formula (2.3) is a key in deducing the properties of
the Bessel function A4;. So we implicitly used the realization of the representa-
tion on the space ;. If we work on 4 not on L} Py), the proof of Theorem 3.2
is reduced to a computation on j(°¢, z)~9-?, which follows from Proposition 4.4.
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Appendix. On commutant of a certain set of operators on L2(X).

Let (X, B, #) be a measure space, and put By={BeB; u(B)<oo}. In this
Appendix, we assume that the measure space is localizable. Here (X, B, p) is
said to be localizable if it satisfies the following. Let {p.; A=B,} be a family
of functions such that ¢, is a measurable function on A and that ¢.(x)=¢z(x)
holds for almost all x€ ANB, then there exists a locally measurable function ¢
on X such that for every A€B,, ¢(x)=¢4(x) holds for almost all x€A. Note
that any o-finite measure space is localizable.

We denote by L=(X) the set of all locally measurable functions f on X such
that ess. sup| f(x)| is bounded for Ae®B,. For fe L~(X), we denote by M, the
multiplication operator on L*X) defined by Myp=fp (o= L¥(X)).

Theorem. Let A be a linear subspace of L™(X) satisfying the following con-
dition:
(C) every feL=(X) can be approximated on any BB, by elements in A in the
sense of convergence in measure.

If a bounded linear operator T on L*X) commutes with M, for all @&UA, then
T s a multiplication operator.

Proof. We devide the proof into the following two steps.

(1°) If T commutes with M, for all ¢, then T commutes with M, for all
fe L=(X).

(2°) If T commutes with M, for all fe L=(X), then T is of the form M, for
some he L2(X).

The step (2°) is a well-known fact that {M,; f L=(X)} is a maximal abelian
subalgebra in the algebra of all bounded linear operators on L*X). So we prove
here the step (1°) only.

Let us prove (1°) by contradiction. Suppose there exist an fe L*(X) and a
¢e LX) such that a=|(TM;—M;T)f|.:x, is positive. Let e be a positive
number. Then there exists a BB, such that

“(T]V[f—xwa)Sb“LuB)201—5, ||¢||L2(BC>§ , and ||T¢||L2(BC)§E-

Here B° denotes the complement of B in X. On the other hand, by the absolute
continuity of indefinite integral, there exists a 0>0 such that [[(TM;—M,T)¢| 12
Ze, ¢z =e, and |T¢| L2y =<¢ hold for arbitrary ee®B, with u(e)<d. We fix
these B and d. By the condition (C) on J4, there exist p&A and ¢C B such that
Isggglf(x)—go(x)l <e¢ and p(e)<d. Put B;=B\e. Let X, be the characteristic

function of B;,. We put ¢,=¢X and ¢,=¢—¢,. Then we have |¢]rz2x)=2e.
Hence on one hand,

MTMy—=M TPl ey Z (T Mp—MT)ll Lo — (T My —M Tl L2cor

>a—2e¢.
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On the other hand, since TM,=M,T, we see TM;—M;T=TM; ,—M;,T.
Therefere we have

TM;—M;T)Pllresy ST M;—MTillewy +I(TMp—=M Tl 12,
SITMy- =My T)pillr2sy +2e| TM;— M, T
SITMy ohillemp +1Mp- Thill o)
+2¢|TM,;—M,T].

Note that | M- o¢illzec Selldillzecn el @llrecx), because ¢y is zero outside Bi.
Note also |M;-,Tdllrecy <elTdillesy SelTl¢lz2cxy. Consequently we get

(TM;—M;T)llLecap =2e(I TPl Lecxy HITM;—M,TH) .

Since >0 can be chosen small enough, this gives a contradiction. Q.E.D.

Corollary. Let A be a linear subspace of L™(X) satisfying the condition (C).
Let U be the algebra generated by A and the complex conjugate of A. Then U
is dense in L=(X) with respect to the weak* topology.

Proof. Recall the theorem of Fuglede: if N and T are bounded operators
on a Hilbert space and N is normal, then TN=NT implies TN*=N*T (see e.g.
Stratild-Zsid6 [11, 2.31]). From this and M§=Mj, we see that a bounded operator
T on L*X) commutes with M, for all oA if T so does with M, for all pE .
Then Corollary follows from von Neumann’'s double commutant theorem.
Q.E.D.

Remark. In the condition (C), the family B, can be replaced by a subfamliy
X of B, satisfying the following (*).

(*) For any B€%9,, there exist a countablly many K,€ X and a locally null set
N such that BCNU(U K,).

For example, in the case where p is a Radon measure on a topological space
X, the family X of all compact subsets of X satisfies (*).
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