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Existence of spherically symmetric global solution to
the semi-linear wave equation u, —Au=au?+b(Vu)’

in five space dimensions
By
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(Communicated by Prof. Mizohata January 11, 1983)

§0. In this note we shall study the following initial-value problem for a semi-
linear wave equation with spherical symmetry

u,— Au=au?+b(Fu)? (x, )e R"XR,
0.1) u(x, 0)=f(x) xeR"
u(x, 0)=g(x) xeR"

where a and b are real constants.

It seems to me very remarkable that nonlinear wave equations are likely to have
global solutions rather in higher dimensions, if the initial data are sufficiently small
and mild. S. Klainerman [3] proved that if the space dimension n is not smaller
than 6, very general quasi-linear wave equations with quadratic nonlinearity have
global solutions for sufficiently small and mild initial data. His proof is based on a
version of Nash-Moser iteration scheme. Later G. Ponce [4] obtained the same
result employing L,— L, decay property of the solution to the wave equation.

On the other hand, F. John [2] showed that this is not the case in n=3. He
showed that certain quasi-linear (or semi-linear) wave equations, for example (0.1)
with a>0 and b >0, have no global C2-solution in n=3 for initial data with compact
support, however small and mild the data may be. In [2], he also studied the
spherically symmetric solutions for

(0.2) u,—Adu=u? (x,)eR3xR,.

He showed that there exists a numerical constant ¢ such that the solution exists at
least for 0<<t<(1/2)ec/n, if the magnitude n of (certain derivatives of) the initial data
is sufficiently small.

In this note, we shall confine ourselves to the case n=5. We shall show that if
/, g depend only on r=|x| and the magnitude of the initial data is sufficiently small,
then there exists a unique spherically symmetric global C2-solution of (0.1).
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Finally we must mention that G. Ponce [4] proved for more general quasi-linear
wave equations in n=>5 that the solution exists up to the time T,=0(e!/") if the
magnitude 5 of the initial data is sufficiently small.

§1. We shall review the representation of the sphericallysymmetric solution of
the wave equation.
Let x=(x,, x5,..., x,) € R" and ¢ € C}(R"). We set

(1) o= oGetrh)do,

where w,=2n"/2/(n/2) denotes the surface area of the unit sphere in R" and dow its
surface element. Then v is an even function of r and satisfies the Darboux equation

(1.2) o+ =Ly —4p=0.

r

We also find for the initial-values
v(0, x)=p(x), v 0, x)=0.

Especially when ¢(x) depends only on x,, say ¢(x)=(x,), v is written as

(13) o(r, ) =25 | (e, 4 rp) (L= p2) 02

and v satisfies

(1.4) Oy + ":1 0y Dy, =0.

Furthermore, if ¢ is an even function, then v(r, x,) is even in each variable.
We set

(1.5) u(r, t)=gil o(t+rp) (1 — p2)n=312dy,

Then by (1.3), (1.4), we can see that u(r, t) is a spherically symmetric solution of the
wave equation.
We choose ¢ to satisfy

u(r, 0)=S11 o(rp) (1 —p2)n=3izqy

=f(r).
When n=odd, differentiating "2 f(r) (n—1)/2-times with respect to \/ r, we have

(n—1)/2
(1.6) o(r) =—n—1_T—"<% -c?'_r> (r"=2 f£(r)
o("5)
(see Courant-Hilbert [1], Chap. VI, §13).
Changing the variable of the integration, we obtain
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Proposition 1.1. Let n=odd, feC"*D/2(R) and f(—r)=f(r). Then the
solution of the initial-value problem

n—1

Uy = Upyp = —— u,=0 (r, e R?

(1.7) u(r, 0)=£(r) reR
ulr, 0)=0 reR
is represented as
a t+r _

(1.8) u(r, t)= 21“( n_11 > - —aTSt_erf(p) {r’—(p—1)2}=32dp

—r

(n-3)/2
where @ ;(r) =<% % (r"2f).

In the similar manner, we have
Proposition 1.2. Let n=odd, g € C""VY/2(R) and g(—r)=g(r). The solution
of the initial-value problem

u,,—u,,-——n:l u,=0  (r,)eR?

(1.9) u(r, 0)=0 reR
u/r, 0)=g(r) reR

is represented as

+r
L10)  u(r, 1)= . [T 0,02 = (p-1y2ye-r2dp
2["( n—1 )ru—l t—r
2
where @, has the same meaning as above.

In the case n=35, we find
_ 1 d .3

=5 3L (P)+ 02 (P)}.
Then integrating by parts (1.8), (1.9), we obtain

Theorem 1.3. Let fe C3(R), g C'(R), f(—r)=f(r), g(—r)=g(r). Then the
solution of the initial-value problem

44-0 (r,0)eR?

Uy — Uy — ’

(1.11) u(r, )=f(r)  reR

u/r, 0)=g(r) reR
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is represented as

(112)  u(r D=z {(t+ DA (7 + (=12 f (=1

ot f(p)d +_1_Sl+' (p)(r2—12+p2)d
3,3 I_’P p)apT 4.3 ’_rpgp r pelap.

Remark 1.4. According to the previous propositions, we must assume fe C3*(R),
g € C¥(R) to get the representation. But it is easy to verify that u, represented as
(1.12), is the C2-solution of (1.11), if we merely assume fe C*(R), g € C'(R).

Employing Duhamel’s principle, we have

Theorem 1.5. Let w(r, 1)e C{R?) and w(—r, )=w(r, t). Then the solution
of the inhomogeneous initial-value problem

u,,—u,,—%u,=w(r. 1) (r. )€ R?

(1.13)
u(r, 0)=u/r, 0)=0 reR
is represented as
l t (t—t+r
(1.14) u(r, =45 So S pw(p, T){r? — (1 —7)2+ p?}dpd.
t—t—r

§2. If there exists the spherically symmetric C2-solution of (0.1), then u(x, )=
u(r, t) is the solution of the following initial-value problem

u,,—u,,—%u,=au,2+bu,2 (r,)eRxR,

@1 u(r, 0)=f(r) reR
u(r, 0)=g(r) reR.

We shall denote sometimes C(u,, u,)=au?+ bu? for abbreviation.
By Theorem 1.3 and 1.5, we find that u is represented as

-7

@2 ulr, =0, D+ g || PO w)(p, D~ (1 =)+ p?)dpds

-1

where

@23 wr, )= {(+ N+ +@=r)fe=r)}

t+r t+r
— 5y S,-, pf(p)dp+ 74‘,—3 S,-, pg(p)(r?—12+p*)dp.
Differentiating (2.2) with respect to t, we have

(24) u,(r, t)=u?(r’ ]
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+ —2—17 St [(t—t+r)2C(u, u,)(t—1+71, 1)
r*Jo
+(t—1—r)*C(u,, u,)(t—t—r, 1)]d7

t t—t+r
—ats (=0 (77 potun o, dpde
0 t—t—r

(2.5) u(—r, y=u/r, t).
where
26) ud(r, ) =5 {(t+ N+ )+ =D f(t—1))

+ o [+ P+ )+ g+ 1)}
+(@=r{f'(t—r)+g(t—n)}]

—sh NS+ +( =) f (-1}

1 ttr t t+r
e S,_r pf(p)dp =55 S'_rpg(p)dp.
In a similar manner, differentiating with respect to r, we have

2.7 u(r, )y=ul(r, t)
+ ~2%2— S; [(t—t+7r)?*C(u, u,)(t—1+71, T)
—(t—1t—r)2C(u,, u,)(t—71—r, 7)]d7

t (t—t+r
7 0T o w)(p, D= =02+ p?)dpds

t—t—

t (t—ctr
5 |0 pCGe w)(p, D),

(2.8) u(—r, t)y=—u, r, t)

where

2.9) ud(r, =" {(t+ N f(t+n—(t=r)f(t=r)
— }_3{(1 +r2f(t+r)+(t—r2f(t—r)}
+#[(t+r)2{f ’(t+?)+9(t+_?)}
—(t=r2{f'(t—r)+g(t—r)}]

— i {(t+ S+ D)+ (=) f(t— 1)}

365
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t+r
to S.-, pf(p)dp

—55 " pao) 2=+ p2)dp+ 5 | pg(p)d
4,3 r_rl’.gp prlapT 5.z t_rpgp p-

Conversely, if C2-function u, =u,, u, =u, satisfy the integral identity (2.4), (2.7),
we can see easily

(2.10) u(r, )=f(r)+ S; u,(r, 7)dt

is the solution of the original equation (2.1). In this way, in order to get the global
solution of (2.1), we have only to show that there exists a solution of the integral
equations (2.4), (2.7) for all >0, if we assign sufficiently mild initial data.

We imagine that the magnitude of u?, u? may increase as ¢ tends to co, unless we
impose certain conditions on f(r), g(r).

Lemma 2.1. If a continuous function h(p) satisfies
2.11) <=L then we find
. = l+p2 3
t t+r
[0 novp| <cH
where C does not depend on any of r, t, h(p).

+r
Proof. We set I(r, t)=t7 S' h(p)dp.
t=r
When t<2r, we find

|[I(r, )| <2 l+rlh(p)|dp<2H ” »dp =2nH.
2
t—r —00 1+p

when t>2r, we find

t H
|I(r, t)|<-r—X2er
=-——lH—____
1+(—r)? "

Since t>2r, t —r>1/2 holds in this case. Then it follows

2tH
|I(rv, )| <m272—< CH.

With the aid of the lemma above, we have

Proposition 2.2. If f, g satisfy
(2.12) sup A+ fOI+1f' (P +1g(r)]) < o0,

then r2u?, r2u? are uniformly bounded for all (r, t) € R?.
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§3. We introduce the characteristic coordinates
x=t+r E=1+p
3.1) and
y=t—r n=t—p.
Under these transformations, R2={(r, t) € R?|t>0} is mapped to
A={(x, y)e R?|x+y>0}.

oy \2 _
We set U(x, y)=rtu,(r, t)=<x2y)ut<x2y’ x;y)

—2 _(x=» ¥\ (x—y x+y
Ve, ) =i, =252 ) u (252, 2
Then we can easily verify the following.

(3'2) U(y’ X) = U(x’ y)’ U(X, x) =0,
3.3) V(y, x)=—-V(x,y), (D;—D,)V(x, x)=0.

Here D,V denotes the derivative in the j-th variable of V. Multiplying r2 to the
both sides of (2.4), we have

B4 Ulx, )=U%, y)

+%—$02 l:—(x—l—‘[)z—{aU(x; Zt—x)z-'-bV(x’ 21 _x)2}
b U@y, bY@y, ) i

2 (" (7 (x_t4y—n)2UE n)>+bV(E, n)?
g_yg_g(x E+y—n) E=n? dndg

-5
=U%x, y)

v aU(x, 6)*+bV(x, 6)* * aU(e, y)*+bV(o, y)2
+ S (x—0)? d"”’g . (=)’
2 (= _naU, n)2+bV(E, n)?

X—y S-,S-g(x E+y—n) E=m? dnd¢

where
(3.5) U°(x, y)=xf(x)+yf(») +%{x2(f’(x) +9(x))+y*(f' (¥)+g(»)}

X+ By ) = 3f ()

T 2(x—y
xly g pf(p)dp— 2(;”;) S pg(p)dp.
Here we used X m? _ _ X, n)? for X=U, V.

(n—-2¢)° &—m?
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In a similar manner V satisfies
(3.6) V(x, »)=V%x, y)
+S" alU(x, 6)2+bV(x, a)2 S" aU(o, y)*+bV(0, y)? do

-x (x—0)* -y (0—y)?
6 S"S” aU(¢, n)2+bV(&, n)? .
&—n?

=7 ), )-
' {(x=8(x—n+(y =& (y—n}dnds

_4(*(r aU(& n)2+bV(E, n)?
4§l G dndt

where

3.7 Vo(x, y)=xf(x)—yf (y)+%{x2(f ") +9()) =y (£ () +9(¥)}
- Sy (331 = (52 + 30/ ()}

3(x+y) (%
+ 2580 (% rpydp

)X = +y(0=y) 4,

3
——S pg(p) =y

x—y

We introduce certain integral operators @, @, ¥, Q as the following.

Gy (©x =] K=
69 0= ey - TS dna
N (R e T e '7))3 dnde

G.11) (QX)(x, y)=8z S’_ g)((é(—é_";g);,—dndé.

We can readily verify

Proposition 3.1. Let X=U or V, then it follows

X ) g,
w | FEDde=0x)0, 0,
@ @0 H=@ ),
® iy ) 00— e dai = — @0, 2,

4 @xX)(y, x)= —(X)(x, y).
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Using these operators, the integral equations are written as
(3.12) Ux, )=U°%x, y)+a(OU)(x, y)+b(OV)(x, )
+a(OU)(y, x)+b(OV)(y, x)
—2a(PU)(x, y)—2b(BV)(x, y),
(3.13) U(y, x)=U(x, y), U(x, x)=0,
(3.14) Vix, »)=V%x, y)+a(@U)(x, y)+b(OV)(x, y)
—a(@U)(y, x)—b(OV)(y, x)
+6a(YU)(x, y)+6b(PV)(x, y)
—6a(YU)(y, x)—6b(YV)(y, x)
—4a(QU)(x, y)—4b(QV)(x, y),
(3.15) V(y, x)=—=V(x, y), (D,—D,)V(x, x)=0.
We sometimes denote for simplicity (3.12), (3.14) by
U(x, »)=U%x, »)+E,(U, V)(x, y)
V(x, »)=Vx, y)+E,(U, V)(x, ).
§4. Let C/(A) denote the class of functions which have continuous derivatives
up to order j. CJ/(A) is considered as a Banach space with respect to the norm
IIXI|,~=|a|zg; sup |D*X].

We shall seek the solution of the equations (3.12), (3.14) in the following classes
of functions

Iry={UeCA)|U(y, x)=U(x, y), U(x, x)=0}
I, ={VeCHA)|V(y, x)=—V(x,y), (D, —D,)V(x, x)=0}.

We denote A=0(B) when there exists a numerical constant C such that |4| < C|B|
holds for all 4, B in question. Following [2], we have

Proposition 4.1. For U, U*e ', there exist M, M* € C3(A) satisfying
@41 @ Ulx, »)=(x=y)M(x, y), UX(x, p)=(x—y)M*(x, y),
42) (2) DM —M*)(x. y)=0(|U-U*|ly)  for la<3.

Proof. Since U(x, x)=0, we find

s 1=t =4, )

_('d x+y+tx—y) x+y—t(x—yp)
_So dt U( 2 ’ 2 )d’
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_x—y (! x+y+tx—y) x+y—tx—y)
=228 (! (b, — pyu( ZXYHE=Y) | x4y Hx=p) Y,

2

If we set

M(x, y)_:_;_ S; (D, "Dz)U( x+y +§(X—J/’) , x+y _zt(x_}’) )dt,

we can easily verify (1), (2).

Proposition 4.2. For U, U*eT,, there exist P, P* € C¥(A) satisfying
“43) M U(x, y)=(x=y)*P(x, y), U*(x, y)=(x—y)*P*(x, y),
44 2 D*(P—P*)(x, )=0(IU—-U*|ly)  for |a|<2.

Proof. As before, we find

Ul(x, y)=_x;_yg:) (D, —D2)U< x+y+?t(x-y) , x+y—2t(x—y) )dt.

Since U(x, y)=U(y, x), it follows (D; —D,)U(x, x)=0. Then integrating by parts
we have

Ux, »=(Z32) [ a-a, —D;w( Xty Hiioy) Xty Hx=y) N

To verify (1), (2), we merely set

P(x, y)éﬂ(')(l—t)(o, - Dy ZHXHAEDY) AHyHxo)) Ny,

Finally, we have
Proposition 4.3. For U, U*e Iy, there exist R,, R,, R¥, R% € C*(A) satisfying
(4.5) () D;U(x, y)=(x—yIR(x, y), D;U*(x, y)=(x—y)R¥(x, y)
for j=1,2,
(4.6) (2) D*R;=RN(x, »)=0(lU—-U*lly)  for lai<2, j=1,2.

Proof. Since U(x, y)=(x—y)*P(x, y), D;U(x, x)=0 hold for j=1,2. Then
it follows

— 1 - - —
D,U(x. y)=;1‘_§LSO(D,—Dz)DjU<x+y+2t(x 2. xty=ix=y) )dt,

If we set

1 e o (v '
Ryx =4 (D = pyp,u( XEIHE=Y) Xy lx=) N,

We can see easily that (1), (2) hold.

In a similar fashion, for V, V*eTl 2, we can prove the followings.
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Proposition 4.4. There exist N, N* € C3(A) satisfying
@n V(x, y)=(x—yIN(x, y), V*(x, ) =(x—y)N*(x, y),
4.8) (2 DN —=N*)(x, p)=0(|V=V*|s)  for l|al<3.

Proposition 4.5. There exist Q, Q* € C%(A) satisfying
(49 () Vx, p)=(x=p)Qx, y), V¥(x, y)=(x—»)*Q*(x, y),
(410) ()  DHQ—-0%)(x, »=0(IV=V*4)  for |a<2.

Proposition 4.6. There exist S, S,, S¥, S¥ € C%(A) satisfying
(4.11) (1) DV(x, y)=(x=y)Si(x, y), D;V*(x, y)=(x—y)SF(x, y)

for j=1,2,

(4.12) (2) D(S;—=SH(x, »)=0(V=V*s)  for l|al<2,j=1,2.

By the considerations above, if we find Uel,, verl, satisfying the equations
(3.12), (3.14), then

u,(x, ) =5y U, 9)

(x—y

is C? and u, defined as (2.10), is the desired solution.
As in [2], let us introduce the function

2(x, y)=min(l, pc_iw)

We shall show that M, N,... etc. have the following improved estimates.

Lemma 4.7, Let M, N, M*, N* be the same as in the previous propositions.
For |a| <3, we have

O D*(M —M*)(x, y)=0(z(x, )IU—-U*4),
(2 D*(N—N*)(x, y)=0(z(x, IV—V*[4),
Especially we have
3 D*M(x, y)=0(z(x. Y)IUl4),
@ DN(x, y)=0(z(x, Y)|Vl4).

Proof. Since (x—y)M(x, y)=U(x, y), we find

(M—M*)(x,y)=0(ﬁ—i—y|—nv—v*uo) for x#y.

Differentiating (4.1) in x or y, we have
(4.13) (x—y) DM +(—-1)'"'M=D,U.
Then we find
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DM ~M)(x, 9)=C( 51U~ V%)

Differentiating (4.13) with D; and then D,, we have
4.14) (x=y)DjM +(=1)"'D;M+(—1)"'D;M=D;;U,
(4.15) (x_y)D”kM"'(‘—‘ l)i_lekM"l'(— ])j_leiM +( - l)k—lDUM =DijkM'
Here we abbreviate D;D;U to D;;U and D;D;D,U to D;U.
Then we find as before

DM = M4 (3, 1) =O0( 51U~ U* ).

DM~ M) (x, ) =0( L5 lU- U1

In this way, together with Proposition 4.1, we obtain
DM —M*)(x, p)=0(z(x, p)IIU=U*[l,)  for [al<3.
In the same manner, we obtain (2), (3), (4).
Differentiating the both sides of
(x—=y)*P(x, y)=U(x, y), (x—y)*Qx, )=V (x, y),
we obtain

Lemma 4.8. For |a| <2, we have

M D*(P—P*)(x, y)=0(z(x, y)*|U =U*[4),
)] DHQ—0*)(x, y)=0(z(x, )*[V=V*Il4)
©) D*P(x, y)=0(z(x, »)*|Ull4)

4) D=Q(x, y)=0(z(x, )*[ Vll4)-

For R;, S; (j=1, 2), we obtain

Lemma 4.9. For |¢|<2, j=1, 2, we have

O D*(R;—R})(x, y)=0(z(x, PIU-U*4),
@ D¥(S; =S¥ (x, y)=0(z(x, NIV—-V*|4),
3 D*Rj(x, y)=0(z(x, )| Ul4),

@ DS (x, y)=0(z(x, Y)IVla)-

Later, to establish the global existence of the solution, we shall make essential use of

(4.16) S°_° 2(x, y)de=Si° 2(x, y)*dy < .
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§5. In this section we shall carry out the estimates of |@X |4, | ®X |4, [P X4,
|2X] 4. ©X can be treated just in the same manner as [2]. Firstly we set

= Ux, y)?
1 L y)=—F2220 = PU.
(5.1) Wix, y) =y = PU
Differentiating the both sides of (5.1) once and twice, we have
2UD;U -1 202
5.2 DiW=—~—"o — (1)1
¢ E) A P

=2PD,U~2(—1)i"'MP

2D,UD,U_, 2UD,U _(_yyies 4UD;U
(x—y)? (x—y)? (x—y)?

4UDU U2
BRI G U R 0

=2R1R1+2PD,JU—4(‘1)'_1PRJ—4(—l)J_IPR,_é(—l)l+JP2.

(5.3) DW=

In this way, we know that, for |a| <2, D*W can be expressed in terms of P, R;, and
D*U. Differentiating (5.3) still more, we find that the third and the forth derivatives
of W can be expressed in terms of D*P, D*R; (|a|<2) and D*U (|f|<4). Then to-
gether with Lemma 4.7, 4.8 and 4.9, we obtain

Proposition 5.1. For |a| <4, we have

(D D*W(x, y)=0(z(x, y)*|U|l?),

(2) DA(W—W*)(x, y)=0(z(x, y)*(|Ull 4+ [U*[| )IU = U*|,).
Since  (OU)(x, y)= S” %d

(5.4) (" W, 0o,

we find by differentiating (5.4)
D.OU(x, y)=W(x, —x)+Six D,W(x, o)da
D,.0U(x, y)=(D,—D,)W(x, —x)+ D, W(x, —x)+$ix DW(x, 6)do
D...OU(x, y)=:--etc
In this way, we can see easily that
D*(OU -0OU*)(x, y)
—o(1w-w)+0({" ID(W-W*(x, )ldo)

=0((|1Ull4 + 1U*[DIU =U*|l4)
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FOU N+ 101U =U*1 " 2(x, 0)2do)

=0((|Ull4+ 1U*|JIU=U*]4).
Then we obtain

Proposition 5.2. For X=U, V, we have

10X —OX*|,=0((| X4+ 1 X*[ I X — X*[|4.
Next we shall carry out the estimates of #X. Let us denote
_(*(r x=¢& UE n)? (v y—n U n)?
5.5 dU(x, —S S i—é———————d dé+ <L 22
6.3 U D=] ) =y T ), ) =y @
=&,U(x, y)+ P,U(x, y).

Differentiating @, U in x, we have

dnd¢

(=& UEm)?
D.®,Ulx. y)= SS: =7 (=87

We change the variable of the integration as {=y +#(x—y).

dndé&.

Then we find

(o U(y +t(x—y), n)?
(5.6) D,®,U(x, y)—SO‘S_y_,(x_y) {y+t(x—y)—-n}3

dndt

y
=i MOyiGe=y)m) PO+ y), mdnds
0 J-y—t(x—y)
Differentiating @, U in y, we have

_ (v Uy, n? *x—& U, p)?
D,®,U(x, y)= S —n7? +S, Xy E—y)°

(v x—& U n)?
+S,S_¢ G=y)7 (& ome dnde

_ 0 UG, (% UG )2
S-y_(y'—_w‘d"““gy—(é—yr‘dé

L (FUG Y (7 x—E  UEn?
=y S @=y)° dé+§y§_¢ G Con)?

Changing the variable of the integration in the same manner as above, we obtain

d¢

dndi&.

(67 D,@.Uw »=—{" My, mdn+ " ME PE 1)

- So M(y+1(x—y), y)dt

#la-of MOy, PO+ =),
—ytt(x-y)

Differentiating (5.6) in x, we have
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(58) Dxx¢l U(xs y)

=, PPO+(x=p), —y—x = y)IMO+1(x =), = y=tx—y)ds
#2200 PO+ ) DR+ =), n)dnd

1
-3 S 2 S’ P(y+1(x—y), n)?dnd.
0 —y—t(x—y)
Similar computations show

(59) Do, Ulx. »)
=, (MO +1(x = ), PP +1(x-3), y)d

+S0 (1= DOM(y+H(x—y), —y—1(x—y)P(y+1(x—y), —y—tx—y))dt

y

+2 S; (1 —t)g P(y+1(x—y), DR (y+Hx—y), ndndt

Joy—t(x-y)

-3 So i(1—1) S  P(y+tx—y), n)dndr,

—y-t(x—y)

(5.10) D, U(x, y)

==M(y, =y)P(y, —y)-2 Si,, Ry(y, mP(y, n)dn
+307 Py = M@ )P g
+2{" Rue P& e =30 P yrae
+ S; M(y+1t(x—y), y)P(y+1x—y), y)dt
2] Ry +1(x =y, DPG+iCx-y), pyd
+3 S; P(y+t(x—y), y)3dt

+{ =M+ 1=, PO+,

0

—

= =M+ 3= ), =y —tx= PO +1(x ), =y — = )

0

1(y
+2 S S_y_‘(x_y) Ry(y+Ux—y), MP(y +t(x—y), ndndt

0o

-3 Sl (1—1)? S” P(y+1(x—y), n)2dndt.
o )

—y—t(x—y
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In a similar fashion, we obtain the expressions of the derivatives of ®,U.

Since, as we have shown, (D*®U)(x, y) (|a| <2) are written in terms of M, P, R,
the derivatives of @U up to the forth order can be expressed in terms of at most
the second derivatives of M, P, R;. Then together with Lemma 4.7, 4.8, 4.9, we
obtain

Proposition 5.3. For X=U, V, we have
[@X —®X*| =01 Xl + [ X*[DIX —X*]l4)-

Now we carry out the estimates of

Ga) &= | -6 YL ane,
Differentiating (5.11) in x, we have
DU, )= 2 | - 1) dnd
g ) e
#gy ) e e dnd
“ e y)3 Sy(k E)zgy U(é '7) -dnd¢
e ), ool e
gy ), 0 | g dnde
oy D) e dnde

A
ll‘ct

ZSy U(E, n)? —dndé

- x- y)3 (E—n)?

y

y X - (é_"l)3 s

—_

G
(x y)3 S:;ag‘ (x —&)2}(OU) (&, y)dé
e y)"-g

),

e »j—(x ~&)(OU)(E, y)d

Integrating by parts and changing the variable of the integration as =y +1(x—y),
we have
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(5.12) D,YU(x, y)
y

=2 S; ‘“-’)S M(y+t(x—y), MP(y+t(x—y), ndndt

—y—t(x—y)
+S; 11— 1)(D,OU) (y +(x— y), y)dt.

In a similar manner, we have

(5.13) D,PU(x, y)

=2S;(1—1)2 Sy M(y+t(x—y), MP(y +t(x—y), n)dndt

—y—t1(x—y)

+[. 1=020,00)(y + 16—y, yya
=7 P MG, man+ M e, e

1
- SO P(y+t(x—y), p)U(y+t(x—y), y)dt
Differentiating (5.12) in x, we have

(5.14) D, YU(x, y)

=2 S; 2(1=M(y+tx—y), —y—t(x— )Py +tx—y), —y—t(x—y))dt

y

+4 S; £2(1-1) S P+ i(x= ), DRy +1(x =), )dnds

—y=t(x=y

y

-6 Sl tz(l—t)g P(y+1(x—y), n)*dndt
0 —y—t(x-y)

+ 50 (1 —1)(D2OU) (y + 1(x— ), y)dt.

Similar computations show

(5.15) D,YU(x, y)

=2 S:, 11 = OM(y+t(x— ). Y)P(y+1t(x—y), y)dt

+2 S; H(1=1PM(y+Ux—y), =y —tx—y)P(y + t(x—y), —y —t(x—y))dt

y

+4 g; 1(1 —t)ZS )P(y+t(x—-y), MR, (y+1(x— ), n)dndt

—y—t(x—y

y

-6 Sl (1 —t)ZS P(y+t(x—y), n)*dndt
0 —y—t(x—y)

1

+\ (1= DiOU)(y+1x—y), y)dt

=]

+, 11-0°0,D,0U) (v +1x— ), yydt,
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(5.16) D, YU(x, y)

=2{] (1= 1M+ 1Ge= ), PP+ 1Gx=y). )t

+2 S; (L= 1PM(y+1(x—y), — y—1(x— Y)P(y+t(x — y), —y—t{x—y))dt

y

#8( =027 Py DR+ y), mdnds

—y—t(x—y)

y

—6Sl(l—t)3g P(y+t(x—y), n)*dndt
0 y)

—y—t(x—

+[ 1-120,00) 5 +1(x=y). y)at

y

=My, —y7=2{" MR =2 MOy, mP(y. nidn

+{] (A= DM+ 1= ). DPOY+iCx=p). D)1
+4 § P& PRa(E DAE+4 (| M(y+i(x=1), yIRA(y+1x= 1), D)t

+3 S P(&, yPRdE+3 S; M(y+1(x =), )P(y+1(x—). y)dr.

In this way; we have shown that the second derivatives of YU are expressed in terms
of M, P, R;. By the same arguments as before, we obtain the estimates of the
derivatives of YU up to the forth order. In a similar fashion, we carry out the
estimates for ¥V. Thus we obtain

Proposition 5.4. For X=U, V, we have
[PX —¥YX*[ =00 Xl s+ I X*IDNX — X*[4).

Since QX is handled with in a easier manner, we may omit the proof of the
following estimate.

Proposition 5.5. For X=U, V. we have
12X —QX*|,=0((I X [l4+ | X*[ )l X —X*{|4).

§6. Combining the preceeding estimates, we shall prove the existence theorem.
Theorem 6.1. Let fe C3(R*), g € C*(R) be even functions satisfying
s ) 4
sup [(1+r)3(X 1D f(rl+ X ID{g(r))]=n<co.
reR Jj=0 j=0

If n is sufficiently small, then there exists a unique global C?-solution of the

initial-value problem (2.1).
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Proof. We set W=(U, V), £E=(&,, E,). Then the equations (3.12), (3.14) are
expressed as

(6.1) W=WO°+E(W).
We seek the solution of (6.1) in the class of functions
: r={w=(U, V)|Uel",‘, Verl,}.
Firstly we must show that Z(W)eTI for WeI. It is clear that
Ei(W), E(W)eC¥4), U(y, x)=Ul(x,y), V(y, x)=-V(x,y).
By (3.12), we find
EW)(x, x)=2a(OU)(x, x)+2b(OV)(x, x) —2a(PU) (x. x)—2K(PV)(x, Xx).

Since
(@U)(x. 0= HED a4y —(0U) (x. »),

(V) (x, x)=(OV)(x, x),

then we find Z,(W)(x, x)=0.
Similarly by (5.6), (5.7), (5.12), (5.13), we can see

Dlgz(x, x)= DzEz(x, x)=0.

In this way we have shown E(W)eT for Wer.
The estimates in the previous section show that there exists a numerical onstant
Lsuch that

[EW—EW* | <LUWIa+ IW*[l)IW—W*|,  for W, W*er.
Let us define a sequence of functions W, as
Wo=WOo W,=W°+Z(W,_,) for n>1.
If we take sufficiently small ¢ such that

0 3 . .
”W ”4<é< 8L»

then we find by induction
[Wlle< 2,
“ u/;r+ 17 VV,,”4<48L“ I'V"— VVM— 1 ”4

<%||w,,—w,,_,||4 hold for all n3>1.

Then we can see W, converges to certain We I'= C*(A) which is the solution of (6.1).
Thus we have obtained the theorem.
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