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§0. Introduction

Let Q be a bounded domain in R" with smooth boundary. The operators &
which we shall treat in this memoire are of second order, linear, elliptic in the interior
of Q and degenerated only in normal direction at each point of the boundary. Under
some assumptions on 7, the existence and uniqueness of the classical solution u of
the equation «/u =f will be shown for any given function f with certain Hélder con-
tinuity up to the boundary. We impose no boundary condition because we assume
the “entrance property’’ of the boundary with respect to «.

There are many authors who have studied various types of degenerated elliptic
equations. Baouendi [2] treated the equations degenerated at the boundary, but
for which the boundary is non-characteristic. Baouendi-Goulaouic [3] studied the
equations degenerated in all directions at the boundary. The main tool in these
two works is the elliptic regularization initiated by Oleinik (see Oleinik-Radkevic
[7]) and the theory of interpolation in L? framework.

Recently, Goulaouic-Shimakura [6] studied the same class of operators as in
[3] in the Holder spaces. And Graham [10] studied the Dirichlet problems for
Bergman Laplacian also in some Holder spaces. Our interest in this memoire is to
study the same type of operators as in the Chapter V of Graham’s article. But the
Holder spaces with which we work are not the same because of the difference of the
boundary conditions. Our method is, as in [6] and [10], to make use of the ele-
mentary solution for the simplest model of our operators.

In §1, we consider the model L, in the half-space, and explain the non-isotropic
degeneracy at the boundary. In §2, we describe the general setting of our equations
in a bounded domain, and state the main results. In this work, some a priori
inequalities of Schauder type for solutions are essential. In §3, we reduce these
inequalities to the case of the half-space. And the a priori inequalities in the half-
space are finally established in §5. The §4 is devoted to introduce the elementary
solutions of L, and L,+ 4. The results on the existence and uniqueness of the



558 Toshio Horiuchi

solution stated in §2 are proved in §6. In §§7 and 8, we establish some detailed
estimates which are needed in §5.

The author would like to express his gratitude to Professor S. Mizohata and
N. Shimakura for their kind suggestions and a number of useful conversations.

§1. Preliminaries

The operators & treated in this memoire have, roughly speaking, the following
properties (see the hypotheses [H-1]~[H-6] in §2):

(a) Elliptic in the interior of the domain;

(b) Degenerated in the normal direction at each point of the boundary surface

(supposed to be smooth);

(c) Not degenerated in tangential directions at the boundary.
They are approximated, near the boundary, by the following simple operator L, in
the half-space R%:

62 n—1 62 a

La=—~x,,ax% _j=1 %2 +O(ax R

where o is a complex parameter with negative real part.
As C. R. Graham [10] pointed out, R% itself has a group structure G whose
multiplication is defined by

gxx=(g'+g,x', g2x,) for g=(g', 9, €0G.

It is easy to verify the identity
0 _ 2 < .0
() Lo, 450 ) (g %0 =03L (3 55 JO) |-

This identity explains very well the non-isotropic structure of L,: For anyvﬁxed
point y’ of R"™', L, is invariant by the translation x—(x'+)’, x,) (we regard y’ as
an element (y’, 1) of G). And for any fixed positive number k, L, is of degree 2 with
respect to the homothety: x—(kx’, k2x,) (we identify k with an element (0, k) of G).
Therefore, let us introduce a non-isotropic distance function d on R as follows;

) d(x, Y)={(/x,— /)2 +1x' = y'[2[4} 112,

This gose well with the group structure G because d(g X x, g x y)=g,d(x, y) (The
distance function adopted by Graham is left invariant one and is equivalent to d(x,
»)/Min (/X,, /¥,) in our notation).

We shall introduce, in §4, an elementary solution E(x, y) of L,. This kernel is
homogeneous of degree | —n with respect to left translations:

E(gxx,gxy)=gi"E(x,y)

(As the volume element in R%, we do not use the left invariant Haar measure of G
but the ordinary Lebesgue measure dx=dx, A ,..., Adx,).
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It would be helpful for the readers to compare L, with the model M, due to
Baouendi-Goulaouic [2]

M,=—-x,4+a 72 -
which is degenerated at the boundary in all directions. M, is associated with another
group structure G of R" whose multiplication is gox=(g'+g,X', g,X,). M, is
invariant by the translations: x—(x"+)’, x,) and is of degree | with respect to the
ordinary homotheties x—kx (k>0). And the distance function to be introduced to
R is ordinary Euclidian one |x — y| (or left invariantly |x — y|/Min (x,, y,)).

Let us return to our model L,. To study the regularity near the boundary of
the solutions u of the equation L,u =/, the ordinary distance |x — y| is not appropriate
but we must work with d(x, y) introduced in (2) above, because of the non-isotropic
property of L,.

Let us introduce two basic function spaces C%R") and VARY) for O<pu<|I
(then L, is a continuous map from the second space to the first space):

Ry Ju(x) —u(y)l
3) Ci(RY) = {ueCO(R ); sup|ul+Riu)£+ Az ) <+oo}

4) VA(RY)=(ueCO(RY) | 8,ueCO(RY),
d,u, 8;0,u, \/x,0;0,u and x,02u e C4(R", )

for j, k=1,..., n—1.

Where, we denot 0 i=1,...,n
0x;
Let us set,
5 Ulo=sup || and |ul, ,= su ___Iu(x)_—_u_(y)l’
) Il =sup Ju elu,a= sup G

With these semi-norms, we can define the related norms,

(6 llutllyya= llurll o + 14l and

n—1 n—1
”u”2+;l,d= ”u”oo+ _Z] ”aj“”oo+ “anu”;l.d+ ) kzl ”ajaku”u,d
Jj= Jok=

n—1 J—
+ jgl ” \/xnajanu “u,d + ||x,,63u “u,d'

Clearly, C4(R") and V¥%(R") are Banach spaces with the norms || g and || 24,4
respectively.

Next, we consider the case in which Q is a bounded domain of R". Let ¢ be a
given non-negative smooth function defined on @ and equivalent to a distance to the
boundary, that is to say,
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@) Q={xeR"; ¢(x)>0},
0RQ={xeR"; p(x)=0},
dp+0 on 0Q,

where Q and ¢ are supposed to be smooth.
Similarly to d(x, y) in R, we introduce a non-isotropic distance dy(x, y) to Q.

(8) dg(x, Y)={({ )= JP(»)? +|x - y[2}'72,
for (x, y) e 2 x Q.
For 0<pu< 1, we define C*(@Q; dy) and V#(Q: d,) by the following.

(@ d,)= . lu(x) —u(y)|
©) Cr(@2; dy) = {ueC(@); sup |ul + sup dle < ool

and set, [lufl,q,=llullo+ul,q, as in (5)and (6). In order to define V*(Q; d;) which
is analogous to V4(R"), we take a system of a finite number of smooth vector fields
{X;}¥-o on Q as follows,

(10) X;= 3 gu(x)8,, for xe@ and j=0, I,..., N.
k=1

Here, all g;(x)’s are smooth functions and are chosen so as to satisfy the following
conditions:
(A) There is a constant C >0 such that, for any x € 0Q, we have

Xop(x)=C and X,;p(x)=0, for j=1,...,N.

(B) There is a constant C>0 such that, for any x € Q2 and any tangent vector
n at x € 0Q, we have

N n 2
S| S gutom] zcme.
J=tlk=1

(C) For any compact set K <, there is a constant C=C(K)>0 such that, for
any xe K and e R", we have

N n 2
_Z l > gjk(x)fk‘ 2 C[¢|%
J=0ltk=1

The existence of {X;}}_, as above is ob\’/vious for a largle number N >0, and one can
see that X, is corresponding to ¢,, and ng 'X;X;to jzzjl 0%, in the case of half-space
RY
Now we can define V#(@; d).
(1) V@;dy)=(ueCYQ)|XueC%Q),
Xou, X; Xsu. /OX;Xou and ¢X3ue CH(Q; dy),
for j, k=1,..., N.
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And set,

N
(12) lullaspa,=lulle+ Z] 1X jull o + 11 X ot ay + 10 XFullia,
=

N
+ 2
e

J

N -
XX ulla,+ j;l IV OX ;X ou i o

Remark 1, It is easy to see that the space V*(Q; d,) does not essentially depend
on the choice of {X ;}1-,.

§2. Hypotheses and principal results

Let Q and ¢ be identical to the ones in (7), and for simplicity, we denote d;¢ and

0j0,¢ by ¢; and ¢, respectively. We consider a class of differential operators on
Q of the form

Jik=1

(13) o =— :Z a;(x)0;0, + i: a(x)0;+ag(x).
=

[H-1] (Regularity of the coefficients and the boundary)

a;(x) and aj(x) are in CH(Q; dg). Moreover we suppose that all a;(x)’s are
real valued, a;(x)=a,;(x) for j, k=1,...,n, ayx)’s are complex valued for j=1,...,
n, and 0Q and ¢ are smooth.

Remark 1. In order to establish the theorem I, it is sufficient to suppose that
0Q and ¢ are of C?*#-class.

Moreover we suppose that o7 satisfies the following hypotheses.

[H-2] (Elipticity in the interior)
For any compact set K<€, there exists a constant C=C(K)>0 such that, for
any xe K and £ e R", we have

n

> ajk(x)éjékgc(l()l5[2~

=1

[H-3] (Non degeneracy in tangential directions)

There exists a constant C >0 such that, for any x € 02 and any tangent vector 5
at x to 0Q, we have

) AZ . au(xmmez Clnl>.

jk=
n

Let us set g(x)= > a(x)@;¢/¢. Then,

Jok=1

[H-4] (Degeneracy in normal direction)
g(x) belongs to C*(Q: d,). and there exists a constant 0<C=<1 such that, for
any x € 0Q2, we have

C1zg(x)>C.
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The behavior near the boundary of the solution of “«/u=f"" depends essentially
on the values of the following function a(x),

(14) OC(X)={§] a x)p;— j‘:'/'_;l a;(X)d;}/g(x),  for xedQ.
Remark 2. The definition of a(x) is independent of the choice of the function
d(x) satisfying (7).
We suppose in this paper that:
[H-5] (Entrance property of the boundary)
a(x)<0, on 09.

Remark 3. In order to establish the theorem 1, it sufficies to assume Re a(x) <0,
on 0Q.

Let us set
(15) d‘,.(x)=k§'1 au (X for j=1,..n.

Finally, we add:

[H-6] (A supplementary assumption)
There exists a constant >0 such that, for any xe Q and j=1,..., n, we have

dj(x)=0(¢%*'12) and d(x)/$p!2e CHQ; dy).

We note that [H-6] is one of sufficient conditions to reduce .« to the model
operator L,. If we assume that all a;(x)’s are smooth, [H-6] is automatically
fulfilled. (Because, if all a;(x)’s are in C'(Q) and ¢ is in C*(Q), all di(x)’s are of
0(¢).)

[H-3] and [H-4] imply that o« has a Fuchsian principal part transversal to Q2
and «(x)+1 is a characteristic root of this principal part, the other root being O.
Therefore, [H-5] means that these characteristic roots at every point x € 0Q are
smaller than 1. By virtue of L2-theory for such operators as .o, we know that the
equation “«/u=f"" can be treated without any boundary conditions.

Now we can state the principal results. First, the following a priori estimate
holds.

Theorem 1. Suppose that & satisfies the hypotheses [H-1], [H-2], [H-3],
[H-4], [H-5] and [H-6]. Then, there exists a constant C>0 such that, for any
ueVHQ: dy), we have

(16) lull24pay S CLNL Ul gy + ulla} -
Here, the constant C depends only on Q and /.

To establish (16), we reduce it by localization, diffeomorphism and perturbation,
to the case of the model operator in R% of the form
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n—1
a7 L,=-x,0:— Y 0}+ad,. for xe R,
=

here o is a parameter corresponding to a(x) (see (14)). Then the proof of (16) relies
on the study of the explicite kernel of Green's operator of L.

Next, let us suppose that all the coefficients are real and aq(x)>0. Then we can
show that o is injective from V#(Q; d,) into C*(Q; d,) by the maximum principle.
And by virtue of L2-theory in the case all the coefficients are smooth, we can show
that & is surjective, that is to say,

Theorem 2. Suppose that o satisfies the hypotheses [H-1], [H-2], [H-3],
[H-4], [H-5] and [H-6]. Moreover. we suppose that all the coefficients of o are

real and ao(x)>0. Then, the operator & is an isomorphism from V#(Q; dg) onto
CH(Q; dy).

If the coefficients of lower order terms of .« are complex valued, we can not use
the maximum principle. But, from L2-theory, we can prove the analogous result.

Theorem 3. Suppose that o satisfies the hypotheses [H-1], [H-2], [H-3] and
[H-4]. In place of [H-5], we suppose that a(x)< — | and that a(x) (j, k=1,..., n)
belong to C*Q) and aj(x) (j=1....,n) belong to CYQ). Then, there exists a
sufficiently large positive number C such that the operator & is an isomorphism
from V#(Q; dy) onto CH(Q; d,), if Reag(x)=C on Q.

Remark 4. In this case, [H-6] is automatically fulfilled.

At last, we consider the resolvent of the operator o. Let us set,
(18) A, ={Ae C—{0}; |argA|Smn—y} U {0},

where, Y €(0, n) and C is the complex plane.
Then we have the following theorem which is sharper than the previous ones.

Theorem 4. We fix a Y €(0, n). Suppose that o satisfies the hypotheses
[H-1], [H-2], [H-3], [H-4], [H-5] and [H-6]. Then, there exists a constant
Ao>0such that, for any Ae Ay n {4, |A| 240}, the operator sZ + A is an isomorphism
from VH(Q: dy) onto CH(Q: dy). Moreover, if all the coefficients of o are real,
ao(x) is non-negative and if A is positive, then we have
(19) Mull o, I +Mully,, — forany ueVm(Q;d,).

Where, the constant Ay depends only on Q, y and /.

Remark 5. Under the hypotheses [H-1]~[H-6], we can show the following
a priori estimate:

N —
(20) II(/>X%UII,,.,1‘,,+jg1 INOX; Xoullya, + 3

N
Jrk=1

||Xiju”u,d¢

i
I Xoullwap+ V1A X X ulliay+ (121 =Ao)lut]
CSCI(A + Dl g
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where C is a positive number depending on Q, ¥ and .« but independent of u. And
this inequality (20) will be proved in parallel with the inequality (16).

Remark 6. By virtue of this theorem and the above Remark 5, we can easily
show that the operator —.o7 generates a holomorphic semi-group.

§3. A priori estimate in £ (proof of the theorem 1)

In this section, we reduce the inequality (16) to the model case. To do this, we
begin with a localization.
Let {(Q;, &)}, be a partition of unity of Q such that:

{Q;}M, is an open covering of Q,

_ _ M M

rog. Qc U Q]. éJECSJ(QI) and z é_’:].
j=0 : j=o

To establish the inequality (16) for u e V*(Q: d,), it suffices to consider each &;u for
j=1,..., M. Foreach Q;, there exists a diffeomorphism w; such as (¢ - w7 ") (y)=y,.
then Q; is mapped by w; onto W (a small neighborhood of the origin of R" whose
coordinates are denoted by y=(y,,..., y,)). By virtue of w; for j=1,..., M, we can
reduce the required inequality for each ;u to an analogous one in R:.

Let us set, for R>0, )

1 We={x=(x, x,) R%: |x'|<R,0<x,<R?} and
Wr=WgU{0Wgn(x,=0)}.

By a suitable w, the operator & is reduced to the following one defined on Wy
for sufficiently small R. For simplicity, we adopt the same coordinates x=(x’, x,,)
in place of y=(y’, y,). Then,

n—=1 n—
22) B = —Xbu(I X1 S bu(0103,~ "E bu(x)20,

+ 2 bx)0;+bo(x).
where all the coefficients of & are in C4(Wyg):
Moreover:
(23) b, (x)>0 ([H-41): b,(x)<0, for x,=0 ([H-5]);
bu(x)=0(x3), for k=1,....,n—1 ([H-6]) and
{bj(x)}173 is a symmetric positive matrix ([H-3]).

The next proposition 1 is a local version of the theorem 1 and the latter is a
consequence of the former.

Proposition 1. Suppose that # is of the form (22) and satisfies (23). Then,
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for a sufficiently small R>0, there exists a constant C=C(R)>0 such that, for any
ue V4 W,g), we have

@)l pama S CUBUawan+ [l g} + 2R,
where qgr(u) is a semi-norm of V4(W,p) defined by
40 = CUE 108y 15,0 ) + ORI
Let us set
(25) Bo= — X, b, (0)92 — j")k—::1 b (0)00; + b,(0)0,.

From (23), there is a suitable linear transformation of coordinates in R’ which
reduced %, to L, with o=b,(0)/b,,(0). Then, the proposition 1 is a consequence of
the following proposition 2 which will be established in the section 5 (see the lemma
2). For W R", we denote by &'(W) the set of distributions having compact sup-
port in W.

Proposition 2. For any R>0, there exists a constant C=C(R)>0 such that,
for any ue V4 Wg)n & (Wg). we have

(26) el 24 0,97 0 = CUI Lot 0,9 o+ 22l 0,97 0 -

Remark 1. Since & — 49, can be regarded as perturbation, it is not difficult to
see that this proposition assures the proposition I.

§4. Elementary solutions for L, and L + 2
Let us set, for (x, y)e R% x R with x#y,

@7) E(x, y)=y(n, ®)y; =" S(‘) A(x, y, 0)2%-"3{6(1 — 0)} =372
Where, A(x, , 0)={d(x, y)20+d(x, yy(1-0)}172,

dx. Y= {5 3+ 1 = y 24y,

y(n, @)= (4n) /2272271 r(” - 3‘;-— 2“)/1"( —2; ~1 ) ,

and ) Rea< —1/2 (%).

Then, E(x, y) is one of elementary solutions of L, ini R:. Let A be the complement
of the negative real axis in the complex plane, that is to say,

(28) A={le C—{0}; |arg A|+r} U {0}.

And let us set, for (x, y)e R x R% with x+y and 1€ 4,
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(29) Em(x, y):a(n’ a)iﬂ/Zy;a—l S; Kp(Z\/Z_A(x, y, 0))
A(x, y, 0)P{0(1 — 0)}~=73/2d6.
-3

2

Where, B=11"2 —a Rea< —1/2 (%),

o(n, a)= (47:)—!:/22—21—1/2/1“(_.:2’?__—__2)
and Ky(z) is the modified Bessel function of order f defined by

(B0)  Ky(2)= {r(lf%ﬂ.)(zz)ﬂ/ﬁ} S: (x3+22)7P= 112 cos x, dx,

= {2y (2N exp (= 2x0) (x5 =100 12dixs,

for Re f> —1/2 and z>0.
Then, E; ,(x, y) is one of elementary solutions of L,+/4 in RY, and E; , tends to E,
as A—0.

(*) Remark 1. The integral of the right hand side of (27) and (29) are not
convergent if Reae [ —1/2, 0), but if n2= 3, we see that E, and E; , can be continued
analytically with respect to « in that case (see the Remark (xx) of §7). ‘
In particular for a= —1/2, n=3 and A€ A, we have

d(x.y) J(x, 7).

G Byoypplx, y)= (8t yy 2 (R4 2 )} exp{ = 2R )}

Remark 2. We also note that: For X=(x,, x', x,)€ RI*! and §=(y,, J',
y,) € Ru*1 let E(X, ) be an elementary solution of L, defined by

(32) f‘a=La_a(2)'
where 0, is the derivative with respect to an auxiliary variable x,. Then, by the
definitions of E, and E, ,, we can show the relation

(33) E; X, y) =S o exp {— "\/Z(XO_J"O.)}E.:(’?’ V) dyo,

pIev)

where X(,/1) is the line {yo=1/\/2; —0<1<+00} in the complex plane C for
A€ A (if A=0, Z(/7) is the entire real axis.). By virtue of (33), one can see that
E,, has the same singularity as E, in a neighborhood of x=y. And by virtue of
(29), (30) and the fact A(x, y, )=d(x, y), E; , and its derivatives with respect to x
are exponentially decreasing as Re \/Zd(x, y) tends to + oo, for a fixed ye R% and a
fixed Ae A —{0}.

After all, we have the following lemma 1 (the proof is omitted).

Lemma 1. For Ae A and Rea<0 (Rea< —1/2, if n=2), E, ,(x, y) is an ele-
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mentary solution of L,+ A in R'.

Remark 3. The broof of this lemma and the construction of E, , can be done
by the same method in Goulaouic-Shimakura [6] (see also Graham [10]).

§5. A priori estimates in R" (proof of the proposition 2)

The proposition 2 is the direct consequence of the following lemma 2.

Lemma 2. Suppose that Rea is contained in a compact set K of the interval
(-0, 0). Take any feCHR%) having support in Wr={xeR"; |x'|<R and
0=<x,<R?} and put u=E,f. Then, each of the quantities listed in (a)~(d) below
is majorated by

C(K){||f"w+R”|f|u,d} B

where C(K) is a positive number depending on K but neither on R nor on f:
(@) R72ul; (b)y R 'dull, (1SjsSn—1);
(C) “anu ”co a"d Rulanulu.d;

(d) ”ajaku”oo* “\/gajanu ”oo* ”-Xna%u “co’ R”lajakuhl,d‘

R/ %,0,0,ul,q" and  Rux,c2ul,q (1<), kSn—1).

If n=2, the proposition 2 can be reduced to the case where n=3 as follows.
Let L, be an operator with 3 variables x,, x; and x, defined by L,—d3 (see (32)).
Then, u(x) can be regarded as a solution of L,u=f(=L,u)in R3} independent of x,.
Therefore the detailed proof of this lemma will be done only for n>3.

In order to prove the lemma 2, let us prepare the following properties [P-1],
[P-2] and [P-3] of E, (x, y), which will be verified after the proof of this lemma.
We denote any 0; (1< j<n—1) by D, various multi-indexes by y and Rea by «'.
And we fix a n (n=3) and fix a compact set K of the interval (— oo, 0), and assume
Reae K.

[P-1]: Forany ke (0, 1) and ¥ €(0, =), there is a constant C, =C (K, k, ¥, n)>0
such that, for any 2e A, m+|y|=3 and (x, y)e R} x R’ with x=%y, we have

|0DYE, (%, p)| SCyg, a(x, y)ya* ~d(x, y)2* +1=md(x, y)2-n=m=1],

Where, g, i(x, y)=exp { —k Re \/2d(x, y)}.

In particular, these estimates are valid for 1=0.

[P-2]: Let usset K, (x, y)=0,E(x., y).

There is a constant C,>0 and a non-negative function ¢ € CP(R") whose value is 1
for [x|=1 and O for |x|=2 such that, for any se R% and p>0, we have

1K\E) |l <Cs where f,,,s(x)=f("';s', \/7";\/%).
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[P-3]: Let us set K, (x, y)=0,E(x, ).
There is a constant C;>0 and a non-negative function n € C2(R") whose value is 1
in a neighborhood of the origin such that, for any R>0, we have

|Kn'lRlu,d é C3/R/‘, where nR(X) = ﬂ(-%——, }/;ll > .

Proof of the lemma 2. By virtue of [P-1], one can see that, for a fixed x € R,
E, (x, y)and 0;E; ,(x, y) (1< j<n—1) are locally summable if =0 and summable
if Re/A>0 with respect to y on R. Therefore the estimates of the quantities in
the group (a) and (b) are not difficult. It suffices to consider (c) and (d).
Group (d): By virtue only of [P-1], we can obtain the required inequality for each
of the quantities of (d). Since the proof can be done by the same procedure as the
estimation of derivatives of the Newtonian potential in bounded domains, the proof
is omitted (cf. [5]).
Group (c): Fix a point se R%. If d(0, s)=2R, we have |K,f()|SCC|flle- If
d(0, s)<2R, by subtraction, we have

f= (f‘f(S))st.s +.f(s)é3R,s =f,+f,.
Then we obtain

(34) K. /i SCC R fl,q and K, fo()SCollfle

Next, we take another point te€ R% with s#1t and write p=2d(s, t). Suppose that
R'>R+2p. Again, we write f=f,+f, +f;, where

==, fa=([=f()r—C,)
and S3(x)=f($)nrAx).
First, [P-3] implies
|K,f3(5) = Ko f3(DI S Ca(p/R'V [ fll o £ CC3(p/ R f | o-
Secondly, we have
K, f2()N=CCp#| flpa and K, fi(DISC(Cy + Co)pH fl -
Finally, we also obtain
IK, f2(s) = K, fo(DI = CC1p"| fl1.a-
Collecting these inequalities, we have
(35) |K,f(8) = K, (OIS CLC3(p/ RV IS 1| +(Cr + C2)p" flua) - ,
By (34) and (35), (c) is established. ; ' Q.E.D.

Now we verify [P-2] and [P-3] by using the facts which will be proved in
Appendix ([P-1] will also be proved there).
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Proof of [P-3]. Set n(x)=7j(x,), where 0<SA<1, e CP(R,) and fj=1 for 0<
x,£1,7=0 for x,=2. Then we have

(36) Knr,R(x)=_S (H_i/:)lza i <l+\/r>(\/x > t and

(37

S 7% - 1+p/2

I+ (1+¢ o)|dr<+ o

by virtue of the lemma A.3.
Hence, we obtain |K,ngl, = Clyl,/R* = C;3/R~.

Proof of [P-2]. It follows immediately from the homogeneity of K,(x, y) that
K,¢, (x) depends only on the parameter s,20. Therefore, we put p=1 and we
take for ¢ the following function,

&(xs s,)=a(x")b(/X, —/5,).

Where, a(x') e C*(R"""), b(x,) € C*(R) and having supports in |x'|<2 and |x,|<2,
their values are | for |x’|<1 and |x,|£!, 0£a<!| and 0<bH=1 in R""! and R
respectively.

Let us set

V,,(X. Sn)= {an.( *y Sn)} (x) .
By the lemma A.4, we have
Vi(x, 5,)= S b Yu=SDUNX, 1)y, =V i+ VE
0

Where,

Vi(x,s,)= S a(x")b(y/1x,— Vs")(1+\/1:) 2a=1 <1+\/‘>d7

Then, |V}|,<C, since the lemma A.3 in §8 below holds. And we also have

V <CS b n n T d ,,___C/
l I__ (\/y \/s)l\/x _\/y |a y
since b(t—./s,) has its support in the interval [(\/s,—2)+, 2++/s, . Q.E.D.

At the end of this section, we show the following lemma which provides the
basic estimate to demonstrate the theorcm 4.

Lemma 3. We fix a y€(0, n). Suppose that e A, and Rea is contained in
a compact set K of the interval (— o0, 0). Then, for any ue V4(R"%) having support
in W,, each of the quantities listed below is majorated by

C(Ks '//)”(La"' i)/‘“u,d»

where C(K, {) is a positive number depending on K and § but independent of u.
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(a) ”xna%u“u,d’ l|\/';l-;ajallul|[l,d’ ”6j0ku ”u,d and ”an” ”u,d (] é]* kén_ ]) 5
(b)  JINOule (1SjSn—1) and |2[ul,.q

Proof. For ve VARY)N &' (W), Reae K and yeA, n{lyl=1}, if we put
g(x)=(L,+7)v(x), we obtain v(x)=E,,g(x). Then, it follows from the Remark 2
of §4 that we can apply the lemma 2 to g and v. (By virtue of (33), it is not difficult
to see that [P-2] and [P-3] remain valid for this case, and we also note that E, ,(x, y)
and 0;E, (x, y) (1<j<n—1) are summable with respect to y on R’ for a fixed
xeR".). Hence, in order to obtain the required estimations, we have only to put
R =V/m, y=4/|2] and carry out a change of variables defined by

(x'y x,) — (V1A' 120 y) - Q.E.D.

§6. Proofs of the theorem 2, 3 and 4

Proof of the theorem 2. First, we show that the operator & is injective from
ViQ: dy) into CH(Q:d,). Suppose ueVi(Q:d,) and ~u=0. We assume,
contrary to the theorem, that u is not identically zero. Then, by the maximum
principle, u attains the maximum only on 0Q. Therefore, we may assume that u
attains the maximum at a point x°e dQ and u(x°)>0 (if not, we consider —u).
Without loss of generality, we suppose that x°=0, {x,=0} is the tangent space at
x% to 0Q and that x,>0 is locally the side of Q. Then we have «/u(0)=0. And
evidently we have o

— 'S 44(000,0u(0)20, 2u(0)<0 and du(0)=0 (I<j<n—1).
J k=1

Since J;u(0) (1< j=<n) are bounded, we can show
a;,(0)0,8,u(0)=0 (1Zj<n).

After all, we have
— ":Z] a ;4(0)2;0,u(0)+ a,(0)0,u(0) + ax(0)u(0)=0
jk=1

But, this contradicts to the fact a(0)=a,(0)<O0.

In order to prove the surjectivity of the operator &/, we prepare some proposi-
tions. First, from the inequality of the theorem | and the above uniqueness result,
we can derive, by a argument of functional analysis, the following a priori estimate
which is very strong (the proof is omitted): :

Prosposition 3.. Suppose that o satisfies the same hypotheses as in theorem 2.
Then, there is a constant C>0 such that, for any ue V/(Q; dg), we have .

(38) lull24pae SCIL Ul ya,
where the constant C depends only on <& and Q.

Let us set
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N
(39) 0= —dive grad+ ¥ "X X;+1,
Jj=1

where X ; is defined by (10) and ‘X is the formal transpose of X ;. It follows from
L2-theory (cf. [3]) that &° is an isomorphism from C®(Q) onto C®(Q). Simi-
larly we obtain:

Proposition 4. &7° is an isomorphism from V#(Q: d,) onto CH(Q; dy).

Proof. We use the following facts which are well-known in the Hoélder theory

(cf. [5]):

(a) For feCwQ;dy,), there is a sequence {f™}, such as fme C™Q),
1f™luap =20 fllya, and, for any ve [0, ), | f"—fl,,4,—0 (as m—c0).

(b) If a sequence {u"},.n is bounded in C#(Q: d,) and is a Cauchy sequence
in C%(Q), then it is a Cauchy sequence in C*(Q; d,) for any ve [0, p) and its limit is
contained in CH(Q; d,).

It suffices to prove that the operator &7 is surjective. Suppose fe C#(Q; d,), then
we can take a sequence {f"},.y Which satisfies (a). For each me N, there is a u™e
C=(8) such as %" =f™, and from (38), ||u™| .4, remains bounded and {u"},.n
is a Cauchy'sequence in V*(Q, d,) forany ve [0, p). From (b), the limit u of {u™},,.y
in V*(Q; d,) is an element of VR, d,) and by taking the limits of the both sides of
&oum=f"in C*(Q2; d,), we have o%u=f. Thus, the proposition 4 is proved.
Q.E.D.

End of the proof of the theorein 2. Now we complete the proof of the theorem
2 by virtue of the proposition 3 and the proposition 4. We consider the family
{#,}o<:<; of operators defined by

(40) Ly =(1-1)Z°+ 1.

Then for each 1€ [0, 1], & is linear and continuous from V4(&, d,) into CA(Q; dy)
and satisfies (38) with & =7 with some C independent of . Moreover, «7,=°
is an isomorphism from V#(Q; d,) onto CHQ; d,). Therefore, by the method of
continuity (cf. [1]), each of 7 is an isomorphism from V#4(Q; d;) onto CH(Q: d,),
in particular, so is & =.«,. The theorem 2 is completely proved. Q.E.D.

Proof of the theorem 3. If we can prove that the operator & is injective from
V& dg) into CHQ: d,), then it follows from the method of continuity (see (40)
above) that the operator & is an isomorphism from V#(Q: d,) onto CHQ; d).
Since a;(x)’s are complex valued, we can not use the maximum principle to prove
the uniqueness. But, we can replace this argument by L2-theory, that is to say.

Lemma 4. Under the same hypotheses as in the theorem 3, the operator o is
injective from V#(Q; dy) into CHQ: d,).

Proof of the lemma 4. Let us set f=w/u for ue V4(Q; d,). Multiplying i to
the both sides of f=w7u and integrating by parts for the second order terms, we have
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n

(a) (fs w)—(aou, u)— ; kZ (ajkaju’ Ou) = ng (bjaj“» u),

=1

where ( , ) stands for the scalar product in L*(R2) and
bix)=ax)+ kil 0t jy(x), I1<jsn

Let us set Fop=F ¢(x)=(¢,,.... 9,) for x € 0Q, then F ¢/|F ¢| is interior normal to
0Q. Again, integrating by parts for Re (b;0;u, u), we have

2 i Re (b;0;u, u)=2 i Re {i((Im b;)0;u, u)} — i Re ((9;b;)u, u)
j=1 ji=1 i=1
—S Blu|?ds,
29

where =3 b;,I7 .

And we have

Jiok=1

|V p|p= i a;p;— i apdit i Olad;)
Jj=1 k Jk=1

n

—@+g)  (since . aud, (157 are of 0(@),

Jk=1
where a(x)g(x) is defined by (14).
Since o< — 1 by hypothesis, we have
(b) -{,  Bluldszo.
1]

Moreover, for any ¢€ (0, 1), there is a constant K= K(g)> 0 such that

(c) lZl ((Im b))0;u, u)|<e LZ | (ay0;u, o)+ Kllulll?
i= ik=
holds for any ue V#(Q; d,), where || || denotes the norm in L%(2). Admitting this

for a moment, we have Re (f—agu, u)= — K'(u, u), that is to say, ||=Zull = K"|[ull,
where K" =Inf ay4(x)— K’ and K’=K+Sup(i [0;b ()2

Therefore, if Reay(x) is large enough so ti;alt K"20, uevHQ; dy) and u=0
imply u=0.

Proof of the inequality (c). (c) is a consequence of the following inequality.
Therc is a positive constant C such that we have

PRALTIDEL FNE AL
, o J= k= .
for any (e C" and x e Q. :
And, since Im b (x)=0(¢) (1= j=n), this inequality is obvious. Q.E.D.

And the theorem 3 is now established.
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Proof of the theorem 4. Evidently, by almost the same procedure as in the
proof of the theorem 1, we can derive the inequality (20) from the lemma 3 in §5 (at
first for Q=R} and &/ =L, and secondly for general Q and «). Here, \/T is
regarded as the dual variable of x, (see (32) and (33)). This inequality (20) assures
the injectivity of the operator & 44 for Ae A, n {|A|>4,}. And the surjectivity is
also easy to see by the method of continuity and the compactness of the operator
(& +2A)"! (when it exists). At last, we prove the inequality (19). Since all the
coefficients are real, we can apply the maximum principle. Take any fe CX(Q; d,),
and suppose that u is the unique solution in V4(Q; d,) of the equation “(& +)u=
f. Let us set u, =max(u, 0) and v_=max(—uwu, 0). Then, by the maximum
principle, we have

JuySlflle and Zu_=|fll... (since ao(x)20).

Since ||u|l,, =sup max (u,, u_), the inequality (19) is proved. Q.E.D.
Q

§7. Appendix 1 (The proof of [P-1] in §5)

It suffices to consider the case where A=0 (see the Remark 2 of §4). We intro-
duce a new representation formula of E(x, y).

(A1) E.(x, y)=3(n, a)y;*~! S B(x, y. 0)25-"+3W (8)df.
0

Where, B(x. y, 0)={(x, + y,+|x"= y'?/4)* = 4x,p,(1 = O)} /%,
o(0) = 073420141 — p)r=5-20014,

and Rea< -1 ;l (%%).
Proof. We can expand the right-hand side of (27) into power series of Q=
2%, yulx,+ y,+1x"—y'|2/4)7" and rewrite it to obtain (A.1).

Remark (*x). By the analytic continuation with respect to «, this formula re-
mains valid for Reaxe(— 00, 0), if n=3. The analytic continuation method used in
this paper is essentially as follows: Let f(0) be a function of class C!([0, 1]) and t
be a complex parameter with Re7>0. Then we have the equality:

1 1
r(z)-'So F(0)01df=I(x)! SO {(f(0)=F(0)}0-1d0+ F(z+ 1)~ £(0).

The right-hand side can be continued analytically to Ret> —1. Thus we can
extend the definition of the left-hand side to Re 1> — 1 by this equality.

We also introduce the following auxiliary function:

(A.2) T(a, b, X, Y)=Sl (X + Y0)205-140,
o
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where X>0, Y20, a+b<0 and b>0.
Then we have

Lemma A.l. Suppose that b>0 and a+b<0. Then, there is a constant C=
C(a, b)>0 such that, for any X>0 and Y =0, we have

(A.3) T(a, b, X, Y)SCX*t"(X+Y) ",

Proof. It suffices to consider the case where X=1. Both of the following
inequalities are valid: ‘

T(a, b, 1, Y)<1/b and Y®T(a, b, 1, Y)SI(D)[(—a—b)/[(—a).
Q.E.D.

Let us set

(A.4) J(p, )=J(p, 4, x, ¥)= T(—L‘i—*—z‘—’w q, d(x, y)2, 2\/?,,7,.),
where n=3, p=—2, ¢>0 and (x, y)e R x R with x#y.

Since B(x, y, 0)* <d(x, y)*{d(x. )2 +2/x,y,0} holds, we can estimate E,(x, y)
and its derivatives by J(p, ¢q)’s. After a long calculus, we obtain:

Lemma A.2. Suppose that n=3 and Rea is contained in a compact set K of
n—

2

stant C=C(K)>O0 such that, for any (x, y)e RLX R with x%y and |y|+m<3,

we have

the interval <—oo, — 1}, and put f=—QRa+n—1)/4. Then, there is a con-

(A.5)  |0"DYE,(x, WS Cy;* 'S d(x, y)2=n=28"=m%2i J(|y| +m —2, ' +J),
j=1

where we denote any 0; (1< j<n—1) by D and Re B by f'.

Evidently, [P-1] follows from (A.3), (A.4) and (A.5), if Reae K. We can also
prove [P-1] in the case where Re a is contained in a compact set K of the interval
(— o0, 0) by the method of analytic continuation (see the Remark (xx)), the detailed
proof is omitted.

§8. Appendix 2 (Further preliminaries to §5)

In this section, we shall obtain a number of inequalities needed in the verifications
of the properties [P-2] and [P-3] of the kernel K,(x, y)=0,E(x, y)in §5.
We use the following notations in this section. Let us set

(A.6) (X Vi) =% =Y X+ Vi)
fn(xm Vs 0)= _(I - ’7)—21_2¢a(h‘ 0)/(\/)Tn+ \/.);;)\/;m
®,(h, 0)=(h0+1—0)(h*0+1—0yT(—a)/\/m

and ki r0={ K )y
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Then we have:

Lemma A.3. Suppose n=3. For any compact set Kc(— o0, 0), there is a
Sfunction M (h) with a parameter a such that, for any x,>0, y,>0, x,*vy, and
Reo e K, we have

(1—h)-22-2
NN N e

(A'7) kll(x"’ yll) =

with h=h(x,, y,) defined by (A.6).
Moreover, M (h) satisfies the following properties:
(i) M(h) is locally summable with respect to y,€ R, for a fixed x,€ R ,.
(ii) If ReaZ —1/2, M (h)=2(1+4h)2**1Y(h),
where Y(h)=1 for h>0 and Y(h)=0 for h<0.
(iii) If —1/2<Rea<0, M () =0{(1+h)?}, in a neighborhood of h= —1.

Proof. We obtain at first

(A8) kit v =T (=2 = 11257 £ 7,0 00 (001 =0} >-212d0

and M(h)y=T(-a—1/2)"" S; @ (h, 0){0(1 —0))~*=31240.

Then, the assertions of (i) and (ii) follow by a direct calculation, and to prove (iii),
it suffices to remark M, (—1)=(d/dh)M(—1)=0 (see also the Remark (*x) of §7).
Q.E.D.

To establish [P-2], we introduce the following auxiliary function U(x, v,)
defined for xe R and O0<y,*+x,:

(A9) Ux y=|  K(x p)aty)dy

where a(x’) is a fixed element of CP(R"™').
Suppose that F is a compact set of R? contained in
{(¢, 6); ' <0 and O<o<Min (1, —a')}, for o' =Rea.
Lemma A.4. Suppose n=3. Then, we have, for (o', 6) € F,

h)~22-2 yo-!
e, 7)) M| SO

where C is a positive constant depending only on (a, F, n).

Proof. By virtue of the lemma A.3, it suffices to show the following inequality:

(A.10) [ 1K )l ) = atldy S NCEN

From [P-1], we can show
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IK,(x, )l a(x) = a(y)| S Clal,yidx, y)=.

Therefore, we obtain (A.10) by integration on R"~' (we denoted an usual Holder
semi-norm by | |, for O<eo<1). Q.E.D.
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