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§0. Introduction

Let G be a locally compact unimodular group, and S a closed subgroup of G.
Suppose that there exists a compact subgroup K of G with G=SK (SnK is not
necessarily trivial). This paper is devoted to give a generalization of the Frobenius
reciprocity theorem for these G and S. :

In particular, let G be a finite group, and S-a subgroup of G, Let {5 T(x)}
{H, A(s)} be representations of G, S on finite-dimensional vector spaces $, H re-
spectively. We shall denote by {94, T4(x)} the representation of G induced from
{H, A(s)}, and by {9. T(s)} the restriction of {, T(x)} to S. Then the Frobenius
reciprocity theorem can be stated in the following three forms which are mutually
equivalent.

(1) If {9, T(x)} and {H, A(s)} are irreducible, then {H4, T4(x)} contains
{9, T(x)} exactly as many times as {9, Ty(s)} contains {H, A(s)}.

(2) Homg(H, H)=Homg; (H1, H) (linearly isomorphic).

(3) Homg (9, H)=Homg (H, H4).

Various generalizations of this theorem were given by many people. Using the
direct integral decomposition theory, both F. I. Mautner and G. W. Mackey gener-
alized the theorem as stated in form (1) above. In Mautner’s case, G is assumed to
be a separable locally compact unimodular group and S a compact subgroup [7].
In Mackey’s case, G is a separable locally compact group and S a closed subgroup of
G [6]. But, in his case, the Frobenius reciprocity theorem is formulated only for
representations which appear in the direct integral decompositions of regular re-
presentations. R. Penney also formulated in [9] a generalization of the Frobenius
reciprocity theorem in form (1). He dealt with Lie groups and made use of the
C*-vector method. ’ h

In the case of C. C. Moore [8], the group G is a locally compact group and S
a closed subgroup of G. He assumed that the homogenous space S\G possesses an
invariant measure and that both {9, T(x)}, {H, A(s)} are unitary. Nevertheless the
induced representation {$*, T4(x)} is defined so as to be an isometric one on a Banach
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space H1. He formulated a version of the Frobenius reciprocity theorem in form
(2). After that A. Kleppner obtained in [5] a generalization of the theorem in form
(2) too. In his case, representations are not necessarily unitary, but assumed to be
isometric representations on Banach spaces. More general induced Banach re-
presentations were defined and studied by R. A. Fontenot and I. Schochetman [2].
They also proved a generalization of the theorem in form (2).

Roughly speaking, all of the above people attempted to give the equality of the
“multiplicity’” of {H, A(s)} in {9, T¢(s)} and that of {H, T(x)} in {H4, TAx)}. In
contrast to this, J. M. G. Fell considered in [1] the weak Frobenius reciprocity
property: for irreducible unitary representations {9, T(x)}, {H, A(s)} of G, S re-
spectively, {9, T(x)} is weakly contained in {H4, T4(x)} if and only if {H, A(s)} is
weakly contained in {9, Tg(s)}. R.W. Henrichs studied when this property holds [4].

On the other hand, M. A. Rieffel [10] and R. Rigelhof [11] made category
theoretical arguments on this subject. Of course there are some differences between
assumptions or results in their papers, but we say nothing here on these differences.
In any case, they found, under some conditions, G-modules ¢H and H¢ for which
relations Homg (H, $)=~Homg; (°H, ) and Homg(H, H)=~Homg (H, H®) hold.
They also gave concrete representations of G-modules ¢H and H¢ as vector-valued
function spaces on G, which are similar to representation spaces of induced repre-
sentations in Mackey’s sense. But these two are not equal.

Now we make clear our aim in this paper. = Let L(G) be the convolution algebra
of continuous functions on G with compact supports, and L(S) similarly, where G
and S are the same as those given first in this section. There exist L(G)-submodules
Do» HE of H, H4 respectively, which are more essential in this paper than whole spaces
(for definitions, see §1). They are, at the same time, L(S)-submodules. Then our
aim is to prove the relation

Homy s, (9o, H)=Hom g, (Do, HF),

which is a generalization of the Frobenius reciprocity theorem in form (3). Our
technique is different from those of the above people. The author has made attempt
to prove a theorem in form (2) for these submodules $Hy, H4, that is, the relation
Homy g, (H, 99)=Hom, g, (94, Ho). But at present he has not yet succeeded.

§1. Notations and a scheme for the proof of main Theorem

Let G be a locally compact unimodular group, and S a closed subgroup of G.
We assume that there exists.a compact subgroup K of G with G=SK (Sn K is not
necessarily trivial). o

Let L(G) be the algebra of all complex valued continuous functions on G with
compact supports. For every compact subset C of G, the vector space Lc(G) of all
functions f in L(G) whose supports are contained in C is a Banach space with the
norm 1A =sug |f(x)|. We shall regard the algebra L(G) to be endowed with the

inductive topology generated by these Banach spaces L(G). For the subgroup S,
the algebra L(S) will be defined in the same way.
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Throughout this paper, a topologically irreducible representation {$, T(x)}
of G will be fixed. The representation space & is a locally convex Hausdorff topo-
logical vector space, not necessarily complete, but we assume that, for all'Radon

measures « on G with compact supports, the integrals S T(x)da(x) define continuous
G

linear operators on . Especially, for a function fin L(G) or in L(S), we set

T(f)=| Tefdx o T(H={ T (s)ducs

respectively, where dx denotes a Haar measure on G and du(s) a left Haar measure
on S. Both are continuous linear operators on $, and $ can be seen as an L(G)-
module at the same time as an L(S)-module.

Now we must impose the condition that the representation {9, T(x)} shall
contain an equivalence class o of irreducible representations of K finitely many times.
We shall denote by p the multiplicity of 6 in {§, T(x)}:

[TIK:é6]=p (0O<p<+0).

Let $H(6) be the space of all vectors in $ transformed according to é under u—T(u)
(u € K), and 9, the L(G)-submodule of © generated by $(d), then, for every non zero
vector v in H(5), we have

Do={T(f)v; fE LG

ThlS is clearly a G mvarlant dense subspace of 9, and can be seen as an L(S) module
In the following, the subspace £, is more essential than the representation space $
itself.

Let {H, A(s)} be a fixed representation of S. The representation space H is,
like 9, a (not necessarily complete) locally convex Hausdorff topological vector
space, and, for all Radon measures on S with compact supports, continuous linear
operators on H are defined by integrals.

We shall denote by 94 the space of all continuous H-valued functions ¢ on K
satisfying the equality

@(mu)=A(m)p(u) forall meM=SnK.

For a system of semi-norms {|-|,; ¢ € I} which defines the topology on H, we in-
troduce a locally convex topology in H4 defined by the system of semi-norms

lel, =sup lo@)l,  (cel).
For every element x in G, a continuous lincar operator T1(x) on H4 is defined as
(TA(-v)«p)(ll)=A(s)<p('k)
whéré'ux_=sk;' keK,seS. The right hand side is clearly well-defined. Also for
the induced representation {94, T4(x)} of G, as in the case of {H, T(x)}, we shall

denote by $4(8) the space of all vectors in H4 transformed according to & under
u—T4(u), and by H¢ the L(G)-submodule of H4 generated by H4(5).
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Let Hom,, ), (9o, H) be the vector space of all linear operators of £, to H which
commute with L(S)-actions, and Hom,g, (9o, H¢) the vector space of all linear
operators of $, to H& which commute with L(G)-actions, then our aim is to prove
the following Theorem which is a version of the Frobenius reciprocity theorem.

Theorem. Two vector spaces Homg) (9o, H) and Homg, (Do, H8) are
mutually isomorphic:

Homy,s) (Ho, H)=Homy g, (Ho, H3).

The proof of this Theorem will be pursued as follows. We will define three
other vector spaces Hom, (4,/Pi(ay), C*®H), Hom%.(4°/®(ay), C*®\H) and
Homj.; (9,(6), 94(5)) (for definitions see §3, §4, and §5 respectively). The
following diagram shows the scheme for the proof of main Theorem.

Hom, s, (S0, H) rey Hom , (4,/M(ay), C‘@ H)

|

Hom{.s) (9,(9), $7(9)) % Hom%. (4°/®(ay), C'@ y H)
gll’rop..’i

Hom ) (Do, 98).

et

The notation means ‘‘linearly isomorphic’’, and we understand that the first
& is the statement of Proposition | and so on. The second = is clear by Definition
of the vector space Hom¥. (4°/®(a}), C‘®,H) in §4. §2is devoted to preparations,
and §§3, 5 and §6 are to prove Propositions 1, 2 and 3 respectively.

§2. Group algebras on G and matrix algebras on S

Let du be the normalized Haar measure on K, and du a left Haar measure on S,
then dx=du(s)du (x=su) is a Haar measure on G.

We choose an irreducible unitary matricial representation u—D(u) of K which
belongs to the equivalence class ¢ of irreducible representations of K given in §1.
Denote by d,;(u) the (i, j)-coefficient of D(u), by d the degree of J, and set y,(u)=
d-trace D(u).

Let A be the vector space of compactly supported continuous functions F = F(s)
on S with values in 9M(d, C), the set of all d x d complex matrices. Then it is an
algebra over the complex number field with product

FxG(s) = Ss F(HG(t~'s)du(t).

For every compact subset C of S, 4¢ denotes the Banach space of all functions F
in A whose supports are contained in C with the norm |F| = max sup | j’,,(s)l
d

where F=(f;;). We shall topologize the algebra 4 as the inductive hmlt of these
Banach spaces Ac. Put M=K n S as in §1. - Then the set
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A,={Fe A; F(sm)=F(s\)D(m)  forall meM}

is a closed subalgebra of 4, where D(m) means the complex conjugate of the matrix
D(m). Denote by D, the restriction of D on M, and by dm the normalized Haar
measure on M, and put

FxDy(s)= SM F(sm=Y)D{m)dm,

then F—F+D,, is a continuous projection of A onto A,.
On the other hand, for every function fe L(G), we put

f*i;—(x)=gkf(xu“)mdu.

then L(G)*y;={f*xs: f€ L(G)} is a closed subalgebra of L(G).

Definition. A linear mapping @ of L(G)*y; into A, is defined as
o(£)(5)= D f(su)du.

Lemma 1. The linear mapping & is bijective and bicontinuous. The inverse
@1 s given by

@~ (F)(su)=d-trace [F(s)D(u)] .
Proof. We assume ®(f)=0. Then we have

f(su)=f*ys(su)=d trace SK D(v) f(suv~")dv

=d-trace [®(f)(s)D(u)] =0.
Therefore @ is injective.

For every function F in A,, the function
g(s, u)=d-trace [F(s)D(u)]

on Sx K induces a function f in L(G)*y; in such a way that f(su)=g(s, u). It is
easy to show that @(f)=F. From this, we obtain the explicit formula of #~!. The
continuity of @ and ¢! is clear. Q.E.D.

For every function fe L(G), we put
o= fuxu—du,

then the set L°(8)={f°*x,; f€ L(G)} is a closed subalgebra of L(G). This plays an
important role in this paper.

Lemma 2. For any functions fe L(G)*ys and g € L°(5), we have the equality
D(frg)=P(f)*xP(g). '
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Proof. This is a consequence of the following simple calculation:

D(f*g)(s)= SK D(u) fxg(su=")du =SK Sc D(u) f(x)g(x~su=")dxdu
=S S mf(x)g(u"x"s)dxdu=S g D(—u)f(xll")g(x“s)dkdu
K JG K Jg
=g g g D(u) f(tou=V)g(v™ 't 1s)dp(t)dvdu
K JK Js

=S S S D(u) Do) f(tu=")g(t™'so~Ydu du(t)dv
KJS JK

=@(f)xP(g)(s). ) Q.E.D.

Lemma 1 shows that @ is an isomorphism of L(G)*y, onto A4, both regarded as
topological vector spaces. Lemma 2 means that & gives an isomorphism of topo-
logical algebras L°(6) and A°=®(L°(5)). For every function F=®(f)e A, we
define

Fe=d(f°),

then F—F° is a continuous projection of 4, onto A°. For any function F € A°, it is
clear that :

F(msm,)=D(m)F(s)D(m,)  forall m,, myeM.
Lemma 3. For any functions Fe A and Ge A,, we have
(F*G°)°=(F*D,,)°*G".

Proof. First, we perform the following calculation:

(FxG)(s)= SS F(NG(+- ' s)dpu(1)
= S S F()D(m)G°(m~ "t~ 's)dmd (1)
SIM

=S g F(tm=1)D0m)G(1-" s)dpu(t)dm
MJS

=((F*Dy)*G")(s).

Let f and g be functions in L(G)*y; such that FxD, =®(f) and G=d(g), then it
follows that

(FxG°)° =(D(f)*P(g°))" =(P(f*g°))" = P((f*9°)°)
=P(fxg°) = D(f)xP(g°) = (F+Dypy)°+ G°. Q.E.D.

Let a be a (non-trivial) closed regular maximal left ideal in L°(5), and e a right
identity modulo a. Then ®(a) is a closed regular maximal left ideal in A° and
€ =d(e) is a right identity modulo @(a). On the set
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M(a)={Fe A,; (GxF)° € ®(a) forall GeA},
we can prove the following

Lemma 4. (i) 9M(a) is a closed left A-invariant subspace of A,.
(ii) Fx€@—F eM(a) for any Fe A,.
(iii)  M(a) n A°=(M(a))° = P(a).

Proof. The statement (i) is clear.

Let us prove the statement (ii). For any function G € A, the function G*F
belongs to 4,. Thus the equality GxF*D,=G*F holds, and hence, by Lemma 3,
we obtain ’ '

(Gx(F*€ — F))°=((GxF)*€— GxF)° =(G*F)°*x€ — (G*F)°.

Since the right hand side belongs to ®(a), the statement (ii) is proved.
Let us now show the inclusion (M(a))°=d(a). Let {g,} =L(S) be an ap-
proximate identity of the unit 1 in S. Then the following M(d, C)-valued function

g, 0
Gv= '..
0 g,

is an element in 4. Since, for any function F € A,, G,+F tends to F in A,, it follows
that (G, xF)°—F". If F is an element in M(a), then each function (G,*F)° belongs to
®(a), and consequently so does F°. Therefore we have the inclusion (M(a))° = &(a).

On the other hand, it is clear that ®(a)c9(a) by Lemma 3. From this the
relations ®(a)c=M(a) N A° and P(a)=(M(a))° are also clear. Since M(a)n A° is a
left ideal in A° which contains the maximal left ideal ®(a), we have only to show that
M(a) N A°x A°. Suppose that I(a)n A°=A°, then IM(a)> A° must hold. But
this contradicts the fact @(a)=(M(a))°E A°. Q.E.D.

§3. The first step: proof of Proposition 1

We imposed the condition [T|K: §]=p, 0<p<+o0, in §1. This means that
dim $(8)=pd. We now consider the continuous linear operators on $

E(5)=SK T(u)g(@du, and E(6)=d SK T(u)di)du

for 1<i, j<d. Then the subspace $H(5)=E(5)9 is decomposed into the direct sum
H(0)=9H,(0)D - DHAS)

with 9,0)=E;(0)9 (1<i<d). These subspaces $H;(6) of $ are p-dimensional
irreducible L°(6)-submodules, and mutually isomorphic. In fact E;(d) is an in-
tertwining operator of $H,(6) onto 9 ,(6). :

We choose a non-trivial K-irreducible subspace V of $(5), and a basis e,,..., ¢,
of V such that '



546 Hitoshi Shin’ya
Te;= £ dywe, (1< j<d).

We keep these notations in the following. In this situation it is clear that e; € H,(J).
For the above K-irreducible subspace V, the set

ay={fe L°(6): T(/H)V={0}}

is a closed regular maximal left ideal in L°(6). As a right identity modulo a,, we may
adopt a function ¢ € L°(5) such that the restriction of T(e) on H(J) is the identity
operator. For an arbitrary non zero vector v € V we have a, ={fe L°(6); T(f)v=0}
and hence, especially for e;, it follows that

ay={feL%(d): T(f)e;=0} (1<i<d).

Thus the L°(8)-modules $,(d) and L°()/a, are isomorphic.
As in §2, we define a closed A-invariant subspaces M(a,) of A, as

M(ay)={F € A,; (GxF)° € P(ay) forall GeA}.

Then A,/9(ay) can be seen as an A-module.
On the other hand, we shall denote by C?® H the vector spaces of all column
vectors a=<a, >='(a,,..., a,) with a;e H (1<i<d), where H is the representation

a',,
space of {H, A(s)} given in §1. This vector space C!®@H can be considered as an
A-module in the following way:

R(F)a= A1) A1) a, \ =~ lgl/i(fn)ai

A A | \a | | £ A aa

where F=(f,)€ A, a="(a,..... a;) € C‘@H, and A(f,-j)=gs AGS)fi()du(s).

Now let Hom , (4,/Ma,), C*® H) be the vector space of all (algebraic) homo-
morphisms of A4,/M(a,) to C*@H, both regarded as A-modules. Our aim in this
section is to prove the following

Proposition 1. The vector space Homy, (9o, H) is isomorphic to the vector
space Hom , (A4,/May), C‘QH):

Hom g, (90, H)=Hom (4,/M(ay), C‘@H).

At first, we try to give a linear mapping of Hom, ) (£, H) to Hom , (4,/M(ay),
C‘®@H). Let o be an element in Homy ) (Ho, H). For every function F=(f;;)=
&(f) e D(ay) we know that :

£ TUe=T(Ne=0  (1<isd).
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(See Lemmas 3 and 4 in [12].) Therefore it turns out that
d d
z‘ A(fij)a(ej)=a(zl T(fi))e)=0 (1<igd),
Jj= ij=

i.e., R(F)(afe,)...., x(e,))=0. Denote by [F] the element in A4,/M(ay) of which F
is a representative, then the above observation makes it possible for us to define a
linear mapping &, of A4,/M(ay) to C'@H as

CALFD=R(F)(xle,),..., ole,)) .
Moreover the following equalities
ELG*[F])=R(G*F)'(a(e,)...., ale,))
=R(G)R(F)!(a(ey),..., x(ey))
=R(G)S([F])

means that &, is an element in Hom  (A4,/M(a,), C!‘@ H).
The mapping a—¢, is clearly linear. Suppose £,=0, then o(T(f)e;)) =0 (1<i<d)
for all functions fe L(G)*y;, so a=0. Thus the linear mapping a—¢, is injective.
To complete the proof of Proposition I, we have only to show that the linear
mapping a—¢&, is surjective. Let & be an arbitrary element in Hom (4,/M(ay),
Ci®@H). Put €=d(¢), where ¢ is the function in L°(5) already given in this section,
then, for any function F € A,, it follows that

SLFD) =E&(F«[€])=R(F)L([€E]),

and hence, particularly for F=€, we obtain {([€])=R(€){([€]). Putting E=(e;;)
and &€ ="(a,(&),..., a&)), the last equality means

a(d)= 3 Aeage)  (1<i<d).
Lemma 5. Let f, g be two functions in L(G)xy; and ®(f)=(f;;), ®(9)=(g:;)

the corresponding functions in A,. If there exists a pair (i, j) such that T(f)e;=
T(g)e;, then it follows that

T AfaO= F Alga®.

Proof. Let E;; be the matrix whose (i, j)-coefficient is equal to 1 and the others
are equal to 0. Let h; be the (i, k)-coefficient of the product E;;&(g), then we have

d d
T(g)ej= l;‘ T(gjk)ek= kgl T(hy)e,=T(he;

where h=®"1(E;;®(g)), and hence T(f)e;=T(h)e, Put fi=® YE;d(f)), h;=
&~ Y(E;;®(h)), then it follows from Corollary in [12] that

T(f)e;=T(f)e;=T(h)e;=T(h))e;,
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T(f)e,=0=T(h)e, ~ (k#i).

Therefore we know that T(f,—h)V={0}, or equivalently, [E;®(f)]=[E;®(h)].
Hence we have

=&([Eq@(M])=E;R(®(M) (a,(E),.... ay(&)),
and consequently
T Afa) = £ Alhag® = £ Ag0a0).

Q.E.D.

For a fixed index i, we set
d
U T(f)e;)= jgl A(fij)aj(é)

with @(f)=(f;;). Then Lemma 5 shows that « is a well-defined linear mapping of
9o to H and that it is independent of the index i. Particularly for f=c¢ it follows
that

de)=a(T(e)= ¥ Aey)af&)=ad) (1<i<d).

Let us show that this linear mapping « belongs to Hom, (9o, H). For arbi-
trary functions h e L(S) and fe L(G)xy;, set

hx f(x)= SS h(s)f(s™'x)du(s).

Then h* f is a function in L(G)*y,. Since the (i, j)-coefficient of ®(hxf) is equal
to h* f,j, it follows that

AT(NT(Je) =TI fley = 35 Alln fiay(@)
= A T(f)e,).

So we know that o belongs to Hom, ) (9o, H).
For this linear mapping «a € Hom, s, (9o. H). the linear mapping £, € Hom 4 (4,/
M(ay), C!® H) satisfies

CA[FD=R(F)'(aley),..., a(ez))
=R(F)'(ay(&),..., ai(&))
=R(F){[€D=L(LFD.,

i.e., £&,=¢&. This shows that the linear mapping a—¢&, is surjective.
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‘§4. Definition of Hom%. (4°/®(ay), C‘® 5 H)
Let C‘®MH be the space of all vectors a="'(a,...., a;) € C*® H such that
d
A(mya;= 3 d;(m)a; (I<j<ad)
i=1
for all elements me M=K n S, or symbolically,
" A(m) O )a='D(m)a
( 0 A(m)
for all element m € M, where ' D(m) is the transposed matrix of D(m). For a function

F € A°, the equality g,*F='D(m)F (where ¢,*F(s)=F(m~'s)) holds for all me M.
Therefore for every vector a € C*® pH, it follows that

( A(m) 0 R(F) a=R(¢,*F)a=R(‘D(m)F)a='D(m)R(F)a.
0 A(m)
Namely, the subspace C‘® ,H is an A°-submodule of C‘®@H.
On the other hand, the A°-module A°/®(a;) naturally can be seen as an A°-
submodule of 4,/M(a,) by Lemma 4.
Lemma 6. For any element ¢ e Hom, (A4,/M(a}), C*®@ H), we have
&(A°|P(ay)) = C@yH.

Proof. Keep the notations in §3 such as &([€])=*(a(&),..., ay(£)) and E=
®(¢)=(c;;). Then for any element me M,

Amia &)= £ AmA(ea = 5 AGureia)

d d
= 2 (l,‘j(ln)A(c"k)ak(g) = ; dij(m)ai(é).
Thus we know that &([€])e C‘®H, and from this fact, it follows that &([F])=
R(F)E([€]) e C4® y,H for all functions F € A°. Q.E.D.

Now we shall denote by & the restriction of ¢ onto A°/@®(ay). Then Lemma 6
shows that & is an element in Hom,.(4°/®(ay), C*®H). The linear corre-
spondence ¢— & is injective. In fact, £=0 means that &([F])= R(F)&([E]) =
R(F)E([€])=0 for all elements [F] e A,/M(ay).

‘Definition. We shall denote by Hom¥.(4°/®(a,), C‘®,H) the image of
Hom,, (4,/D(ay), C‘® H) by the linear injection é—&. '

Lemma 7. Let ¢ be an element in Hom,.(A°/®(ay), C'®H). Then ¢
belongs to Hom%. (A°/®(ay), C‘® \H) if and only if
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M(ay)={F € 4,; R(F)¢'([€D=0;.

Proof. Suppose that &' € Hom#.(4°/®(a,), C'®\H), then there exists an
element £ e Hom 4 (4,/M(ay). C!@H) such that ¢’ =E€. Therefore, for any function
F e M(ay), we have

R(F)¢'([€])=R(F)E(€N) =&([F1)=0.

Conversely we assume that M(ay)={F e A,; R(F)¢'([€])=0}. Then we may
define a linear mapping ¢ of A,/M(a,) to C/@H by &([F])= R(F)¢([€]). It is
clear that & belongs to Hom, (A4,/M(a,), C‘® H) and that &' =£. Q.E.D.

§5. ldentification of two vector spaces Hom%. (4°/®(a;), C‘® ,H) and
Homi.;, (9:(8), $1(8))

In §3, we defined irreducible p-dimensional L°(8)-modules $,(5)...., H4().
Since these are mutually isomorphic, we pick up the module $,(5).

For the induced representation {$4, T4(x)} of G, as in the case of {§, T(x)},
we consider the continuous linear operators

E"(é):S TAu)ys(u)du, E;'j(6)=a'g TAu)d,; ( (u)du
K

for 1<i, j<d, and put HYO)=EA)H1, HAO)=EL(S)H4. The L°(5)-module
H4(0) is decomposed into the direct sum

H4)=9{(0)D - D HI(9),

and these L°(6)-submodules HA() are mutually isomorphic. So-we pick up the
module () as above.

Definition. We shall denote by Homf., (9,(5), 97(J)) the set of elements
o € Hom .45 (9H,(3), H4()) such that =0 or the L(G)-submodules of H§ generated
by a($,(d)) are (algebraically) isomorphic to the L(G)-module $,.

For a non zero element o € Hom ;) (9,(0), H1(3)), set ¢,=o0(e,) and denote
by V4 the K-irreducible subspace of $4(5) which contains ¢,. The vectors ¢,,
E4,(0)@,...., E4,(0)@, forms a basis of V2.

Lemma 8. Let ¢ be a non zero element in Hompe;) (9H,(6), H4(6)). Then o
belongs to Homj .5 (H4(0). $7(9)) if and only if )

M(ay)={P(f)e A,; TAHVA={0}].

. Proof. First of all denote by #, the L(G)-submodule of H3. generated by
0(5 9)), then it is clear that

H = {T"(f)fpa: fe (G)].

Suppose that o is an element in Hom.; (9,(6), $1(8)). Then, by the above



Frobenius reciprocity theorem 551

Definition, there exists an isomorphism & of the L(G)-module $, onto ,. As
was stated in §1, a general element of 9, is of the form T(f)e, (fe L(G)). It follows
from this fact that G<E,,(6)=Ef;(6)c¢ on $,, and hence 6&(H,(5)) =E(5)H,.
Since " we “have ¢,=0(e;)=0(T(e)e,)=T4(e)p, (the function ¢e L°(d) was given
in §3), the vector @,=E4,(8)p, = E{,(8)T4(e)p, is in E{(8), = 6(9H,(5)). Thus
two irreducible L°(6)-modules a($,(6)) and &(H,(d)) contain at least one common
element ¢@,20. Therefore it follows that not only o(£,(6))=36(9H,(6)) but also &
is a non zero scalar multiple of 6. Thus we have #(V)=V4. Now we know that,
for every function F=®(f)eM(a,), T V2=a(T(f)V)=6({0})={0}.

Let us prove the “only if”’ part. As was stated before, the subspace $(9) is
the direct sum of mutually isomorphic L°(d)-modules £,(9),..., H4(J):

H00)=9,00)® - @ H4(0)
D1(O)DE;1(6)9,(0)@ - D E41(8)9:(9).

Accordingly ¢ can be extended in a obvious way to a linear mapping ¢’ of $H(J)
into H4(5), namely,

I

a'(v) = dz E&(d)a(v;) for v= i E; (), v;€D,(5).
i=1 i=1
It is not s¢ difficult to show that .
' - 0 T(f)=TA(f)e0’ for feL%9),
.a’oT(u)= TA(u)oc’ for uek.

Now we must remark the fact that the set {¢,f; ue K, fe L°(9)}, where g f(x)=
f(u1x), is total in L(d)= ys#L(G)*x, (see Lemma 11 in [3]). Then we know that the
pd-dimensional subspace ¢'($(3)) is L(d)-invariant, and that

o' T(f)=T4f)o" on $(J)
for all functions fe L(8). Now set 5£,(5)= EA(0)s#,, then it follows that

H0)={TXf)ps: fe ()} ={o'(T(f)e,); f € L(d)}
=0'(9(9)),

i.e., ¢’ is an isomorphism of the irreducible L(d)-module $H(5) onto the L(5)-module
H,(0).

Now let " be an L(G)-submodule of s, which is not equal to s#,. Put #(d)=
E4(0)¢". Since the operator T(e) is the identity operator on $(5), the operator
T4(e) is also the one on #,(8). Thus A (8)= TA(e)EA()#¢" =T4(e)#" =H#". Suppose
AH'(8)# {0}, then the equality o#°(6)=#,(d) holds because of the irreducibility of
the L(6)-module +#,(6). But it is impossible since #" & 5#,. Therefore we obtain
X' (6)=1{0}. ‘ _ .

This fact shows that there exists the largest proper L(G)-submodule ¢, of
#,, and that " (8)=EA(8)H ", ={0}. Let f, g be arbitrary two functions in L(G),
then .
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o' (EQ)T(9)T(f)e)) =o' (T(xs*g* f*xs)e,)
=T g* [ *Xs)0o = EA(S)TAG) TA(f)@,.

Therefore, if T(f)e, =0, then {T4(g)T4(f)¢,; g€ L(G)}=X',,. Since the subspace
XA, must be closed in 5, and T4(f)p, € #,, it follows that T4(f)p,e X ,,. Now
we obtain a linear mapping ¢ of $, to +#,/4, such that

a(T(f)e))=TAf)o,.

This is obviously an isomorphism of the L(G)-module $, onto the L(G)-module
KN .

The last step of the proof of Lemma 8 is to show &, ={0}. Since 5#,(d) is
isomorphic to the irreducible pd-dimensional L(5)-module $(5), there exists a function
h e L(6) such that

TAh@, =0, TANEAG)P,=0  (Q2<j<d).

Let  be an arbitrary element in .¢,. Find a function g € L(G) such that T4(g)¢p, =
Y, and put f=gxh, then the relations

shows that TA(f)V4A<c .. This means that (T(f)V)= {0} and hence that T(f)V=
{0}. Thus the function F =®(f) belongs to M(a,), and accordingly TA(f)V4={0}
by the condition M(ay)<={D(f)eA,; TAf)VA={0}}. Therefore we have =
TA(f)p,=0. We have now proved that ¢, ={0}. Q.E.D.

Corollary. The set Homj ., (9,(5), $4(5)) is a vector space.

We shall denote by d;,a, for every vector ae H, the H-valued continuous
function u—d;;(u)a on K. Now we identify the function ¢ =Y ¢_, d;,a; with the
vector a="(ay,...,a,)€ C*QH. Then it is not difficult to show that ¢ € H4(J) if
and only if ee C*®,H. Moreover, for a function fe L°(8), the function TA(f)¢p
is given by

(T2 f)p) () =(T*)TA(f)o) (1)
=(TAf)T* ) (1)

=, | (THOTH0)T4we) (DS (soMdp(s)dv
= A sodusdn
KJS
= £ [ A6 woascoduean
i=1 JK JS
= £, 40w | | 40d wafeodusas

= 3 du)(E | A

=1

-
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= ,il dj,(u)(igI A(f)ay)

where ®(f)=(f;;)€ A°. Namely the function T4(f)e is identified with the vector
R(F)a. This shows that, through identification of L°(6) and A° via @, the L°(d)-
module $4(d) is identified with the A°-module C!®\H. In addition the L°(9)-
module $,() is also identified with the A°-module A°/®(ay). The following
diagrams show these identifications:

d
H1(d)s¢= ; dja;—— a=(a.1)eC4®MH

TAS) Q ] a.d/
D@ TA(fe —— R;()F)aeC"®MH,
9:0)3T(gle, «——— [G]ed’[P(ay)
T Q Fx%
9100)3T(f)T(g)e, —— Fx[G]e 4°/®(ay)

where f, ge L°(8) and F=d(f)e A°, G=d(g)e A°. Therefore we may identify the
vector space Homy. (9,(8), $4(6)) with the vector space Hom . (A4°/®(ay),
C'® yH).

Proposition 2. Under the above identifications, the vector space Homj.
(9,(5), 94(8)) is identified with the vector space Hom%. (A°/®(ay), C'® yH).

Proof Let an element o€ Homp.q (9H,(5), H7(9)) be identified with e
Hom 4. (A°/®(ay), C*® y,H). Then the vector e,=T(c)e; is identified with the
element [®(e)]=[€]e A°/P(a,). Hence the function ¢,=a(e;) is identified with
E[€]). So, if ¢,=X4,d; a; then &[€])='(ay,...,a,). For any elements se S
and u e K, it follows that

(TA(su)E4 (B)p,) (1)=d SKA(s)q)a(uv)c_l'ij_)zlv

—d SK A)p (003 (™ ")l

=(l dz djk(u_l)A(s)a;S d“(v)d_';l‘(_ajllv
ik=1 K

d . —_
=3 d;{u"")A(s)a,.
i=1
Thus, by Lemmas 7 and 8, we know that

¢ e Homj. (4°/®(ay), C!‘®yH)
&= R(F){[€])=0 forall FeM(ay)

— 'i:n A(fj)a;=0 (1< j<d) forall F=(f;)eM(ay)
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d -
— ZS g & D AGs)a S (su)dudp(s)=0 (1< j<d) for all
i=1JS JK

f€ L(G)y; satisfying T(f)V={0} -
e (TAHEH(Dp,) (N)=0(1<j<d) forall feL(G)xy,
satisfying T(f)V={0} o |
= (TANELG),) (N=0(1<j<d) forall feL(G)ys
satisfying T(u=")T(f)V={0} for any ue K
(T u)TAf)ES(0)p,) (N=0 (1< j<d) forall uekK
and fe L(G)*y; satisfying T(f)V={0}
& TAf)EH(0)p,=0 (1< j<d) forall feL(G)*y,
satisfying T(f)V={0}
& TAf)VA={0} (1< j<d) forall fe L(G)*y; satisfying T(f)V={0}
&= g€ Homj. ) (H,(9), HH(I)). . Q.E.D.

§6.. The last step: proof of Proposition 3 -

Let ¢ be an arbitrary non zero element in Homj.; (9,(0), H$4(6)). By the
arguments-in the proof of Lemma 8, it turns out that there-exists an .isomorphism &
of the L(G)-module $, onto 52, ={TA(f)p,: fe L(G)} such. that &(e,)=0(e,)=¢,.
Then & is of course an element in Hom g, (Ho. D).

This correspondence c—& is obviously linear. Suppose 6 =0, then o($H,(9))=
{6(T(f)e,); fe L°(6)} ={TA(f)o(e,); fe L°(8)} ={0}. Thus the correspondence is
injective.

Now let us prove that the linear mapping 6—& of Homi,, (9,(6), H1(d)) into
Homy g, (9o, H¢) is surjective. Let o' be an arbitrary element in Hom g, (9o.
$4). Since the equality o'(E, (0)T(f)e,)=E{,(30)a'(T(f)e,) holds for all function
fe L(G), we have a'(9,(3))=H4(5). So the restriction o of ¢’ onto $,(J) is an ele-
ment in Homj. s ($,(8), H7(d)) and it is clear that G=0".

Therefore we obtain the following

Proposition 3. The vector space Homj. s (9(0), H(8)) is isomorphic to the
vector space Homy g, (Ho, H3):

Homi.; (H,(), H1(8))=Hom, (Ho, H3).

Now by the definition of Hom¥, (4°/®(a,), C!®,H) and by Propositions L,
2, and 3, the Theorem in §1 follows.
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