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Introduction

As is well known L. Bers [9] initiated the investigation of boundary groups of
Teichmiiller spaces. Afterwards many authors have been studying Teichmiiller
spaces and their boundaries ([1], [2], [16], [19], [20] etc.). Recently some geo-
metric methods and results related to 3-manifolds are used in order to investigate
Kleinian groups and their Teichmiiller spaces (cf. Thurston [23]).

In contrast with the methods in these studies, we shall investigate, in this paper,
the boundaries of Teichmiiller spaces by using the methods familiar in the complex
function theory. Namely, our main tools are the Grunsky’s inequality and some
theorems on bounded analytic functions in the unit disk, e.g. the Fatou's theorem
and the Riesz’ one. The method using the Grunsky’s inequality was motivated by
the recent work of Zuravlev [24].

In the first part of this paper, we shall show a geometric property of Teichmiiller
spaces and the holomorphic convexity with respect to a family of holomorphic func-
tions (Corollary 1, Theorem 4).

In the second part of this paper, we shall investigate the boundary behaviour of
holomorphic mappings of the unit disk to a Teichmiiller space (Theorem 5), and
consider the boundary approach in Teichmiiller disks as the special case (Theorem
6). Further, we shall study the boundary behaviour of periods of holomorphic differ-
entials of the first kind as functions of the Teichmiiller space (Theorem 8).

§1. The Bers’ embedding of Teichmiiller spaces

Let G be a non-clementary Fuchsian group acting on the unit disk 4. We de-
note by Q,(G) the set of all quasiconformal self-mappings of 4 that are compatible
with G and leave 1, + i fixed. The Teichmiiller space T(G) of G is the set of all
w|s4 with we Q,(G). The Teichmiiller space T(G) is a metric space with the Teich-
miiller metric t,. In particular, we call T=T({1}) the universal Teichmiiller
space and denote by t; the Teichmiiller metric on T. If G is of the first kind, then
T(G) is identified with the set of all Fuchsian groups which are quasiconformal
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deformations of G modulo conformal automorphisms of 4.
Let L (4), denote the set of all measurable functions i on 4 such that |u|, <1,
and let L (4, G), denote the set of pe L (4), such that

1(g(2)g'(z)g'(2)"' =u(2), geG, zeA.

Foreach pe L, (4, G), we denote by wt the quasiconformal mapping of C which
leaves I, + i fixed and satisfies (w*);(z)=pu(z)(w").(z) on 4 and (w*);=00on Z=C—
4, and denote by w, the quasiconformal self-mapping of 4 which leaves 1, + i fixed
and (w,):(z)=pu(z)(w,).(z) on 4.

Then the Schwarzian derivative {w#, z} of w# on X belongs to B(G), where B(G)
is the complex Banach space of holomorphic functions ¢(z) on X such that
P(g(2))g'(z2)>=p(z) (ye G, zeX) and || =sup AMz)72|Pp(z)| < o0, where 4 is the
Poincaré metric on X. Furthermore, the mapping i w,loa>{wr, z} is well defined
on T(G) and injective. Thus the Bers’ embedding of T(G) to B(G) is obtained. In
the sequel, we identify T(G) with i(T(G)) in B(G). Itisknown that T(G) is a bounded
domain in B(G) and T(G)<S(G)< B(G), where S(G) is the set of Schwarzian deriva-
tives of meromorphic functions schlicht on X contained in B(G).

Bers [9] showed that if G is of the first kind, then each ¢ in T(G) corresponds to
a Kleinian group G¢ which is isomorphic to G and for cach ¢ on dT(G) G¢ is a
b-group, i.c. it has only one simply connected invariant component.

§2. * Teichmiiller spaces and holomorphic mappings

o0

Let f(z)=z+ Y a,z™" be a univalent meromorphic function on a neighbour-
n=1

hood V of co. We can define the Grunsky’s coefficients b, (m, n=1, 2,...) of f as

follows:

log %@_= - bunz™"w™" (2, w)e V' x V.
= ¥ m,n=1

Then it is known that for every sequence {4,}7 of complex numbers the Grunsky’s
inequality:

(2' 1) | z bnm;*m)"nl é Z M’n‘z/”
myn=1 n=1
holds whenever f is univalent on 2 (cf. Pommerenke [22]):

By using the inequality (2.1) Zuravlev [24] showed the following remarkable
result.

‘Proposition 1. Let F: A4— B(G) be a holomorphic mapping on-4 and continu-
ous on ' A. " Suppose that F(04)<=S(G). Then it holds that

1) F(4)=S(G),

2) if FANT#QD, then FA)<T,

3) if F()nT(G)#D, then F(A)=T(G).
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As a corollary, Zuravlev showed that T(G) is the component of Int S(G) in B(G)
containing the origin.
Now, we shall extend Proposition 1.

Theorem 1. (a) Let F: A—B(G) be a bounded holomorphic mapping of A.
Suppose that for almost all e € 04 (0L0=2n) the cluster set of F at e’ is con-
tained in S(G). Then we have

1) F(4)=S(G),

2) if F(AnT#O, then F(4)c<T,

3) if F(AnTG)#QD, then F(4)<=T(G).

(b) Let D be a bounded domain in C" and let F: D—B(G) be a holomorphic
mapping of D.  Suppose that for every z € D the cluster set of F at z is contained in
S(G). Then the same results as 1), 2) and 3) of (a) are valid for D.

Proof. Since the proof is essentially the same as that of Proposition 1, we shall
prove (a)-1) only.

For each ¢ in B(G) we denote by X(¢)(z)=z+ i c,z”" the locally univalent
meromorphic function on X such that {X(¢), z} = d)(z’),:] There exist =1 and M=
M(r)>0 such that X(F({)) is univalent in Z,={ze C; |z|>r} and sup | X(F(O)(2)| =

M for every { in 4 because F is bounded and |¢|| <2 implies the umvalence of X(¢).
Therefore, we can consider the expansion

log X(FO)(2) — X(F())(w) == b, (F({))zmw™"

Z—W m,n

for (z, w)eZ,x Z, and { € 4.
Since X(F({))(z) is a holomorphic function of { € 4, b,,,,,(F(C)) (m,n=1,2,...)
are holomorphic, too. Put ¢%z)=r""X(F()(rz)=z+ Z a,z "~ (zeX),

then g%(z) is univalent on 2. For the Grunsky's coefficients b,,,,,(C) (m,n=1,2,.)
of g¢,

— 3 by (O)z=mwr = log L S2) =gt w).

myn Z—WwW

 log XEL)¢2) = XED) ¢w)

rz—rw

= T bunFQ)r2) " (rw) ™= = 3 by (F(O)r oz
for (z, w)eXZxZX.
2.2) bl F(O)=rm4rb, () (myn=1,2,...).
On t_he other hand, from the Grunsky's inequality (2.1)
23 |5 Bl Dl S 3 1202,

From (2.2) and (2.3), we have
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k ko
| Z bl""( F(C))}'l")"nl = l Z bl"ll(c) (}”"lr",) (lnr”)l

myn m,n

I3 k
S 2 VP ng 2k 32,13 n
1 1

n= n=

k
for arbitrarily fixed 4,,..., 4,. Hence > b, (F({))A,/, is a bounded holomorphic

function of { in 4.

Suppose that F({;) converges to ¢(0)e S(G) as {;—¢'? in a Stolz domain with
vertex ef?.  Then X(F({;)) converges to X(¢(0)) normally on every compact subset
in X. Therefore, b,,(F((;)) converges to the corresponding Grunsky’s coefficient
b,.(P(0)) of X(¢(0)) for each m, n.

From the Grunsky’s inequality again, we have

3 k
| Z bnm((b(o));“m)"nl é gl |)*n|2/”'

Hence, as {—¢? non tangentially

(2.4) i |3 b FOV il £ 3 12af2/
n=1

{=ci0 m,n

holds for almost all e'? € 04.

. v .
Since Y b, (F({)4,,2, is a bounded holomorphic function, it can be represented

*mn
m,n
by the Poisson integral of its non tangential limits. Hence from (2.4) we conclude
that

k k
(2'5) | Z bnm(F(C));“m)"ul § Z V"nlz/n
holds for every { in 4. Furthermore, the inequality (2.5) holds for every k and for
arbitrarily fixed 2,, 25,..., 2, in C. So, X(F({)) is univalent on X and we conclude
that F({) is in S(G) for every ( in 4. q.e.d.

Abikofl [2] showed that if ¢ is in 0T(G) (dim T(G)< + o) and if ¢ is a cusp or
the area of the limit set of G¢ is zero, then ¢ is on d(Ext T(G)). (But this statement
is proved for every ¢ in dT(G) as a corollary of Proposition 1.) Here, we shall
show more detailed results from the above theorem.

Theorem 2. Let H, be a k-dimicensional complex hyperplane in B(G) such
that H,n T(G)#Q, and let V, denote the (unique) component of H,—H,n T(G)
which is not relatively compact in H,.  Then every ¢ in d(H, 0 T(G)) is contained
in aV.,, where the boundary operator 0 is considered in H,.

Proof. Let ¢ be in &(H, n T(G)). Suppose that ¢ is not in dV,.. There exists
a sufficiently small neighbourhood U(¢) of ¢ in H, such that U(¢)nV,=9. From
Theorem 1, ¢ is in d(H,— H, n T(G)). In fact, if ¢ is not in d(H,— H, n T(G)), then
U(¢p)= T(G)= S(G), and id. |y, restriction of the identity mapping to U(¢), satisfies
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the condition of Theorem 1 (b)-3). Hence U(¢) is contained in T(G). This is
absurd because ¢ is in dT(G).

Let V; (i=1, 2,...) be components of H,—H, n T(G) such that U(¢)n V;#@.
Since each V; is bounded and dV,c T(G)=S(G), we conclude that V;=S(G) and
U V;=S(G) from Theorem | (b)-1). Therefore, U(¢) is contained in S(G). On
the other hand, U(¢)n T(G)#@. Thus we have a contradiction as above. q.e.d.

Corollary 1 (cf. Abikoff [2]). If dim T(G) is finite, then every ¢ in O0T(G) is
contained in the boundary of the unbounded component of Ext T(G).

§3. The Carathéodory metric and the holomorphic convexity of Teichmiiller
spaces

Let M be a complex manifold. Then the Carathéodory metric ¢y on M is
defined by

en(x, v)y=sup {p(f(x). f(¥)); f: M—>4 holomorphic},

where p is the Poincaré distance on 4.

Earle [14] showed that the Carathéodory metric on T(G) is complete. At
first, we shall give another proof of the following result due to Krushkal [18] and
Kra [17].

Theorem 3. If T(G) is finite dimensional, then cvery closed cygy-bounded set
is compact.
Proof. Let K be a closed set in T(G) such that sup {cyy(0, ¢); peK}=
N
M <co. For arbitrary A,, A,,..., Ay in C, set f(Ay, Agrerr, At @)=( > b, (D)AuA,) -
N myn
(Y |4,)2/n)"", where ¢ is in T(G) and b,,(¢)(m, n=1,2,...) are the Grunsky's

n=1

coefficients of X(¢). Then f(/,, A,,..., ~y: +) is holomorphic in T(G) and from the
Grunsky’s inequality (2.1) we have

[f(21s Zasees 2nt DI (9 ET(G)).
Since f(4,, A35..., Ay: 0)=0, we have
(3.1 P(f(ys Agyos Ayt ), OEM

for all g e K. Since A,, 4,,..., Ay are arbitrary complex numbers, we conclude that
for every p € K

(3.2) |5 bl Vol S (¥ = 1) (M 4 1) 1S 14,10,
n=1

n,n

Therefore, by using a result of the univalent function theory (cf. Pommerenke [22]
Sec. 9.4) we verify that X(¢) has a K(M)-quasiconformal extension to 4 for every
¢ €K, where K(M) is a constant depending only on M. That is, K is bounded with
respect to the (universal) Teichmiller metric {4, so K is compact because T(G) is
finite dimensional (cf. Kra [17] p. 239). q.e.d.
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By using the above theorem, Krushkal [18] and Kra [17] showed that if
dim T(G)< o0, then T(G) is convex with respect to H® (which is the family of
bounded holomorphic functions on T(G)). This obviously implies the holomorphic
convexity of T(G) shown by Bers-Ehrenpreis [13]. :

Here, we shall give a stronger version of their result.

Theorem 4. Suppose that dim T(G)=N <oo. Let O(CV) denote the set of all
holomorphic functions in CN.  Then T(G), as a bounded domain in CV, is convex
with respect to O(CN).

Proof. Let K be a compact subset of T(G). We define the ¢(CV)-hull K of
K by

K= {x; | f(x) Ssup | f(p)] for every fe O(CN)}.
yek

It suffices to show that K is compact. Since ¢y Sty (cf. [18]) and K is tr -
bounded, M =sup {cr)0, ¢); pe K} <oo. We can easily verify that for arbi-
trarily fixed 4, 4,,..., 4, in C, f(%,, Z,,..., 4,: ) defined in the proof of Theorem 3
is in @(CM). Hence we have

sup {|f(A;, Azreees A2 @) pEK)
<(eM—1)(eM+1)"".
And for every ¢ € K
3.3) [f(Agy Agseees Ayt D) S(eM —T)(eM + 1)1,

Since the inequality (3.3) holds for arbitrary 4,, 4,,..., 4,, we conclude that K is
bounded with respect to the Teichmiiller metric by the same argument as in the

proof of Theorem 3. So, K is compact. g.e.d.

§4. The boundary approach in Teichmiiller spaces

In this section, we shall consider a Teichmiiller space T(G) of finite dimensions
and holomorphic mappings of 4 to T(G).

Theorem 5. If dim T(G)=N<oo and F is a holomorphic mapping of 4 to
T(G). Then we have the followings.

(a) There exist measurable sets E; and E, on 84 with mes E; =mes E,=0 such
that

i) F has a non-tangential limit at every e’ € 4 —E,, and

ii) the non-tangential limit at every e'®€ 04—E, U E, corresponds to a quasi-

Fuchsian group or a totally degenerat group.
(b) Let {a,}? be a sequence in A such that lim F(a,)=¢,€0T(G) exists.

n-o

Let {b,}? be another sequence in A satisfying lim p({a,}¥, b,)<d and {im p(a,),
m=o m—o0
{b,}Y)<d for a constant d<oo. Then
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i) Z(F({b}))c{xe CV; |x—do| Scy/N(e!—1)(e?+1)71},
where sZ(F({b,})) is the set of accumulation points of {F(b,)}¥, |-| the
Euclidean distance in CN and ¢ a constant not depending on {a,}¥ and
{b,}7. Especially, if d=0, lim F(b,)=¢,.

n-0

i) If ¢o corresponds to a cusp, then every ¢ in Z(F({b,})) corresponds to a
cusp.

Proof. (a) Since T(G) is identified with a bounded domain in CV, each FU) is
a bounded analytic function on 4, where F) is the j-th coordinate function F as a
mapping of 4 to CN. By the Fatou’s theorem about bounded analytic functions,
each F() has non-tangential limits almost everywhere on d4. Hence we can find
the exceptional set E, on 04.

Next, we denote by h. (z€ 4) the group isomorphism of G to the Kleinian group
corresponding to F(z) in T(G), which is defined in Bers [9], and put §(z)=(trace
h.(g))* for each ge G. Then we can easily verify that §(z) is a bounded analytic
function on 4. By the Riesz’ theorem about non-tangential limits of bounded
analytic functions, non-tangential limits of §(z) exist almost everywhere on d4 and
are not equal to 4 almost everywhere on 04 whenever g is a hyperbolic transformation.
Since a point in T(G) corresponding to the non-tangential limit 4 of g, for a hyper-
bolic transformation g € G, is a cusp and G consists of a countable number of trans-
formations, there is the exceptional set E, on 04 such that the non-tangential limit of
F at ¢« E, U E, is a non-cusp. Hence we verify from Maskit [20] Theorem 4
that E, is the desired exceptional set.

(b) Let x=(x,, x;,..., xy) be any point of «(F({b,})). We may assume
that lim F(b,)=x. Since T(G) is a bounded domain, |FU)(z)|<c¢’ (j=1, 2,..., N)

n-+00

for a constant ¢’. By the assumption, for any £¢>0 there exist sufficiently large n
and m=m(n) such that

4.1) p(a,, b)<d+e.

Put H{(z)=(FY)(z)—FY)(a,,))(c'— FU(z)FY)(a,)/c’)"!, then H'” is holo-
morphic on 4, |H)(z)|<1 and H{(a,)=0. Hence by the Schwarz’s lemma we
have from (4.1)

IHO(b,) S (e e — 1) (ed*e 4 1)1,
and this implies
(4.2) [FU)b,)—FU)a,)| S2¢' (e = 1) (e + 1),
|F(b,)— F(a,)| S2¢'/N(e**: — 1) (e*=+ 1),
When n, m— oo and ¢ | 0, we have the desired inequality
X — ol Scy/N(e? — 1) (e? +1)7,

where c=2c¢'.
If ¢ is a cusp, then there exists a hyperbolic transformation g in G such that
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lim g(a,)=4. Since h,(g) is a loxodromic transformation for every z in 4, §(z)&

n—o

[0, 4]. Let W be a conformal mapping of é—[O, 4] onto {ze é; Re z>1} such
that W(4)=1. Then log|W-g(z)| is a positive harmonic function on 4 and lim-

n—-om

Wog(a,)=1. On the other hand, from Harnack’s theorem there exists a constant
g(d)(=1) depending only on d such that gq(d)~'log|We<g(a,) <log|Weg(b,)| <
g(d)log |Wog(a,)|, where m is a natural number satisfying (4.1) for a fixed &. When
n, m—oo, lim|Weg(b,)|=1 and llm g(b,)=4. Hence, our statement is proved.

n—=+"m

g.e.d.

A special case (Teichmiiller disks).

Let S, be a Riemann surface of type (g, n) with 3g+n—3>0. We consider the
set of all pairs (S, f) where S is a Riemann surface of type (g, n) and f is a quasi-
conformal mapping of S, onto S, and define the equivalence relation as follows.
(S, f1) and (S5, f5) are equivalent if foof7': S;—S, is homotopic to a conformal
mapping. We cenote by T(S), the Teichmiiller space of Sy, the set of all egivalence
classes [(S, f)]. The origin of T(S,) is taken as [(Sy, id.)].

The Teichmiiller space T(S,) of S, is naturally identified with the Teichmiiller
space T(G,) of Gy, where G, is a Fuchsian group of the first kind acting on 4 such
that S, =4/G, (cf. Ahlfors [4]).

Let Q(S,) be the space of integrable holomorphic quadratic differentials on S,

with the norm ||¢||—gg |pldxdy for ¢p=e¢(z)dz? in Q(S,). By the Teichmiiller

theorem, T(S,) can be idetified with Q.(Sy), the open unit ball of Q(S,). Further,
for each [(S, f)] in T(S,) a quasiconformal mapping f can be taken as so-called
Teichmiiller mapping, that is, the quasiconformal mapping for the Beltrami coeffi-
cient k/|¢p| where 0< k<1 and ¢ is in Q(S,) (cf. Bers [7]).

We call ¢ in Q(S,) a Jenkins-Strebel differential if all horizontal trajectories
of ¢ are simple closed curves except finite number of critical trajectories.

For a fixed ¢ in Q(S,) we consider the mapping of A defined by z— —zd/|¢|
(zed). And we define the Teichmiiller mapping f,: So—S. with the Beltrami
coefficient —z@/|¢p|. Then, by the Teichmiiller theorem the mapping ¥: z—[(S.,
£.)] is a injection of 4 into T(S,). Furthermore, by the canonical identification of
T(S,) with T(Gy) ¥ is a holomorphic mapping of into T(G,), i.e. ¥ satisfies the
condition of Theorem 5. We define the Teichmiiller disk D(¢) by ¥(4).

Theorem 6. Let Sy, Gy, ¢ and ¥ be the saume as above.

(a) If ¢ is a Jenkins-Strebel differential whose closed horizontal trajectories
are homotopic to a closed curve on Sy, then for every horocycle H in A that is tangent
to 4 at z=1, every point in the cluster set of ¥ at z=1 from the inside of H is a cusp.
In particular, if dim T(Gy)=1, then ¥ has a limit from the inside of H and its limit
is a cusp.

(b) Suppose that dim T(Go)=1. Let E, be the exceptional set on 04 obtained
in Theorem 5 (a) for W. Then for distinct points e and e'%2 on d4—E,, non-
tangential limits of ¥ at €% and e'%2 are distinct.
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Proof. (a) Let H, be the horocycle in 4 passing through z=0. It is known
(cf. Marden-Masur [19]) that the Dehn twist about the homotopy class of closed
horizontal trajectories of ¢ determines a Teichmiiller modular transformation and the
transformation which can be an automorphism of D(¢) (hence, an automorphism of
A by ¥) corresponds to a Mdbius transformation y on 4. Further, y is a parabolic
transformation with the fixed point z=1, and {¥(y"(0))}f™ converges to a cusp as
n—+oo0. Since y"(0)e Hy (n==+1, +2,...), the first statement of (a) for H, follows
from Theorem 5 (b). Let H be another horocycle and let {b,}T be an arbitrary
sequence on H converging to z=1. Then we can easily verify that {y"(0)}£® and
{b,}T satify the condition of Theorem 5 (b), that is, Fﬁlp{y"(O)}Fw, b,) <+ and

m

lim p(y™(0), {b,}*)< +00. Hence every xeo({¥(b,)}) is a cusp. Since {b,}¥ is

m-too

an arbitrary sequence on H, by the same method as in the proof of Theorem 5 (b)
the first statement of (a) is proved.

Since cusps are discrete when dim T(G,)=1, the second statement immediately
follows from the connectivity of the cluster set of ¥ from the inside of H.

(b) Suppose that there are distinct points €% and e?%2 on 04 such that the
non-tangential limits of ¥ at e'%r and ¢’z are the same. Let ¢, and ¢, are the
line segments from z=0 to z=e% and z=e'% respectively. Then ¥(£,)U
¥(£,) bounds a Jordan region R and ¥|,: D—R is a conformal mapping of D to
R, where D is a sector bounded by ¢,, £, and an arc between e/ and ¢i%2. From
the theory of conformal mappings, Y(D)&R, that is, there exists x€dT(G,) n R.
But this contradicts with Corollary 1 in §2. g.e.d.

Of course, for ¥: 4—T(G,) defined by any ¢ € Q(S,) Theorem 5 (a) is valid,
and the cluster set of ¥ at each point on 04 consists of b-groups. Applying the
Fubini’s theorem for the spherical measure on 0Q,(S,) and the linear measure on
dD(¢), we have the following theorem from Theorem 5.

Theorem 7. There exists a measurable set Ey on 0Q,(Sy) with the spherical
measure zero such that every geodesic ray r(¢) (with respect to the Teichmiiller
metric) in T(Sy) corresponding to a line segment from zero to ¢ € 0Q,(Sy)—E; in
Q.(Sy) converges to a point on dT(G,), which corresponds to a totally degenerate
group by the canonical identification from T(Sy) to T(G,).

Denote by Mod (G,) the modular group of G,. Bers [11] showed that every
m e Mod (G,) has a limit at every point on 0T(G,) corresponding to a totally degen-
erate group. Therefore, from the above theorem we can show immediately the
following.

Corollary 2. Let Ey be the same as in Theorem 7. Then for every me

Mod (Gg) and for every geodesic ray r(¢p)($pe€dQ,(So)— E3) m(r(p)) terminates to a
point on 0T(G,).

§5. The boundary behaviour of holomorphic differentials

In this section, we assume that S, (=4/G,) is a compact Riemann surface of
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genus g>1. Denote by {4;, B;}{ a homology basis on S,, and denote by 6; (j=1,
2,.... g) the first order holomorphic differentials on S, satisfying

(5'1) SA ()j=5jk ('j,k=l,2,...,g).

For a holomorphic mapping F: 4-T(G,) we denote by [(S=, f2)] (e T(S,)) a
point identified with F(z). Then {f3(A4;). f*(B;)}{ is a homology basis on S*. De-
note by 0,(z) (j=1.2,..., g) the holomorphic differentials on S satisfying

(5.2) 0](2)=5jk (. k=1,2,...,9).

Sf‘(Ak)
Then it is known that tjk(z)=S 0/(2) (j, k=1, 2,..., g) are well defined and
SZ(Bik)
holomorphic as functions of z € 4 (cf. Bers [8]).

Theorem 8. Let F be a holomorphic mapping of A to T(G,). Then each
T;(2) has finite non-tangential limits almost everywhere on 4.

Proof. 1t is well known that the g x g matrix (Im ;) ,-, is positive definite
for each z. Hence our assertion can be led from the following lemma.

Lemma. Suppose that g x g matrix (fj(z))4 x=1 is symmetric and holomorphic
on 4 and (Imfy)4 .-, is positive definite for each ze A. Then each f;, has finite
non-tangential limits almost evervwhere on 0A.

Proof of the lemma. Since (Imf;(z))9 .-, is positive definite, Im f;,(z)>0
(j=1, 2,...,9). Consequently, exp(—\/——lfjj(z)) is a bounded analytic function
on A. By the Fatou’s theorem exp(\/—1f;{z)) has non-tangential limits almost
everywhere on 04, and by the Riesz’ theorem the set on which exp (—\/—1f;;(z))
has non-tangential limit zero is measure zero. This implies that the statement is true

for f;(2) (=1, 2,..., 9).
Since (Im f;,(2))4 4=, is positive definite, we have

( Im f;(z) Im fp(2)

det

Im f;(z) Im fiu(2)

[Im fi(2)] <(Im f;(2))"/2(Im fi(2))'/2
=(Im f;(z)+1m fu(2))/2.

)>0 (lmfjk=]mfkj)ﬁ

Thus | Im f;(z)| has a harmonic majorant, and this implies that Im f;(z) is repre-
sented by u,(z) —u,(z) where u; (i=1, 2) are positive harmonic functions on 4. By
the above argument, the statement is also proved for f (j#k).

Corollary 3. Let F and [(S% f?)] be the same as above. We have a fixed
holomorphic differential @ on S, and denote by ©(z) (ze A) the unique holomorphic
differential on S* such that
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g @(z)=g 0 (j=1.2...9).
13045 "

where {A;, B;}{ is a fixed homology basis on So. Then S O(z)(j=1,2.....,9)
. £E(B)

and ll@(z)||§==§8 O(2)O(z) have finite non-tangential limits almost everywhere

JJS=

on od.

Proof. Set a; S O (j=1,2,..,9), then O(z)= Z a;0,(z) where 04z) are
Aj
holomorphlc dli’ferentlals satisfying (5 2). Hence from Theorem 8, O(z)=

Jz(Bk)
Z a; S 9( )= 2 a;7;(z) has finite non-tangential limits almost ev‘érywhere
i=1 S=(B

on d4. Furthermore from the Riemann’s bilinear relation (cf. Ahlfors-Sario [6]),

we have

10()13:=v=1 3, (SM” 0(2) Sm,) o(2)

*SP(BH () Ngﬁuj) 9(Z)>

= -—2Im(li=‘,l ajg 9(2)).

S3(Bj))
Hence our assertion is also true for |@(z)| 3. q.e.d.

Remark. From the above result, it is easy to show that B-periods and norms of
holomorphic differentials with prescribed A-periods, as functions on T(G,), have
finite limits along geodesic rays almost everywhere in the sense of Theorem 7.
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