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§1. Introduction.

In our paper [10], we made a mistake in reasoning and proofs of
Theorems 1.1 and 1.2. Until now, under the condition (A), it should
seem difficult to the author to obtain the conclusion of the Theorems 1.1
and 1.2 from the only Condition (B) or (B). (In one space variable,
Theorems 1.1 and 1.2 are true. cf. Examples 6.1 and 6.2 of [10].)

Prof. S. Mizohata proposed necessary conditions and sufficient condi-
tions for an operator given by Example 6.3 of [10] to be L*-wellposed.
(See [5]1, [61, [7]. In [5], a necessary condition was given for more
general operators.) In this paper following the inference of Mizohata,
we show that for an operator with constant leading coefficients the
conclusion of the Theorem 1.2 of [10] holds under the additional condi-
tions.

§2. Statement of results.

Consider a linear partial differential operator defined on (x, t) ER"X
R':

2.1 P(x,D,, D)) =Dr+a,(x,D)Dr '+ «+e+a,(x, D,),

where
(2.2) 4;(x,D)= % a;(x)Dz (1<j<m)
laTs2j
. . -/ _1 0 _1 o9
with coefficients a,;(x) € #~(R"). D,=——~-, D,=——-—. We are concer-
i Ot i Ox

ned with the “two-sided” Cauchy problem for P(x, D,, D,):
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P(x,D,, D)u(x,t) =f(x,¢) in R"X[-T,T],

(2.3) Di u(x,0) =g;(x), (1=j=m).

We seek for the conditions for the Cauchy problem (2.3) to be H*-
wellposed.
Our conditions are as follows.

Condition (A. 1). a,;(x) =a,(conctant) for |a|=2j, 1<j<m.

Denote the principal symbol of a;(x, D,) by a}(§) and the subprincipal
symbol of a;(x, D,) by aj(x, &), i.e,

2.49) &)= 3 a, = ¥ a;(E (I=j=m).

lal=2j la|=2j-1

Denote the principal symbol of P(x, D,, D,) as 2-evolution in the sense
of Petrowski [8] by P (¢, 7), i.e.,

(2.5) P&, v) =t +al (&)t + - - - a5 (8).
The second condition is the following.

Condition (A. 2). The roots of P°(&,t)=0 are non-zero, real, distinct for
e R"\ {0}, i.e.,

(2.6) P&, o) =1L (e =2,(0), 4,(8) 5 4(8), (jk, £x0).
iz
Remark 1. 2;(¢) is homogeneous of degree 2 in &.

Remark 2. It is necessary for the Cauchy problem (2.3) to be H*
(R")-wellposed that the roots 4;(§)(1=<j=m) are real for §ER"* (Pet-
rowski [8], Mizohata [4]).

Remark 3. Conditions (A. 1) and (A. 2) are the same as Condition
(A) in the previous paper [10].

We put
2.7 Q°(x, & ) =al(x, )t 1+ « o« +al (%, &).
We replace the Condition (B) of [10] by the following.
Condition (By):

For any (x,0,t)ER"XS"'X R},

S' Im Q% (x+s(Fed,) (@), o, 4, (w))ds
0
remains bounded, (1=j<m).

For any multi-index a(|a|=1),

Condition (B,) :
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For any (x,w)ER"X S
{7102 G457 @), 0, 300 15
remains bounded, (1=j<m).

Remark 4. Under the condition (A. 2), we have, by Euler’s identity,
§VA;(8) =22;(&) %0 for £x0, i.e, FA;(&§)x0 for 0.

Remark 5. The above conditions are essentially the same as the con-
ditions given by Mizohata in the case m=1. (cf. [6], [7]1).

Our results are the following theorems.

Theorem 1. Assume that the conditions (A. 1), (A. 2), (B,) and (B,)
Sor all a(|a|=1) hold. Then the Cauchy problem (2.3) is H*-wellposed for
any SERY, s=0, that is, for any (g (x),..., g.(x)) € H*?mx Hs+2n=D x|
X H*? and any f(x,t)€CY[—T, T]; H*), there exists a unique solution u(x,
) of (2.3):u(x,)eCH[T—,T]: H*™)YNCH[—=T,T]: H+**"D)yn......
NCrY[ =T, T1; H**®) and the following energy inequality holds:

2.8) [e®llloSCls D kIl + |1 ¢llode |}, teL-T, T1.

Here

(2.9) @Ry = 110 =)™ Di u () s,
(2.10) () |2, = (2n>-"g<1 + 1812 |aCE, £)|%e,
2.11) a(&, ) =Fu(x, t) =Se“"5u (x, t)dx.

As a special case of the conditions (B,) and (B,) (la| =1), we consider
the following conditions.

Condition (B,)’:
For any (x,0,t)eR"XS"'X R},
S‘ Im aj(x+s5F.4) (@), ®)ds
r:mains bounded, (1=j, k=m).
For any multi-index a, |a|=1,
Condition(B,)" :
For any (x,0)ER"X S,

S: |D2al(x+5(F4,) (), o) |ds
remains bounded, (1=<j, k=m).
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Corollary of Theorem 1. Assume that the conditions (A. 1), (4. 2),
(By)' and (B,)' for all a (|a|=1) hold. Then the Cauchy problem (2. 3)
is H*(R")-wellposed for any s€R', s=0.

Remark 6. Assume that the conditions (A. 1) and (A. 2) hold, and
that Im al(x, §) =0, (1=<j<m). Then it is easy to see that the conclusion
of Theorem 1 holds without the condition (B,)(|a|=1). In this case,
the condition (B,) is automatically satisfied.

Concerning the necessary condition, we assume the following weaker
condition (A. 2)’ than (A. 2).

Condition (A. 2)'. The roots of P°(§,7) =0 are real, distinct for £ R"\ {0} :
(2.6) P& o) =11 (=4, 4(O) %4 (8), (j*k, E50).
i-

Remark that 2;(§) may be zero for some & or for all &.

Theorem 2. Assume that the conditions (A. 1) and (A. 2)° hold. Then
the condition (By) is necessary for the Cauchy problem (2.3) to be H'(R™)-
wellposed for any non-negative integer .

§3. Proof of Theorem 1.

To make this paper self-contained, we renew the proof from the
beginning.

3. 1. Reduction to a system and its diagonalization.

Let P(x, D,, D,) be a differential operator of the form (2. 1). Assume
that the conditions (A. 1), (A.2), (B,) and (B,) for all @ (|a|=1) hold.
We consider the Cauchy problem (2.3). We put

3.1 u;(x,8) = (1 =D Diu(x, ), (1=<j<m),
(3.2) U(x, ) =1 (u, (x,8), 0o vy un(x,8)).
Then we have a system of the following form:

DiU(xs t) :M(x, D,)U(x, t) +F(xa t)’
U(x,0) =G(x).

Here M(x, D,) = M,(D,) + M,(x, D,) + M,(x, D,) is a pseudo-differential
operator of order 2. The symbol M;(x, §) of M;(x, D,)(j=1, 2) has
the following form:

3.3)

1
— (&) |€]) weennnn - —al(E/18])

(3.4) My (&) = e T, 1€ 1%
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0 ceeeens . 0
(3.5) M(x,8) = ‘ : €1,
0 oooooooo 0
—ai(x, §/1€]) weveres —an(x, §/1€])
M,(x,D,) is a pseudo-differential operator of order 0.
(3.6) F(x,t) =t(0,..., 0, f(x,8)),

3.7 G = (A=-D"g(x), I=DH"g(x),..., g.(x)).

From the condition (A. 2), M,(£) has distinct eigenvalues 4,(£),..., 4,
(&) for £x0. Thus the system (3.3) is diagonaizable as follows.

Lemma 3. 1. There exist a diagonal pseudo-differential operator 2 (x, D,)
€O0PS?, and an invertible pseudo-differential operator N(x, D,) €OPS}, such
that

(3.8) N(x,D,)(D,—M(x,D))=(D,—D(x,D))N(x,D,) (mod. OPSL,).
Proof. At first, consider the equation '

(3.9)  N(x,D)M(x, D) =9 (x,D.)N(x,D,) (mod. OPS.,).

We put

N(x, E) =N0($) +N-1(x, &),
9(.’6‘, e) 292(6) +@1(JC, E),

where N;, 2; are homogeneous of degree j in &.
Then (3.9) implies that

(3.10) No(&) M,(8) = D,(&§) No(8).
Since
(3. 11) det(el = M,(&)) =P, 7) =11 (c—=4,(6)),
we have

4(8) 0
(3.12) 2,(8) = B . :

0 ) 2. (&)
and

L (&)

(3.13) N = : |

L. (&)
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where [;(&) is a left null vector of 2,(§)I—M,(&) and of homogeneous
degree 0 in &, (1=i<m).

Obviously, we have Ny(§) €S8, and |det Ny (§)|=0>0 for £=0.

Next, consider the equation (3.8) (mod. OPSY,), that is,

(3.14) No(x, D,) M,(x, D,) + N_,(x, D,) M,(D,)
=92,(D,)N_i(x, D,) +2,(x, D,) Ny(x, D,) (mod. OPS},).

It follows from (3.14) that
(3.15) No(©) M, (x, &) +N_y(x, &) M,(&)

=92,(§) N_,(x, E)+.@1(x, 5)N0(§)~
We put N_,(x, ) No(&) 1=N_,(x, &) = (n;(x, £)), then we have

(3.16) N_i(x,8) 2,(8) — D,(§) N_1(x, &)
=9,(x, &) —N,(&) M, (x, E)N, (&)L

We put R,(x, §) =Ny(&) M, (x, )Ny (&) 1= (r;(x, &)).
Then we choose 2,(x, &) such that

3.17) 92,(x, £)'=diagonal of R,(x, &).
Define

_ A8 =24,(8)) r(x, 8) (i)
(3.18) (&Y ={ Gh.

Then 2,(x, &) and N_,(x, &) =N_,(x, &) Ny(§) satisfy (3.15). Thus 2
(x, D,)=2,(D,) + 2,(x, D,) and N(x, D,) =({I+N_,(x, D,)) Ny(D,) satisfy
the equation (3.8). Furthermore, we can choose N_,(x, &) such that
N_/(x, & belongs to Si} and for each s€R'(s=0), operator norm |N_,

(%, D,)|lgus.q+, can be as small as one wishes by modifying N_(x, €) in
|§]|=R,. Then

(3.19) (I+N_(x, D)) '=I—N_+ N2, ++ee (=D N + ...

exists and belongs to OPSy, (cf. Kumano-go [3], Appendix I). Thus
N(x, D,) is invertible in OPS?, and N(x, D,)'=N,(D,)*(I+N_(x,D,))""
This completes the proof of Lemma 3. 1.

From the proof of Lemma 3.1 we have more explicit formula for 2,(x, §)
= (04" (x, £)).

Lemma 3. 2. In Lemma 3. 1, we have
(3.20) A (x, €)= —Q°(x, &, zi(e))/gi (2:(8&) —24;(8),
where Q%(x, &, t) is defined by (2.7), (1=<i<m).

Proof. A left null vector [;(§) of
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LT —M,(8) =[A4(&/ 1§V —M,(&/1€[)11€]* in (3.13)
is a constant multiple of ([;(®),...., 4,(®)) (@w=E&/|£|) where

li(0) =24, (0)" ' +a) (@) 4 (@) "2+« + « +a),_, (0)
l,»z(‘a)) =4 (@)™ 24+a) (@) A, (@)™ 34 oo +a9n—2(w)

(3.21)

On the other hand, a right null vector 7,(§) of 2;(§)I—M,(§) is a con-
stant multipel of (1, 4;(w), (@)% ..., (@)™ ) (w=E§/1§|). We define
L&) =1(8/16]) =(U4(E/18])y .oy Ln(E/1€])) by (8.21) and choose 7,(§)
such that [;(&)r;(&) =1. Thus we have

r(©) =11, 4(8/ 181, ..., A&/ 18" /2L 8/ 181, Ace/ 181,

From the fact that 2,(£),..., 4,(§) are distinct, it follows that [;(§)r;(§)
=90; (1=i, j<m). Thus we have

L (&)

No(E): 5 No(f)‘l=[71(€)...rm(5)]

L.(&)

and

30 (x, &) =L(8) My (x, §)7,(6)
= — (a}(x, ) A(@) "+ - tal (v, ) (€] /2L (0, 3 ()
=—-Qx, », 4, (w)) I€] /H (4 (w) _Zj(w))
= —Qx, & 46D/ (&) —2,(8), (w=¢/18)).

3. 2. Proof of Theorem 1. Following the inference of Mizohata [6],
[7], we transform D,— 2 (x, D,) to an operator without the first order
term 2,(x, D,). For this end, we put V(x, t) =N(x, D,)U(x, ¢) and

(3.22) V(x,t)=K(x,t,D,)W(x,t)
kl(xa t3 -Dx) 0

i

. W(x,t),
o " ka(x,t, D)
where K(x, ¢, D,) is a diagonal pseudo-differential operator. Applying
D,—2(x, D,) to V(x, t), we have
(3.23) (D,— 2 (x,D,))[K(x,t, D)W (x,1)]
=[D:K(x,t, D) — 3, 25" (D) Ky (%, 8, D) —
=1
—2,(x, D) K(x,t, D)W (x, )
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+K(x9 t’ Dx) [Dt - QZ(D,)]W(JC, t) :
—Go(x,t, D)K(x,t, D)W (x,1t).

We define the symbol K(x, ¢, §) of K(x, t, D,) by the solution of the
equation

"9
(3.24) [D —a FEp
K(x,0,86)=1,

Qz(S)Dj_'@l(x3 E)]K(x’ ¢ E) :0’

that is,

[D,—VJ,(E) ‘Dx+@(x, E, 2,(5))/];-[ (ZJ(E) _21(8))] X
(3.25) X k; (x, t, &) =0, ’

kj(x9 0,8 =1, (l§]§m).
The solution of (3.25) is the following form:

ki, 1, €) =expligy (3, 1, &)1,
~( @+ sra (), & 3,()ds

G2 N he D=2 ey

(I=sj=m).
It follows from (3.3) and (3.23) that

(3.27) K(x,t, D)[D,— 2,(D,)1W (x, 1)
_Kl(x, t) Dx) W(x9 t) _Mo(x, Dx)N(x; Dx) —IV(xa t)
=N(x,D,)F(x,1t)

where K (x, t,"D,) =%,(x,t, D)K(x,t, D,).
By the conditions (B,) and (B,)(|la|=1), k;(x, ¢, §) has the following
estimate (Mizohata [6], [7]).

(3.28) | DED3k; (%, 1, &) | S M, 511, (1<j<m).

kij(x, t, &) belongs to S3, (¢: parameter). By the theorem of Calderon-
Vaillancourt [1], K(x, {, D,) and K,(x, ¢, D,) are bounded operators on
[H*(R")]". On the other hand, we have

(3.29) exp[ —i¢; (x, ¢, D,) lexp[i¢;(x,t, D,)1=14+R;(x,t, D,),
and from (3.28) we have
(3.30) lIR;j(x,t, D,)||<const. |t|.

By the theorem of Calderon-Vaillancourt, (/4 R;(x, f, D,)) is invertible
in OPS3, when |t| is small. Thus K(x, ¢, D,) is invertible in OPS], when
|t| is small. Finally from (3.27) we have
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[Dt - QZ(D;:) —Ko(x, t’ Dx)] W(xa t) =K0(x1 ts Dx)F(x9‘t)

3.3 W(x,0) =N(x, D,)G(x)

where K,, K,€0PS, for small |¢].

The Cauchy problem (3.31) is H*-wellposed and N(x, D,) and K(x, ¢, D,)
are bounded and invertible on H* for small [¢|. Thus the proof of
Theorem 1 is complete when 7 is small. Repeating the above argument
step by step we complete the proof of Theorem I. (Q.E.D))

§4. Proof of Theorem 2.

4. 1. Asymptotic solutions. We construct the asymptotic solution of
the following form:

“4.1) u(x, t,§) =e**00(x,4,8), E€R"\{0}.

Applying P(x, D,, D,) to u(x,t, &), we have

(4.2) emieEtOP (x, Dx, D)) (e"*=t9y(x, t, £))
=P(x, D+ 2. D+ B Yoz, 1, )

—P°< ggo , aagi >v(x, t, &)

(. o B (3 )
+ Qf’(x, %"_, %-f)]v (x,¢,8)

+R<x, D, D, ?f, ?f )v(x 1 8).

We define the phase function ¢(x, ¢, & by
(4.3) 0; 06,1, 8) =Ex+4()t,  EERN (0}, ISj<m),

so that ¢;(x, ¢, &) satisfies P"( ggo’ g";) 0..
We solve the transport equation:
aPO U
R ACHICIEE RS
Xv;(x, ¢, &) =
v;(x,0,8) =g(x).

Diﬂ'erentiate PO, 4 (5)) —0 with respect to Ek,
we have——(é‘ 4;(8)) +

<e,z,<e>>Dk+Q°<x &2 (é))]x
(4.4

Since%—(f, j(é))=£11 (3;(§) —1,-(6))#0 from (2.6),
we have -
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I:D kZ alagé) D + m@(xa &9 21(5)) ] l’,- (x’ t, E) :0,
(4.5) ., I (4,(8) =2(6))

v;(x, 0, 8) =g(x). i*J

The solution ;(x, ¢, §) has the following form:

(4" 6) vj(xa t) E) :exp[i¢j(xa t& 5)]11);(.9(?, t, E)s
where
t Qf(x+s(l7€1,-) (E), E, /2,(5))
(4.7 j( > & £ =-— m ds
) filx \ (4,0 —4(8)
and
(4.8) w;(x, 8, §) =g(x +1(F ) ().

Remark that ¢;(x,¢, &) is the same function as the function in (3.26).

Note that ¢;(x, ¢, &) =¢;(x, |£]t,&/1€]) and w;(x, t, &) =w;(x, |§]¢,
£/1€]) so that v;(x, ¢, §) =v;(x, |£]¢, £/1€]). Thus we have the following
solutions u;(x, ¢, &) of the equation

P(x9 Dx, Dt)uj(x’ t, S) :fj(x’ ta 'S),

<4‘. 9) { ui(x, 0’ E) :eixsg(x)’

where

(4.10) u;(x, b, &) =0 ® 109 L0w, (x, t, §)

_ . Q_"(x+s(l72)($) &, 2;(8))
=exp if g+ 7,00 - | LU (&) =108 ds]x

1gigm
ixj

xg(x+t(Fed) (8)),
411 fi(x, 8, &) =€ R;(x, Dy, Dy, §) (6¥1%Pw;(x, 1, £))

=eitp,-(x.t.é)eiqu(x.t.é)Rj( X, Dx +%§%;’ D£+%§%’ $>w1(x, t, &) ,

0 0
(4.12) R;(x, Dy, D, &) = R(x D, D, %, gg)

Here R; consists of the following three terms.

(4. 13) R; (x, Dn Dt, ’E)
P°(§ T)]D"D’

|al+z22< >
=2 (5)

(4)
‘a|+121 <—ai> ( )Qf(x, £ T)]D‘:Df

t=1’-(é)
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a \*/ d\ o ] .
+ |a|§20 (??) <_3?> |ﬂ|+21§(m_1) ag(x)§P7'y |DaD:.

t=/1j(£)

For g(x) €Cy(R™, we have the following estimates.

(4.14) ||R;(x, D, Dy, §)w;(x, t, §)]|
EHRj(x, D,, D, S)g(x+t(l7€2,-) ENI
=const. 3] 2 lagllE1 19208 |1 (FeA;) (6) 1118 () | arn

lal+iz2 |Bl+21=2m .
Hoonst. 3 % LA TP (6) [lgG) llaen

lal+izl |Bi+2i=2m~-1

+const. 3, 2 T 2,08 | (FeA;) (6) [l () a4

la|+i20 |ﬁ|+2152(w_:—1)
Sconst. Y |&179 g () || ar 40y

lal¥iz2 .
+const. | |Zzl [ 210D g () || a4y
al+i
+const. Y, > |§| AAI+2D=Aal+D|| 2 () || 114y

la|+i20 |Bl+2ls2(m—1)
Zconst. &2 V]|g(x) || em-

4. 2. Proof of Theorem 2. Following Mizohata [6], [7], we show the
necessity of (B,). Let us suppose that the Cauchy problem (2.3) is H'-
wellposed and the inequality (2.8) holds for s=[. Suppose that (B,) is
violated. Then there exist j,e{l, 2,..., m}, 2*'€R", o*’=S5"! and { >0
such that

ImS"’ Q' +s5(F ki) (@), @, 4 ()
0 o (X,-O(w") —2;(e"))

t#}o

=2 log (2C(,T)),

(4.15) ds

where C(I, T) is the constant in (2.8) with s=/.

Put x°=x1+t0(l752j0)- (@), §=po’, t,=t,/p, p being positive parameter
tending to infinity. Let the function g(x) in (4.9) be a smooth function
with small support around x°.

We put u,(x, t) =u;, (%, t, po®), then we have

(4.16) u,(x, t,) =u; (%, t,, po°)
:CXP i[P?j()(PC, to, wo) +¢j0(x3 t03 wo) ]wjo (xa tO) (DO).

Note that the support of w,-o(x, b, @°) = g(x+1, (Vel,-o) («®)) is concentrated
around x'(=x°—{y(V4;) («°)) and its diameter can be made small by
schrinking the support of g(x) to x°

It follows from (4.10), (4.15) and (4.16) that

(4.17) o Coy ey 22C U, T) 0% | g () || 2R
We put f,(x, t) =fi, (%, t, pe®), then we have from (4.11)

(4.18)  f,(x,8) =exp i[g; (x,t, po°) +¢; (x, pt, @*)] X
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a¢10 0 agb’o 0 0
X Ry (% Dt (5, 01,0, Dyt pt, o), o) X
Xwj, (x, pt, @®).
(4.14) and (4.18) imply that
to
.19 {170 Ollear
‘o . og;
§p2<m—1>+'—1g llexpLig;, (x, t’,w“)]Rjo<x,D,+ ax" (x, 1,0,
0
a¢10 ’ () 0 ’ 0 ’
D5 (x, 1, 0%, 0 )wjo(x,t @) [ 2amdt’.

Thus (2.8) implies the following inequality:
P20 (L D g (%) [ 2w
y
S260 1) gl iz +- IS Ozt ),

where

od.
gbjo (x’ t’ wo)’
0x

J(x, ) =exp[ig; (,t, w°)]R0j<x, D.+

o .
D,+7?;9~(x, ¢, o), w°>w,~0(x, t, wd).

This is impossible when p—— 400, which completes the proof of Theorem
2.
§5. Examples and concluding remarks.

5. 1. If the Cauchy problem (2.3) for an operator P(x, D,, D,) of
the form (2.1) is wellposed both for the future and for the past in some
functional space, we would like to say that the operator P(x, D, D,) is
of Schrodinger type.

Example 5. 1. (Mizohata [6], [7])
5.1 P(x, D,, D) =D, + 5 (D, —b ()

The conditions (B,) and (B,)(|a|=1) have the following forms:

t n
(By) sup S Im 3 b;(x 4 sw) o,ds | < o0,
(r.0,neR"xs" " 1xR! | JO =1
For any a (|a|=1),
(B sup S” " Db, (x + s0) ;| ds< +oo.
(r,meR"xs""1J0 | i=1

Then the conclusion of Theorem 1 holds.
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We take the function ¢(x, ¢, §) in (3.26) as follows:

(5.2) $(x, 1, &) = —%S‘ 5 by (x—s€)E; ds.
0j=1
Then the following equality holds:
(5. 3) [Dt'i‘% i (D] —bj(x))zjleid’("'"pz)
i=1
Ee;¢<,.,.n,><p,+% 3 Dg.), (mod. OPSY).
j=1
Example 5. 2.
(5.4) P(x,D,D) =D’— |D,|*+ i;l bR DD+ % 6(x) D
j= vi=

(5.5) P == [§]'=(— [§]®) (z+ |§]D).

It follows from (5.5) that the conditions (A. 1) and (A. 2) are satisfied.
The conditions (B,)" and (B,) (|la|=1) have the following forms:

sup S‘ Im 3 b;(x+ sw) wds l < 400,
(B Yy (.o, )eR xs" " 1xgHIJ0 =1
0 !
sup S Im X ¢,(x+sw) w’ds | < +oo,
o, t)eR xS 1xr11J0 Iv]=3
Sup S“ i D2b;(x+ sw)w; | ds<+oo,
(_B )’ (x.m)ER”xS”‘l 0 |j=1
’ sup S >3 D%, (x+ sw) @’ |ds< oo,
0 | Ivl=3

(.0)eR"xS""1
In this case, the condition (B,) [resp. (B,)] is equivalent to the condition

(By)’ [resp. (B,)']. Principal part of P(x, D,, D,) is equal to —[(%)Z

+.’12] which is appeared in the equation of vibrating plate (cf. Courant-
Hilbert [2, p. 252], Schrédinger [9, footnote]).

5.2. Obviously, the results of this paper can be extended to some
systems of linear partial differential equations.
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