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§ O. Introduction.

L et lin  b e th e  n-dimensional euclidean space (n 2 ) ,  an d  se t H= Hn
= R n ;  xn > 0 1 ,  th en  H  becomes th e  n-dim ensional hyperbolic space
w ith  respect to  th e  hyperbolic m etric p(x)Idx 1, w here p(x) = x„- 1 . And
le t  r b e  a  group o f isometries of H, which acts discontinuously o n  H.
L. V . Ahlfors showed, in  his lecture note [5 ], the weak finiteness theorem :
if is fin itely generated, then the d im ension of a certain  class Q(1") of
mixed tensor densities, automorphic under is finite, which is an extension
to higher dimensions o f analytic  p a rts  o f his fam ous finiteness theorem

1]
O ur m ain aim  is to  in troduce another certa in  c lass a(r) containing

Q(P), for which the dim ension of a ( r )  is  still f in ite  (C oro llary  3). In
order to investigate 0.,(r) , w e shall study a  class p(r) of quasiconformal
deformations and derive properties of a ( r )  from those of p (T' )  (Theorems
5  and  6 , and  Corollary 4).

In  §1 we shall define some notations and state Ahlfors' weak finiteness
th eo rem . In  §2 w e shall study quasiconformal deformations, an d  derive
som e new  facts (Theorem s 3  an d  4). I n  § 3  w e  sh a ll s ta te  o u r  main
results, w hich w ill be proven in  §5, after providing som e lem m as in  §4.
A nd in the last §6 we shall state some remarks for the case n =3, particu-
larly  that our c lass a (  r )  turns out to  be 0-dimensional.

T h e au thor w ishes to  express h is deepest g ratitude to Professor Y.
Kusunoki for his encouragement and valuable comments, and for bringing
this problem  to author's a tten tio n . A n d  th e  author also thanks to D rs.
M. Taniguchi an d  H . Shiga, an d  M r. M . Masumoto for their advices and
comments during the preparation of th is paper.

§ 1. Notations and Ahlfors' weak finiteness theorem.

By column vectors we denote the points in Itn, and by 'X  the transpose
o f a  m atrix X.
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Let f  be an  Rn-valued smooth function defined on an  open subset U
of R n, then we define a  linear operator S =S n b y

1(1.1) =  (D f+  (D f)) —  —

1  
(trDf ) I n ,2

where D f i s  the Jacobian m atrix of f ,  an d  /, i s  th e  u n it  matrix. W e
rem ark that S j  corresponds to f  ( c f .  Lemma 6 ) .  For any smooth func-
tions ç5 with compact support, each  en try 1),.;  -= (S n f ) , ,  of Sn f  satisfies the
following equality

1 1  „(1.2) Su v i i 0dx =
 —S u ( f 1d1 g5-Ff

5
a,0) —  n   o i ;  kLi f k ak g5dx,

aw here by a, we mean  and ai ;  i s  th e Kronecker's delta.
axk

F o r a  m atrix X = (x11 ) ,  we define a  norm H • II by

(1.3) iiX11 = (tX X ) =  E

It satisfies

(1.4) IIXY11-1!XII • 11Y11, an d  11X+ 1711-5-11X1H- 11111.

A  continuous function f :  R n  I V  is  c a l le d  a quasicon  formal ( q .  c.)
deformation o f  R n  i f  there exists Sn f  in  th e  distributional sense and I 'Skill
E  (R n ) , th a t is ,  i f  there ex ist n '  elements (1 j.. n )  o f  /7(R"),
w hich  satisfy (1 .2 ) fo r any smooth functions 95 w ith  compact support.
W e rem ark  th a t th e  above definition o f  q . c .  deform ations is slightly
different from Ahlfors' original one, but from Theorem 1 an d  Lemma 2
of Chapter VIII in  [5], it can be seen that two definitions are equivalent.

B y  SMn we denote the set o f n x n  matrices X  such  that tX= X  and
trX = O . L et yo = (v),; )  b e a n  SMn-valued smooth function on  an  open
subset of R n, then we define another linear operator S* =S: by

(1.5) (sN),—E amp
W e rem ark that S N  corresponds to  the complex derivative of ço.

L et .1/,, be th e  group of a l l  Meibius transformations of R n=- R "U  (oo)
(the one-point compactification of R a). d i n is generated  by reflections
with respect to  (n —1) -dimensional planes and spheres in  R n . For 7,. .,(en,
its  Jacobian m atrix  r ' ( x )  (fo r th e  elements o f  ..,‘ „  w e  use the notation

(x ) instead of Dr (x ) )  can be w ritten w ith k>0 and V O ( n )  as

(1.6) y(x)=kV,

where k an d  V m ay depend on x. W e denote this positive number k by
I y(x ) 1. Then we get

(1.7) tr"(4 7/(x) = Ir'(x)12.
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B y 4 , (H )  w e m ean th e  subgroup of the elements of d t  which leave
H" fix ed . T h en  it is  kn o w n  th at the hyperbolic metric p(x) Idx 1, where
p(x) x,7 1 , is  .1/„(H )-invariant, that is,

(1.8) p (x )  iri(x) =p(x) for an y  rE.,en (H).
In particular,

(1.9) Ir' (e )  I =fe n r (en ) for an y  rE.,1„(H),

w here ten = (0, , 0 ,1). W e identify, in  th is  paper, R" - '  w ith  I x  Rn ;
x =0 ) ,  th en  for n 3 it is know n that each elem ent of A ,  i s  u n iq u e ly
and  canonically extensible to  a n  element o f ,e n ( H ) ,  an d  conversely the
restriction to fin- '  of each element of n (H ) becomes an  element of
Hence we identify .14_1 w ith  ,1„(H) , an d  u se  th e  sam e letters fo r their
elements.

Let b e  a  subgroup o f .1 4 (H ), which acts discontinuously o n  H".
From  now o n  w e  assum e th a t  r  has this property. B y  A =A (r) and
Q=s2(r) we m ean, a s  usual, the li m it set and the set of discontinuity of
r  in  fi", respective ly . It is know n that A  is  the set of the accumulation
points of Fe n = {r(e); T E E ) in  R., Q  f i "  A  is  open, a n d l i f  nR_ 1 * 0
then S2n is  dense in  R" - 1 .

For T E A , an d  fo r  an  Rn-valued function f  o n  an  o p en  subset U  of
R n, we define a n  Rn-valued function f ,  on 1 --1(u) n Rn by

(1.10) f7= (r') or.

Definition 1. A  continuous function f : Rn is  c a l le d  a  q. c.
deformation o f  fin if f  is  a  q. c. deformation of Rn and if f ,  is continuously
extensible to  r i ( 0 0 )  for some rE ,e„  such that r ( c o )  co.

L et q (r)  b e  th e  se t o f  th e  SMn-valued smooth functions 9) o n  H",
which satisfy the next conditions (

( i ) S :ço = 0 on H",
an d  by m eans o f some q . c .  deformation f  of R3  s u c h  th a t  ten '  = 0  on

Yo can be w ritten as

so= p"S,f on H's.

(ii) For a n y  T e r  an d  a l l  xeHn
(1.11) r' (x) In?" (x) - 1 49 (rx)r' (x) =ÇD(x).

(iii) supx.H,, p- n(x)1140 (x)I l< co, and

(1.12) S IS0(x)11dx< co.

(iv) I f  S2nR" - '#  Ø ,  th e n  g) has a  smooth extension to  S2 nfin - '  and
this extension satisfies
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Q(e„)w=q)Q(e,) on f2 n

where Q(x )=x 'x /  Ix 12 .

Rem arks. 1) From  (1. 3 ) , (1 .7 )  a n d  (1 .11 ) we get

1140 (x) 11 = ( x )  lko(rx)Il f o r  an y  TET,

th a t is, Iço(x)1dx i s  r - in v a r ia n t . Hence th e  in tegra l o f  (1.12 ) can be
taken over any fundam ental set.

2) ço is  s a id  to  h a v e  a  smooth extension to  x = co if  fo r  rE .,e ,(H )
such that  2 ( c o )  * c o ,  r' (x) 1"7" (x) - 'ço (rx)r (x ) h a s  a  smooth extension to
a  neighbourhood of x =roe' ( co).

3) For n = 2, Q (T ) is  the vector space of anti-analytic functions p on
the upper half-plane such that 0 are bounded and integrable automorphic
forms of w eight ( —4) under r, and have the symmetric extension across

n R.

In  [5] Ahlfors showed the following theorem.

Theorem 1. (the weak finiteness theorem) I f  r  is finitely generated, then
the dimension of Q(P) is f inite.

In  th is  paper, instead o f or), w e a r e  interested in  a  c e r ta in  class
01(r), which contain Q(T) an d  is finitely dimensional for finitely generated
r .  Theorem 1  w ill be obtained  a s  a  consequence o f our consideration
o f 0. ,(r ) .

§ 2. Q. c . deformations and harmonic functions.

T h e  operators S S :  defined in  th e  previous section have the
following properties.

Lemma 1. For an IV-valued smooth function f  and an SW -valued smooth
function ÇO, and for rE JI
(2. 1) S (L ) =  (y )  1 ((S I) or) y,
(2 . 2 ) S :  I r' I" (r') 1 (çoor)r'l Ir'1 2 (0 - ]- (sN).r,
and, in particular, for rE .,C (H )
( 2 .3 )  S: tonS„(fr )1 = I r' I n+ 2 (r') IS: (p -s ,j)1  or.

(2 .1 )  a n d  (2 .2 )  a r e  shown i n  [ 3 ]  (Lem m a 1 )  a n d  [5 ]  (  ( 2 .1 )  is
Lemma 4  of Chapter VIII, a n d  (2 .2 ) is shown in  pp. 1 27 -1 29 .). (2 .3 )
is  a  consequence o f  (2 .1 ) , (2 .2 )  a n d  ( 1 .8 ) .  W e rem ark that th e  above
relations hold in  th e  distributional sense.

Proposition 1. Every q. c. deformation f  on f in  has the following proper-
ties.
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( i ) Fo r any r E.,e, such that r(°°) r3c), .1; is continuously extensible to
r-1 (.0).

(ii) i f(x ) I / (1 x 1 2 )  is bounded on IV.
(iii) For any r E  „,  f r  is  a  q. c . deformation o f  Rn.

Proof. From  D efin ition 1 there exists som e  r E % „  0 ( 0 0 ) # 0 0 ,  such
that f ,  is continuously extensible to  o-- 1  (co) . Set 0-11 , 77, then  w e get
f r = (72') - f g ov. T he right hand side of th is equlity is continuously exten-
sible to r-1(00) ) H ence (i ) is concluded.

Let J  b e the inversion w ith  respect to  th e  u n it sphere, then we find
that J(x ) =x / Ix 12 a n d  1/(x ) 1 -= 1 x 1- 2 . Since f j  is  b o u n d ed  on lx 1 <1}
from ( i ), a n d  1fj (Jx) 1 -= (x ) I /  Ix 12 , w e see that If (x ) I/ Ix 12 is bounded
o n  { Ix I >I} . T his im p lies (ii).

In  order to  prove (iii), it is enough  to  show the following equalities :
for any smooth functions 0  w ith  compact support

(2.4)S R „  (r') {(Sf) r l u sbdx

= — SR » 2
1 t(L),a;95 + (fr).iasb} - - -R1: i (f)kakOdx.

1 Set 0 =  1
2I(E, 1 + E j ,) 3,;14 95, where E i j  i s  the n x n matrix with entries

E4.1e1= 8013. T hen  (2 .4 ) can  be rew ritten  as

(2.5)t r [ ( y )  {(Sf) yço]dx= (L)S* çodx.

W e assume f ir s t  th a t  supp0 , r- 1 (0 0 ), T his m eans that I2' No -1(y°.
077' i s  a n  SMn-valued sm ooth function w ith  com pact support, where

Then

e tr  [ 0  {(Sf) or) rA dx

= S  tr[(y ..0 - i (S f )(y .)(w .7?)] if I 'dx

tr[(Sf) 172' (71) ( ç  0 1)) lnd X
R"

= -  elf S*N O  (ç D 0 ) 771 dx

= eV. 171 1- ' 2 (72') - 1 (s* )  oy2dx

= (f°r ) Ii' I - 2 r' (S*w)dx =- e lf,S*Ox.

Next we consider th e  general case. W e m ay assume w ithout loss of
generality that r i(0 0 ) = 0 . L et 2 be a  smooth function such that  0 A l
o n  Rn, 2= 1 o n  lx ,  a n d  supp2= [Ix 15 2 1 .  For 3>0, s e t  2,(x) =
2(x /3), then w e h a v e  Igrad 2 ,I const.3 - 1 . S ince (2 .5 ) ho ld s for
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(1 —2,)so, 6>0,

SR f l  
tr E(r' ) { (s f )  or) 7/  4t'iclx d-

R „̀,1' TS* Wdx

= IS R „ t r  (r') t(Sf) orl r' (26s0)]dx ±S  1f75* (2 eS0) dxRn

11(5f) c7I1 110126dx

+S Ifrl(IS * i0 I lid +1101 I gr ad 11,5 I) dx

const. 5n+ const. 5n - I.

By letting 3--->0 we see that (2.5) holds fo r any sm ooth ço w ith  compact
support, q. e. d.

A n  Rn-valued smooth function f  o n  H "  i s  s a id  to  b e  harmonic if
S: (p'S„f) =0 on H4 .

Theorem 2 .  L e t f  be a n  R"-valued continuous function o n  l i n U
Suppose that f  is  harm onic, If I / (1 ± Ix 12)  is bounded o n  .11" and  'en f  =0  on

Then we have

(2.6) cnf (x)= 2 n -1 5
{In —  2(2_(y — x))f (y) 

Rn - 1 p ,,± 1 (x ) x 12n 4 5

where c„— 
 2  (n  — 1 )

con ((n n =27rn8 r (n / 2 ) is  th e  (n —1)-dimensional measure of

th e  (n —1)-dimensional un it sphere.)

T h e above theorem is shown in  Theorem  3 o f  [3 ] ,  implicitly. I t  i s
assumed there that f  is bounded, b u t  if  f ,  is  bounded  f o r  T(x) =e n +
2(x* —en ) * ,  where x *=J(x ) =x / Ix 12 , then the proof in  [ 3 ]  i s  applicable.
I t is  e a s ily  se en  th a t the boundedness of If1/(l+1.02) im p lies that of
f T . H ence (2.6) holds.

L e t  h  b e  an R " - '-valued  continuous function  o n  R n - 1  s u c h  th a t
I hl / (1 + Ix I2)  is bounded on R n - 1 . From  Theorem  2 it can be seen that
there exists a  harmonic function f  o n  l i n such  that f  I R n _l =h , and  I f  /
(1 + Ix I 2 ) is bounded o n  II", a n d  th a t su ch  a  harmonic function f  is
u n iq u e . W e call such f  the  canonical harmonic ex tension of  h, an d  denote
it  b y  Hh.

Corollary 1. Under the same assumption as  in  Theorem 2,

lim f (x ± ten ) =f (x) for x Rn - 1
5

and this convergence is uniform on any compact subsets o f  IV - 1 .

T h is coro llary is show n by th e  same argum ent as in  the case o f the
Poisson integral for the upper half-plane.

Lemma 2 .  L e t U  be an  open subset o f  R " . Fo r a smooth function f: U
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---> R n  we define the sm ooth function h :U  n R " -1 -- -> R '' by h = (I n _1 0 ) f Iunnn - 1 '
/ 10 O \

w h er e  ( I n _i  0) i s  the ( n - 1 )  x n  matrix  of  the fo rm • .  T hen  the
\ o 10 /

relation b etw een  S n f  and S n _i h  is

(2.7) snf _ (  Sn _i h— aI n _i a
ia (n —1) a)'

w h ere a  = -
1

n

{anf„ — 1
n - 1  (trD h )}, a n d  a  i s  t h e  (n —1)- dim ensional vector

w ith  com ponen ts a3 =  21  (a3L +a,,f ,). In particular,

(2.8) Ilsn_1h115)12

Proof. (2 .7 ) is seen from  th e  definition (1 .1 ) of S J  an d  Sn _i h ,  and
b y  simple ca lcu la tio n . A n d  (2 .8 ) is shown from the next estimate.

!Sid (HA — ain-111±Ilain-111) 2

(1ISh —aII 2 + I lai-1112 )
=2 (11Sh — ain-1112 + (n —1)a2 }
2 f22itisilsih127 /,IF+ 2 la 12 +  (n —1) 2 a 2 }

Lemma 3. L e t  U  b e  an  op en  su b set o f  R n  an d  f : I f  there
ex ists a  sequence o f  sm ooth  fun ction s P k ): U ---> R n su ch  th a t f(k ) con verges to
f  un iform ly on every  compact sub set o f  U , a n d  fo r  a n y  k

(2.9) 11Snf (k ) 11 ..M<00 on  U,

th en  th ere ex ists S n f  on  U  and we have

(2.10) 11SJ11_5nM on  U.

P r o o f .  Let C,7 (U ) be the set of smooth functions with compact support
in  U . (W e regard  Cl° (U )  a s  a  linear subspace o f L l (U ) .) F or a n y  OE

(U ) w e  have

(2.11) (S f (k) )

S11
U 2 tf,'a.isis+f,, k) ai 951 - - T1

3 E  f gf.)amsbdx.

Define linear functionals on Co's (U ) by

(2.12) / k J  ( ç ) u (S f ( k ) ), ; çbdx fo r OE G (U ).

Then from  (2.11) there ex ist linear functionals on C (U )  such  that
/ i i ( -=lim k (0 ) . F ro m  (2 .9 ) a n d  (2 .12 ) w e  se e  th a t are
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bounded, in  f a c t ,  H i1illc(u) M .  B y  th e  Hahn-Banach theorem, there
exist linear functionals zu o n  L i (U) such  th at 11 ILI(u) Icc7an and

(95) = (0 ) fo r  O E  (U ) . Corresponding to J ,  there exist elements
o f  /7 (U) = L l(U )*  su ch  th a t II = IIJJIIL1CU)  a n d  4 1 (g )  = gdx

Dfo r g E  ( U ) .  By letting k—>oo, for any C 7 (U ) we get u

Su vii0dx = Su  1 .f ia;9 5+ f 0 1  - -n1 i ;  E f nz am odx.

Hence, from the definition of S f , w e see St= (1), J ). And from
it is seen that lISfIl nM o n  U.

Lemma 4. Let f  be  a  q . c .  deformation o f  R". T hen there ex ists a
sequence o f  smooth q. c .  deformations f (k) o f  R" such that f (k)—>f uniformly on
any compact subsets o f  Rn, and

ISJ (k ) 115 ess sup

Pro o f . Let 3, be a  smooth positive function with support in {x R";

Ix i < 6 } such tliatS a c (x)dx = 1 . And setR"
f ,(x )  =

5
66 (y — x)f (y)dy.Rn

Then we have

a 'JO i (X) = — S e  (a A) ( y  x ) f i (y)dy.

So we get from th e definition of S t that

S (x)

=  S R „ {W O  —x)f, (y) + (aiac )(y —x)f;  (y)}
1 (a.ac) —x)f,n  (y)dy
n

(y —x) (Sf) i i  (y)dy.Rn

Thus

HS(f.) (x)I12 = (Se a.(y—x)(Sf), ; (y)dy) 2

5 E as(y —x)
R

( S f )  ( y ) d y
n

= S —411Sf(y) I Fdy

ess sup I15f112.

Hence by setting f ( k ) = f i i k  w e get a  desired sequence.

f o r  every k.
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T h e following Theorems 3 an d  4 a re  consequences o f  Lemmas 2, 3
and  4.

T h eorem  3 . L e t f ( k) b e  q .  c . deformations o f  R n  such that f o r any  k
IiSnf ( k ) 11 11/1< 0 0  on R .  If  f (k ) conv erges to f  unif orm ly  on compact subsets
of  R n , then  f  is  a q . c . deformation.

T h eorem  4 . L e t  f  be  a  q .  c .  deformation o f  R n (n 3 ), an d  se t h =
(1.„_1O)f le -1 , th en  h  is  a q . c . deformation o f  R n — '.

C orollary 2. I n  th e  above theorem i f  f  i s  a  q .  c .  deformation o f  R n

(n 3 ) , then h  is  a q . c . deformation of  Rn-1.

§ 3. M ain results.

In  th is section w e define tw o classes Q (r) an d  p (r) , an d  state our
main results.

D efin ition  2 . F or n  3, b y  Q (r )  we denote th e  vector space o f all
SAP-valued functions ça on  H", which satisfy the following conditions (i)

(iii).
( i ) There is som e q. c . deformation h  o f  Rn- 1 , an d  b y  m ean s of

the canonical harmonic extension f = H h  of h, yo can  be w ritten  as

(3. 1) = p'S nf o n  H n .

(ii) For an y  r e r  an d  a ll  x E H"

(3.2)1 7 1  (x ) Inr'(x) - 'so(rx)r'(x) =so(x)•

(iii) I f  Q(r) n Rn - '#  0, th e n  p- ny9 h a s  a  continuous extension to
Q (E ) nfv - i, and  th is extension satisfies

on Q ( r )  /in- '.(3. 3) p-nço=0

R em arks. 1) In  c a se  o f  Q (r) n_i B o o i s  s a id  t o  h ave  a
continuous extension t o  x = co  i f  (por) - n(r') - 1 (çoor)r' h a s  a  continuous
extension to  a  neighbourhood of x = r 1 (00) for some e A ( H ) .

2) W e do not define 0. ,(T ) for n = 2 .  For n 3, from  Corollary 2, it
turns out that Q(r) co.,(r ) .  So Theorem 1, for n  3, comes from Coro-
lla ry  3 b e lo w . In case of n =2 , Theorem 1 follows from Ahlfors' finiteness
theorem [1].

D efin ition  3 . For n 3 , b y  P ( T )  w e m ean the vector space o f a ll q.
c . deformations h  of Rn- 1 , which satisfy the next conditions.

(3.4)S n _ i h =  (0 - 1 1(sn_ih) orv for a n y  r er.

(3.5)S n _ i h = - 0 on Q(1") nlin-1.
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Theorem 5. I f  I"  is  fin ite ly  g en era ted , th en  the dim ension of  p ( r)  is
fin ite.

Theorem 6. The linear mapping h-->g9 P"Sn(11h) is  a mapping of  p(r)
on to  0 ( F )  and the kernel of  th is  m a p p in g  is  (11 P(r); S „_ , h=0 on R" 1}.

Corollary 3. I f  r  is  f in ite ly  g en e ra ted , th en  the dim ension of  o jr)  is
fin ite.

Corollary 4. The fo l lo w in g  conditions ( a )  and ( b )  are equivalent.
( a ) I f  h P(T ) , th en  S,_ 1h -=0  on R n - 1

.

( b ) 0.,(r) =
T he proofs of the above two theorems will be given in  §5.

§  4 .  Lemmas.

In this section we state some lemmas to show our main results.

Lemma 5 .  L et h be a q. c. deformation of nre - - 1 ( n n \3 )  th en  fo r rE .ig n ( H )
-= ./gn-1

(4.1) H(hr) = (Hh),.

W e  re m a rk  th a t  r  i n  t h e  le f t  h a n d  s id e  o f  ( 4 .1 )  is  re g a rd ed  as
o n  th e  o ther h an d , r  in  t h e  r ig h t h an d  s id e  is  reg a rd ed  as

r ../(n (H).

P r o o f .  It follows from (2 .3 )  th a t (H h), is  harm onic. A nd it is easily
seen  th a t I(Hh),I/ (1+ Ix  I 2 )  is bounded o n  H n a n d  th e  boundary value
o f (H h), is  117 . H ence (H h ), is  th e  canonical harmonic extension of h7 ,
so  (4 .1 )  holds.

Lemma 6. 1 )  For n 3, S ,f  =0  on a domain U  in  R n i f  an d  on ly  i f  f
i s  of the from

(4.2) f (x) a+ 2x+ Bx- F c 1 2 —2xtxc on U ,

w h ere a and c are constant vectors, 2 i s  a constant sca la r, an d  B  i s  a constant
m atrix  su ch  that B= —tB.

2 )  S2f =0  and If I/ (1 + Ix1 2 )  is bounded on R 2 i f  an d  o n ly  i f  f  h a s  the
f o r m  (4 .2 )  on R 2 .

P r o o f .  I n  [ 5 ]  1 )  is show n (see Lem m a 1  of Chapter V II I .) ,  so we
show here only 2 ) .  B y the same argum ent as u sed  in  th e  proof o f  1)
in  [5 ] , w e m ay assume that f  is  sm ooth . F rom  th e  definition ( 1 .1 ) ,  it
is seen that S2f = 0  if  an d  only if  a1i 1 - 5 2f 2 = 0 a n d  a2fi + a ,f2 = o , th a t  is,
F =f 1 -1- 11- 1 f

2
 i s  an  analytic function of z =x 1 + 11 —1x2.  S in ce  Fi/(1+ Iz I 2 )

is bounded on the complex p lane C , w e get th at F(z) =- «-FiSz-Faz 2 o n  C,
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where a ,  IS , 3 E C . So  w e have the equality

f ( x )  = ( I
R

m
e ) 4 -  (R e  13)x+ (Tm 13)( °1 —10 )x

(  —Re 6 )
+ 1

(  —Re a \Ixp-2xtIm Im  3  ).

This concludes the proof of 2).

Lemma 7. 1 )  I f  h  i s  of the f o r m  (4.2) on R i  ( n - 1 _ 2 ) ,  th en  f= H h
has the fo l lo w in g  fo rm  on Hn U R n - 1 ;

B 0 \ I C
(4.3) f ( x )  = ( a )±  2 x  

I

 0  0  ) x0  ) I x
2xtx(oc

0

where f o r  ( n - 1 )  X  1 m atrices a and c ,  and  an  ( n - 1 )  X ( n - 1 )  matrix  B  by

( a
o ), ( o

c )  and ( B
o 0

° )  w e  d e n o t e  th e  n x 1  m a tr ic e s  an d  th e  n x n  matrix

obtained by adding zeros, respectively.
2 )  I f  f  i s  of  the f o r m  (4 .2 ) o n  H n  R n - 1  ( n - 1  ..2) and  te nf  = 0  on

Rn - 1 ,  th en  f  h a s  the f o r m  (4.3).

P r o o f .  2 ) is  seen  by simple ca lcu lation . Let g  be the right hand side
of (4.3), then glien - l = h,Ig1/(1+ 1x1 2) is bounded on Hn, and g is harmonic
from Lemma 6. Since th e  canonical harmonic extension i s  un ique, we
get g = - f .  Hence 1) is proved.

L em m a 8. L et h  b e  a q . c . deform ation  of  R n - 1 (n —1 .2), and set f=
H h, and ço= p"S n f .  T hen  the n ex t th ree conditions are equivalent.

(a) Sn_,(12,)=Sn_ih f o r any TEE.
(b) S „ (fr ) = S ,f f o r any TEP.
(c) ço sa t is f ie s  (3.2).

P r o o f .  T he equivalence o f  (b ) a n d  (c ) comes from (1 .8 ) an d  (2.1).
Suppose that ( a )  holds. Then S , , ( h r —h) =0, hence it is seen from Lemma
6 that h i —h has the form  (4 .2 ) on Rn - 1 . Since, from Lemma 5, f i —f is
th e  canonical harm onic extension of h r —h, it fo llow s that S,i ( f r — f)=0.
T hus (b ) holds.

Conversely, if  (b ) holds, then Lemmas 6 an d  7 implies Sn _i (h r —h)=0,
for te n ( f 7 —f) =0  on R .  H e n c e  ( a )  holds.

L em m a 9. L e t h  be a  q . c. deformation of  R n - 1 ( n - 1 2 ) ,  w h ich  d efin es
some ço E 01(r), th e n  h E P ( r ) .

P r o o f .  From  Lem m a 8 a n d  (3 .2 ) w e  g e t S(h r ) =Sh. H ence (3.4)
holds.

Let U  be an  arb itrary open subset of Rn - - 1 ,  w hich is relatively compact
in  Q Rn -1. Define a  sequence of smooth functions h") o n  U  by
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h(k) (x) = (I H h(x+  el c--z) for x  U.

From Lemma 2 w e have

11S.-10 )  (x ) II542 I (H h ) ( x  

O n the other hand, from  (i ) a n d  (iii) in  Definition 2 we obtain

lim ess sup (H h ) (x +  e
k" O.

xeU

Hence, from Corollary 1 and  Lemma 3 we see

S„_ i h =0 on  U.

Thus w e h ave  (3.5) from the arbitrariness o f U, q. e. d.

B y am,  we denote the S M " matrix with entries

A2  A  A(4.4) 0hkij =- ajk"ih —

n

an d  w e set

(4.5) rh ,(x )=Ix i-2 u n -2 Q (x )}  ahk — 2 Q ( x ) } .

T he following lemma is shown in  [3 ] (pp . 91--.-92), implicitly.

L em m a 10. Let h be a q. c. deformation of lina' (n —1 Suppose that
th / (1 + kV ) is bounded on 1V- 1 . Then fo r xE H n

(4.6) cnp(x )"S ,(Hh) (x) =2" - 1 (n+ 1)
1 
r ,(x — y ) hk(y )dy .

k = 1  R nn

§ 5. Proofs of main results.

1. Proof of Theorem 5. Suppose th a t th e  li m it s e t  A  i s  o f  measure
zero, then from Lemma 6 w e get the conclusion, for such q. c . deforma-
tions have the form  (4.2).

S o  w e  assum e th a t  A  h a s  positive measure. F o r  each  r E r ,  and
h E P ( r ) ,  as in  the case o f n —1 =2, we define the periods 14 of h under
the mapping 7  by p r h = — h. This periods satisfy the conditions

(5.1) PT,h= (72' ) '( 1 4 ) ° , 7+1),h,

and

(5.2) S (p r h)=  0.

From  (5.2) it fo llow s that p i l l  i s  o f th e  fo rm  (4 .2 ) o n  R' - 1 . Suppose
that i s  g e n e r a t e d  b y  7„...,  T N .  A n d  consider a  linear m ap p  of P ( [ ' )
by
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p :  h I— ) prNh).

Then in  order to prove Theorem 5, it is enough to show that the dimen-
sion of the kernel of p  is fin ite , for the dimension of image of p  is finite.

Suppose h E  k e rp . Then, from  (5.1) , for a l l  r E r, ph =o, that is,

(5.3) II, =h.

It follows from (5 .3 ) and  Lemma 5 that the canonical harmonic extension
f= H h  of h  satisfies

(5.4) f r = f .

L e t x  b e  a n  a rb itra ry  p o in t in  A n 'in - ', th e n  th e re  is  a  sequence of
elements 1, of r  such that lim  rk (e„) =x. F r o m  (5 .4 )  a n d  (1 .9 )  we see

k-.00

Ifqk (en) I = 11/k ( e )  If (e”) I = t e l ( e )  If (en)

So w e have

lh (x ) I =lim  If ork(en) I= If (en )  ilim te„rk (e„) =0.
k-.00

Hence we get

(5.5) h = 0 on A n

So , in  particu lar, in  case o f A the conclusion is  true.
The remaining cases are divided into the following three :  (1 )  n - 1  =2,

(2) n - 1  3  an d  th e  num ber o f components o f Q n fin - 1  is  no t less th an
two, a n d  (3 ) n  —  1  3  an d  Qnftn- ,  consists of only one component. We
show th at the dim ension of the kernel of p  is  fin ite  in  each  case of the
above three.

T he case (1) . A s seen in  the proof of Lemma 6 , i f  w e identify h  with
hi  -F )/ —1h2,  then  w e see, from  S hl„„2= 0 ,  th a t h  is  a n  analytic function
of z =x i + If —1x, on Q n c .  B y th is identification  and the relation  (5.3),
it tu rn s out that hdz - 1  i s  r - in v a r ia n t on Q n C, that is , h  becomes a  holo-
morphic inverse differential on  the R iem ann surfaces (S2 n C) /T'. T h u s
h=0 o n  Q n R 2 . Hence kerp = 101. (U nder these situations, Theorem 6
is proved in  [2 ] , the above proof is the same a s  Ahlfors'.)

T he case ( 2 ) .  Let Q ' be an  arbitrary component of Q nRn-4. V ia con-
jugation of some element of .1/„._1 =  ( / / ) ,  i f  necessary , w e m ay assume
without loss of generality that Q ' is re latively com pact in  R ' - 1, and 0 E
,S2'. From Lemma 6,

h(x ) =a+ 2x  B x  F c Ix 12 — 2xtxc on

F or an  arb itrary b u t f ix ed  i ,  j  ( i # j  and l i ,  j n  — 1 ) ,  w e identify R 2

w ith  Ix  R n - 1 , X k =  0  ( k j )  )  .  Since for x ES2' n
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hi (x) = 2xi + A i x;  c i lx 12 —2xIxc,
h (x ) = 2x;  A i x  c3 1x 12 —2x/xc

(w e rem ark that Bi i =B ; ;  =0  and  Bi5 = —Bp ) ,  if  w e set

z=x 1 + 11-1x 3 , a=a i d - — la i , i8=2-F —1Bi ;

an d  6= c i +  —lei ,

then g(z) = h,(x) Al —1h;  (x ) can be w ritten as

g (z) a +  — 8 z 2.

From (5 .5 ) we get g „2) 0 ,  where the boundary is considered i n  R 2.
Since Q' is relatively compact, a(s2' n R2) consists of more than two points,
thus g=0 on S2' n w, that is , a = 161-=6=-0. From the arbitrariness of i  and
j ,  w e see that a=c=0 , 2=0 and  B = 0 . Hence h1 (2 , = O . This means that
h =0 on that is , ker p= (0).

T h e  c a s e  ( 3 ) .  From  Lem m a 6, h  h a s  th e  fo rm  (4 .2 ) o n  Q nir - i.
Since S2n R "  is  dense in  re"-i, and  h  is continuous on h  has also
th e  fo rm  (4 .2 ) o n  R„_,. H ence the d im ension  o f the  kernel o f p  is
f in ite . T h is completes the proof.

2 . Proof of Theorem 6. It is obvious that the im age of the mapping:
P ([ ')  B h 1—> 9= p"S„(Hh) contains 0.( r ) .  And the last statement is easily
obtained from Lemmas 6 an d  7.

Let h  be a n  arbitrary elem ent o f P (r), and set f= H h  and  ço=tA-S'nf.
Since S_ 1 (17,)=S„_ i h for an y  T E E , it follows from Lemma 8 that ço satisfies
(3 .2 ).  Thus if  A =17?"- ', then  ÇaE0_,(r). In  contrast w ith this, i f  A = 0
then  S 1h = 0  o n  1?"- '. Hence, from Lemmas 6 an d  7, w e see that ço=

E (r).
It remains to consider the case where Q n 0  and  A = 0. W e m ay

assume that ooEA. L e t  Q' be an  arbitrary component of Q nk - 1 .
Suppose first that n Since Sk _i h =0 on [2', h  has the form (4.2)

on Q '.  Let q be the function of the form  (4 .2 ) such that h—q vanishes
on  Q'. Set g=h—q, th en  it is  eas ily  seen  th a t g  i s  a  q. c .  deformation
o f  IV - 1  a n d  1g1/ (1 d-lx 12 )  is bounded o n  W - 1 . S in ce  S,_,g-=S,,h, it
follows from Lemmas 6 an d  7 th a t p3,3„(Hg)= ionSk (H h) =9,. Hence from
Lemma 10 w e get

(5.6) cnço(x)=2"(n+1) E
1

F  k (x —y)gk (y)dy.
k= 1-S2'

From  (1'. 4) a n d  (4 .5 ) we find

11r.k (x ) 115 const.

So we get
dy1 2

lko(x)115 const.
R ' - 1 - 1 2 '  

1± 1  
12 '  Y.

for x E R '.
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Thus for each  compact subset K  of D' w e have

p(x) - 11y9(x)115 const.x: uniformly on K x  (0, 1].

T his im plies that ça satisfies (iii) in  Definition 2 . Therefore goE OSn.
F in a lly  suppose th a t  n  — 1 =2 . S in ce  S2 h = 0  on fi(C) = h i (y)

—1112(y) is  an analytic function o f  =y i + V — ly,. L e t  y ' b e  a n  arbitrary
point in There is a  neighbourhood U of y' where fi can be represented
b y  a pow er series converging norm ally . W e m ay assume without loss of
generality that y ' = 0 a n d  U  i s  th e  u n it  disk. Set 1 7 = <  1  g j  + 2 )1
(i= 1, 2), and  define a  function g( . , .) on  C x V2, analytic  on  D' x V, by

g ( c ,  z )  _ f i ( c )  _ { f i  ( z )d f i ( z )   (c _ z )  +  1  d2fi(z)_ 7 )21
dz 2 dz2

for C EC , and  z 172. Then we find

Isup  g(C, z) 1+  c 

where the suprem um  is  ta k e n  o v e r  a ll C E C  a n d  a l l  zE V2. Since we
have

g (c , z ) _ E 1  difi(z) (c _ z) i
i=3 j ! dzi

we get

for CE V i  a n d  Z E V2,

Ig(C, z)I 
< 0 0 ,sup

IC —z
where the suprem um  is  tak en  o v e r a ll CE V , an d  a l l  z EV,. I t  fo l lo w s
from Lemmas 6 an d  7 th a t for an y  zE V2 g ( • , z) defines th e  same ça as
h. For x E H ' w e  set z = x i + — ix ,  an d  t = x3 . Then, from  Lem m a 10,
w e get for V2 X (0, 1]

lko(x)115 const. Ig ( C ' Z )  dedSC (IC —  z12 ±t 2) 3

1+ ICI' const. ( IC —z 12 + t2) 3

d e d

IC — z 13 c o n s t .  5

v, ( IC — z 12 +4 2 ) 3
dedv

w h e re  = + 11 — P i .  T he first integral is uniform ly bounded fo r  xE 172 X

(0 , 1] and the second integral does not exceed (1/0  1 C 1 3 /( IC12 +1) 3 ded7).
Thus p lo  has a  continuous extension t o  V 2  and  th is extension vanishes
on V2. This implies that ço satisfies (iii) in  Definition 2. Hence ço E (r),

q. e. d.

§ 6. Remarks on the case n=3.

I n  th is  section w e consider th e  c a se  n =3  a n d  state some remarks.
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W e iden tify  .112 w i t h  C .  In  th is  c a se  I '  becomes a  so-called kleinian
g r o u p . I t  m a y , how ever, be o f th e  first kind. (A  k le in ia n  group is
s a id  to  b e  o f  th e  f ir s t  k in d  i f  s2(r) n e= 0.) Our notations can be
rewritten in  familiar forms;

S212=- h 2, IS 2hH 2  Ihf 1, SA9=-ç), and

(r') t(s2h) or} r' (k) 011L
, .

H ence fo r h E P (r )  i t  tu rn s  o u t th a t  p=- S2h i s  a  B e ltram i differential
compatible w ith  r  and  supp  p  c A (r ) .  And therefore h  becomes a  po-
tential for p, that is , h  is  of the form

" z )  _ 1  ( ' z(z —1) p(.) 
)4(r) C(C — 1) (C .—  Z) d e 4

± (a  quadratic polynomial of z) .
I t  is  know n  that i f  r  is fin ite ly generated  then  th e  ac tio n  o f I ' on

the (topological) limit set A(r) is conservative, that is, for any measurable
subset X  o f  A ( r )  with m easX>0, #{7 E  r;  meas n r x)>0} =  c o .
(A h lfo rs  [2 ] , [4 ] a n d  S u lliv a n  [6 ])  I t  i s  an  open question  whether or
not the above fact is also true for higher dim ensions. Sullivan [6] showed
that there is no Beltrami differential compatible w ith  r  and supported on
the conservative part of the action  of r .  Hence we see, from Corollary
4 ,  Q (E ) cO (P )=  N I  fo r  n = 3 .  T h is  im p lie s  th a t th e  s itu atio n  o f 3 -
dimensional case is m uch different from  that of 2-dimensional case.
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