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Introduction.

Consider a  stochastic differential equation with respect to Brownian motions.
It is a known fact that the solution defines a  stochastic flow of homeomorphisms,
prov ided  tha t coefficients of the equation are Lipschitz continuous. See e. g.
B ism u t [2 ] , K u n ita  [6 ] . H ence the solution defines a  B row nian motion in
homeomorphisms group G .  Recently, Brownian motion in homeomorphisms group
itself is studied a  lot. S e e  H arris [4]. Le Jan [9], Baxendale [1], K unita [7]
and Le Jan-Watanabe [ 1 0 ] .  They characterize it by the  infinitesimal mean and
covariance, called local characteristics.

The purpose of this paper is to study the related problem for jump processes.
The stochastic differential (integral) equations considered in  th is paper is based
o n  th e  L év y  process X t -= X ,(x ), x  ER d (process with independent increments,
continuous in  probability), which takes values in the vector space o f  continuous
m aps (or continuous vector fields). W e  c a l l  i t  a C-valued Lévy process. In
Section 1, we study systematically the C-valued Lévy process. W e introduce the
system  (a, b, y , U ) which characterizes the  law  of C-valued process and discuss
the existence problem of C-valued Lévy process associated with a  given charac-
te r is t ic s . The Lévy process with values in the vector space of Cui-maps is also
considered.

In Section 2, we consider th e  stochastic differential equation based o n  C-
valued Lévy process X t (x). The equation is written in short b y  d e t= d X t ( t - )  or
d e tld t-=X t(e t- ) . Hence it is a  natural extension of a stochastic differential equa-
tio n  d e fin ed  b y  a  finite dimensional Brownian motion and a Poisson point pro-
cess. Generally, the solution does not define a stochastic flow of homeomorphisms,
o w in g  to  th e  jump part of the C-valued Lévy process. In fact, w e prove that
the solution defines a  L év y  process w ith v alues in  th e  sem igroup o f  continuous
m aps, under Lipschitz conditions to  the characteristics of the C-valued Lévy pro-
c e ss . F u r th e r , if  th e  characteristics a re  sm o o th , th en  the solution defines a
Lévy process w ith  values in the semigroup of sm ooth  m aps. In order that the
solution defines a Lévy process with values in homeomorphisms g ro u p  (o r  dif-
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feomorphisms group), we had to introduce a specific condition to the characteristics.
The details will be discussed at Section 2.5.

Conversely suppose w e are given a  Lévy process e ,  with values in the semi-
group G+ o f  continuous maps (or in  the group of homeomorphisms). We prove
in Section 3  that under a  few  condition to e , there is a unique C-valued Lévy
process such that et is represented as the solution of the stochastic differential
equation based o n  th e  C-valued Lévy process. Hence the associated C-valued
Lévy process is the  (pathwise) infinitesimal generator of the  G4 .-valued Lévy pro-
cess. In  particu la r, a  Brownian motion in homeomorphisms group G is repre-
sented as a  solution of the  stochastic differential equation based o n  C-valued
Brownian motion (=continuous Gaussian process in  C with independent incre-
m en ts). The latter result is closely related to those o f [9 ]  and [ 1 ] .  The case
where the Lévy process e , takes values in the semigroup of smooth maps is also
discussed in Section 3.

Our objective is  a  complete characterization to Lévy process with values in
homeomorphisms group or diffeomorphisms group via stochastic differential equa-
tion or infinitesimal generator. Results presented in  th is  paper g ive  a  rather
satisfactory characterization both to Lévy processes with values in the semigroup
of continuous (or smooth) maps and to  Brownian motions w ith values in homeomor-
phism s (or diffeomorphisms) group. However, there are still gaps between the
construction theorem and the representation theorem o f the  L évy  process with
va lues in  homeomorphisms (o r diffeomorphisms) g roup . T h is  problem will be
discussed elsewhere.

§ 1. Lévy process with values in the vector space o f continuous maps.

1 . 1 .  Preliminaries. L e t C=C(R d  ; R d )  be th e  totality of continuous maps
from R d into itself equipped with the compact uniform topology

su p  f (x)— g(x)i
P ( f  g ) =  N°:.1 21N 1+ sup

 

x)—g(x)1 •
lx15N

Then C is a  Fréchet sp a c e . Let k =(ki, ••• , k ) be a multi-index of nonnegative
integers. W e denote by D k the  differential operator (6/6x 1 )k • •• (a/axd) k  d. For
a positive integer m, we denote by Cm=Cm(Rd ; Rd), the  subspace of C consisting
of Cm-maps. It is again a  Fréchet space by the metric p„,,:

p .( f , g )= p (D k f, D k g )

Let X,=X,(co), t E [0, T ] be a  stochastic process with va lues in  C (or Cm)
defined o n  th e  probability space (D , g ,  P ) .  It is called a  Lévy process if  it is
continuous in probability, right continuous with the left hand limit in  p-topology
(or p m ,  resp.), and has the independent increments: i. e., X ,,— X ,  i=0, •-• , n-1
are independent for any 0<t 0 <t 1 < ••• <t„ T .  In particular, if X , is continuous
in  t ,  it is called a  Brownian m otion. In this paper, we always assume that the
C-valued (o r  Cm-valued) L évy  process is stationary , i . e ., th e  la w  o f  X,— X ,
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depends only on t—s and that X0 =0.
Given a  C-valued Lévy process Xt ,  we define a point process associated with

it. S e t  D  { s  E (0, Ti ; AX.,* 0} , where A X 3 = X 3 — X ,  and  X = lim  X r . Let
r t

P t  be a  C-valued point process defined by pt---Ax, if  t E D , .  Let N((O, t ], A ) be
the counting measure of P,;

N ((0 , t], A )= # {sE D ,n (0 , t]; p s E AI

where A  is a Borel subset o f  C . Then it is a stationary Poisson random measure.
The intesity measure

v((0, t]x A)=E[A W O, t ], A )]

is then written as v (A )t .  The measure v satisfies the following property :

(1 .1 ) It holds that

v( { f : f =01)=0 .

T h e re  is  an  o p en  neighborhood U  o f  0  in  C  such  that v(P ) < o0 and

Lf (x)I 2 v(d f) 00 holds for any x.

Let X (x )  denote the restriction of the C-valued Lévy process X t at the point
xER d . Then for any x l , •• , x .E R d , the n-point process (X t(x i), ••• Xt(x.))
is an nd-dimensional Lévy process. Hence the characteristic function admits the
Lévy-Khinchin's formula:

(1.2) E[ei k, X ytz id ) ]

=exp (ah, b(xk)) -

1

 , t aka(xk, xi)at
k=1

( e k ,  (x  k )) 1  i  E  (a  1,7 f  ( x  h ) ) ) ( d

1)
. ( e i p  k ,  (x  k )) 

1 ) ( d  f ) }uc

where,

(1 .3 ) b(x) is an Rd -valued function,

(1 .4 )  a(x, y )  is a  dxd-matrix valued function such that akz(x, y)= a"(y, x) for
any k , 1=1 , •-• , n and x, y ER d , and E t ,  a,a (x „ x .,)cr,_. 0 for any x i ,  aim

i =1 , •••  , n.

Note that the law of X (w ) is uniquely determined by the system (a, b, i, U).
It is called the characteristics of X .

Here is an example of a C-valued Brownian motion.

Exam ple. Let /31, .13L ••• be finite or infinite sequence of independent stand-
ard one dimensional Brownian motions. Let X k (x), k =1, 2, ••• be elements in C.
Suppose that each X k (x ) is Lipschitz continuous such that the Lipschitz constants
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L k : IXk(X )— Xk(Y )15-1,1 .1X— yi satisfies E  L < 0 0 . Then

(1.5) X k(x)Bi

is a  C-valued Brownian motion with characteristics

(1.6) a (x , y )= X k(x)X k(Y ) " , b(x)=O,

i f  (1 .5 ) is  a  finite s u m . We will see at Section 1.2 that the  fact is valid even
if  (1.5) is an infinite sum.

Conversely, let X (x )  be a  C-valued Brownian motion with mean O. Then
there is a  finite or infinite sequence of one dimensional standard Brownian mo-
tions B, k=1, 2, ••• and elements of C ; X k (x), k =1, 2, ••• with th e  above pro-
perty such that X t  is represented as (1 .5 ) .  For the proof of this we proceed as
follows. Let t be in  [0 , T ]  and let H, be the closed linear span of Xi(x), x E R d ,
1=1, ••• , d. Then it is a  Gaussian space. Choose a  sequence {x„} from Rd
such that X ( x ) ,  ••• , d  a r e  linearly independent and dense in HT.
Then {X t(x , j )}  is dense in H, for any t. We shall reorder th e  la tte r  sequence
and write it a s  {XI}. We define one dimensional process 131 by

1  Bi=
11X111

where is the  L 2-n o rm . It is a standard Brownian m otion. We next define
B i by

B=-(XI —(X, B1)B1)11Xi — (X?, Bi)B1) - 1

where ( , ) denotes th e  P -inner product. Then B i is a standard Brownian mo-
tion independent of B .  W e w ill define B . k3 by induction :

k-1
(1.7) ./3 -4 1 1 —  E (M, BI)B1)i=1

k-1
E Bf)Bii=1

T hen B , k =1, 2, ••• a r e  independent standard Brownian m otions. Obviously
{Bit, k =1, 2, •••I i s  an orthogonal basis of H, for each t. Therefore X 1(x ) has
the Fourier expansion (1.5), where X k(x )=(X i(x ), B ) .  The coefficients X k (x)
are continuous and satisfies (1.6).

1 .2 .  Existence of C-valued Lévy process associated to the characteristics.
Suppose we are given a  system (a, b, v, U) satisfying (1.1), (1.3) and (1 .4 ) . We
are concerned  w ith  the existence of a C-valued Levy process with the charac-
teristics (a, b, v, U). For this purpose, we introduce the  following conditions.

(C, I )  a ( x ,  y )  i s  bi-Lipschitz continuous in  th e  following sense : There is a
positive constant L  such that it holds

(1.8) Ila(x, x)-2a(x , y)- d(Y, y)ii L ix — yi 1 , V x ,  y G  Rd

where lia Ii=E i  ai i .

f )  X k (x )  is a row vector function and X k ( x ) ' is the transpose.
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(C, b(x ) is Lipschitz continuous, i. e., there is a positive constant L  such that

(1.9) lb(x)— 6(37)1 L ix — y  , V x, y E Rd .

(C, Hi p ) There is a positive constant L  such that

(1.10) .rj1 f (x)— f (y)1P' 1)(d f), LI x I V x , y eR d ,

f (X )I  P ' 1, (df)-5.L(1+1 X , V X  R d

holds for any p' e [2, p i
Here p is a positive number not less than 2.

Theorem 1.1. Let (a, b, v , U) be a sy stem  satisfy ing (1.1), (1.3), (1.4) and
(C, I), (C ,  )  and (C, I ll ) fo r  some p > d .  Then there is a C-valued Lévy process
with the characteristics (a, b , v , U ) . In particular, if v  is identically  0, it  is  a C-
valued Brownian motion, continuous in t  with respect to the m etric p.

Before the  proof of the theorem, we prepare a  lemma, which is a  modifica-
tion of Kolmogorov's criterion for the continuity of random fields.

Lemma 1.1. Let X t (x ), tE [:), T ] , x E R d  be stochastic processes with param-
eter x .  Suppose that for each x  X ( x )  is continuous (right continuous with the left
hand limits) in t a. s., and satisfies

E[sup1X,(x)I a l <CO VX E R d  ,

E[sit.ip1X,(x)—X t (Y)1a]<K1 x—yld+P , V x , y eR d

fo r some positive a, 8 . T h e n  X ( x )  has a modification such that it is a continuous
(resp. right continuous with the lef t hand lim its) C-valued process.

Pro o f . Let C([0, T ]; R d )  (resp. D([0, T ]; Rd) be the set of continuous (right
continuous with the  left hand limits) maps from [0, T ] into R d  equipped with
th e  norm 11011=s11P 10(01. Then X ( x )  may be regarded a s  a  C([0, T ] ; R d )  (or

D([0, T ] ; Rd)-valued random field satisfying

E[IIX. (x)11 a ]< 0 0  , ELI (x) — X• 51(1 x — .37 a + 1 3  •

Then Kolmogorov's theorem states that there is a m odification of the random
field denoted by th e  sam e letter X. ( x )  such that it is continuous in  x, e.,

(x)— X . (y)I1=0 holds for any all x  a. s. See e. g. C h a p . I , Appendix in

Kunita [8].
The above modification is what we want. We prove this in case where X,

is right continuous. Let tE [0, T ] and s> 0 be any given numbers. F o r  each
x ,  there is a positive number dm such that IX ,(x)— X t+h(x)l< s i f  1 hi <5m. Let
U (x ) be an open neighborhood of x  in  R d such that I1X. (x) —X. (Y)11< s  for any
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3 E U ( x ) .  Then it holds I Xt(Y ) —  Xt+.(Y )1 <3s for ".,y E U ( x ) .  Choose xl, •-• , x .

from B N"-= {XII XI such that U(x t )D B N . Set 5= min (3.,, • •• 5 x „ ). Then

w e have I X t(x) — X t+.(x)I <3s for all x  EB N  i f  h  < O . This proves that X , is
a  right continuous C-valued process. The existence of the left hand limit can
be proved similarly.

Proof o f  Theorem 1.1. Associated with the pair (a, b), we can construct a
Gaussian random field X . (x ), te [0, T ] ,  x RcL w ith  values in o n  a  suitable
probability space (6 , g , P ) with the following properties

P[20(x)]-=tb(x),

ÊT(X2(x) — tb(x))(A(Y) — sb(Y)) /1=(tAs)a(x, y ).

Then, for each fixed x =(x i ,  •••, x„), X i(x )= (X t̀(xi), ••• X et(x .)) is an R '-valued
Brownian motion.

We shall prove that 11 - ( x ) .-- 2(Rx)—tb(x) h a s  a modification which is con-
tinuous in  (t, x). Note that for each x  and  y , Y (x ) -3 7 2(y) is  a  Brownian mo-
tion with zero mean and covariance (a(x, x)—a(x, y)—a(y, x)d-a(y, y))t. Hence
it is  a  continuous m artinga le . B y  Doob's inequality and the moment property
of the Gaussian random variable, w e have for any p'>2

(1.12) EC sup IY,ç(x) — Ycs(Y)I P '75_.CiECIYf(x)—YRY)IP']ossv
x)-2a (x , y ) - F a(Y, y)11P' 1 2 tP' 1 2 .

T he last member is dominated by C'i L ( P' 1" I x— y I P't ( P' /2 ) i n  view  o f  hypothesis
(C, I) . T hen  by  L em m a 1.1 I74(x) is a  continuous C-valued process.

Now let N p (dt, df) be a  stationary Poisson random measure o n  (6, P)
with the intensity measure v. For arbitrary fixed x , define a  Lévy process by

X g(x )=L f(x )S i p ((0, t], d f (x)N,((0, t], d f) ,c-u
where

J ((0 , t], d f)=N p ((0, t], df)—v(df)t .

Obviously, the last member of the above is a  C-valued Lévy process, since it is
written a s  a  finite sum of f ( x ) 's .  Now, denote the first m em ber o f  th e  right
h a n d  s id e  b y  Yg(x). I t  i s  a n  L 2-martingale with zero-mean and covariance

f i (x )P (x )v (d f ).  In order to prove that 17 /(x) is a C-valued process, we shall get

t h e  LP-estimate of N,=17 (x) — Yg(Y), where x, y  a re  fixed for a  m om ent. By
It6's form ula for discontinuous semimartingales (Ikeda-Watanabe [5]), w e have
for any p'E [2, p],

IN tI P ' = a  martingale with zero-mean

(x)— f (y) IP' NrIP'
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7 3 '  - 2 N g v(d f)dr— (fi(x)— f '(y))I AT,

where fi(x ) is  the i-th component of f (x). The absolute value of the integrant
{...} is dominated by

1
—

2  
Y(P i  — 1) I f (x)— f(y)1 2 1Nr+ 0 r (f (x)— f (y))1P'

f (x)— f (Y)I 2 w r i P- 2 + I f (x)— f(y)1 21

where IO,i 1. T h e re fo re  w e  g e t

(1.13) E [ s o ?  Y (x )-1 7  g(y)IP1

- C3ETIY g(x) - 1 7  f WI P . ]

CqÇo E[ 021;_ipu lY 71 (x)—Y (Y)IP"" d it • .ç u  I f (x)— f(y)1 2 2)(d f)

4-t u I f (x) —  f (y)IP' v(d f)}

▪ x — yITE[ oT-2, l Yg(x) — Y (Y )P r 'idu - Hti x — y 1P  r .
In case p'-=2, the above inequality shows that

E[stlp Y g(x)—Y gY)1 2]=C4ti x — Y1 2 •

Then by Holder's inequality, it holds

E [srts I Yg(x)— Yg(Y) I -<- ( C M "  x P'

for any 0<p'.<2. Substitute this to (1.13), and w e get

(1.14) E[ sup I g(x) — Yg(Y)I P 'i C5t x — y  P '

05r5t

for any 2 < p '4 A p .  Repeating this argument inductively, we obtain (1.14) for
any  p' E  [2, p].

W e can prove similarly as the proof of (1.14) that

(1.15) E[ sup I Yg(x)IP']5C,t(1+ xl) P ' , V xERdo uv

holds for any p '  [2, p ] .  Then using Kolmogorov's criterion again, we see that
Y (x ) is  a  right continuous C-valued process. The su m  Xt(x)= X(x)-FX t̀i (x ) is
then a  C-valued Lévy process with characteristics (a, b, 2), U).

Rem ark. Lp-estimates (1.14) and (1.15) a re  r a th e r  local in  the following
sense. Sup p o se  th a t (C, I ) ,  (C, 1) and (C, Illp ) are valid for x, y  w ith  Ixl, IYI

where N  is  a positive constant. T hen inequalities (1.14) and  (1.15) are
valid for x, y  with I xl, ly I N, too. H ence local Lipschitz continuities for a, b, v
are sufficient for Theorem  1.1.
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R em ark. A pplying Theorem  1.1, we see im m ediately that the  infinite sum
(1.5) is  a  C-valued Brow nian m o tio n . Indeed , a(x , y )  o f  (1.6) i s  bi-Lipschitz
continuous since

Ila(x, x )-2 a(x , y ) - Fa(Y , y)II-=' 11Xk(x) — Xk(Y)11 2

_<.( 11)Ix - 3712 •

Conversely, the Fourier coefficients X k (x ) of a  given C-valued Brownian motion
Xt (x) are Lipschitz continuous, if  it satisfies (C, I ) .  I n  f a c t ,  w e have

(1.16) ,IXk(x)—Xk(3)12= E((Xi(x)—Xi(Y))B11)2

=(EI1X1(x) — X1(Y)112 )

=11a(x, x )-2a(x , y )d-a(Y , Y )II•

W e next discuss the  problem converse to Theorem  1.1. W e restrict our at-
tention to Lévy processes with p-th moment.

Theorem 1 .2 . L et X t(x ), t [0 , T ], x E R d  be a random  f ield such that the
n-point process (X t(x i), ••• , X t(x )) i s  an  nd-dimensional stationary Lévy Process
f or any n and x l , ••• , x . Suppose that there is p> dV  z and constant K >0 such that

(1.17) ED X t (x)— X t(Y)I P ' -If t x —  y  IP' , V X ,  y  R d

(1.18) EDX,(x)IP']_<_Kt(1+ Ix ) P .  , V x .

f o r any  p ' [2 ,  p ] .  Then X 2 ( x )  has a m odif ication of  C-v alued L év y  process.
Furthermore, its characteristics satisfy  (C, I ) , (C , and (C, III p )  with U=-C.

Pro o f . The existence of a modification of C-valued process is im m ediate
f ro m  Kolmogorov's criterion. W e  s h a l l  p r o v e  t h a t  the  characteristics satisfy
(C, I ) ,  (C, II)  and (C,BI p ). For each x ,  the process X i ( x )  adm its  th e  Lévy-It6
decomposiqon X t(x )=17 2(x)-Eb(x)l - FY it ( x ) ,  w h e re  37 i( x )  i s  a  Brownian motion
with zero-mean and covariance a(x , x ), and Y i(x )  is  a  discontinuous L évy pro-
cess w ith zero-m ean. Since both are independent, we have

ELI X t (x)— Xt(), )12 ]

=E[137 i(x) — MY)1 2 ]+ t 2 1b(x) — b(Y)1 2 +E[117 g(x) — Yg(Y)I 2 1

=tf lIa(x , x ) - 2a(x, Y )-Fa(Y , y)11+tlb(x)—b(Y)1 2

I f (x)— f(y)1 2 v(d .

Therefore, (1.17) w ith  p'=2 implies (C, I )  a n d  (C,
For the proof of (C ,14) we proceed as fo llo w s. Observe th a t the variance

o f  II7 (x )-3 7 2(y ) i s  t(a(x , x )— a(x , y )— a(y , x )--Pa(y , y)). T h e n  w e  haves imi-
larly  as (1.12) that
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(1.19) E [ s u P I Y ; ( x ) — Y ; ( Y ) 1 P i - - 5 . C ' i t P '  "I x— y 113' .
Ogs5t

Hence Y ( x )  itself satisfies (1.17) (with different constant K ) .  Set Z ,=- 17 T• 1 (x)
—17 c," (y ), where x, y  and i  are fixed. Then it is a  discontinuous L 2-martingale.
Let [ Z ] ,  be the quadratic variation of Z 1 . Then it holds

(1.20) [Z]t--4 , f 1 (x) — f i (Y)1 2N p(ds, d.f ).

Therefore, by Itô's formula, we have for any

[Z]r 1 2 —.N {([Z]s_+ I f '(x ) —  f i (Y)1 2 )P ' / 2 — [ Z ] r i 2 1 N p (ds, d f)

lfz(x)— P(y)IP 'Np(ds, df).

Then by Burkholder's inequality,

(1.21) Z 1 IP 'i-C 6 E C [Z ]r1 9 tC 4 c I fi(x )—  f'(y)IP ' v(d  f)

The left hand side is dominated by Ctl x—y 11)". Hence (1.10) follows. Inequality
(1.11) can be proved similarly. The proof is complete.

In case of Brownian motion, we can replace condition (1.17) to  a  weaker
o n e . Indeed, the proof of Theorem 1.2 shows the followings.

Corollary 1. L et X,(x), tE [0 , xGRd be a random  fie la  sucn t h a t  the
n-point process (X t(x i), ••• X t(x .)) is an nd-dimensional Brownian motion for any
n and x1, ••• , x n. Suppose that there is a constant K  such that

(1.17') EE I X t (x)—X,(y)I 2 ] Kt I x— y 12 , VX, y G Rd .

(1.18') E [ I X t(x)1 2 ] - K O + I x1) 2 , V x G Rd .

Then X 1(x ) has a modif ication of  a C-valued Brownian motion.

Corollary 2. Suppose that C-valued Lévy process X , satisfies (1.17) and (1.18).
T hen it adm its th e  Lévy-It6 decomposition xf-i-xg, w here XE i s  a  C-valued
Brownian motion and xg is a  C-valued discontinuous Lévy process with zero mean

represented as X c (x )= L f (x )R p ((0, t], df).

1 .3 . Smoothness o f C-valued Levy p rocess. W e shall next discuss the
smoothness of the C-valued Levy process. Let m be a positive integer. For the
system (a, b, U ) ,  we introduce the following hypotheses.

(Cm, I) a (x ,  y )= . (a l'(x , y )) are m-times continuously differentiable in both x and
y .  Further, Dks D ia (x , y )  i s  bi-Lipschitz continuous fo r a n y  k  with
k

(Cm, II) b (x )= (b i(x ) )  is a  Cm-function and D k b(x) is Lipschitz continuous for any
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k with I k I 1<m.

(Cm,B1,) The measure y is supported by Cm. There is a positive constant L
such that

(1.22) ..11 D k f (x ) — DV(Y )I P 'v(df)_ L lx — Y I Vx, yER 4

(1.23) IDk f(x)IP"))(df). L , VXE Rd

hold for any k with 1 l k l m  and (1.11) for p'E[2, P7.

Theorem 1 . 3 .  ( i )  Suppose that the characteristics of the C-valued Lévy pro-
cess X, satisfy (C m , I ) ,  (Cm , I1) and (CM , p )  f o r  some p > d + 1 . Then i t  i s  a
Cm-valued Lévy process. Furthermsre, in case U=C, there is a positive constant
K such that

(1.24) ELDkX 1(x)— D'X 1(Y )IP'15Ktlx— yIP', Vx, yER 4

(1.25) E[IDkX t(x)IP'] Kt, VxER d

fo r  any k with 1 - 1k1._.712 and (1.18) fo r  p'c [2, p].
(ii) Conversely i f  X , is a Cm-valued Lévy process satisfying (1.24) and (1.25)

for a n y  k  w ith lik l m and p'E [2, p ] .  Then the characteristics satisfy (Cm, I ) ,
(Cm, 11) and (Cm,111p) with U-=C.

P ro o f. We shall prove ( i )  in  the case  m =1 and  U =C  only. L et e•=
(0, ••• , 0, 1, 0, ••• , 0) (1 is at the i-th component) and let y E R 1

—  {0}. Set

1
N ,(x , y )= — {X t(x+Y e ) — Xt(x)} .

Then using hypotheses (C1 , I), (C 1 , II)  and (C1, p> d, we can prove similarly
as in the proof of Theorem 1.1 that there is a constant C such that

(1.26) E[sup INs(x
'
 .3)) — Ns(x' , y')1 P ' ] Cl {1 x — P' +  Y— Y'I P '}sgt 

(1.27) E[sup I N8(x ' .37) I P H 5_Ct,sst 

hold for any x, x ', y, y ' .  (Details are omitted). Then, by Kolmogorov's criterion,
N t (x, y ) has a  continuous extension a t  y = 0 .  This proves that X 1 (x )  is con-
tinuously differentiable and it holds N,(x, 0)=a 1X ,(x ) for any x  a. s. Let y tend
to 0 in (1.26) and (1.27). Then we get

E[supla1X1(x)—a1X8(x')I , VX, xŒ R d ,
sS t

E [sup I ai X 8 (x) I P'] Vx E Rd .sst

Suppose conversely that X 1 is  a  Cm-valued Lévy process satisfying (1.24),
(1.25) for any k with I k I m . I t is  c le a r  th a t b(x )=E[X i (x )] satisfies (Cm, T).
Let Y ,(x )= X ,(x )— b (x )t= Y (x )+ Y g (x ) be the Levy-Itô decomposition. We shall
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prove that both Y i(x) and Y ( x )  are differentiable with respect to x  up to k,
with I kl_<in and they satisfy (1.24) and (1.25). The first derivative a,Y i (x ) is
a  C-valued process. It satisfies

E[aiY,(x)—aiYt(Y)1 13]5_Ktlx—y1P V x, yeRd

w ith a positive constant K  because of (1.24). By Corollary 2 to Theorem 1.2,
ay, admits Lévy-Itô decomposition a,Yt(x)=k' i(x) - kkii (z), where f i(x )  i s  a  C-
valued Brownian motion and k'i(x) i s  a  discontinuous C-valued Lévy process.
By the mean value theorem, we have

t(x±hei) - 17  t(x)=hÇazY t (x±vhe,)dv0

=h.f Y2(x-Fvhe i )d v+h  Y g (x±vh e i )dv0J O

By the uniqueness of the Levy-Itô decomposition, it holds

Y- (x-Fhe i )— Y(x).=hÇi>f(x+vhe i )dv.

This shows that the partial derivative a,Yi(x) exists for a ll x  a. s. and coincides
with the C-valued process fr"i(x). Therefore Yi(x) is a C°-valued Brownian mo-
tion. Repeating the argument inductively, we see that Y i(x) i s  a  Cm-valued
Brownian motion. As a consequence, Y ( x )  is also a  Cm-valued Lévy process.

We shall next prove that both Y i and yg  satisfy (1.24). Note that the
quadratic variation of D k Y,(x)—D k Y t(Y) i s  [D k Yc (x)—Dk Yc(y)it+

u y y d ( x ) _

D'Y d (y)] t . Then (1.24) together with Burkholder's inequality proves that
EED k Yc(x)—DkYc(y)]r 12 ]  and EHDhYd(x)—D 0 Yd(y)1r 12 ]  a re  dominated by
C tlx— yIP '. Then again by Burkholder's inequality, E[ I Dk Yi(x) — D k Y(Y)I P ']
and EL Dk Yg(x) — D'Yg(Y)1 P i  a re  dominated by MI x—y1 13 ' showing the in-
equality (1.24) for Y i and Y .  B y  the same argument, we can show that both
Yi and satisfy (1.25).

Consider the characteristics a(x, y). It is differentiable up to k with I
and satisfies

PxY,',a(x, y)=E[DkYYx)DkY;,(y)/1,

which is bi-Lipschitz continuous because of (1.24) fo r  Y i. Consider next Y. It
holds that

D0Yg(x)--i.cD0f(x)g ip ((0 ,1 ], d f) a. s.

for an y  x. Then we can show similarly as in the proof of Theorem 1.2 that
there is a constant C independent of x  such that

ELIDk Yg(x) — Dk Yg(Y)I P 'i Ct.ç c  D k f(x)—D k f(Y)I P '1)(df) •

Therefore inequality (1.22) is verified. Inequality (1.23) can be verified similarly.
The proof is complete.



82 Tsukasa Fujiwara and Hiroshi Kunita

In case of Brownian motion, w e can replace conditions (1.24) and (1.25) to
weaker ones.

C o ro lla ry . Let X , be a C-valued Brownian motion with characteristics (a, b).
It is a Cm-valued Brownian motion satisfying

(1.24') EDDk X,(x) — D'Xt(Y)1 2]—:5_Ktlx — y12 , V x, yERd

(1.25') E[lLPX,(x)12] Kt, VxERd,

and (1.18') if and only if (a , b) satisfies (Cm, I ) ,  (C m , )  and (Cm ,1112).

§ 2. Stochastic differential equation governed by C-valued Levy process.

2 .1 .  Stochastic  in tegra ls by  C-valued Lévy p ro cess . L et X t (x ) ,  xc  R d ,
tE [0, T ]  be a  C-valued Lévy process with characteristics (a, b, y , U ) satisfying
(C, I ) ,  (C , I I )  and (C, M[,), p > d .  Let s<t and g , , ,  be the least sub a-field of
g for which X„—X ; s u v t  are m easurable . T hen  for each s and x, X (x)
— X ,(x ), tE [s , T ] i s  a n  g s , t -adapted sem imartingale. X(x) is decomposed te

the  sum  of the process of bounded variation B,(x) b(x)td- .Çu c f(x )N ((0 , t], d f)

and an L 2-martingale Y 1 (x )=- X,(x)— B,(x). Let <Yi(x), r (y )> , be the continuous
process of bounded variation such that

(2.1) 071(x)—Y;(x))(Y1(Y)-11-13(Y))—{<Yi(x), Y -1(y)>t— <Y i (x), P(Y)>31

is  an  g s , t-m artingale. Then it holds <P(x), Y 1 (Y)>t=tA 1 (x, y ), where

(2.2) A"(x, y)-=a"(x, y)± .fu f (x )P (y )v (d f).

Let s> 0 be a  fixed number and let 0 t (w) be  an g 3 -adapted Rd-valued pro-
cess, right continuous with the le f t h an d  lim its . Itô in tegral o f 0 ,  b y  dY t i s
defined by

(2.3) IkVo 11 7 1k + i nt(Ot kAt) — Yi kAt(Ot kAt)}

w here ô  are partitions Is=t o <t i < <t n = T }  .  The lim it  e x is ts  in  probability
and is  a local martingale. Let 0,(a)) be an  g s , r adapted process having the same
property as 0 t . Then it holds

(2.4) (YsdYg0,--), 1:dY;7:(0,_))=TAii(0,_, 0,—)dr .

S e e  L e Jan  [9 ] and Le Jan-Watanabe [ 1 0 ] .  Now the stochastic integral by C-
valued Lévy process X t is defined by

(2.5) d17,(çb,—)+Çb(0,—)drHS, f (0, _)Np(dr, d f) .

2 .2 .  Stochastic  differential equation. W e shall consider the stochastic dif-



Stochastic differential equations 83

ferential equation defined by th e  C-valued Lévy process X :

(2.6) d e t= d X ,( e ) .

T he  definition of the solution is a s  follows. Given a  time s  and state x, an Rd
valued g 3 ,,-adapted process et, right continuous with th e  left hand limits is called
a  solution of equation (2.6) if  it satisfies

(2.7) et =-- x-EY,

Note that this is an extension of a standard stochastic differential equation
w ith  respec t to  P oisson  po in t p rocess. Indeed, le t  (a  ••• , Bn be a standard
Brownian m o tio n  a n d  le t  X0 (z), • «, X (x )  b e Lipschitz continuous Rd-valued
functions and let N ((0 , t], A ) be a Poisson random measure o n  C such that the
intensity measure v satisfies (C,111,). Then

X,(x).= Xk(x)M-1- X0(x)t - F u i(x)Stp((0, d f ) - F ij c f(x)Np((0, d f)

i s  a  C-valued Lévy p ro c e ss . T h e  corresponding stochastic differential equation
is written by

det= ki i Xk(et )dfl'i+No(et )dt

)N p(dt d f) . -0 .
u c f( t )N p (d t, d f) .

Theorem 2.1. For each s, x , the equation (2.7) has a unirue solution.

Pro o f . We first consider the  case C = U . We construct a  so lu tio n  b y  the
successive approximation. Set e2=x and

(2.8) n-•=0, 1, 2, •-•

Then it holds

E[ sup86246e

+E[ Y3 b(v_) - 6(Vf 1 )dr 2 i l

<C,{ETIIA(e;1-, Vt1)+

±(t—s)ELf t
s lb(M)—VV= 1 )1 2 cld} .

Using (C, I), (C, II) and  (C,M,), p= 2, we get

EE sup leV— e 1.2 19_Ci(l+T)L4 sup1 2 1 d rs u5t s s5u5r

. {C,(1-FT)L}n 
 ( t — S r

E [  sup I V4 — V, 12 7 •n!
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Then e1
u

1 +' converges to  a  right continuous g s , a -adapted process eu  in  L 2 -sense.
I t  is  a solution of the equation (2.7). T h e  uniqueness of the  so lu tion  can  be
proved similarly.

W e next consider the  general case. L e t  s=cr 0 <0 . 1 <  ••• b e  a  sequence of
jumping times of N p (t, 1.19=-AT,((0, t], tIc):

(2.9) att-=--inf ft>a u _i ; Np(t, Uc)—Np(an_1,11e)_>_11, n 1

oo if ( = -0

Then it holds limu —a u =00 . Set

fft(x )=X t(x ) j u , f(x)Np((0, d f)

and consider an SDE

(2.10)

It h a s  a unique solution -e t s ta r t in g  a t  (s, x). W e will define a  right continuous
process e t , tE [s ,  T ] as fo llo w s. F o r  t [s, a i ), s e t  et=f, a n d  fo r  t= c i , set
ecr1=0Pa1(a1-), w h e re  g51-.=1 -Pidt ) a n d  p , is  the Poisson point process o f Xt.
Let now e.t, t [ o ,  b e  the solution of (2.10) s ta r t in g  a t  (0 '1 , ea i ) .  F o r  tE

0'2) we define et=f, and for t=a 2, we define eg 2 =0p, 2(e, 2 _). Repeating this
argument inductively, we can define et fo r  a ll tE [s, T ] .  It is  easy  to  see  tha t
this e t i s  a unique solution of equation (2.7).

2.3. The co n tin u ity  o f the solution w ith  respect to  the  in itia l data . L et
es,t(x), t  [ S ,  T ] be  the solution of equation (2.7) sta rting  a t (s, x). In this sec-
t io n , w e  w ill  show  t h a t  t h e r e  i s  a modification of the solution such that the
map es, t; Rd,R . is continuous a. s. For this purpose, we get some LP-estimates
for the solution and th e n  a p p ly  Kolmogorov's criterion  fo r  th e  continuity of
random fields.

Lemma 2.1. Suppose that the characteristics of  the C-valued Lévy process Xt
satisfy (C, I ) , (C, II) and (C,13) f o r some p > d  an d  U -=C. Then there is a
positive constant M  depending only on constants L and p appearing in (C, I ) , (C,
(C,III,) and T  such that

(2.11) EC sup I es r(x)— x— es,r(y)d-y I P'1.- m(t— .3 )1
sLrst

(2.12) E[sup (x)—x17'] M(t-5)(1±1x1)P'

holds f o r any s, [0, T ],  x ,  y E l?  and p 'E  [2, pj.

P roo f. W e shall give the proof of (2.11) only, since the  proof o f  (2.12) is
similar. I n  t h e  follow ing, w e w rite  E 1 1(x) a s  et(x) and w rite  7)1=e1(x) — e1(Y)
since s, x, y  a re  fixed. L e t X1(x)=Y`i(x)+1 7 g(x)-Pb(x)t b e  th e  decomposition

t )  i d  is the identity map.
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s u c h  th a t  Y i(x ) is  a  C-valued Brownian motion with zero-mean and Y (x )  is  a
discontinuous Lévy process w ith zero-m ean. Then w e have

(2.13) 77t—(x—y)=.f: dY(er-(x)) — g e r - - ( Y ) )

- FYs dYger-(x)) — ' - ( 3 ) ) )

fb(e,-(x)) — b(er-(Y))} d i

=-MH-Mg+A t .

W e shall compute the  p-th moments of the supremum of il/t M  and A t  one  by
one . F o r the  convenience, we write p ' as p .  B y (C, II),

(2.14) E[ss,12,1 ArIP15_1t—  s1P EEIb(e,-(4)—b(r_(y))1Pdr]

N ext, w e have by  Doob's inequality and Burkholder's inequality,

(2.15) E[ sup I /1/;171,-.CIE[I MI 2 ]
S r t

<C;EN:11a(er-(x), e r -(x ))-2a(e,-(x ), e r -(y))

±acer_(y), e »r_cy11 drI P12 ]

t— S : ( P 1 2 ) - 1 L P I Ell 72r- P ]dr . .

The last inequality follows from  (C, I ) .
For the computation of E[sup I Mg I P], we proceed a s  follows. A p p l y  It6's

formula to discontinuous martingale Mg. T hen  w e have

(2.16) I M g P =a  martingale with zero-mean

{  M + g 1 (r) — I M p g . .1-(r)1V-IP - 2 Mgzilv(df)dr,

w h ere  g f (r).= f  (er-(x))—  f  (er-(Y )), and M g . '  i s  th e  i-th component of d-vector
process M g. B y the  mean value theorem, th e  absolute v a lu e  o f  th e  integrant
{•••} is dominated by

1
— P(P - 1 )I g .r(r)12 111V_H-  0 g f (r)IP - 2 .. C2 11 g .r(r)12 1 M-LI P ± 1 g .r(r)I P 12

w here  101_1. By condition (C, Dip), it holds

g f(r)1 7 1)(d f) C3 -17
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for any 2. "fi_ p. Consequently,

(2.17) E  sup I Ag I P l 5.C4E I MI I P1

C4 .f:E[IY),-IP]drdl. :E[177,-1 2 1V - I P - 2 1 d +

Substitute M(7?=7),.—(x—y)—M—A,. to  the  last member of the above and then
apply inequalities (2.14) and (2.15). Then we get

(2.18) E[172,-121V-IP-9-05{1x—y1P-2E[172,-19+E[sup 172v1 P 1}.

Substitute th e  above to (2.17) and then sum up (2.14), (2.15) and (2.17). Then
we get

(2.19) E[ sup — y) I P]

5.C6{1 x —y 72,-19drtç:EEss211 Yiv I Pldr}

...C7{(t—s)1 x —yIP+ I x y)I9dr

- 1 - r 8 EC, Up r  )2v — (X — 3) d i •

In  c a s e  =2, the  above inequality is written as

(2.20) EE sup Y) — (x — Y)1 2 15C 7(t — S )  X — 3) 12

S5.r5t

+ 2 4  E [ sup I 72,,— (x  —y)1 2]d r.Ss s v s -

Gronwall's lemma implies
E[ sup 177,—(x—y)195_Ca(t—s)lx — y1 2 -s5r5t

Substitute the above to (2.19). Then we get (2.20) replacing the 2-nd power by
the p-th pow er. Then, by Gronwall's inequality, we get (2.11). T h e  proof is
complete.

We can now state the main result of this section.

Theorem 2.2. Let X 2 (x ) be  a  C -valued L évy process with characteristics
(a, b, y, U) satisfy ing (C, I), (C, n) and (C, ra p ) f o r some p > d .  Then the solution
of  equation (2.7) has a modification e , , ,  w ith the following properties.

(i) For each s, e,, t , te [s, T ] is a right continuous C-valued process with the
left hand limits.

(ii) Fo r any  O t o <t i < ••• <ta, et i ,t , i= 0 , •••  , n -1  are m utually  inde-
pendent.

(iii) For each s , it holds that e2,u=e2,u°e8.2 a. s. f o r any  s< t< u

Pro o f . Suppose first that the characteristics (a, b, y, U) satisfies (C, I), (C, II),
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(C,111,), p> d w ith  U = C . T hen  the solution e ,,,(x ) satisfies (2.11) a n d  (2.12).
T hen by  L em m a 1.1, w e see  tha t e,, t satisfies ( i ). In case U # C , the solution
of equation (2.7) is w ritten by

(2.21) e 8, t(x ) , # a „ .  • • •  o o p „ o s , , , ( x )  , if t [c a , n + 1 )

w here #.
3 ,,(x ) is  a  C-valued process satisfying (2.10) (See the  p roo f o f  Theorem

2.1). T h e  above t is obviously a  right continuous C-valued process with the
left hand limits.

The second assertion is clear since e t i , ti + 1  i s  gt,, t 1 + 1 -measurable and
1=0, ••• , n-1 are m utually independent. N ext observe tha t bo th  of e s , „ (x ) and
& ,.(x)=et,..°Es, t(x), u  [ t, T ]  are  solutions of equation (2.7) s ta r t in g  a t  t  at
e , t (x). T hen  by  the uniqueness theorem, we have ,4 8 ,.(x )= .9 ,.(x ), fo r  all
[t ,  T ].  T hen the assertion (iii) fo llo w s. The proof is complete.

Let us define the product of two elements f ,  g  o f  C(Ra ; R d) b y  th e  com-
position f og  of the m a p s . T h e n  C(R d  ; Rd) becomes a  topological semigroup by
the topology p .  We denote the  semigroup b y  G+ . T hen the solution e s , t  defines
a  Lévy process in  the  semigroup G+ because of properties ( i of Theorem
2 .2 . The associated C-valued Levy process X, is called the  infinitesimal generator
of e,, t a n d  es , t is  sa id  to  b e  generated by the  C-valued Levy process X .

2 .4 . R egularity  of the solution w ith  respect to  th e  in it ia l d a ta . In  this
section, w e shall study the  smoothness of the solution w ith  respect to the initial
value under some regularity assumptions to the characteristics (a, b, U ) .  We
denote by G11t the  sub-semigroup of G+ consisting of Cm-maps. It is a topological
semigroup by the metric ptm . Levy process with values in G7

+T' is defined similarly
as tha t w ith  values in G+ .

Theorem 2 .3 . Suppose that the characteristics o f  a C-valued Lévy process
satisfy  (Cm , I), (C 7 4 , I I )  and (Cm,1111) fo r som e p>(m +1) 2 d. T h e n  the solution
es ,,(x) of equation (2.7) has a modification such that it is a G7+7i-valued Lévy process.
Furthermore, in case U=C, there is a constant M  such that

(2.22) EE s u p  /Y e  (x ) — D k es,r(Y)I P 'i VA t— s)1 x — y  , V  x , yeR d  ,

(2.23) EE sup 1 D k  (es r(x )—  x )1 7 -] 5 . —  s) , v  x  R.
S5r5t

hold for any  k  w ith 1 1k  m  and p ' [ 2 ,  p/(m+1) 2].

W e prove the  theorem in case m = 1  m a in ly . Our argument is based on the
following lemma.

Lemma 2 .2 . Suppose U = C . Let e i =(0, ••• , 0, 1, 0, ••• , 0) (1 i s  a t  the i-th
component) a n d  y  R 1 —  10}  Set

1N,, 1(x, y ) - -  f e ,t(x +y e i)— e ,,,(x )}  .
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Then there is a positive constant C such that

{2.24) E[ sup 1N 8 (x,
S r  t

holds f o r any x , x 'E R d , y , y'ERJ—  { 0}  and p' [2, p/2].

P roo f. For simplicity, we only prove (2.24) in case x = x '.  W e w ill w rite
N s . t (x , y )  b y  N t(y ) since s  and x are fixed. B y inequality  (2.11), it holds that
for any  p'E [2, p]

(2.25) EC suP 1Arr(y) — eilP'15M (t - 5).
S Z r t

The process N t (y) is w ritten by

(2.26) N t(y )=et- dZr(y)Nr(Y )± g 
f '
(r y ).A 1,-(y )gp(dr, df )s c 

13,(Y )Nr(y)dr, ,

ri
where Z r (y)= Y '(,-(x , y, v))dv, g f ( r ,  A l o f  '(Cr-(x, y, v))dv, B r (y )=

1
0 1)/(Cr (x , y , v))dv , and

Cr(x, y, 0=er(x ) - Fv (r(x +y e0 — r(x)).

H e re  Y i'(x )  e tc . are d X d-matrix (a17 (x )/ax ) etc. Let n i =N t (y)— N t (y ')  and
775 =M i+M g+A t (d-vector) be  the decomposition such that M i i s  a  continuous
martingale, M g  is  a  purely discontinuous martingale and A t i s  a process of
bounded variation, respectively . Let M i'

i  b e  the i-th component of M .  Then

<M c ' i >t (Ng), )— M-CY 1))(NgY ) — NgY '))41(Y , Y )dr

+2 EN(y )1\7;.(y ){ 4} (y , y )-2a1} (y , y ')±ati(y ', y ')}  dr
s

where
a2 i)(c ( x  y  v) ( x  y ' v '))dvdv 'clikf(Y' 0(axkaY 1 a r

It holds by (Cm , I) that

a ikl(Y, V y , y 'ER d ,

y) - 24/(Y , Y ')d- alf(Y , y')

C2 I er(x±yet) — er(x+Y i et)1 2

Then by Burkholder's inequality, we have

E[ sup I M;-I E EI<M c ' i >r"1ssrgt
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.5 C ,E E  Nr(y)—Nr(y')IP' dri

±C5ELÇ:11\17-(Y)I P ' l e,(x+ye0 — er(x+ y'e,)IP' dr]

T h e  last member is dominated by Q1 y—  y' (t—  s) in view of Lemma 2.1 and
(2.25). Therefore we have

E[ sup 1Mi EC I 72,1 P id r - FC; 3/ — 3) !  P . (t —  s) .
s t

By a  similar calculation, we have

(2.27) E [su p ,

For the estimate of Mg, we proceed as follow s. By Itô's formula,

(2.28) 123' =martingale with mean 0

h  f(r) 
IP 'M g  IP ' P 121(r)1 I v ( d  f ) d r , ,j r ,N  11 

where
h f (r)-=g f (r, y)N r (y)— g f (r, y')Nr(Y') •

T he integrant of the last member of (2.28) is dominated by

',.C8 1 I h f(r)1 P ' +1h f(r)I 2 I Mg I P ' - 2 1

a s  before. Since ,Ç 1 (x)IIP'1)(df)t ) is bounded in x and 11/'(x)—f/(x')11 13 '2)(df)
- const x— x' by (Cm. , Di p ) ,  w e have

(2.29) I h f (r)IP' 2)(d f )

C8 1172,12'' g f fr , v(df)+ INr(Y)I P ' g f(ry y) —  g )11P' 2 ) (d f

II r i  P ' + IN r(Y)I P ' e ,(x+  ye ) — r(x+ y'e i )IP'} .

T h e  expectation o f  th e  above is dominated by Ci o  {E [ P'}
 

On
the other hand,

(2.30) E [ Mg I P - 2
.L  h.f(r)I 2v(df

2 + I MN P ' - 2 ±  A rI P ' - 2 )ilir1 2 ]

-ECl2E[(1777-1P' - 2 + I P ' - 2 + I A rIP - 2 )1Nr(y)1 2 1er(x +y e i)

er (x + y se i )121

T h e  first m em ber o f  th e  right hand side is dom inated by Cii i .E[ sup I ri21P 1SZV5r

IT)  Ilall denotes the matrix norm E i . i  l a j j ! .
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y— yi IP' . Obviously E[ I A//gP'i is dominated by the sum of the above two,
integrating by dr from s to t. Summing up the above calculations, we arrive at

(2.31) E[sup — .))/ n t — s )+ C i4  E[sup 1 11v1P Hdr
S

+C 1 5 5 : E i  72 I p , -2 + p' -2 + I An

X  N r(y )1 2 1e,(X e e x y ' e ,)I 2 ]d r

We will prove by induction on p ' that

(2.32) E[sup EC suP 1v1'(t — s) - FC17.ç P ' d8 .9 1)g7's5r

holds for any p/ [2 , p /2 ] . In case p '= 2 , (2.31) is written as
r

E[ sup 1)7,19 Y — 3) /  2 (t— s)+Ci4)
t

 EL sup 1771,12 ]dr
S rSt .55 V r

which is nothing but (2.32). By Gronwall's inequality, we have ErsuP ifrri
C1 8 y—y/1 2 (t—s). Suppose next 2_<p'_3Ap/2. Let /3= 2 /(p /-2 ) and 7  be its
conjugate. The last member of (2.31) is dominated by

CiTs (E[1 ,2,19" 13+EC I M1 2113 +ECI Ar19")

><E(INT(y)1 24 1e,(x+ye)—er(x+y/e)1 24 ) " 4"dr

121(p'") - 1 dr) I Y — 37 / 12 =-C2o1 

Therefore we get (2.32) in case 2- p' 3Ap/2.
Consider next 3 A p / 2 - p '4 A p /2 .  L e t j3= 3 / (p '-2 ) .  Then we can show

similarly a s  th e  above that th e  last member of (2.31) is dominated by const.
X I y —y' P ' (t— s). Therefore we get (2.32) in  case 3A p / 2 : p '4 A p / 2 .  Repeat-
in g  th is  argument inductively, we get (2.32) fo r any p ' less than p / 2 .  The
proof is complete.

Proof  o f  Theorem 2.3. It is enough to prove th e  theorem in  c a se  U-=C.
B y  Kolmogorov's theorem, a,e,, 2(x)=1imN 2(x, y )  exists fo r  any t , x , a. s. It

satisfies (2.22) with Dk =a, by (2.24) a n d  satisfies (2.23) b y  (2.25). Therefore
es ,, is a  right continuous valued process.

Now, let y tend to  0  i n  (2.26). T hen w e see that th e  Jacobian matrix
6es,t(x)=(&e3,t(x)), i=1, ••• , d  satisfies

6C,1(x)=I+
.

 dXç.'($8,,-(x))ae8,,-(x)

+.
0,f/(es,,-(x))5es,,-(x)gp(dr, df).

Therefore, the pair (C,, ,(x), de,t(x)) satisfies a  closed system of SDE. Apply the



Stochastic differential equations 91

same argument to the pair process. Then we see that ae,, e (x) is  a  0-function
of x  and in  fact that e s, e is  a right continuous process with values in C2(Rd ;  Rd) .

Repeating the argument inductively on in, we get the assertion of the theorem.

2.5. Homeomorphic property of the solution. We have seen in Section 2.3
that the solution of SDE (2.7) defines a Lévy process with v a lu e s  in  th e  semi-
group G+ o f  continuous maps. In this section, we shall discuss the case that
the maps es,, : R ' -+R' become homeomorphisms a. s. In  c a s e  o f  continuous SDE,
i.e., y(C)m 0, it is known that the  maps es, ,  are homeomorphisms. (See Kunita
[6], B ism ut [2]). However, in  case  o f discontinuous SD E, additional require-
ments have to be made to the  intensity measure y of the Poisson point process.

We denote by G the  totality of homeomorphisms of R d .  I t  is  a  subgroup
o f  G+ ,  a n d  i s  a  topological group by th e  metric d (f , g )=p (f , g )+p (f - ',
where p  is the compact uniform metric on C .  However, we will not use the
metric d  in  th is paper, but use the metric p. The definition of the  G-valued
Lévy process is similar to that of G + -valued Lévy process.

We first consider the case that the intensity measure y of the Poisson point
process is a  finite measure.

Theorem 2 .4 .  Let X t (x ) be a C-valued Lévy process satisfying (C, I ), (C, II)
and (C,111,) for some p >d .  Suppose the following.

(C,INT) T he intensity  m easure y  is f inite and is supported by f  such that O f
----= f

Then the solution of  SDE (2.7) defines a G-valued Lévy process.

Pro o f . By the condition (C,IV), the equation (2.7) is written by

(2.33) dee=dX2(ee_)+•cf(ee_)Np(dt, d f ) ,

where Xi is a  Brownian motion with values in C .  Now let es , e (x) be th e  solu-
tion o f  th e  equation cl t=d X i( t - )  starting at (s, x). Then it is a  G-valued
Brownian motion. The solution of equation (2.33) is  w ritten  as (2.21). Since
O p °  a re  all homeomorphisms by hypothesis (C,IV), the solution es, e defines the
homeomorphisms a. s. T h e r fo re , it is a  G-valued Lévy process.

In case that the  intensity measure y  is a-finite, we require additional re-
gularity conditions to  v . Let us introduce a Lipschitz norm :

11=  s u p   I f ( x )1   + s u p  I  f (x ) f (y )f
1+1x1 soy

, 
x— YI

and introduce an assumption to v.

( C ,V )  Of =- f -Fid are homeomorphisms a. s . v. y satisfies

(2.34) f  Ilf 11 2  v ( d p < 0 0

Jc 1-1-11 f 112

Note that (C, V) implies (C, III,) for p . 2 .  Indeed, setting U= If II <1}
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we have v(C—U)<00 a n d  i lIfIlPv(df)<00 fo r  any by (2.34). The latter

property implies (C, Di p ).

Theorem 2 .5 .  A ssume (C, I), (C, II ) an d  (C, V). T he solution of  equation
(2.7) defines a  G-valued Lévy process.

The proof is based on the following LP-estimates.

Theorem 2 .6 .  In addition to (C, I), (C, II) and (C,V), assume further that

(2.35) ess-sup(lf 11+1If 11)<+ 0 0  w ith  respect to v,

where f= 0 1 — id . T hen, for any p _ 2 , there is a positive constant A, such that

(2.36) E [ suple s 7-(x) —  e s,r(Y)I P i M  p l x— y I - P V X ,  y E R d

s,,gt

(2.37) E[ sup (1+ les,r(x)I) - P 1 Mp(1+ x , \ iX E R d
85r5t

Rem ark. In case of continuous SDE, inequalities (2.36) a n d  (2.37) without
"sup" in the expectations have been obtained in  [6].

We give the proof of (2.36) only, since the  proof of (2.37) is  similar. F o r
the  proof of (2.36), we require a  lemma.

Lemma 2 .4 .  Suppose conditions (C, V ) and (2.35). L et 5 be any positive num-
ber. There are positive constants C, and C, not depending on 3 such that

(2.38) 1(8+ I Of(x) - 9MY)1 2 ) - 1 — (o+ I x-y 1 2)- 1

+  7 ( f i ( x ) -P ( y ) ) ( x i - y t ) ( 5 +  I x — Y1 2 ) - 2 1v(df)

_ C1 (5± I x—  Y12 ) - ' •

(2.39) 1(6+ 16f (X)- f(y)12)i o+  x  _ y12)-1 IP•12v(df)5._C20-1-Ix—y12)-p"

P ro o f. We will prove (2.38). Let 0 < s <1 a n d  s e t  U€= U I If I! < .  Con-
sider the  integrand of (2.38) in case fEELI„ Since I 957/.1 (x) - 0Y1(37) I I l  95 .7-1 II I x — y I ,
we have I x - y  I MO? II I çbf (x)—ç f ( y ) I .  Therefore,

(3 + 10 .f(x)+ 9 5 f(Y)I 2 ) - 1  —_.( 1 4- 11951-1 112)(3 4-  I x —y 1 2)_ 1

Also, note that I f (x)— f(y)1 Ilf II Ix- y I. T h en  the  integrand of (2.38) is dom-
inated by

(2.40) (1+110y1112+11f11)03+ I x— Y12 ) - 1 f  E C - U -

We next estimate the case f E L I, .  By the  mean value theorem, the integrand of
(2.38) is dominated by
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(2.41) Ca {I x — y1 2 f (x)— f (Y)1 2 (5+ 1(x — y)+ e(f (x)— f (y))1 2 )- 3 1

w h ere  8  is  a  n u m b e r  s u c h  th a t  8 J 1 . S in c e  f EU „ w e have

I(x — Y)+ 0 (f (x) —  f (Y))1 >-_-(1 - 11f x— y (1 - 6)1 x — y  •

Therefore (2.41) is dominated by

(2.42) C4(1-6)-611f112(5+ x—y12) - 1 , f  EU,.

Integrating (2.40) o n  C— U, and  (2.42) o n  IL  by  th e  measure y , w e  g e t (2.38).
T he  proof o f  (2.39) is done similarly.

T h e  inequality (2.36) o f Theorem 2.6 follows from th e  following lemma.

Lemma 2.5. Suppose (C, V ) and (2.35). Then it holds

(2.43) ECRIP (a+  e8, t(x)— e 8, 2(y)12) - P"i ix — y 12 ) - P
"  , V x, yG

where the constant C, does not depend on a.
P roo f. set 725=e2(x)—e5(y), T hen  by  It6's formula,

(5+172t1 2 ) - 1 = (ô+  x — yI 2 ) - 1

— 2 t
s (e) --F I 72,.12 ) - 2 77 {d17 ;.'(er(r))—dYç-' V r(y ))}

{(5+ g f (r) 2) _1_ (5 +  7 2 ,I I 2 ) g p (dr, df)
j s j C

—2 Ç2 (5+ I ,12 ) - 2 7);̀-(bi (e,-(x)) —  bi (er (y)))dr

— 2 + 11) ,1 2 ) - 3  i(s+ I  ,12)5 i3- 4 024

X {ail(er (x), e r ( 4 ) - 2 a i i c e r ( x ) ,  er(Y))± a i i(er (y), er (y))} dr

10 +  72,_+g 1 (r) I 2 ) - ' — (3+ I 79 7-12 ) - 1

+2 g(r)(ô+  I  r-12 ) - 2 7)--} 2.)(d f )dr

= (ô+ x — y1 2 )'+A/12+Mg+Al+Aid - A2.

We shall compute th e  P/2-th moments of sup I M I etc. Sim ilarly as the estimate

o f  (2.13), w e can easily show

(2.44) E[sup I A P " ±Sy.P I AN P " ]5CsYs ErsItvier (5+ 1 Yiv 2 ) - P"]dr .

F or the  estimate o f  A2, we shall apply Lemma 2.4. B y (2.38), w e have

sup I /1:73. I CT (5+1)2,1 2 ) - 1 dr .
S 5 rS t
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Therefore we have

(2.45) E[ sup I ;1.1 1' 12 ] CI,Ç EC sup (5+177,,I2) - P'2idrssrst s .95v.Lr

Next, by Burkholder's inequality etc.,

(2.46) EIsup I Ac- I P 1 2 1—(q) P " E [ I Mr2 P12 ]—.C7EC<Mc>ri

_.<C7.E[0:(5+ 77,12 ) - 4  I nr a(e,-(x),

—2a(er(x), er(Y))+ a($,(Y), er(Y))11dr) 2514 ]

s
E [ sup (3+ I P '2 ]d r s g v ,

where q is the conjugate of p/2.
For the computation o f  Iv  IP1 2, we apply Itô's form ula . It holds

(2.47)I il/Pti P ' 2 = a  martingale with mean 0

VH-hf(r)I p"— I MgI P "

s C

h f(r)I X  I ( P1 2 ) sign (V)}1,(df )dr ,

where h f(r)=-(6±1nr+g f(r)1 2 ) - 1 — (34-  I 72, 12) - 1 . T h e  integrant o f  th e  above is
dominated by C9 ( I h f(r)I /2 ± h f(r)1 2 i (P 1 2 )  - 2 ). From (2.39), we have

hf(r)IP' 12 (df) ca+172r1 2) - '

for p'/2E [2, p ] .  Therefore we get

E  sup I Md p121.. qp/2E[
 I
 mil I 1912]

s rst

{EEO+ I )7r 12 )-  P / 94 E r(a+ 1 7 7 712)-21 Md. (112) d r
.

Substitute V = (5+ I72r 12 )- 1  — (5 +  —y I - A) to the last member
of the above and then apply (2.44)—(2.46). Then

(2.48) E[sup I Mg P 1 2 ]-.5=C14 EC sup (5+172v 2 ) -  P121 dr

+ c i a + x—y1 2 )( - PI7 E [  sup (5V 17 )vi
S .351 ,1 "

2)-21dr. .

Summing up (2.44), (2.45), (2.46) and (2.48), we obtain

E [ sup (a+ I 77r1 2 )-  P i  21 _ Ci3((-3+ x—  2)P/2
s5rst

+ C 1 4 ( 3 ±  I x -
y  2 ) ( - 2 3 / 2 ) + 2 .  E [ sup (5+177,1 2 )- 2 ] dr

S 5 V 5 r
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H-C4 EC sup 0+1,7v12) - P121dr
SS 5 ' r

T hen  w e  ge t the  desired inequality (2.43), similarly as the proof of (2.11).

Proof  o f  Theorem 2.5. Assume first tha t conditions of Theorem 2.6 is sat-
isfied. T h e  o n e  t o  o n e  a n d  onto  property  of the map e s , s f o r  each s< t can
be proved similary a s  [6]. Indeed, inequalities (2.11) a n d  (2.36) im ply that
SUP I es. r(x) — es. r(Y) - 1  is  c o n tin u o u s  in  (x, y)GRd x Rd— { (x , x )lx  R d } . This

TELS, t]

proves that the map es. ; -->R d  is  one to one for a ll t E [ S, T ] .  Next, inequality
(2.37) implies 11m  i n f  I es. s(x) I =00 a. s. Then e s , is extended to a continuous mapiXI-.00 teEs,
from  Pd (=one point compactification of R d )  o n to  its e lf  a ll  fo r  a l l  tE [s, T],
such that on is the invariant point. Then w e see that e s , s ; Rd--q?d is onto and
the inverse es-,1s (x ) is continuous in  x for a ll tE [s, T ] .  a. s.

W e next consider the  general case . S e t U= If 111.1'11<i/2} and consider the
SDE

(2.49) d f ) .

It satisfies condition (C, IlI p ) for p 2. Furthermore, since I çbj) (x)—çbyl(y)—x+yl
.•_.11f11107f 1 (x) - - sbr i (Y)1, w e have I 0 -i1 (x )-9 1 (y )I -.5_21x—y1 i f  f  E U .  Similarly,
w e  h a v e  10 1 (x) I - 2(1-F x I) i f  f  E U .  Therefore condition (2.35) is satisfied.
Consequently the solution of (2.49) defines fo r  e a c h  s ,  a  righ t con tinuous G-
valued process e s , s, t E  [ S, T ] .  N o w  l e t  s<cfi <0.2< ••• b e  jumping tim es of
Poisson process Np (t, C— U ), t_s. Define e 5 , (x ) by

(2.50) es. t ( x )
= . 0 7, , t

*
O P (a • • • 

° Op(cr j . )
° &3, a 1 ( x ) if a n _<t<a n + i •

Then w e can prove sim ilarly as Theorem 2.1 th a t fo r  e a c h  s ,  e,, t, tE [ s ,  T ]  is
a solution of equation (2.7) and defines a  right continuous G-valued process with
the  le f t h an d  lim its . T he proof is complete.

§ 3 . Representation o f  Lévy process w ith  values in the semigroup of
continuous maps.

In the previous section, w e have seen that the solution of a stochastic dif-
ferential equation defined by C-valued Lévy process defines a  G , (or G)-valued
Lévy process provided that its characteristics satisfy (C, I ) ,  (C, I I )  a n d  (C, Dip),
p > d  ((C,IV) or (C, V ), resp.). In th is section, w e shall show conversely that a
Lévy process with values in G , o r  G  can  b e  rep re sen ted  as  a  so lu tio n  o f  a
stochastic differential equation defined by C-valued Lévy processes. Our problem
is thus to  find  the  infinitesimal generator of G.,.-valued Lévy process.

3.1 . Main result. W e begin with introducing some hypotheses to G,--valued
Lévy process e s , s . W e always assume that e s , is  s ta tio n a ry .

(e, )  e 5 ,t(X )  is  square integrable for any  s < t and x G R d . T he limit
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1 
(3.1) A ii(x, Y )= 1 im s+h(x) —  xi)( s+h(Y) — Y;)]h-0 h '

exists for an y  x, y e R d  and i, j=1, ••• , d.

(e, II) T he limit

1 
(3.2) b'(x)=1im {E[eis , s + 1 ,(x)]—x i i1,0 tz

exists for any  x ER d  a n d  i =1, ••-, d.
Let p  be a positive num ber greater than or equal to 2.

(e, 111p ) T here  is  a  positive constant M  such that

(3.3)I  E[es,z(x) —  x — (es, (y ) —  y)]  5M(t — s ) 1 x—  ,

(3.4) e.t(x)—x—(es.t(y)-1 ) 1Pi V / (t — s) I x — Y IP '

(3.5) ELes,t(x)—x1P'1_5_M(t—s)(1-Flx1)''

holds for any  x , y E R d  and pE  [2, p].

R em ark . Condition (e,11112) (p=2) im plies that A ii(x , y ) i s  bi-Lipschitz con-
tinuous and b ( x )  is  Lipschitz continuous.

Theorem 3.1. L et es,t(x ) be a stationary L évy  process with values in G .
Suppose that it satisfies (e, I ) ,  (e, II )  an d  (,III ,) f o r  some p > d .  Then it is
generated by a unique C-valued Lény process X, satisfying conditions (1.17) and
(1.18) o f  Theorem 1.2.

The proof w ill be given at Section 3.2.
It should be noted that hypotheses (e, I ) , (e, II) and (e,11Ip), p> d are satisfied

for any  G ,valued Levy process which is generated by a  C-valued Levy process
satisfying (1.17) and (1.18). Indeed, le t X , be a  C-valued Levy process satisfy-
in g  (1.17) and (1.18). Then it satisfies (C, I ) ,  (C , II) and (C,111,) w ith  U =C  by
Theorem 1.2. Let X ,(x)=Y  t (x)-Fb(x)t be the  decomposition such that Y 2(x )  is
of zero-m ean. Then th e  G+ -valued Levy process generated by X , satisfies

E[es.,(x)] —  x =EEb(es,r(x ))dri.

The property ( ,1 1 ) and (3.3) follow from the above. Furtherm ore, the relation
s+h

E R e , s + h ( X ) —  X i j s b i (e,,,.(x))dr)(e is,s+h(y) — y. j : + h  bi(es,r(y))dr)]

s+h s+h
dy (e,,,-(x )) , s  d Y ( e , , ( y ) ) 1

=E 5 .8: 4  Aii(e s ,r (x), e,, r (y))dri

implies (e, I ) .  Hypothesis (e,ifip) is verified in  Lemma 2.1. A s a  consequence,
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we have the following.

C o ro lla ry . A  necessary and sufficient condition that es , t i s  a  G+ -valued Lévy
process satisfying hypotheses (e, I ) ,  (e, II) and ($, mp), p > d  is that it is generated
by a C-valued Lévy process satisfying (1.17) and (1.18).

R em ark . T here a re  some gaps between th e  class o f G-valued Levy process
constructed in  Theorem 2.5 and  the  class o f  G-valued Levy process treated in
Theorem 3.1. In particular, the condition (C, V) seems to be stringent, since it
is hardly checked whether th e  generator o f  a  given G-valued Levy process has
the  property (C, V ) o r  n o t .  T h e  problem o f filling out these gaps w ill be d is-
cussed elsewhere.

We will next consider the  case  of smoothness property. L et e3, t b e  a  G4n-
valued Levy p ro c e ss . We introduce the  following hypotheses.

(em , I )  A 3 3 (x, y ) defined by (3.1) is  m-times differentiable i n  both x  an d  y .
Furthermore, Dkx .13t,A(x, y )  i s  bi-Lipschitz continuous fo r any k with
k

(ent,r0
 

b (x ) defined by (3.2) is  a  Cm-function a n d  Dkb'(x) i s  Lipschitz con-
tinuous fo r any k w ith  k 1 n.

(V, 111 p ) There is a positive constant M  such that (3.5) a n d  th e  following in-
equalities hold fo r any k with 1 1 k m  and  p'EC2, P7.

(3.6) ED D k (e3,t(x) — x) — D k (e3,t(Y) - 3 )1 P '] — s) Ix — y I P ' Vx, yER d

(3.7) ED D k (es, t(x) — x)I Vx E  R d

Theorem 3 .2 . Suppose that $3, t is a Gr-valued Lévy process satisfying (em, I),
(Ct m  II ) and f o r  som e p>(m+1) 2 d. T hen  it is  generated  by  a  uniqne
Cm-valued Lévy process X ( x )  whose characteristics satisfy (Cm, I ), (Cm, II) and
(Cm, Iffp, ) w ith U=C f o r p' pl(m+1) 2 .

T h e  proof will be given at Section 3.3.
Combining th e  above theorem with Theorem 1.3 a n d  Theorem 2.3 we ob-

tain th e  following corollary.

C o ro lla ry . A  necessary and sufficient condition that e,, t i s  a  G!,,n-valued Lévy
process satisfying ($7 4 , I ) , (em, 11) and (em, III,), for any  p> d is that it is generated
by  a  Cm-valued Lévy prscess whsse characteristics satisfy  (Cm , I), (Cm, II) and
(Cm, M) w ith U=C f o r any  p>d.

R em ark . T here is a one to one correspondence between the following three.
(a) G+ -valued (resp. GT-valued) Levy process satisfying (e, I), (e, II), (e, p ) ,

fo r some p > d  (resp. (ern , I ) ,  (em , 11) (e- ,I11,) fo r any p> d).
(b) C-valued (resp. Cm-valued) Levy process satisfying (1.17) a n d  (1.18)
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(resp. (1.24) and (1.25) fo r any k  with I k ._-<_m) fo r some (any) p>d.
(c) T h e  system (a, b, y ,  U) with U =C satisfying (1.1), (1.3), (1.4) and (C, I ),

(C, II), (C, 11I ) , p > d  (resp. (Cm, I), (Cm, II) and  (Cm, El , ) ,  for any p>d).

Finally we restrict our a tten tion  to  G+ -valued Brownian m o t io n .  I n  this
c a se , w e can  replace the condition (e, p > ( m + 1 ) 2 d  to a  weaker condition
(C,1112).

Theorem 3.3. L et es,t b e  a  G+ -valued Brownian m otion satisfying (C, I ) ,
(e, II) and (e,1112). Then it is generated by a unique C-valued Brownian motion X t ,
whose characteristics satisfy (C, I )  and  (C, 11).

Suppose further that es , t satisfies (en t, I ) ,  (V ,  II) and (em, M O . Then X t is a
Cm-valued Brownian motion whose characteristics satisfy (Cm, I) an d  (Cm, II).

Note that th e  G+ -valued Brownian motion of Theorem 3.3 is actually a  G-
valued Brownian motion, owing to th e  above theorem and Theorem 2 .4 . There-
fore we have the following.

C o ro lla ry . A  necessary and sufficient condition that e,, t is a G-valued (resp.
Gm-valued) Brownian m otion satisfying (e, I ) ,  (e,1 ) a n d  (e, M2) (resP. (e-, I ) ,

11), (ern , Ili2)) is that it is generated by a unique C-valued (resp. Cm-valued)
Brownian motion whose characteristics satisfy (C, I )  and (C, (resp. (Cm, I) and
(Cm, II)).

R e m a rk . There is a  o n e  to one correspondence between the following three.
(a) G-valued (resp . Gm-valued) Brownian m otion satisfying (e, I), (e, II),

/112) (resp. ($ 7 4 , I), (e rn , In ,  (V,1112)).
(b) C-valued (resp. Cm-valued) Brownian motion satisfying (1.17') and (1.18')

(resp. (1.24') and  (1.25')).
(c) T h e  p a ir  (a, b) satisfying (1.1), (1.3) a n d  (C, I), (C , 11) (resp . (Cm, I),

(Cm , 111)).

R e m a rk . T h e  co n stru c tio n  o f  C-valued Brownian m otion from G-valued
Brownian motion was shown by Baxendale [1] and  L e  Jan  [9 ] in  different con-
te x ts . T h e  reproducing kernel Hilbert space associated with a(x, y )  studied in
[1 ] is isomorphic to th e  Gaussian space generated by Gaussian random variables
X t (x)— b(x)t, xERd where t  is fixed. T h e  Gaussian random fie ld  W (x, t )  in-
roduced in  [9 ] has th e  same law a s  that o f  X 3(x)— b(x)t. However, W (x, t) and

.3,3(x) a re  not directly related by SDE, b u t th e  so lu tio n  governed by W (x, t)
has th e  same law a s  that o f th e  given e " .

A  result analogous to Theorem 3.3 was obtained by Kunita [7] assuming an
additional condition to the ti-field g s, ;

3.2. Proof o f  Theorem 3.1. Since th e  proof o f Theorem 3 .1  i s  lo n g , we
shall first present a  loose idea of the  proof. The principal part is the construc-
tion o f C-valued Lévy process. Suppose for a moment that we could have con-
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structed such X .  Then it holds

E3, t (x) —x:b ( e  3 ,  r( x ) ) d r .Ç:dY  r(e3.,-(x))

where Y s (x)= X s (x )— b(x )t. Both of the above are martingales, which we denote
by M s , t (x). Now in case where e ,,t has the inverse m ap E Z I t , Y 8(x )  could be
obtained by

C t

I 7  t (x )-= d M s , r ( 1-7—(x))
i s

lim  E  {Ms, t k , i (e -s?t k (x))—Ms, t k (eT,l t ) ( (4)}141-0 k

where A= {s=t o < •-• <4 ,= .- t }  are partitions and IX =max(ti + i — ti). Note that
/115 , 1(x )  has the additive property A, tk + i (x )= M s , k ( X ) +  Mt k , t  k +i(e s , t  k (X ) ) .  Then
Y t (x ) could be written as

Y s (x )= lirn E M t k . t  k , , ( X )  .
141-.0 k

We shall carry out the idea rigorously. W e  f ir s t  c o n s id e r  the martingale
M s , t . Set g s , t=cr( u ,„ ; u.- v - t )  and define

(3.8) M.1,t(x)-=---V,t(x)— x i j : b i (es,r(x))dr

Lemma 3 .1 .  Suppose ( e, ) ,  (C, H) a n d  (e,1112). T hen f or each  s  an d  x,
s(x), g  t ) ,  tE ls, T ] is  an P-nz artingale with zero-mean. Furthermore,

(3.9) , 1(x), M ,  t(Y )>= es,r(Y ))dri t

Pro o f . Set m s , i (x)=- ER,,,(x)1—  x. B y  the multiplicative property e8 =
t, .°e ,,,t fo r s < t < u ,  w e  have m ,,(x )=m s,t(x )+T.,,trn t,u (x ), where T s,tf (x )=

E [f (e s ,t(x ))]. B y (3.3), it holds 1(11 h)mt,8+18(x)1 5_ MU + x  I) and (1 + 1 4 )  is in-
tegrable relative to T 8 , t ( • , d x) ,  P(e 3 , s ( •) e d x ) .  Therefore

—
a 

m  t (x )— iim T  g  t r " + h )(x )=7 ,,,b(x )
at s' h.-0 h

Integrating the above by t ,  we get ni s ,t(x)=Y T s ,,b (x )d r . Note that e t ,u  and g s ,  t

are independent. Then we have

E111/4 „(x)— t(x)1g 3, t1 -- - E[e...e3,1(x)— t(x) H . b '( t(x))dr I g 3,t]

=7.11,.(e 3, t(x)) 4 :T  1 ,,b i ($ 3, t(x))dr

= 0 .

Therefore M 1 (x )  is  a martingale with zero-mean.
Consider next
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y )= E [X , (x )M (y ) ] .

U sing  the  re la tion  Ms,u(x)=Ms.t(x)+Ms,Jes,s(x)) and the martingale propery,
w e have

Y)=-Vs(x, y)H- TP1V .1,.(x,

w here TP1f(x , y )=E [f(e ,,,(x ), e ,,(y ))]. T hen w e have

Y)=In 'nrs( t+ 4  ) ( X ,  Y)=77tA i i (x, y)•

The change of the order of lirn and integration by 77, is verified by (3.4). In-

tegrating the above by t, w e  g e t  V t ( x ,  TP),Aij(x, y)dr. T h en  w e  can

prove that

M  t(x)M is,t(y ) — Ys A ll(es ,r (x ), es,r(y))dr

is  a martingale with zero-mean, similarly as the case of X , ( x ) .  T h is  proves
the second assertion of the lemma.

Now, given a partition a= {0=t o <t i < • •• <t n =T} , we define

n l(3.10) 11(x)— E Mt kAt. t k + iA t (X ) .
k =0

Lemma 3.2. Suppose the saine condition as in Lemma 3.1. Fo r each s and
x,Y1,(x)=1 7 1(x)—n x )  is a martingale adapted to g .  It converges in  1,2 -sense
a s  I51—>0. Furtherm ore, th e  lim iting process denoted by Y 3 ,,(x)=0q,(x), •-• ,
Y lt(x )) satisfies

(3.11) <Yis, 0(x), n,t(Y)>=-- Au(x, y)(t—s),

(3.12) <Pt(x), M ,t(Y )>=Ss A i i (x,

P ro o f . The martingale property of 31, t (x) is immediate from that of M,, ,(x).
Let 11:1(x) be the  i-th component of 11(x). T hen  w e  have from  (3.9)

<Y1:1(x), Y6d(Y)> 4 A i i (ed(r),,-(x), ea(r),,(Y))dr, ,

w here 5(r) is  a  function such that 5(t)=t 3 if Now le t 5„, n=1, 2, •••
be a  sequence of partitions such  that 57, —>0. Then

<17 'et' i (x) — YN' i (x)>

=<Y1 7,z3' 1 (x)> - 207 1:li 1 (x), Yllip i (x)>+<Y17,7pi (x)>

{A "(5 7,(,) ,,-(x), ean (,),,(x)) - 2A"(eo n (,),,(x), earn (r), r(X))

+ A  (Eam (r),,(x), eam(,),,(x))1dr
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Since 4 " (x , y )  is  bi-Lipschitz continuous, we have

EL Y 3ei i (x) — V a  i (x)1 21 -A/fÇs .E[1,37,(,),,(x) — ea,„(,),,(x)1 2 ]dr

The right hand side is dominated by

2M2 0: { I  n(r) — r +13.(r) — r I} dr)(1±

because of (e,11I 2). T h ere fo re , Yln' i(x ) converges to  an P-martingale
It satisfies
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Y t(x).

<Yt,t(x), Y is,(Y)>= lim  <Y,17,yi (x), , y)(t—s)
n,

and
<Y, t(x), M ,  1(Y)>=1im <Y5et''(x), M  t(y)>

•=lim t(x), E s ,r (y))dr
n — . s n

A"(x, e t ,r (y))dr

The proof is complete.

The process Y1, t(x)=(11: i(x), • , Yll(x)) has the additive property  Y1,.=
tH- ri,„, for s< t< u  of 0. T hus the limiting process Y,, t has also the additive

property for any  s, t, u [ 0 ,  T ] .  Set Y 1 (x) —=Y 0 ,,(x). I t  h o ld s  Y ,, t (x)=Y t (x)—
Y t (x). Then Y >(x )  has independent increm ents, since Y,, , is  independen t of
go, s. Therefore, n-point process Y ,(x )-- (Y t(xi), • • • , t ( x ) )  is  an nd-dimensional
Lévy process. W e shall prove that Y t (x), x  R d  is  a C-valued Lévy process.

Lemma 3 .3 . Suppose (E. ), (e,II) and (e,1112).
(i) I f  es ,t is  a  G.,-valued Brownian motion, then Y >(x) is a C-valued Brownian

motion.
(ii) Suppose further (eAII,) f o r some p > d . Then Y 8(x ) is a  C-valued Lévy

process satisfying (1.17) and (1.18).

P ro o f. In  case th a t  E , is  c o n t in u o u s  Ms, t(x ), t [s ,  T ] i s  a  continuous
martingale for e a c h  s, x. Therefore, Y >(x ) is also continuous in  t. T hen the
n-point process Y >(x) is an nd-dimensional Brownian motion such  that E[Y ,(x)] =0
and E[Y t (x)Y t (y )']= tA (x , y ) .  Since 111 4 (x , y ) is  bi-Lipschitz continuous, Y >(x)
has a  m odification such that it is a C-valued Brownian motion by Theorem  1.1.

W e shall next consider the discontinuous ca se . W e shall suppress the index
i from Y ' 1(x) and w rite  it  as Y (x ) .  Constants in the followings do not depend
o n  partitions 3. Let p '  [2, p ] .  By Burkholder's inequality, we have

E[ i Y (x ) - Y (y )  I P l.C ,,E [C Y '(x )-Yô (y )17 f"]
where
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Y[V(x) ô ( y ) 1 t =  (Mt k At.t h + i nt(x) —  Mt k + i n t(y )) z  .
k=0

For simplicity, we assume t---t n . Then

(3.13) EV(x) — Ya (Y)11) " "=. {EY3 (x) - 1 "(Y)717- 1 — CY3 (x) — 17 a (Y)Y,12)

nE i  (Mt k , k+ I( X ) —  M t k, k + I (Y ) ) 2 [ 17.5 (X ) — Y 6 (31) 1 9; 1 )

G k=0

< 9 (  / ) - {Y'2 1 I— 2
P k _ o  —t k , t k+I(X) —  Mt k, t 01.1(y)1 P '

+ 11
1E 1

0 ( M t k, t 0+1(x) —  Mt k, t k+I(Y)) 2 E1 7 5 (X ) - 3 7 6 (31)1(tV 2 ) - 1 1 •

Since w e have

ELI Mt k, t k+i( X ) —  M t k, t k+1(Y)I

{ E L  k, t 1 (x) — x0 — C11 . t , ( y ) +  y  P'1

+Eh.tk+1 Ibi(etk,r(x))— bi(etk.,(YDdr121
t k

2 '  M(1+ I t1+1— t1 I - 1 )(tk+i — tk)I x — 3, I P '

by hypothesis (e, Di p ), the expectation o f  th e  first m em ber o f  th e  right hand
s id e  o f  (3.13) is  d o m in a te d  b y  Ci t I x — yIP'. N ext, note th a t the last member
of (3.13) is  of the  fo rm  E i  X,Y i ,  w h e re  Xi  a n d  Y ,  a r e  independent random
variables. T h e n  th e  expectation of the last member of (3.13) is dominated by

C, Ix —y I 2Y0ELY3(x)—Y3(Y)1P'12)-4]dr. W e have thus obtained

(3.14) ED"'(x)—}-8(Y)]?" /2] C1t I x — 31 IP '

+ C 2 1 x— y I 2 f  EHY'(x) — V (y)1.1)"/ 2 ) - ']d r . .

We now prove

(3.15) E H Y'(x) - 17.3(y)1 r2 ]< C st I x—y  I P ‘ .

In case p'=2, (3.14) is nothing but (3.15). Then by Holder's inequality, we have

ED'Ax) — V(Y)lt "7 x — Y I P '

for any 0< p '< 2. Substitute this to the  right hand side of (3.14). Then we can
see  tha t (3.15) is valid  for any R e p e a t i n g  t h i s  argument inductively,
we obtain (3.15).

Now apply Burkholder's inequality to (3.15). Then w e get

(3.16)E L  Y ( x ) — Y (y )  I P'].— 05t1 x — y  I P ' •
L et 151 tend to  0 in  (3.16). T hen  w e ge t the inequality (1.17). T he  inequality
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1.18) can be proved sim ilarly. Therefore Y t ( x )  i s  a  C-valued Lévy process
whose characteristics satisfy (C, I), (C,11) and (C,114) with p> d .  The proof is
complete.

Proof o f  Theorem 3.1. Let Y , be the  C-valued Lévy process of Lemma 3.3.
We prove that e s , t is generated by the Lévy process Xt =Y t -l-tb. It is  en o ugh
to prove

Denote t h e  r ig h t h an d  s id e  b y  la s , t (x). T h e n , since <111 ,(x ) , Yi, t (y)>=
(t—s)A i i(x , y ) , we have

<A ,t(x ), it7i,t(3))>=1A "(es,r(x ), es.,(Y ))dr

by (2 .4). On the other hand, from (3.12) we obtain

t(x), t(Y )>=D "(e,,,(x ), es,r(Y ))dr .

Using the above two equalities and (3.9), we get

t( x) — t ( x ) > = < M ,  t(x » - 2<M, t(x), M  t (x ) ›

+ t(x), t(x)> -=0

This proves M, t(x )=. / i l , t ( x ) .  T he uniqueness of X t is obvious from the method
of the construction of Y .

3 .3 . Proof o f  Theorems 3.2 and 3 .3 . In this section, we assume that G_T-
valued Lévy process es,, satisfies (e rn , ) ,  ( e 7n, II) and (em,Bis,). We have to prove
that C-valued Lévy process constructed at Lemma 3.2 is a  Cm-valued Lévy
process. Let 11(x ) be the martingale defined by (3.10). It is m -tim es contin-
uously differentiable in x.

Lemma 3.4. There is a positive constant C independent of the partitions 3
such that

(3.17) Dh11(x)— D k  ri(Y )1 P V x ,  y E R d ,

(3.18) E [I.L PII(x ) IPT C t, V xEl?d

hold f o r any k  with and pE  [2, p/(m+1) 2 ].

P ro o f. We prove (3.17) only. We fix indices k ,  l  a n d  write DhYP(x)=
Zat (x). It is a  discrete martingale with parameter 5. Let [r ( x ) — Z 3 (Y )it be the
quadratic variation of Z1(x)—Z1(y), i .  e.,

[r ( x ) — Z 3 (Y)] t ID k
M ,t,, + 1 (x) — D k  M i,,t, + ,(Y)1 2 •

Then, similarly as in  the  proof of Lemma 3.3 we have
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[V(x)— Z a bl a  " =  -y .2 ( 7 )  " ) - 1 { E  I Dk t
i + 1

(x) —  M l i  t• (Y)I P "ti + i st

+  E  [V(x)— V(Y)1 (tr ' - 1  I Dk
t i + i (x)

ti+igt
_DkM1, ti.1(Y)121

T aking  the expectations,

(3.19) E[[V(x)— Z 3 (Y)7? "]-•  2(P' 1
"  

- 1  IEE E2

+  E  E[[V (x)—  V (Y)lt" ) - 1 1E11.1) kt i , ( Y ) 1 2 i l  •ti + i st

Note that derivatives of b2 a r e  all bounded up to h .  Then, we get

E[ ÇH -1 {Dk (b i (et i ,„.(x))) — Dk (W(et i ,r(Y)))1 drti
C6(t. x - 3, IP '

m aking use of (Çrn, IIIp ). This and (3.6) imply that

EED k M it i + i (x) — D k Mi,t y + I (Y )1P1-C7(t ti)1 — 3' I P ' •

T h en  (3.19) is w ritten by

EEV(x) — Z 5 (Y)1r ' 21---Cst x —  y I P ' +C9I .2C yIT E [E Z 5 (X) —  Z5 (Y)1 (rn '  " ) - 1 ] d r

Then Burkholder's inequality implies

E[ I n x ) —  Z1(Y)I P 1 .- qt 1 x — yIP' +q  x—  yll:E [1Z 3,.(x)— Z-(Y)IP" ] d r . .

This proves (3.17) as in  the  proof of Lemma 3.3.

Proof  o f Theorem 3.2. L et On  b e  a  sequence o f pa rtitions o f [0, T ]  such
that Ia . 1,0. W e first show tha t for each x DkYln(x) converges in L 2 -sense as
71, 00. Consider the  bracket process of Dk Yln(x)—D k Y n '(x ) .  It holds

<D1 1 ""(x) — D'Y'n'(x)>t=1 .: D !j4 i {A"(ea n (,),,(x),

— 221;"(ean (r),,(x), (,),,(Y))+A"(es,,,(,).,(x), ean , (,),,(Y)1 I y = x d r

which converges to  0 a. s. Since I D 'eb o r ) ,,.(x)1 P', n EN1 is uniformly integra-
ble for each x, k'(1_11z'1._-<.1k1) and y  by (V,111 9 ), the expectation of the above
converges to 0 a s  n, n'—*co. Therefore for each k, t and x, DkYln(x) converges
to an  L 2 -random variable f l( x ) .  It is a  right continuous L 2 -martingale for each
k  a n d  x. L e t  13.1 tend to  0 in  (3.17) and (3 .18). Then w e obtain by Doob's
inequality for LP-martingales and by  Fatou's lemma,

E[ sup I i'l(x )— fty) I P. ] <C't x— y1P'Ogsst

E[ sup I kk(x) I P. ]
O g sg t

Therefore, by Kolmogorov's criterion (Lemma 1.1), w e see  th a t f t̀'  is a C-valued
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Lévy process.
We show that Y, is a  Cm-valued process and satisfies /Ye Y ,= Y , .  Consider

first the case where k=(0, ••• , 1, 0, ••• , 0) (1 is at i-th component). It holds

—
1  

{Y1(x+ye,)—Y(x)} = .Ç +v ye t )dv0

L et 161 tend to 0. Then we get for each t, x and y,

1
iYt(x±ye,)—Y,(x)}= ,ç r (x±vy e ,)d v a, s. P .0

However, each of the above is a  right continuous C-valued function. Hence the
above holds for all t, x a n d  y . T h e n , th e  derivative a,Y (x )  exists a n d  equals
f»i(x) fo r  a ll t, x  a. s. Repeating this argument inductively, we see that  Y (x )
is a  right continuous Cm-valued process and satisfies D k Y ,(x )= k il (x ) fo r  an y  k
w ith  k  m . T h e re fo re , b o th  Y t (x )  a n d  X t (x)=Y t(x)-Fb(x)t a r e  Cm-valued
Lévy processes satisfying (1.24) and (1.25) fo r  a n y  k  with I k :<_m and p ' [ 2 ,
pAm+1)2]. The assertion of the thoerem follows from Theorem 1.3.

Proof o f  Theorem 3.3. The first assertion of the theorem is immediate from
Lemma 3.3 ( i ). For the proof of the second statement, we proceed a s  follows.
Since th e  infinitesimal generator X ,  i s  a  C-valued Brownian motion, the pair
(A, b) defined by (3.1) and (3.2) is the characteristics of X .  It satisfies (Cm, I)
a n d  (Cm, II) because of our assumption (Ern, I) a n d  (em, II). Therefore X , is a
Cm-valued Brownian motion.
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