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Phase transition in one-dimensional Widom-
Rowlinson models with spatially
inhomogeneous potentials
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In a preceding paper [3], we discussed phase transition in one-dimensional
Ising models. In the present paper, we consider the one-dimensional Widom-
Rowlinson models with the formal Hamiltonian :

H(o)= 2 J(0,0440)— 2 hypo},
keEZ kEZ

where o=(04)rez< {—1, 0, +1}Z and

+o0, if o=—1,
J(o)= .
0o , if o#—1.
As for the Widom-Rowlinson models in higher dimensions, see [4-8].

Let ¢5»'™, ., be the conditional Gibbs distribution in the interval [n, m]
with the boundary conditions ¢,-.; and on,+;. We show later that the limit
lim ¢i*.™ exists for any constant boundary conditions ¢,-,=t" and on+;=7. Put

4o, = lim 6157',’:"” .
n

-+—00
m-+oo

Let ¢(h) be the set of Gibbs distributions with the potentials J and h=(h;)iez.
Let ¢..(h) be the set of extremal measures of the convex set ¢(h). It is well
known that

Gex(M)CTHger 57/, =0, +1}.

We prove the following Theorems.

Theorem 1. Put
(—L +1},  if Setr<too,
Mio(h)= oo
{0} , if Xetk=+oo.
A set HM_o(h) is defined analogously. Put
HM(h) =M -w(h) X M 1allt) .

The set G.,(h) is isomorphic to M(h). The mapping
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q=qz,:; M(h) —> Gei(h)
is an isomorphism.
The equality HMiw(h)={—1, +1} in Theorem 1 implies that ¢, , is not ex-

tremal. In this case, ¢.,, is expressed as a convex combination of measures in
Geoz(M) = M_(h) X Mie(h). The coefficients in the combination can be computed

+o0
by an infinite product of matrices. We prove in Lemma 2 that if 3 e "t <400,

a product of matrices

1 1 0 1 1 0 1 1 0
e tn o hn g hnll g=hn41 gmhnir pmhnti|..| gvhm gvhm phm
0 1 1 0 1 1 0 1 1

converges as n——oco and m—-oco. Denote the limit by [I*= In what follows,
for a 3X3 matrix M we denote its (¢/, t)-component by M(z/, 7), i.e.,

M(—1, —1) M(—1,0) M(—1, +1)
M=| M(0, —1) M, 0) M@, +1)
M(+1, —=1) M(+1,0) M(+1, +1)

Theorem 2. 1) If M_(h)={0} and Mi(h)={—1, +1}, then
(]o,o:(l/z)((]o, —1+Qo,+1) .
2) If M-o(h)=Miu(h)={—1, +1}, then
gr0=ct B2, e (@ =2D),
go.0=Co", Eﬂf 27, g,

where ¢, and ¢, are normalizing constants, i.e.,

co= 3 T2, 1),

T=%1

co=_ _z:ﬂ]]i:(r’, 7).

Theorem 3. 1) Assume that M_o(h) or HMie(h) is equal to {0}. Then, any
peg(h) is a Markov chain.
2) Assume that M-o(h)=Mix(h)={—1, +1}. Then, a measure

,u—__ E Zr',tq:',f (er',rzlx 'zt’,rgo)

T, T==1
is @ Markov chain, if and only if

det (A, -/ I1*3(c’, ©))er,e201=0.

We remark that the interaction J is spatially homogeneous. Spatially homo-
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geneous interactions with finite values exhibit no phase transition. We show
more generally that “slowly varying” interactions exhibit no phase transition in
one-dimensional higher spin systems. Let us consider the following formal
Hamiltonian :

Ho)=2 Ji(04, 0pe1)— 2 hiloy),
kEZ kez
where e=(04)rezE {1, 2, -, N}Z and J, and h, are real valued functions defined
on {1, 2, ---N}? and on {1, 2, -+, N}, respectively. Put
0(Jw=min{ max |Ju(s’, 0)=Jul0”, )|, max |Ji(s, 6")=Js(a, 6"} .

We have

Theorem 4. If %e"’“k’=_}:‘, e 9B =J-oco, then the Gibbs distributions with

the potentials J=(J,) and h=(h,) are unique for any h=(hy).

Let us prove these Theorems. For n<m and e=(o,, 0.4+1, ***, On)E
{~1,0, +1}t=™, put

m
A ™o |-y, Ome) = 2

m
J(0r0p1))— 20 hyo},
k k=n

1
QzEr’,l,'.n;] crmﬂ(a'):E[n’m](an—l,amﬂ)_l expl{—H"™™(a|0,-1, Oms1)},
where

Erm g, ., O-m+1)=§ exp{—H™ ™ (g |0p_1, Oms)} .

The probability measure ¢{*»'™ on {—1, 0, +1}t" ™ is called conditional Gibbs

In-19m+1

distribution. In order to compute g™, ., let us introduce the following 3X3-

matrices :
K= (e~7o' )
1 1 0
=1 1 1],
0 1 1

ka (e—.l(a'cr)+hka'2)

etk etr ()

=1 1 1]
0 ehk ehk
Qe=e""+Q,
1 1 0

=|etk e M ghr|,

0 1 1
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Furthermore, we introduce

Hd—-{ QchH"' Qd; if dzC,

=
=N
o
I
o
I
—

N Qc@c-u"'Qd, if d=c,
IIé=
E , if d=c—1.
For n<i<r<m and (o, o141, =+, 05 {—1, 0, +1}t7, we have

g™, (0, O, 0, Or)

-1
:I{H%_I(O'n—h a1) kl;Ile(Uk, Uk+1)”11'n(ary 0m+1)/KH%(0’n—1; Om+1)

A -1 L A A A A
=KII5 001, 01) Qle(ak, )10+, Gma)/ KIS T T (001, Omsa) -

For o=0, &1, let p™(s) be the o-th column of ™. From /Ir=I1I7"Q,, it
follows that

pr(—D=pr- Y (—=1D+e "mpr-1(0),
prO)=pr-(—D4e *npr-0)+pr~'(+1),

pr(+D=e"mp?(0)+p7H(+1).
Therefore,
pH(x)=pi(E£)+s",

m
where s =h2 e "kpk-1(0). Hence
=T+1

prO)=pi(—1)+pi(+1)+sP+sr?
=pM(—1)+p7H(+1)
=pP (—=D+pr(+1).

Lemma 1. The sequence of vectors s® converges as m—-+oo, if and only if
i‘oe"‘k<+00.
Proof. 1) Assume §e‘"k=+00. Since
PYO)=p(—D+pi(+1)+si+s
1
= pi(—1)+pi(+1)=|2e " |,

1

we have
1

m m
sp= 3 e tepil ()2 X ek 27 ).
k=741 k=1+1
1
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Each component of the right-hand side diverges to +oco as m—-oo.
2) Assume ge“"k<+00. We have
pr0)=pH—1)+pi(+1)+si+sF"

=p(—1)+pi(+1)+2s;

=2p7(0)+2sf

<2(etr+141)sk.
Since the left-hand side is equal to e®t+1(sk*'—sk) we have

st {142(etr+14-1)e "Rt} gk,

+oo
Since I:e[[ {1+42(ePr+141)e~"%+1} is convergent by our assumption, sT converges
=r

as m——oo., Q.E.D.

+o0 A~
Lemma 2. 1) Assume XY e " <-+oco. The sequence of matrices II™ con-
verges as m——+oo, Pyt I[}*= min II™. It holds that

m—s+co
T+(e, 0)=11*(s, —1)+1I*(s, +1).

The sequence of matrices 1[} converges as r—+coo to

1 1 0
Ke=0 0 0
0 1 1/

2) Assume e "t <Hco. The sequence of matrices I\ converges as n—

—oo. Put II'zt=1lim [T15". It holds that

KT\, f)=ﬁ’_;‘(r', 7) if t'==1,
K20, =131, o)+ 11534 (+1, o).

The sequence of matrices II'Z} converges as [——oo to K,.
q g

Proof. 1) The first convergence is evident by Lemma 1. The equality
I3=(a, O=1I}"(c, —1)+}=(a, +1) follows from py(0)=p(—1)+pP~*(+1).

Let us prove the second convergence. Remark that 17;" is non-decreasing
in m, because pM(+1)=pi(£1)+s™ and p™(0)=p*(—1)+pm-(41) are so. For
¥’ <m<r, we have

. P A
=l 2 IR I

Since s is a sum of positive vectors, p®(cs)’s are positive, i.e., ﬁ;’f is a positive
matrix. Therefore, Jig #= is bounded as r—-o0, which implies that s> is bounded
as r—-+oo. Consequently, pi=(0)=pi(—1)+pi(+1)+2st= is bounded as r—--co.
Therefore,
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400 400
sie= 3 e Mpr(0)= X e +pr(0)
k=r+1 k=r+1

converges to 0 as r——+oco. Thus, we have

lil;n pi(—=D)=lim {pi(—1)+s}<} =
400 T 400

lim pi=(+1)=lim {p}(+1)-+s/7} =

T-+00

= O O O©oO O =

1
lim pr=(0)= lim {p7=(—1)+pr=(+1)}=| 0
1

1
2) Put Hy,=| e | Since Q,=H,K, we have
1

KWK =K " (KH K -+ H,_ o KH,_,K)
=H,  KH, ,K - HyK=0,_,0,_5 - Qn.

By the same argument as in 1), we can see that Q,,Q,., -+ Q, converges as
n——oo and that

}iﬂ(@l—l@l-z =K.

Therefore,
lim =K1Y (KK)=K, Q.E.D.
Proof of Theorem 1. 1) If +Zo)ce"‘kz—l-oo, Aiﬂr{iﬁq&’,’;}f}om“ exists and is in-

dependent of the choice of op4:.
In fact, we can see by the FKG inequality [1] that lim ¢i*»™ exists for

On=-1,7
r==+1. We have only to show that
"lti_‘r.‘r_‘wqut{ﬁ.] -1 :ml_lirlo QE’;.”{] 1.
Let | | be the Euclidean norm. Since pf(%1)/|s™|=pi+1)/lIsPl+sr/ls™| is

bounded as m—--c0, we can extract a subsequence m;—4-oo such that p7ti(+1)/
lsmi|| converges. On the other hand, by Lemma I,

pri(—1)/|IsTi|| —pri+1)/llsT|
= {p(—1)—pi(+1)} /IIsFi]| —> 0 as m;— oo,

Thus, lim pmi(—1)/||s™| =lim p™i(+1)/|s?ll, which we denote by p,=
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b(=1)
p0) |. Therefore, we have for r==+1,
Pr(+1)/

llnl 451:,'_7;L,]r(0'ly Ol+1, ', UT)
Moo

Kl (o, az):I:Iz Oulow, oxe)ITi(a,, 7)/|879
=1i — —
o KA 075/ 5230 (0, )

N -1 . . Ala
:KH%_I(Un—ly ar) l:al;[l Qelo, 0'k+1)pr(0r)/KH£z—lH{_lpr(an—l) .

The right-hand side is independent of .
400
2) In case e "k <+oo, lim ¢fn™) = lim ¢i%m™), if and only if r,=rt,.
Mm—>+00 m—+oo

In-1:72

In fact, we have by Lemma 2,

Jim ™01, Orar, vty Or)
.

A -1 L A A
=K o1, 00) 11 Qu(0s, 04:) [0y, )/ KIT57(0 01, 7).
Assume mlirpwqu'_"l‘flrz=mli1pmq5';l'_";},2, from which it follows that

IT+(0,, 0 KIT5°(0 -, ©)=IT(0 01, 7o)/ KIT5™(0 0 s, ),
i.e.,
1T(a,, w0/ T30y, ©) =K1, 1)/ KIT5*(041, o) .

The right-hand side does not depend on ¢,, which implies that p;=(z,) and p;=(z,)
are proportional to each other. But, it is easy to see that they are linearly in-
dependent if 7,37,

+o0
3) In case e "t<+4o0, ¢, is not extremal.
In fact, we have

A -1 . R
qw o0y, 0141, -+, 0, )=KI[2X(7, Gt)kl_:Ile(O'k, ors)l7(a,, 0)/KIT+2(2’, 0)
Therefore, by Lemma 2,
Qe o(0,=0, k=, [+1, -++)

=1lim KI1'=(<’, 0) }:li[ie"‘kﬁ;““(O, 0)/ KT+, 0)=0.

T+
Consequently,
g, o{ar=0 for all but finitely many £=0)=0,
which implies that ¢..,, is not extremal (Theorem 1 in [2]). Q.E.D.

Proof of Theorem 2. 1) Assume HM_o(h)={0} and HM,.(h)={—1, +1}.
We have ¢o,0=(1/2)(qo, -1+q0o.+1), Since ¢, , is invariant under a transformation
Op—>—0y.
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2) Assume M-_w(h)=HMix(h)={—1, +1}. In this case, we have

Ger. (01, Oraa, =+, OF)
A =1 . A A~
=KII3X 7', a)) kI;[LQ(Uk, o) }(a,, 7)/KII*2(7', 7).
From ¢o o= 3 Aw.-q-, it follows that
T, T=%1

KIT=X0, o) [T#>(a,, 0)/KIT*=(0, 0)
= 3 . KI9E, o), /K2, ©)

=
=B M2 o), /T, 0.
Letting ¢,=7’, o,=7 and letting /[—»—o0 and r—-+oco, we have by Lemma 2,
1/KIT*20, 0)=2..,./[12(’, 7),
ie., Ao, =T, ©)/KIT*2(0, 0).
We can see by the same argument that

gero= 3 AT, )/ KITE(, O} gor - Q.E.D.

=+1
Proof of Theorem 3. Let p= 3 . A g, Put 2,,,,=Z,',,/]7’:2(t’, 7). We
have

uloy, Giiy, -, 0F)

= B A KR, o) [T Qs o Ti=(o, /122, <)

T, T=

=1 A R A
L Qulow 0rn) X M7=(0r, Do KITEL(, 00)

r—-1 L
=kl'=Ile(ak, i) L(0r, o)),

where L(g,, 0)=_ 3 _[1t(0, Do K=, 0)). Since

ploy, o, ar-l)=;T;Iij(ok, 04+:)Qr-1L(0.-.. 01),

we have
plo gy, ouay, -, 0,)=Q,-i(0,1, 0,)L(0y, 61)/Qr-1Llay, 02)
=u(o.|0), 0,-1).

Consequently, for ¢/, 0=0, *1,

wlo,lo=0, 0.-1)—pla-|0,=0", 0,-1)

=1{Q:-1L(0+-1. 0)Q1-1L(0r-1, o)} Qros(0rs, 7))

L(o,, o) L(ay, o’))

X 3 Qralory, n)det(
7=0. %1 L(n, ¢) L(y, ¢’
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Let ¢,=0. If the right-hand side vanishes, then
L, ¢) L(0, ")

L(y, o) L(y, 0’))
Since det Q,_,+0, the above is equivalent to

det(L(O, g) L(0, o’))

L(y, o) L(y, d’)

Let 0,.,=0 and o,=—1. If the right-hand side vanishes, then
L(—-1, ¢) L(—-1, o)

L(np, o) L(y, ") )

The minor determinant in the left-hand side with =0 vanishes by the above
argument. That with p=—1 also vanishes evidently. Therefore, we have

(L(—l, o) L(—1, a’))
det
L(+1, ¢) L(+1, ¢’)

=0 for all o,-,.

> Qr—l(ar—h 7) det(
7=0, £1

=0  for all 5.

,3,0m40 n)det(

Summing up all these, we see that for all ¢ and ¢’
o lo=0, a,-)=plo,|0:=0’, 0,.,),

if and only if all minor determinants of L with degree 2 vanish, i.e., rank L=1.
It is easy to deduce from rank L=1 that rank (i )=1, i.e., det(i, .)=0.
Q.E.D.

To prove Theorem 4, we introduce notations concerning positive matrices.
For a positive matrix A, let 6;,(A) be the angle between the /-th and j-th col-
umns of A. Put

O(A)y=max 6,;(A).
L
For a positive matrix B=(b;;), put
P(B)Zi,r?’i’{,ll’\’ bkiblj/(bkjbli) .

The following is a key lemma to the proof of Theorem 4.

Lemma 3. For positive NXN-matrices A and B, it holds that
tan O(AB)< {1—-(N—1)"*p(B)} tan O(A).

Proof. Let a; and ¢; be the i-th columns of A and AB, respectively. We
have

ct:kzbkiak ,

where B=(b;;). Let | | and <, ) be the Euclidean norm and the inner product,
respectively. It is easy to see that
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ledlli*lle;lP—<es, e

=k§ (bkiblj—bkjbli)(bpibqj_bpjbqi)(<aky ap><(l1, aq>—<ak. aq><aly ap>)

p<q

ésin2@(A)k§ [bribi;—bribiil 1bpibes—bpjibgs laclllalllaplia,l

p<q

=sin2@(A)(KEl [bribi—besbu:| laellal)?,
{c;, c,~>=(N—1)'ll§l||\/bubkj a,—~Vbubia?
+%(bkiblj+bkjbli+2(N'—'1)_"\/bkibkjbliblj)<aky ap

=C0s @(A)El(bkisz+bkjbzi+2(N—1)_1\/bkibkjbzisz)“ak“ llell .

Therefore,

tan 0ij(AB)='\/“Ci||2||Cj”2—<ciy cj>2/<ci, cj>
lz‘::i [bribiy—brbui|larllla.l

< A .
<tan 6(4) El(bkiblj"_bkjbli'l'z(N_1)-1'\/bkibkjbliblj)“ak” llall

From an inequality for x>0
(x2=1)/ {x®+2(N—1)"'x+1} =1 —(N—1)"'min (x, x71),
it follows that
|beibiy—besbicl/ {bribi+baibiit2(N—1)"~byibr;biibi}
S1—(N—D"'min {vVbribi;/(brsbrs) , Vbesbie/(bribis) }
S1-(N—=D""p(B).

Thus, we have for any 7 and j,

tan 6,;(AB)< {lL—(N—1)"'p(B)} tan O(4) . Q.E.D.

For a positive matrix 4, let A be a matrix with the normalized columns of
A, i.e., the i-th column of A is equal to a;/|a;|l, where a; is the i-th column
of A. Let A* be a matrix with the normalized rows of A. Let {Q} -cwcicse

be a sequence of positive matrices. Put as before

Hg:Qch+1 - Qq.

Lemma 4. If +‘5‘o((2k)=-{-00, then ﬁ’,"(i, 7) converges as m—-co to a limit
which is independent of j. If _Ep(Qk):—!—oo, then II%¥(, 7) converges as n——co

to a limit which is independent of 1.
Proof. Let C™ be the convex cone spanned by the columns of IIT, i.e.,

N
C’"={Zl x:iDPT; xiZO} ,
i=
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where p7 is the i-th column of IIT. From IIT*=I[I7Q.,, it follows that C™D
C™*1, We have only to show that inC"‘ is degenerated to a half line. But,

this fact is clear from
lim tan @(II7)=0,

Mm—>+oo

which we can see by Lemma 3. ' Q.E.D.

Proof of Theorem 4. Let us consider the following formal Hamiltonian

Ho)=2% Ji(ok, Ors1)— 2 hilow),
kEZ kEZ

where o=(0;)rez€ {1, 2, -+, N}Z and J, and h, are real valued functions. Put

Qu=(e R D) s

For n<i<r<m and (g, 6141, -, 6)E {1, 2, ---, N}t»7, the conditional Gibbs
distribution is expressed as follows

qu’_";,jo’m.,,l(al; Ti+1, "', (Tr)

=1
Yoy, oz)}]le(ak, e+ )IT (07, Tmer)

I M0 01, Omar)

N =1 .
Yoo, 00) kl—_Ile(Uk, G rs) T (0r, Oms)

YT (001, Oms)

On the other hand,

p(Qk)=alf§§g.r«/Qk(0’, 0)Q:(7’, ©)/{Q(7’, 0)Q.(d’, )}

= min_expg (~/u(a’, )= Jile’, DHIA(E, O)+]u(a", )

o',0,7,

;e—b(-lk) .
+oc 3 5 .
From e %Y =39 =+4o00, it follows that

lim [15235(0 021, 00), ﬂgirpwﬂz"(af, Om+) and lm HEFIIT (001, Omsr)

n—+—c0
are independent of the choice of ¢,-, and ¢+, (Lemma 4). Therefore,

nllr_lgoqﬁ’:;_";?amﬂ(oz, G415 Of)

m->+oo

is independent of the boundary condition (¢,-1, 6m+:), Which implies the unique-
ness of the Gibbs states. Q.E.D.
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