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1. Introduction.

We consider th e  following system of semi-linear partial differential equations

au au 2 =au—uv,at ax

v + u v ,  t> 0 ,  — 0 0 < x  < 0  0  ,

w ith  the  in itia l da ta  u(x , 0)=0(x) and v(x , 0 )= 0 (x ) . When a >0 and  b<0 the
above system has been considered in  ([7]) a s  a  model f o r  t h e  development in
time o f  a  prey u(x , t) and  predator v(x , t) running on a straight line with speeds

and p  respectively. The constants a and b a re  considered as ra te s  o f natural
multiplication of prey without predator and rate of natural extinction of predator
without prey respectively.

bBy setting —
a

=r a n d  a=s th e  above system can be rewritten as

aua uA—  = au— uvat ax '
av av p ax =rev+uv

and it  is  in  this form that we will consider th e  problem throughout the paper.
In  earlier papers [5, 6] representations for the exact solutions of (1.1) when

s =0 were obtained. Motivated by these, in  [ 7 ]  t h e  authors consider problem
(1.1) as a  perturbation of the problem when s=0. Assuming u o(x , t) and vo(x, t)
to be the exact solutions when a =0, problem (1.1) is then studied by a  perturba-

tion procedure and a solution is sought in  th e  form (E u n (x , t)s", Ev n (x, Os').

The m ain theorem o f their paper derives sufficient conditions on s i n  term s of
T  in  order that solutions o f th e  above form exist over (—co, co) x [0, T ] .  Uni-
form convergence of the series is also discussed.

In  this paper we study problem (1.1) by following a  "Peano-Arzela" type
constructive approximation scheme in the  sp irit o f [2]. T h is  approach enables
us to obtain global existence results fo r (1.1) and since uniqueness holds for the

au av
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r-problem, it allow s u s  to  v iew  the unique solution as limit of successive approx-
im a tio n s . A  further advantage is that th e  asymptotic behaviour a s  t—*00 may
be studied directly without considering a differential equation which characterises
th e  lim iting behaviour.

Some o f the  generalizations o f the  above approach a r e  a s  follows :  a ) th e
regularity hypotheses on the initial data can be weakened considerably ; b) when
"global existence" in t is  no t possible as in the Boltzmann equation [ 4 ] ,

 w e  can
obtain quantitative estim ates o n  th e  interval o f existence ;  c )  in  our approach
the nature of the linear pa rt is not critical, thereby enabling us to consider more
g en era l n on lin ea r p ro b lem s. T h ese  d iscussions and ideas w ill be developed
elsewhere.

2. The nonlinear problem  a n d  a n  approximating scheme.

L et 0(x) and 0(x) be continuous non-negative functions from  R—>R with
continuous first derivatives. Further le t 0, 0, 0' and 0' be bounded. W ith 2, p,
s  and r being real param eters we consider th e  semilinear hyperbolic system

 

(2.1)

w ith  initial data

and

vt—pvx= Ts vd-uv

u(0, x)=0(x),

v(0, x)=0(x), —00<x<00.

W e are  looking fo r functions U  and  V  in  0([0, co) x R) satisfying (2.1). It can
be seen by an application of Haar's inequality ([7], also see Section 5 here) that
i f  (2.1) has a solution i t  m ust be  unique.

For any positive number T  le t Pm  b e  a  partition  of [0, T ]  given by P m :{t o

-=0<t i <t,< ••• <t m = T } .  L et 6,=t, + 1 —t 1 . T hen w e define  t h e  functions I0,1,
{0,1 a s  follows :

00=0 ,0 0 = 0 ,

and
çbt+i(x)= Ot(x +230[1+ (s —0 i (x +2B i ))5,1 ,

Oi+i(x)=Ot(x + p a t )  + ( r e  0i ( x  drAi ))3i ]

W e now consider th e  following approximating sequences fo r  (2.1) :

U(t, x)= O i [x +2(t—t i ) ][1 ± (E -0 1(x+2(t—t i )))(t—t i )]

V(t, x)=0D-Fp(t—t i )][1-Hrs+0 1(x+p(t—t i )))(t—t 1 )]

fo r (t, x )  [ t 1 , t i+ ,]><R.

3. E stim ates on  Oi, 01,L  I çb I, I Ø(x) - 0i(y) 1, I (Yi(X) — ç b (y )  I ,
104h(x)-0!,(x)1 a n d  IçYc-Fh(x) — O(x)! •

L et T  be a positive number and Pi ,  be a  partition  of [0, T ]  given by Pr.=
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it0 =0<t 1 <t 2 <  • <t -=- T}, n.>_1. F o r  this partition  P „, l e t  5,=t1+1— ti, 1 =
0, 1, •• • , n -1  a n d  le t II P.11=max {3,, 1=0, 1, •• • , n-1} . We now assume that the
partition P„ has been chosen to meet the  following hypotheses :

(3.1) 11P,,,11_ 72n- '  where 72 is an  arbitrary but fixed number such that 72 _T ;

(3.2) 11P.11<min IC 161 - 1- Mexn (CI rs1±MexP (1E172)177T', I yE ,
where M is an  upper bound f o r  101, 101, 10' I a n d  10'1 •

N o te .  I f  either y o r  s  is zero , in  (3.2) yE 1- 1 is replaced by +00.

The sequences {(x)}, {0,(x)} are now defined as follows : for 1=0, 1, •••, n-1,
let

00=0, 00=0 ;

(3.3) 0i,(x)=0i(x+23i)E1+(s-0i(x+23i))3i1,

(3.4) 0i+I(x)=0i(x-1-pai)11+(r6+0i(x+re3i))3ii •

Step I. We first show, by induction, that g5i , 0 i  are  nonnegative and bounded.
More precisely, we show that

(3.5) 0. 0i(x)_/11111(1-Fls135)J=0

(3-6) 050i(x)5M 1 1
0 [1-1-(1761+Mexp (1 6172))5i 1 f o r  1=1, 2, •-• , n.

Assuming that (3.5) and  (3.6) hold fo r 0 i  a n d  0 1, we verify them for
and 0i+I• Thus

0 (x+2 M1-11[1-Hlrel+mexp(IE17)))3i1
j= o

- ‹ M [ 1 +(lr 61+M eXP (1E1 72)) f i n

<A/I eXP{Elr6 1+MeXP(1 6 177)1n} •
Hence

I E—(Pi(x+23i)ai I CI I +mexp Orel +mexp (le 122)121111 Pli
< 1 ,  by (3.2).

This implies, from (3.3), that
0_<0!i+i (x ) •

Hence, from (3.3),

01+1(x)-5M[ii ( 1 +1E1 3 .01(1+1E15i)
j= 0

thus verifying (3.5).
Further

0i+,(x)--__ M[11 (1+07E1 +mexp (Is 177)).3,)]
i=0

sbi+i
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2-1
x [1+ ( rE I +M II (1+ I 15;))ailj=0

ild- aral+Mexp(le17))) 6 ;11— J=0

X [1 ± {1 T E  +M(1± 16
12
172 Ylai]

<M[
i - 1

fl { 1 ±(ITE I +MeXP (1E 7)))aillj=0

X [1 +  iIrS 1 + 111 eXP(1 6 10 5 j ,

thereby establishing (3.6).
It m ust be noted that 0,F1(x) C1 b ecause 0 ,  a n d  0 ,  a r e  nonnegative and

ITE311 17"61 11P.11 < 1, b y  (3.2). It is easy to verify that (3.5) an d  (3.6) hold for
i = 1 .  Hence, inductively, we have proved (3.5) and  (3.6) fo r all i =1, •••, n.

From (3.5) and  (3.6) it also follows that, fo r  x E R  and  for i =1, 2, •••, n,

0_0i(x) Afexp(lElY))=MI;

0_<0 i (x) Mexp {O rs  ±Alexp (102))1 =M 2 ;

(we have used (3.1) again).
Choosing F4=max(A11 , 1112 )  we conclude that

(3.7) 0545i(x), 0 ( x ) - 5 M ,  x E R  a n d  i =1, •••, n.

Step II. We now show that there exists /1/*>0 such that

!•7 (x)1, Isb(x)I-M *

fo r x E R  and i=1, 2, •••, n. It m ust be recalled here that by the hypotheses on
the initial data w e have

(3.8) 10(x)1=-10"(x)1, kN(x)1=10'(x)l•

T h e  proof o f (3.8) proceeds once again inductively. Thus

ç + 1 ( x ) = ( x  + A )[ l +(s — 0i(x +23i))6ii — 01(x +226i)O;(x +25)ôi

-95;(x +23 i)(1 -F sb i) irgi;(x +23 i)0i(x +23 i)±0i(x + 25 i)O'i(x + 26i)]
Also

0-1-1(x) =0(x -1--pa i )[1 +(re +0,(;x7 +,n3 i ))51 1± 0 i (x ±p3 i )Vx -Hee5 i )31

=gb'i(x ±p31)(1±rEat)+Ci(x -Etta1)0;(x +pai)-h- O(): ± pa i)0i(x +pô)1ö 1 .

We now define the  sequence {NJ o f real numbers as follows:

N o = M  a n d  Ni=sup{10;(x)I, 10(x)I:xE R} , i =1, , n.

Now, from (3.7), fo r i =1, n

10-F1(x)15.N i(1 - HEI3i)+2M No3„
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1041(x) I 5_ Aria + Irs 130+2/V7NA .

Denoting by g the quantity maxilel, Irall the above estimates can be written as

N i + 1 ._Ni (1+[g+2117]5i),

N 0 = M.

Thus, for i=1, •••, n,

Ni M.Î101(1+ [i - }- 2M A )

M(1+  0+2M) r
n )

<Mexp [72(g +2M)]=M*, say.
Hence

(x) ,  Içb(x)1 M*

for x E R  and i=1 , • - , n.

(3.9) We now set A =m ax {M ,

Step. III. In this step we show that for each A>0 there exists a modulus
of continuity function 12 which does not depend on i  such that

(3.10) 10(x)--gYi(Y)I, 10.(x) - 0(Y)15.D(Ix — 3)1)

for i=1, •••, n  and all x , y  such that lxi, ly15A.
Now

(3.11) 10'i+I(x)-04i(y)I5[1+(g±/*)3i]10.'i(x + pa )—  çb(y + i ) I

+ A bilo(x+ 40i)-95(y+ ttai)1

+/17/5i10i(x+pai)-0i(y+toi)1

-F1aa,195i (x+0,•)--95i(y +ö) I
5[1+(g+fa)3i7 lOax + —sb“Y + Pai>1

+ A '4'3 ilO (x +5) — gY(y +

+21112

ô1 x - - Y i •

A  similar inequality holds for 19541 (x) — 041(y)1 where in the right hand side we
interchange Oi  and çbi  and replace tt by A.

Let A* =A+max{121, IpI}T and let Do b e  the modulus of continuity function
such that

(3.12) 195'(x)-0'(y)1, (y)15Q p(lx yl) f o r  Ixl,

It can then be proved by induction that for i=1, 2, •••

(3.13) I Ø(x) - - 95 (37) 10'i(x) - 0'i(Y) d-Ca +2Shaii) ,Q0(1x — y D
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+ 21142 [11P.14 ( 1 +(i+2114)11P.11))11x — Y1

for a ll Ixl, 13, 1.5A* — max{121, 1p1}(30+•••
Note that (assuming the induction hypothesis) from (3.11)

I041(x) - 041(y)1 [1+(g +2/a)3iJ (1+(g +2/14)3,01(20(1x — yD)=-0

+2/ 2 p
ii-1

Pnli (1+(f 4 - 2/17/) Pn 

+2/1423i1x—y1

lx -Ep5il A*—
max1121, 1P1}(30+ - . •+3)+1P13i

5A*—max {12 1, (30+
Thus

104,(x)-04i(y)15_[111 (1+(i+2;f4)3;1Q0(1x—y1).J=0

IIPIl]!x—y I.— .Y

We can now obtain from (3.13) that

IØ(x) -0 (y ) , lO (x)-0(y)15exP [4 + 2114 )721(20(1x— Y1)

+2/142(i+2/4) -1 (exp [i +2/171)0 —1)1 x—yI
for a ll Ixl,

Hence (3.10) holds where

Q(e)=exP [(i+2/14)771Q0(e)+2k(i+2/14) -1 (exp [(E-F2A-4)77]-1).

S te p . IV . We now show that for each B>Oilthere exists et): [0, 09)-41 with
lirnw()-=-0 such thate-o+
(3.14) 104o.(x)--95(x)1,104h(x)-0(37)1(0(di.ti-Fh)

i+ h - 1

for and d + h --=  E  ö .

Note that, from the calculations on /541(x) in  Step II,

155'i ,(x)-0(x +23 i ) /171(i +2/(1)3i

1454h(x) - 0/i(x+24i,i+01-5.îa(i+2A71)4i,i+h,

19547/(x) - - yh(x)I__)a(g+2A4)4i,.+Q(maxi121, 1p1}4,+h),

where Q is the modulus of continuity function arising from Step III  fo r  appro-
priate A .  A  similar inequality holds for çb' and thus (3.14) has been proved with

(0(e)=A71(i+2114) +Q(max{121, Ipl}E).

because

Thus

and
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4 .  Convergence of Approximations.

We first observe that for every ni if the  partition  P .  is  chosen  so  a s  to
satisfy (3.1) a n d  (3.2) th e n  the corresponding approximations U . and V .  are
uniformly bounded by virtue of Step I in Section 3. It a lso  fo llow s from  the
Lipschitz nature of Oi  a n d  Oi that there exists N such that

lUm(t, z)—U.(t * , x* )1, V .(t, x)—V.(t*, x*) /V1t—t*I-FNIx—x*i

for x, x*ER and t, t*E[t 7,4 , tr+ 1 ].
However if  t, t* in  [0, T ] do not belong to the same strip, th e n  le t  tln_i <t

- t7:t t-7. t*<tyl, 1. We now have

IU77,(t, X) - Um (t* , x)-U77,(tT, X)I+E lUm(rai, x)— Um(tr, x)I

+11/77,(cf, x)—U n i (t*, x*)!
J-1

/Vit—t7,' 4-NE ItT-Fi — t71-PNIt7 — t*H- Nlx — x* 1
8 =i

ATIt—t*I x —x*1 .

A  similar inequality holds for V m also.
Hence we can extract convergent subsequences I lk , VI, which converge uni-

formly on bounded subsets o f [0, T]x R .  Also

(4.1)
au. =[x+2(t— t)][1+(s— (x-1-2(t— ti))(t— r )]ax

+0i[x-F - a(t — t7)1C - 0“x±2(t — ti7))(t — tni')], <t<tr+i

t=t 7lt .

Hence, from Step IV of Section 3, we have

au.  (t .  x ) au.  (t .fh x) , a)(4 +h) f o r  IxI Y)ax ' ax
Also, from Step III of Section 3

au. au.
a x  (t, x) a x  ( t- , x*) — x*I)

if t, t*E tr+ 1 ]  and lx  x*I 72 . Hence for t, t* such that

.x) (t*ax axrum
au au.x * )  <  au.

( t  x ) — ( t 7  x )ax ax +   
x )  au. (t. x

)

i
a x  " ax

aaux„,(tr,„, x )  aaux. (t* , x * )1

-,(2(1t—tv)+(0(4,,,,)+Q(it7—t*I+Ix—x*1)

__.(2(1-„,)+0)(1t—t*1)+,(2(-7,—, +lx—x*1).

H ence by Arzela's theorem ([1, 3]) there is a  subsequence of U . (also denoted
by Um ) such that
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au
I '  converges uniformly o n  C-72, ni

and the lim it function U  has a continuous partial derivative with respect to x and
aurna u o n  E—n ,  ni.

Finally letting

(4.2) Pn,(t, x)=20'i[x-1-- 2(t—tr)][1+ {E-0,(x+2(t— t' ))} (t-17)]

+0,[ ,c - F2(t — t7)][s - 0,(x+2(t — t )) - 20 /i(x - F2(t - 1-T))(t — t7)]

Thus, from  (4.1) and (4.2),
au. 

x )  2 (t, x)=0.1Ex - F2(t— tn iC s — sb,.(x+2(t — t7))].ax
Hence

Pm (t, x ) A a u - (t
'
 x)—sU m (t, x)-FU.(t, x)V„,(t, x)ax 

=-¢iEx+2(t—tT )] Es-0,(x +2(t—t 7,7))1

--ESSi[x-F2(t— t )] [1+(s-0,(x-F2(t—t7))(t — Cn)]+Uni(t, x).

Noting the fact that I N  and 10,I a re  bounded independent o f  in  and  further

th a t  It— t71 - f n ,  it follows that

au. P„,(t, x) 2 sUm(t, x)-FU.(t, x)V.(t, x)----> 0.ax
T h u s  Pm (t, x ) converges unifo rm ly  to  a  continuous function. Passing to  the
lim its, it fo llow s tha t th e  lim it func tions U , (and proceeding analogously) V
satisfy (1.1) in  [--77, n ix [0, T].

5 . Error Estimates.

W e denote by (U, V ) the exact solution to  (1.1) and let (Um , V„,) be the ap-
proximation corresponding to a partition 13 „, satisfying (3.1) a n d  (3.2). Finally
le t  a .=U—U,, and 1). -- - V —V „,. Then

aa a a  
sEU —  [x  +2(t -FOiCx +2(t — t )iOi[x+ 2 (t — t7)]at at

and
ab. p =reEV —OD F p(t—tni i)]]-FUV —¢ i [x+ p(t—tn]O i [x+ p(t—tT)].at a,

w h e re  —00<x <00 a n d  t t tr 1 . W e recall here that 0i , 0 i , 0; and 0; are
bounded . Further if  w e let

Oi [x+2(t—t7)]=U m (t, x)+R i (t, x),

Oi[x+tt(t-t7)]=Um(t, x)+RI(t, x),
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ght[x+p(t—t7)]=17 (t, x)+S i (t, x),
and

0i [x + À(t—t7)]=V ,„(t, x)+St(t, x)
then

aa. ,   aa.
at ax =sam+afiam±af2b. -kpr,

ab. ab.  
at ax =76b.-kaLa,,,,-kahbm+pt

W e now observe th a t  IR.I, ' S  I
IRt/I and where C=R[::+fl-1I  m i ,

±Itt - 2I]. Further a , k K  w here  K  is  a bound on U rn , V m and . finally Ipt* I,
pt1.5_hlIP.11 w h e r e  h.>_C(i+2K+CIIP,n11).. .

Also (4(0, x)=b 0 (0 , x )= 0 . Then denoting by p i  the quantity max {Ia.(t, x)I,
x)11 for te[tni ', tni t+9 w e have by an application of Haar's lemma that

h P m I I

2(e+K) (exp [2(g + 101113m11] - 1 )
•

and
1711P.11 pi+1-5piexP [2(g+K)IIP.Ili+ 

2 ( g  + K )  
(exp [2(g+K)11P.,111-1)

The last inequality thus leads to

h 7) 

2(K+ g) [exp (2(K+ -i)(1+ 7.7
1

i  )72) — 1  .— 

W e conclude this section by stating H aar's lem m a from  [7] for the sake of
completeness:

Denote by D  the triangle w ith vertices (xo+ciT, 0), (x 0 , T ) and (x o + c,T , 0)
and further let [x o +c,T , x 0 + c 2 7 ] be denoted by D o. Suppose th a t the  following
system of linear partial differential equations is given :

{au, au,
atc ,   axt ) u 1 + a 2 2 ( x ,  t ) t t o + b i ( x , ,

aU2 aU2 a2 2 (x, t)u 1 +a 2 2 (x, t)u2 - Fb2(x, t),at c2 ax

w ith  the initial data:

jui (x, 0)=02(x),

luo (x, 0)=952(x),

w here ci  a n d  co are constants such that c1 <c 2 , a i ,(x, t) and bi ,(x, t) j 2)
are supposed to be continuous over (—co, +00)x [0, +co). Furtherm ore w e sup-
p o se  th a t  01(x ) a n d  02(x ) a re  continuous together with their first derivatives
over (—co, +00). By setting

a= m ax {  sup I a i j (x, } ,2.i., j22 (X , t)E D

b= max {  sup I bi(x, 01} ,
1 0 1 2 2  (X , t)ED
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h= max sup I çbi (x) I } ,
XEDo

Haar's inequality can be written in  such a  way that

ul(x, I , u 2 (x , t ) =<h e 2atd_____
b  

(e 2at_ i )

2a

< h e 2 a r+  _ ( e 2ar_1) ,

2a

6 .  Remarks.

(x , t)ED.

i) It is clear from Sections 3 and 4 that we have demonstrated in  th e  pro-
cess a global existence result fo r (1.1). More precisely, it has been proved that
(1.1) has a solution for all time t.

ii) T h e  regularity assumptions on the initial data can be relaxed and details
of applicability o f this scheme with weaker initial data for m ore general hyper-
bolic systems will be published elsewhere.

iii) A n alternate scheme to study (1.1) is (we define gii  a n d  0 ,  only here ;
Llz , V i  can be defined analogous to Section 2) given by

00=0 , 0 0 = 0

ç5 + 1 (x )=(x  +26,) exp ifs —0,(x +M )] U

0, + 1 (x)=0,(x +0 ,)e x p  {[ re + 0 ,(x±p 3 i )]6,1.

In  fac t, the  scheme of Section 2 may be seen a s  a  linear approximation to  the
ab o v e . T h is  scheme can also be utilised to study th e  asymptotic behaviour as
t--- 00 and some o f th e  results in  [3 ] can be seen to follow easily.
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