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1. Introduction.

We consider the following system of semi-linear partial differential equations

Ql—la—u—au— v
ot “ax T

ov ov
—gt——#—a?—bv-l-ltl), t>0, —ooLx <00,

with the initial data u(x, 0)=¢(x) and v(x, 0)=¢(x). When a>0 and b<0 the
above system has been considered in ([7]) as a model for the development in
time of a prey u(x, t) and predator v(x, {) running on a straight line with speeds
Zand p respectively. The constants a and b are considered as rates of natural
multiplication of prey without predator and rate of natural extinction of predator
without prey respectively.

. b .
By setting Vil and a=¢ the above system can be rewritten as

du 0w _

ot ox  uTuv
(1.1)

ov ov

F TR =yevtuv

and it is in this form that we will consider the problem throughout the paper.
In earlier papers [5, 6] representations for the exact solutions of (1.1) when
¢=0 were obtained. Motivated by these, in [7] the authors consider problem
(1.1) as a perturbation of the problem when ¢=0. Assuming u,(x, t) and v4(x, ?)
to be the exact solutions when ¢=0, problem (1.1) is then studied by a perturba-

tion procedure and a solution is sought in the form (2 u(x, He®, Dualx, t)e").
0 0

The main theorem of their paper derives sufficient conditions on ¢ in terms of
T in order that solutions of the above form exist over (—oo, c0)X [0, T]. Uni-
form convergence of the series is also discussed.

In this paper we study problem (1.1) by following a “Peano-Arzela” type
constructive approximation scheme in the spirit of [2]. This approach enables
us to obtain global existence results for (1.1) and since uniqueness holds for the
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e-problem, it allows us to view the unique solution as limit of successive approx-
imations. A further advantage is that the asymptotic behaviour as t—oco may
be studied directly without considering a differential equation which characterises
the limiting behaviour.

Some of the generalizations of the above approach are as follows: a) the
regularity hypotheses on the initial data can be weakened considerably; b) when
“global existence” in ¢ is not possible as in the Boltzmann equation [4], we can
obtain quantitative estimates on the interval of existence; c¢) in our approach
the nature of the linear part is not critical, thereby enabling us to consider more
general nonlinear problems. These discussions and ideas will be developed

elsewhere.

2. The nonlinear problem and an approximating scheme.

Let ¢(x) and ¢(x) be continuous non-negative functions from R—R with
continuous first derivatives. Further let ¢, ¢, ¢’ and ¢’ be bounded. With 4, g,
e and y being real parameters we consider the semilinear hyperbolic system

U,— AU =eU—Uv,

2.1)
Vi— (U =7yev+uv

with initial data
u(0, x)=¢(x),

v(0, x)=¢(x), —co<Lx< 0o,

and

We are looking for functions U and V in C'([0, o)X R) satisfying (2.1). It can
be seen by an application of Haar’s inequality ([7], also see Section 5 here) that
if (2.1) has a solution it must be unique.

For any positive number T let P, be a partition of [0, T] given by P, :{t
=0<t,<t,< - <tn=T}. Let ;=t;4;—t;.. Then we define the functions {¢;},

{¢;} as follows:
$=9, ho=¢,

and Pis1(x)=@:(x +20)[1+(e—¢i(x +23:)d.],
Qi) =¢hi(x +p0) [ 14+ (re+ @i (x +p0,:))0;] .

We now consider the following approximating sequences for (2.1):
Ut, )=¢:[x+20¢—t)I[1+ (e —i(x +AE— 1) (E—1)]
Vi, x)=¢i[x+pt—t)I[1+Ge+ @i (x +plt—t))(t—t)]
for (t, x)e[t;, i ]XR.
3. [Estimates on ¢, ¢u, |¢il, [¢il, [9:(x)—di(»)], |¢i(x)—i(3)],
|@i+n(x)—@i(x)| and |Piin(x)—¢ilx)].

Let T be a positive number and P, be a partition of [0, T] given by P,=
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{t,=0<t,<t,< -+ <t,=T}, n=1. For this partition P,, let §;=1;4,—1; i=
0,1, ---, n—1 and let | P,||=max{d;, i=0, 1, ---, n—1}. We now assume that the
partition P, has been chosen to meet the following hypotheses :

3.1)  |[|P.I=yn~! where % is an arbitrary but fixed number such that =T ;

(3.2)  [Pul<min{[|e|+Mexp([lyel+Mexp(le[n)In)]~, [rel™},
where M is an upper bound for |@|, |¢], [¢’| and [¢].

Note. If either y or ¢ is zero, in (3.2) |re|™* is replaced by +co.

The sequences {¢;(x)}, {¢;(x)} are now defined as follows : for:=0,1,---,n—1,
let
=9, bo=¢;
3.3) Piar(x) =@ (x +40:)[14+(e—i(x +40,))d,],
(3.4) Gi1(x)=¢i(x +p0 [ 1+ (re+@:(x +p0:))0,].

Step I. We first show, by induction, that ¢;, ¢); are nonnegative and bounded.
More precisely, we show that

(3.5) 0§¢,-(x>§MjI;I:(1+ le]0;);

3.6) 0§¢i(x)§Mj1—;I:[1+(|T€|+Mexp(|5|77))5j] for =1, 2, -, n.

Assuming that (3.5) and (3.6) hold for ¢; and ¢;, we verify them for ¢,
and ¢4 Thus

0=¢u(x+20) < MIT L1-+(I7e | +Mexp (|e 93]

§M[1+(|re | +Mexp(l€|7)))%]n

<Mexp{[lre|+Mexp(leln)In}.
Hence

le—¢i(x+40:)0: | =[le|+Mexp{[lre|+Mexp(leln)n} ]| P|
<1, by (3.2).

This implies, from (3.3), that

0=¢ss.(x).
Hence, from (3.3),

¢,-,+,<x>§M[j1;1:<1+ le16)] A+ 1109

thus verifying (3.5).
Further

Gen(ZM[IT (e |+ Mexp (e 17)9) ]
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X[ 1+ (17 1+ MIT 1+ €135

Jj=0

s 1] Ire 001+ '5"7) }5]

i-

...

[+
< M[IT {1+ (lyel +Mexp (s 70} |
<M[

1+ (I7e | +Mexp(|e 73

o

X[+ {lrel+Mexp(le|n}d.d,

thereby establishing (3.6).

It must be noted that ¢;.,(x)=0 because ¢; and ¢; are nonnegative and
lred;|=Z|re| |P.l<1, by (3.2). It is easy to verify that (3.5) and (3.6) hold for
i=1. Hence, inductively, we have proved (3.5) and (3.6) for all /=1, ---, n.

From (3.5) and (3.6) it also follows that, for xR and for /=1, 2, ---, n,

0=g¢.(x)=Mexp(leln)=M,;
0=¢i(x)=Mexp{n(yel+Mexp(le[n)} =M

(we have used (3.1) again).
Choosing M=max (M,, M,) we conclude that

(3.7 0<¢:(x), ¢(x)SM, x€R and i=1, -, n.

Step II. We now show that there exists A*>0 such that

[@:(x)], |i(x)| = M*

for xR and /=1, 2, ---, n. It must be recalled here that by the hypotheses on
the initial data we have
(3.8) [@a(x)|=]8"(x)], [o(x) =1 (x)].

The proof of (3.8) proceeds once again inductively. Thus
Gie1(x)=0i(x +20;)[1+(e —i(x +10))0;]— ¢:(x +20,)pi(x 4 25,)0;

=¢i(x +20;)(1+:0,)—0,[@i(x +40,):(x +40,) +&:(x +20,)i(x +20,)].
Also

i) =¢ix +po )[1+(Get+¢(x +p0,))0; 1+ (x +p8,) 7 (x + 1¢8,)8;
=¢ix+p0)(1+7ed)+ [ (x +pd)i(x +pd)+@i(x+pd)P(x +pd)]0; .
We now define the sequence {N;} of real numbers as follows:
Noe=M and N;=sup{|di(x)|, |¢i(x)|:x=R}, =1, -, n.
Now, from (3.7), for /=1, ---, n
|71 () SN (1+e|6)+2MN,3,,
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|pi1(x)| S Ni(l+7¢18:)+2MN,3; .
Denoting by & the quantity max{le|, [re|} the above estimates can be written as
NinSN(1+[6+2M15,),

N0=M.

Thus, for :=1, ---, n,

N1§M§1:(1+[é+21\7]6,->
§M<1+ n(E+2M) )"
n

<Mexp[nE+2M)]=M*,  say.

Hence
lgi(x)], 1¢ilx)|=M*
for xR and /=1, -+, n.
(3.9 We now set M=max {M, M*}.

Step. III. In this step we show that for each A>0 there exists a modulus
of continuity function 2 which does not depend on 7 such that

(3.10) 1p1(x)— i), [Pi(x)—PinI=2(x—yD
for /=1, ---, n and all x, y such that |x|, [y|ZA.
Now
@.11) |Qh41(0) =Pl NI S [L+E+ M3 i (x + 18 —Pi(y +p61)]

+ M3 §i(x + ) — $i(y +p87)]

+ M8, |p(x+p28:)— iy +100)]

+M5i|¢t(x +p0:)—di(y+pd:)|
<[1+G+ 818,104k + 26— iy +1289)]

+ M| §3(x +28:)— $i(y +123)|

1288, x—yl.

A similar inequality holds for |@i+:(x)—@i+:1(y)| where in the right hand side we
interchange ¢; and ¢; and replace g by 4.

Let A*=A-+max{|], |¢|}T and let 2, be the modulus of continuity function
such that

(3.12) 1" ()= (N, 19’ )=’ NI=R(lx—y]),  for [x], [y|=A*.

It can then be proved by induction that for /=1, 2, ---

G131~ (90— @) < (TT [1+E+2030) 2 v = 1)
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200 1P A+ E+20D 1P |11

for all [x], |[y|SA*—max{[Z], |¢]} G+ -+ +0;-)).
Note that (assuming the induction hypothesis) from (3.11)

[9os(0)=1as(9)| S L+ E+20D3.3 [ IT 1+ 620193, | @l1x — 5

+20 Pl (S o e+200)1 P ) ] 1x— 51

+2M2%3,|x—y|
because
[x+po;| = A*—max {|2], |pl} Qo+ -+ +0:)+¢l0;
S A*—max {|4], |gl} @o4 -+ +04-1).
Thus

[$has0) = @aa)I S [T L+ +20108, ] @ul1x — D

i-1

+200 1P (Z A+ 20D Pl ™ 1P 11
We can now obtain from (3.13) that
1)~ $10), 190~y | Sexp [E+20)y12l1x—y))

+2M2(&+2M ) (exp [6+2M)p]—1)|x— y|
for all |x|, |y|=A.
Hence (3.10) holds where

Q(&)=exp [(64+2M )9 124&)+2M*E+2M)~*(exp [(6+2M)n]—1)£.

Step. IV. We now show that for each B>(}there exists w: [0, 0)—R with
elim w(&)=0 such that
—0+

(3.14) ]¢§+h(x)—¢§(x)|, I¢£+n(x)—¢£(y)léw(dt,un)
for 1<i<n, h=l, |x|<B and A,._,-M:“jzf:;’a,.
Note that, from the calculations on ¢i.,(x) in Step II,

@i (x)—i(x +28,)| < M(e+2M)3;.
Thus
[@ien(x)—@i(x+2d;, 140)] §M(§+2M)Ai, ith
and
|§han(x)— LX) S ME+2M) Dy, on+Q(max{I4], 1]} di 141),

where 2 is the modulus of continuity function arising from Step IIl for appro-
priate A. A similar inequality holds for ¢’ and thus (3.14) has been proved with

(@)= M(E+2M)E+Q(max{|a], |} &).



Approximate solutions for the Cauchy problem 399

4. Convergence of Approximations.

We first observe that for every m if the partition P, is chosen so as to
satisfy (3.1) and (3.2) then the corresponding approximations U, and V, are
uniformly bounded by virtue of Step I in Section 3. It also follows from the
Lipschitz nature of ¢; and ¢; that there exists N such that

[Un@, X)=Un(t*, x*)|, [Valt, )=V, x*)|SNlt—1*[+N|x—x*|

for x, x*R and t, t*< [T, t7%,].

However if ¢, t* in [0, T] do not belong to the same strip, then let *,<¢
ST tTSt*<tT,. We now have

j_
U nlt, ) =Un(t%, £ S|Unlt, ©)=Un(t?, )+ S Unlth, ©)—Unltl, 2]
+ lUm(tTJnr x)_Um(t*; X*)|
j-
< NIt—tF|+N'E |t — 7|+ NIt} — ¥+ Nlx —x*

SN|t—t*|+Njx—x*|.

A similar inequality holds for V, also.

Hence we can extract convergent subsequences U,, V, which converge uni-
formly on bounded subsets of [0, T]XR. Also

ap  Wn_ b EYICL (e — xR — PN (7]
+ @[ xFAU =t [ —Pix +AL—tTNE—1T)], 1T <t<tT,
=¢i(x), t=t".
Hence, from Step IV of Section 3, we have
a—x"’(t’,?‘, x)— aU — (%, x)’_w(dz wn)  for [x[=yp

Also, from Step III of Section 3

Wy, 2y 2m s, 2

SQ(U—t*4[x—x*|)

if t,t*<[t7,t7%,] and |x|, |[x*|<%. Hence for ¢, t* such that t,_, <t<t;<t;St*<tj4,
U, 0Un .\ < ou,, 0Un . oUn .. 0Un ..
G D=2, x| | T 0—F e, x)l+|w<ti, =527, x)

aU

+}—(t x)— SR (¥, x

éQ(Ii—t'i"l)+w(Ai,j)+9(|t7‘—t*I+lx—X*|)
<@(L)+otlt—t)+2(L+1x—x¥).

Hence by Arzela’s theorem ([1, 3]) there is a subsequence of U, (also denoted
by U,,) such that
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aéjx ™ converges uniformly on [—7, 7]

and the limit function U has a continuous partial derivative with respect to x and

oU U
ox e o b

Finally letting
4.2)  Pu(t, x)=2¢{[x +A0t—tT)I[14+ {e—¢i(x +AE—1N} ¢ —17)]
@ [x+A0¢—1T) M e—Pi(x+AE—tT)—APi(x + AU —1tT)(E—1tT)]
Thus, from (4.1) and (4 2), ’
Pn(t, x)— 2 = (t, x)=¢;[x+A0—tT)][e—Pi(x+A(t—1tT))].

Hence

—eUn(t, x)+Un(, 1)V, x)
=¢i[-\f+2(f—fT)][5_¢i(x+1(t—t?))]
—e@[x+ A=) [1+(e—:i(x +AU—tPNE—tT) ]+ Un(t, )V, x).
Noting the fact that |¢;| and |¢;| are bounded independent of m and further

that ]t—t’,{‘lg—zl—, it follows that

U,
P, x)—2 x

Thus P,(f, x) converges uniformly to a continuous function. Passing to the
limits, it follows that the limit functions U, (and proceeding analogously) V
satisfy (1.1) in [—x, p]X[0, T].

—eUn(t, X)+Un(, )V, x)—>0.

5. Error Estimates.

We denote by (U, V) the exact solution to (1.1) and let (Un, V) be the ap-
proximation corresponding to a partition P, satisfying (3.1) and (3.2). Finally
let ap,=U—U, and b,=V—V,. Then

agt"‘ —2 ag m—e[U—¢:[x+At—tM11—UV +¢:[x +20¢—tM ][ x +A0t—tM)],
and
b, b

= —y—a—"—‘ =re[V—¢i[x+pt—tMI]+UV =@, [x+p@t—tT)]P:[x+pl—tT)].

where —oo<x<oo and t7=<¢{<(T,. We recall here that ¢;, ¢;, ¢; and ¢; are

T =t=

bounded. Further if we let
@i [x+At—tT)]=Un(t, x)+ R, x),
G [x+pt—t™M]I=Unl, x)+R¥(, x),
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Gilx+p(t—t)]=Val, x)+S:, 1),

and
Oilx+AU—tT)]=V ,(t, x)+S¥(, x)
then
agt’" -2 aaax’" =captalantabby+p¥*,
0b., ob.,
at ;u a —Tebm+a210m+a22b +pi

We now observe that |R,|, |Sn|, |R%| and |SX|<C|P,| where C=M[:+M
+|p¢—A4|]. Further |aj, .|=K where K is a bound on U, V, and finally |p¥*¥|,
|o¥|<h|| P, where h=C(¢+2K+C| Pyl))..

Also ao(0, x)=be(0, x)=0. Then denoting by p; the quantity max {|a,(t, x)|,
|ba(t, x)|} for t<[i7, t7*'] we have by an application of Haar’s lemma that

h| Py .
0o 2—(}+—1§)<exp [2(6+K)| Pal]1—1)
and
nx

2(6+K)

pi+1=p:€Xp [2(6+K)|| Pnl ]+ (exp [2(6+K)|| Pn]]1—1)

The last inequality thus leads to

pi< Wj}é_nl_—é)[exp (2ucta(1+--)7)—1]=-.
We conclude this section by stating Haar’s lemma from [7] for the sake of
completeness :
Denote by D the triangle with vertices (x,+c¢,T, 0), (xo, T) and (xo+¢,T, 0)
and further let [xo+¢,T, xo-+c¢,T] be denoted by D,. Suppose that the following
system of linear partial differential equations is given:

0 0
%—616—?:011(% Huytag(x, Du,+bi(x, 1),
Qs P — g, Durtant, Dustbilx, 0,

with the initial data:
{ul(x; O):¢1(x),
uz(x; 0):¢2(x)r

where ¢; and ¢, are constants such that ¢;<c,, a;;(x, ?) and b;;(x, 1) (1=4, j=2)
are supposed to be continuous over (—o0, +00)X[0, +c0). Furthermore we sup-
pose that ¢,(x) and ¢.(x) are continuous together with their first derivatives
over (—oo, +o0). By setting

a=max { sup |ax, )},
11,752 (2,¢t

b=max { sup [bi(x, D)},

1sis2 (2.
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h=max{sup |d;(x)|},

1sis? z€Dy

Haar’s inequality can be written in such a way that

s, D], Jalx, D] Shetsth (et 1)

<he®* T+ %(e“r—-l), (x, )eD.

6. Remarks.

i) It is clear from Sections 3 and 4 that we have demonstrated in the pro-
cess a global existence result for (1.1). More precisely, it has been proved that
(1.1) has a solution for all time ¢.

ii) The regularity assumptions on the initial data can be relaxed and details
of applicability of this scheme with weaker initial data for more general hyper-
bolic systems will be published elsewhere.

iii) An alternate scheme to study (1.1) is (we define ¢: and ¢; only here;
U;, V; can be defined analogous to Section 2) given by

=9, do=¢
Gir1(x)=¢:(x+20;)exp {[e—¢u(x +20,)10;}
Dini(x)=¢:(x+pd;) exp{[re+@(x+p0:)10:}.

In fact, the scheme of Section 2 may be seen as a linear approximation to the
above. This scheme can also be utilised to study the asymptotic behaviour as
t—co and some of the results in [3] can be seen to follow easily.
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