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Introduction.

Various cohomology groups related to class field theory have been investigated
by many authors. Especially, there are important results on the Galois cohomology
groups of ideles and idele classes of finite Galois extensions of algebraic number
fields (see, for example [3]). The latter result was first obtained by J. Tate
[ 9 ] .  He also announced the corresponding result for the multiplicative group of
th e  algebraic number field itse lf i n  [1 0 ] , o f  which th e  proof was published
later in  [11], under a more general setting. Recently, we have investigated in
[4 ]  the Galois cohomology groups o f  th e  factor group of the idele class group
by its connected component o f  th e  unity. I n  [ 5 ] ,  w e  have constructed an
isomorphism between the Galois cohomology groups of the unit group of a  local
field and those of some A rtin 's  splitting module.

In this paper, we shall prove the following theorem on the cohomology groups
of finite groups and show the known results cited above appear a s  its special
cases.

Let G  be a  finite group. Suppose th at w e a re  given th e  following corn-
mutative diagram of G-modules with exact rows and columns

0 0 0

0 A , 0>A 1 A,

0 B,> B, B,

0 C, > 0>C1 > C3

0 0 0

Then we have the following theorem

Theorem (A). W ith  the notation as ab o v e , w e  have
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(M )  L et A , and B , be cohomologically trivial G-modules. Then the long exact
sequences derived from 0—>A1 —>B1 —>C1 -->0 and  0--->C1 -4C 2 —>C3 —>0 are isomorphic.
W e have the sim ilar results for the following cases

( I ) C, and B 3  are cohomologically trivial.
( II) A1 and  C2 are  cohomologically trivial.
(IV) A , and C, are cohomologically trivial.
(V) A 2 and  B, are cohomologically trivial.
(VI) A ,, B , and C, are cohomologically trivial.
(VII) A „  B , and C, are cohomologically triv ial (§1, Theorem 1.1).

In § 1, we shall show the above theorem. In § 2, we shall show the m ain
result o f  [ 4 ]  is considered to be a  corollary of the case (III) of Theorem (A).
In § 3, we shall show several auxiliary lemmas o n  th e  cohomology groups of
integral group r in g s . In  § 4, we shall construct a  cohomologically trivial module
Ifp" including Kpx as a G-submodule, for every place o f  k. Here K  i s  a  finite
Galois extension of an algebraic number field k with the group G , and Kp' is a
G-submodule of K  consisting of all th e  ide les whose 0-factors a r e  1  except
when C  divides p. In  § 5 , we shall study a  new treatment of the Galois co-
homology groups of CK /DK using the result of § 4, where CK is  the ide le  class
group o f  K  and DK is its connected component of the u n ity . In § 6, we shall
show the announced result o f  [1 0 ]  in  a  m o re  general setting, b u t not quite
general as that o f [11].

Notation and Term inology. Let G  be a  finite group and A be a G-module.
Hr(G, A ) always denotes the  r-dimensional cohomology group a n d  is often ab-
breviated to Hr (A ) .  For a cocycle x  of Hr (G , A ),  x l  denotes the cohomology
class containing x .  Although, in § 1, w e  u se  several symbols to express the
connecting homomorphisms derived from th e  sho rt exac t sequences, in  other
sections, we always denote the connecting homomorphism by 3* . For a G-module
A , A °  denotes a  G-submodule of A  consisting of all G-invariant elements of A.
L et B  be a module and P be a condition on B. W e denote by <x  x  i s  the
element of B  satisfying the condition P > the submodule of B  generated by all
the  elements of B  which satisfy the condition P.

§ 1. Suppose that we are given two diagrams of modules

where g i  an d  g;. are homomorphisms. F or the  sake o f  simplicity, we denote
these diagrams by the symbols 40/11 , M 2 , M O and 4 (M;, M ,  M ) .  Let h i  be the
homomorphisms from Mi to  A l; (1_-< i - 3) which satisfy the conditions g-oh,-=
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g"°112= -±h3og2, g3.h 3 =±12 1 .g 3 . B y  a b u se  o f  language, w e call the
triplet of homomorphisms h=(h i , h 2 , h 3 ) an anti-homomorphism from  ZI(M i , 11/2 , M 3 )
t o  4(A , 1113, M3) w h e n  a t  le a s t  one  of the  diagrams is anticommutative. W e
call h=(h i , h 2 , h 3 )  a n  anti-isomorphism in  c a s e  each hom om orphism  hi  i s  an
isom orphism . In case a ll th e  diagrams are commutative, w e call the triplet h =
(121 , h 2 , h3), as usual, a homomorphism from  4(M 1 , M2, M3) to J(M1, 1142) and
a n  isom orphism  when each h ,  is  an  isom orphism . If the  trip le t h=(h i , /23, h3)
is either an anti-homomorphism or a homomorphism, th a t is , satisfies th e  condi-
tions g 3 .111 =  g 2 .1 1 2 =± — h 3 o g 2 , g 3 .h 3 =— ± h 1 o g 3 , w e ca ll h  an (a)-homomor-
phism and an (a)-isomorphism w hen each h , is  an isomorphism.

In  the  following, we shall prove a  theorem  on  the  cohom ology  o f groups.
Although one can generalize th e  result in  a  natural w ay, using the functors Tor
o r E x t, here w e shall be concerned w ith only the  case  o f the  cohom ology  o f
groups. L e t G  be  a  finite g ro u p . W e a re  given a commutative diagram o f  G-
modules

0 0

1 01 1
A2  A 3  0

1  c r, ,
Su2

1 a 3

B,  B3  0

/ P2 Oa 1 193
C2  C3  0

/ I I
00 0

Here, a ll row  and vertical sequences are exact. Let us define the graded modules
X i , 17

1 , Z i  (1 - z. ._ 3) by

X i =
7 = - 0 .

17
1 =  E (B i ) ,

—

Z i = E  Hr(C i ) (1=<ti 3) .
r= - C O

L et al: be the homomorphism from  Hr(G, A i )  to  Hr(G, 13 1 )  induced from a i . We
CO

denote the homomorphism f i  aÇ : X 3 - 0 7
1 by  the same symbol a ,.  The homomor-

phisms ,8„ go, and 0 1 are defined in  a  similar w a y . L e t  u s  denote th e  connecting
homomorphisms derived from (1.2) by

Ti : Hr(C i ) —> Hr+1 (A 1 )

.31 : Hr (243 ) Hr + 1 (A 1) ,

5 :  Hr(B 3 ) Hr+1(Bi),

0

0

1
A,>

Sol

0

I a,

B i>
ç o ,

0
/ 131

>C1
ga3
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Hr (CO ---> Hr -"(C i ) (r Z ).

W e denote the homomorphisms H ri : zi — a i  b y  7';' a n d  H 31' b y  4 .  Then,
7.= - C O

from  (1.2), w e have the following diagram

  

a,

(1.3) X .8

 

o s

    

6 2

     

Here the triplet a=(a„ as, a s)  is  a  homomorphism. In the sam e w ay as a, one
sees that P=(Si, 132, SO, go=(çoi, Ç 0 2 , so3) a n d  -= (01, 02, 03) a r e  homomorphisms.
O n the  other hand, one sees the following diagram is anticommutative (see for
example, [2 ] , C h. M . § 4)

rl.,z, , x,

(1.4) 161, 14
7•4 Z1>  x i

H ence 4=(ô4„ 4, 4 ) and 2, =(r, r>,,) are anti-homomorphisms. Finally, we
have the following diagram

(1.5)

2
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In the follow ing, w e treat the cases w hen tw o o f the  n in e  g ra d e d  modules of
(1.5) are zero modules, especially the cases w hen the tw o  G-modules of (1.2) are
cohomologically trivial. If the tw o of the nine G-modules of (1.2) are cohomo-
logically trivial, there rem ain tw o short exact sequences contained in (1.2) such
as non of the G-modules of the sequences a re  a ssu m e d  to  b e  cohomologically
trivial. T h e n  it  is  n a tu ra l to  e x p e c t the assumption implies some relation be-
tween the cohomology sequences derived from th e  rem a in ing  tw o  short exact
sequences. Certainly, if  w e suppose the G-modules C, and G, are cohomologically
trivial, the diagram (1.5) coincides with the d iag ram  (1.3) a n d  th e  tr ip le t a=
(a„ a 2 , a ,) i s  an isomorphism from 4 (X 1 , X 2 , X,) to  4( 7 1, Y 2 , Y 3 ) .  W e restrict
ourselves to the cases w hen the derived cohomology sequences of the remaining
tw o sequences of (1.2) are (a)-isomorphic. One can easily show tha t there  are
only fifteen cases which satisfy the condition. The diagram  (1.2) is symmetrical
w ith  respect t o  the diagonal line  A 1 , B 2 , C,. From  the duality theorem of the
cohomolomology groups, the diagram  (1.2) can  b e  co nsid e red  to  b e  a lso  sym -
m etrical w ith  respect to  the diagonal line .243, B 3, G3 . Therefore, one sees that
there are essentially following seven cases ( I ), ••• , ( il)

( I ) C2 and B, are cohomologically trivial. Hence Z 2 = Y 2 =0.
(11 ) A i  a n d  C, are cohomologically trivial. Hence X 1 = Z 2 =0.
(110 A , and B 2 are cohomologically trivial. Hence X2 = Y 2 =0.
(IV) A , and G i  are cohomologically trivial. Hence X3 = Z 1 =0.
(V) A 2  and B, are cohomologically trivial. Hence X 2 =Y 3 =0.
(VI) A ny tw o of the three modules A,, B, and C, are cohomologically trivial,

th a t is , all the G-modules A,, B , and G 2 are cohomologically trivial.
Hence X3 =17 3=  Z 3 =0.

(VII) A ny tw o of the  three modules A 2 , B2 and G2 are cohomologically trivial,
th a t is , a ll the G-modules A 2 , B , a n d  C , are cohomologically trivial.
Hence X 2=  Y 2=  Z 2= 0 .

Theorem 1.1. W ith the notation as above, we see that
For the case ( I ) , J(X„ X 2, X,) and 4(X 1 , Y ,  Z 1 )  are anti-isomorphic,
For the case (11), ZI(X„ Y,, Z,) and 4(Y1, Y 2, Y 3) are anti-isomorphic,
For the case (V ), d(Z,, Z 2 , Z ,) and d(X,, Y 3, Z 3 ) are anti-isomorphic,
For the case (VII), 4(X 1 , Y 1 , Z 1 )  and 4(X 3, Y 3 , Z ,) are anti-isomorphic,
For the case (III), 4(X 1 , Y 1 , Z 1 )  and 4 (Z 1 , Z 2 , Z 3 )  are isomorphic,
For the case (IV), 4(X 2 , Y 2 , Z 2 )  and 4(Y 1 , Y2, Y3)  are isomorphic,
For the case (VI), 4(X 1 , Y 1 , Z 1 )  and 4 (2(2 , Y2, Z 2 )  are isomorphic.

Pro o f . Here, w e shall prove the cases ( H ) and  ( I I I )  w h ic h  w e  s h a ll  use
later.

Case (11). It is sufficient to show the diagram  (1.5) induces th e  following
vertical isomorphisms u a n d  u ' such as the following diagram is commutative
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y r

•••••

•••

11T+1(A i )Hr(C,)

ço;Hr(C,) Hr(C2)

S hin-ichi K atayam a

Hr+1(C 1) •••

H r + 1(C1) ( rE Z ) .

H T ( B 1 )

Hr(C 3 )

/31 +1

Construction of u. From  the assumption, the homomorphisms gar» : Hr+1 (A1)
—>Hr+1 (A 2 )  and 7-1," : HT(C2)— + H ( A 2)  are  b ijective. The isomorphism u : H T (A 1 )
—Hr(C 2 )  is defined by (TD - 1 oço',"1-1 . T h e n  f r o m  the commutative diagram

Hr(C i ) Hr+1(A i)

14a;

Hr(C 2 ) Hr+1(A2)

w e see  the diagram  C) is commutative.
Construction of u'. From  the assumption, the  homomorphisms Hr(B3)—>

Hr+1 (131 ) a n d  d9r, : Hr(B 3 )—>Hr(C3) are bijective. The isomorphism u' : Hr + l (B1)— >
Hr(C 3 )  is defined by putting P . Then, from  the commutative diagram

ig;
Hr(C3)

5'3"

/31+1
II"'(13 HT +1(Ci)

w e see  the diagram C I  i s  com m utative. N ow , w e  s h a ll  show  the  following
diagram G  is  commutative

Hr+ (A i ) ---2

751

- —.■ Hr +1 (Bi)

T f I1 ?  6

Hr+'(A2) G Hr(B3)

ï?  RisT3.
Hr(c2) H r( C ,)  .

Let a  be any cocycle of H '+'(A i) .  Then a2(go1(a)) is a  cocycle of Hr+1 (B ,) = {0}.
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Hence there exists a r-cochain b with values in B 2 such as 5(b)=a2(ço1(a)). Then
302(b))=- É32(3(b))-=132(a2(ço2(a)))=0, and so /32 (b) is a r-cocycle w ith values in C2.

From  th e  equation 3(b)=a 2 (ço1 (a) ) ,  w e  se e  7 72.(1(482(b))1)= {soi(a)} i n  Hr+ i (A2).
Therefore we have u( { a} )= 02(6)1, and so 0. u( {a} )= 103°P2(b)1 in  Hr(C 3 ). On
the other hand, from the condition go2(a1(a))=a2(so3(a))=6(b), w e  see  6 72-({02(b)})

Ia i (a)}. So we have u'oce;+'( {a} 0 3 .02 (01 in  Hr(C3 ). Hence, by virtue of
the fact [3 3 .0 2 = 0 3 .13z , w e  have 0 u = - u'oce,'", a n d  so the diagram (6) is com-
mutative.

Case (11). It is sufficient to show the diagram (1.5) induces th e  following
isomorphisms y  a n d  y ' such as the following diagram is either commutative or
anticommutative

... ---> Hr(B s ) ------6L> Hr+1 (Bi) —1112.4-L.,- Hr+1 (B2) -- -,..+ 1 H r+ .1 (B3) —*...

®
l l ' G

li v ' ©

••• —, HT
"; r;a, ; +,

---- > Hr+ 1 (B 3 ) -÷ -  (rŒZ).B 3 ) Hr(C 3 ) - - - - >  H r n ( A 3 ) - - >

Construction of v. F r o m  the assumption, the homomorphisms /31- ' 1 : H ( B 1 )
- Hr+1 (C1 )  and 6',.: Hr(C3 )->H r'(C i )  are bijective. T h e  isomorphism y : Hr'(/31)
- 4-Ir(C3)  is defined by Arlo /31- ' 1. Then, from the commutative diagram

H r + 1 (Bi)

115

Hr(C 3 ) E r+ (C1 )

w e have the diagram ®  is commutative.
Construction of y'. From the assumption, the homomorphisms H ( A 2 )

- H T (B 2 ) and 
O V 4 :  H r - F l ( A 2 ) - - + H r + 1 (A 3 ) are bijective. The isomorphism y' : Hr+ 1 (B2)

->Hr÷i(A 3 )  is defined by 0T+ 1 .(a';+1)-1 . Then, from the commutative diagram

Hrn(A s) —  3  Hr+ (A s )

HT+ (B)

  

w e see  the diagram  ©  is commutative. Let us show the following diagram
is anticommutative
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H r + I  (B )

V p ri +1
Hr +1 (CO

P51;

Hr(C3 ) 

 

>  W . - H (13 )

H r+ 1 (A2)

' Hr+!(A 3)

  

Let b  be any cocycle of Hr+1 (B 4 ). Since H' 1 (C2 )=O, there  exists a  r-cochain c
w ith  values in C, such as ça3(d8i(b)) -=a (c ). H e n c e  (3(03(c))=03(w3(P1(b)))=0, and
so 0 3 (c) is a cocycle of Hr(C3 ). By the definition of the connecting homomorphism,
w e  have 373- ( {03(0})=- iPi(b)} . H en ce  w e  have  v({b})= {03(c)} . Since 133 i s  a
surjective homomorphism, there exists a  r-cochain 6 w ith  values in B 2  s u c h  as
182(6)-=c. T h e n  w e  s e e  go72. ( O P =  iço2(b) - 3(6)} in H" - 3 (B 2 )  and p2(go2(b)-3(6))=-
so3(p1cb»--3(c)=0. Since cr3 i s  an injective homomorphism, there  exists a  (r +1)-
cocycle a  of H ( A 3 ) satisfying a 2 (a)=so 2 (b)—a(b). T h e n  w e  have v'.T I ( )
= {03(a)} . On the other hand, w e  se e  03(c)=03(132(6))=P3(çb2(6)) a n d  a(02(6))---
02((6))=02(w2(b)—a2(a))= — 02(a2(a))= — a3(çb1(a)). By the definition of the con-
necting homomorphism, w e have 773- (03(c)1)= — 102(a)} . H ence, w e have v'. W i
-I 1lov=0, a n d  s o  th e  diagram i s  anticommutative. It is  easy  to  show the
other cases in the sam e w ay as above.

From  this theorem , the following corollary is obvious.

C orollary 1.1. For the case when one of the exponents of the graded modules
X1 , X3, Z1 and Z 2 is at m ost 2, all nine quadrilateral diagram s contained in the
diagram  (1.5) are commutative. Hence, fo r all the cases ( I ), ••• , (VIII), two trian-
gular diagram s are isomorphic.

W e shall show another application of the a b o v e  th e o re m . W e  assum e G-
modules A2, A3, B2, B3, C2 and C3 o f  th e  following diagram (1.6) are cohomolog-
ically trivial and a ll the  row  and vertical sequences are exact.

o 0 0 0

I I 'I'7 -1

0 > A i > A2 >A3 >A4 >0

1 1 02 1 I
(1.6) 0 > B1 >B2  133 > B 4 >0

1 Sb, I 1
0 -C1 >C2  Cs >C4  0

I 1 I I
0 0 0 0
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From this diagram, we get the following new commutative diagrams of G-modules
with exact rows and columns

0 >A  > A, - - > I m O , >0

I i 02 1
(1.7) 0 B, - - >  B , >lm 0 2 > 0

1 i 0 3  
1 0  C,  C , >Im:,G,> 0

si,I 1
0 0

0 0 0

Im 0,1 
 si, /

0 > A3 >A4 >0

I I 1
(1.8) 0  1m 02 > 133 > B4 > 0

/ / /
0  IM 03  C3 >C4 >0

/ / /
0 0 0

w here Imçbi  i s  a G -m odule consisting o f all th e  elements Oi (x)(x E L i ). H e r e
L I =A 2 , L 2 =B 2 a n d  L3 =C2 . L et us denote t h e  connecting homomorphisms of
above diagrams by

Tri: H r (Ci) H'1(A4) ,

: 1-1r(Im 0 8 ) —> Hr+1 (Im

61: : Hr(Im 0 i ) --> Hr÷ 1 (1/i ) ,

w h e re  M i =A i , 11/12 =B 1 a n d  M3=C1i

: hr(N i ) — > Hr-"(Im 0 i ) ( 1  i 3) ,

w h e re  N 1 -=A 4 , Ar2 =B 4 a n d  N3=C4.

Then, from Theorem 1.1 case (VII), we have the following diagram



374 Shin-ichi Katayama

▪ Hr(A 4 ) - - - >  Hr(B 4 ) Hr(C4) - - - >  H r + 1 (A 4 )

,PS1 e ,R5!2* G ,P (3
-

1 + 1 .

r r+1
(1A) ••• Hr+lam 00— > FIr+ 1 (Im  0 2 ) Hr 'Arm 0 2 ) ---> Hr+ 2 (Im 0,)

©sp 51+1 C) (5) I? 61-3+1 I? ar1+2

7T+2• Hr-1-2(A1 )_ ) , Hr+2(B
1 ) Hr+2(C)_____> Hr+3( j eli ‘) (r Z) .

In  this diagram, the diagrams ®, cs, and (5) are commutative and © and ©
are anticommutative. Hence, we have

r i +2( g + i. 673.) = (7 ,/+203 ,3- , i ) -4,8-_ ( _ 571, 7 ,+ i ) g _  (31,2 (F r+, 0673.)

_  ,,--1-2( 1--1-10 Tr4) = (31+2061.+1)r ,,;

Finally, we have the following commutative diagram

- -> H r (AO — ›  HT (B 4 ) —> Hr (C 4) —> f 1 r (A 4) — >

(1.10) I I 1 1 ?
— >H r+ 2 (A i ) --- > Hr+ 2 (B ,)-- > H r+ 2 (C i ) -- > H r+ 8 (A i ) - - >  (r E Z) .

Here the vertical arrows are the compositions of the connecting homomorphisms
of (1.9). W e define the  graded modules X i , Y , and Z i (1 i n  t h e  same
way as Theorem 1.1 and denote the homomorphisms corressponding t o  g  and
-6; by 5 4', and 4 .  Then w e have

Corollary 1.2. Suppose that the G-modules A 2 , A 2 , B 2 , B 2 , C2 and C2 o f th e
diagram  (1.6) are cohomologically trivial. T h e n  the triplet of homomorphisms

is  the isomorphism from 4(X 4 , Y4, Z4) to ZI(X,, Y1, Z 1) , that
is, the diagram  (1.10) is commutative.

§  2 . Let G be a  finite group and A be a G-module. Let e be a 2-cohomology
class of A  and let A  be  A rtin 's  sp litting  module of C . T h e n  w e  have the
following lemma which was proved by J. Tate ([9], Theorem 1).

Lemma 2.1. W ith the notation as above, the follow ing tw o conditions are
equivalent:

i) 111 (N , A )=0 and 112 (N , A ) is a cy clic group o f th e  sam e order as N,
generated by  pG,N e, f o r  all subgroups N c G .  Here pG, N  i s  the restriction
homomorphism f rom  G  to N.

ii) 111 (N, 71)=11 2 (N , A)=0 fo r all subgroups NcG.

R em ark. It is well known that if  A  satisfies the condition ii) of this lemma,
A is cohomologiclly trivial, that is, Hr(N, A)=0 for all subgroups N E C  and for
all integers rE Z  ([3], Ch. I, Th. 8.1).
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In th is section, w e sha ll trea t the G-module A  and the cohomology c lass e
satisfying the  cond itions i)  and  ii)  o f the  above lem m a. W e assume w e are
given an exact sequence of G-modules :

a
(2.1) 0 - - >G - - - >A - - - >B - - - >0 .

Let us denote the 2-cohomology class a ( C ) 1 1 2 ( G ,  B )  b y  )7 and Artin's splitting
module o f , ?  by  /3. Then w e can define a G-homomorphism a  : A-43 by putting
d (a+ x )•=a(a)d - x , fo r  e v e ry  a E A  and x E I [ G ] .  Here I [G ] is  the augmenta-
tion ideal of the group ring Z [G ] generated by d ,= d  — 1  ( a E G ) .  T h e n  i t  is
e a s y  to  sh o w  k e r  6 = G . H e n c e  w e  have the following exact sequence of G-
modules

a
(2.2) B - - >  O.

Combining (2.1) and (2.2), w e  have the following commutative diagram of G-
modules

0 0

(2.3) 0 - - >  A  - - > A  - - >  I [G ] - - >  0
a ' t a

0 —  > B  >  - - - >  I [ G ]  — >  0

0 0

Since A  is  cohomologically trivial, w e have the following theorem from (III) of
Theorem 1.1.

Theorem 2.1. Let A, A, B , C  and I [G ]  be  G-modules in (2.3). T hen the
following diagram is commutative for every rE Z

••• — >
6*Hr(B) ---> Hr (P )  - -> N J) H r+1(B )-->

6*1 , ? 3 * 11?3* a *
••• — > H r(B )-->H r+'(C )--> H 1 (A ) — > Hr+ 1 (B ) - - >

where 5* i s  the connecting hom om orphism  and we have abbreviated I-P(G, X )  to
114 (X )  for a G-module X.

Let us w rite  the isomorphism 5* :Hr(B)-2_'-Hr+1 (C ) in  a  m o re  explic it form.
First, w e fix  a 2-cocycle u  contained in C . T h o u g h  the module 71 is determined
only up to G-isomorphisms, we can regard the module -2=1 as the splitting module
o f  u .  Since v =a( u )  is  a 2-cocycle contained in  )7 , the  m odule  13-  is  s im ila r ly
regarded as the splitting module of v. T h ere fo re  w e  can  co n sid e r the mapping
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d : G-->I[G] satisfies the following equation in  A
crdr =d „— d o + u [u , r] , for e v e r y  a, r e G,

where we se t d1= u [1 , 1 ] . Then we see I -11 (G , 1 [G ])=Z I[G :1 ]Z  is generated
b y  th e  cohomology c l a s s  N I .  F or the  sake of the following proposition, we
replace the integer r by p + 1 . Let N p cH P(G , Z ) be the subgroup consisting of
a ll the cocycles h  satisfying the condition

(*) v U h =3g ,

where g  is  a  (p+1)-cochain with values in B  and U denotes the correspondence
of cochains which induces the cup product (for d e ta ils , s e e  [3 ] , C h . I, § 6.4).
Let M ,,,  be the subgroup of HP-"(G , B) consisting of all the cohomology classes
IdUh— g}, where h and g  satisfies the above condition (*)• It is easily verified
th a t M p ,=H P+ 1 (G, /3). S o  w e  o b ta in  a n  explicit form  o f  3* : HP1- i(G,
HP+2 (G, C) by

3* {dUh— g } ={ u U h -6 (s .g )} ,

where s  is  a cross section from B  to A  such as ctos=id K .
Here we shall show this explicit form implies the main theorem of our pre-

v ious paper [5]. L et k  be a local field and K  be its Galois extension of finite
degree. W e denote the Galois group by G .  Let us denote the unit group of K
by U K . Then we have the following exact sequence of G-modules

a
1 --> U K — > Z  -->1 .

H ere a  i s  the normal exponential valuation with respect to K .  Let eK, k =

be the canonical cohomology class for K l k .  L et us denote a * (eK , k )= fa(u)= 0
by y7K , k  a n d  Artin's splitting m odule  of K  k  by Z .  Then, in our previous paper
[5 ], w e have showed there exists an isomorphism P p : HP+2 (G, U K ) =='11P+1 (G , Z )

for every integer p.

Proposition 2 .1 . ( [5 ], Theorem). For every  integer pEZ, w e have an iso -
morphism

vp:HP+2(G, 2 ) ,

such that the follow ing diagram  is commutative

H p 4- 1 (Z ) +H '  (Z ) HP+1(1[G]) - >  HP + 2 (Z)

1)1)

H 1 ( Z ) Hp+2(U K) _ >  H 2 ( 1 C )  _ >  H 2 ( Z )  _ >

Let us replace A , B  and C  of Theorem 2.1 by IC , Z  and U K , respectively
a n d  other morphisms a n d  symbols by corresponding ones. From the explicit
form of 3* ,  w e have

6* : HP+1 (G, Z) HP+2 (G, U K ) a n d  3* {dUh—g} -=- {(uUh)15(sog)},
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where s  is  a cross section from Z  to I C  an d  h is  a  p-cocycle of HP(G, Z ) and
g  is  a  (p+1)-cochain with values in Z  which satisfy the condition (*)• On the
other hand, by th e  definition o f vp ,  we can easily verify that

v p i(uUh)15(sog)} = { dUh— g}.

Hence 7.),=(3 * ) - 1 . Therefore Proposition 2 .1  is obtained a s  a  corollary of
Theorem 2.1.

§ 3. L et G  be a  finite group and N  be its subgroup o f  in d e x  n. W e put

G =0 cr i N  w ith  o- i = 1 (the identity o f G ) .  L et us denote by  Z I G / N ]  th e  free,=1
Z-module generated by a t lY (1 - i n). L et EG b e  a n  onto G-homomorphism from
Z [G I N ] to  Z  defined by putting E0 (a i N )= 1 fo r every i. Then we have the
following exact sequence of G-modules

EG
0 — >IE G IN 1 -->Z [G IN ]— > Z  --> 0,

where J I G / N ]  i s  th e  kernel o f  EG. Since G  is  a  finite group, Z [G IN ]=In arZ
is isomorphic to Homz:N(Z[G], Z)=Coinn Z  ( [1 ] , Ch. EL (5.9) Prop.). There-
fore we have

Lemma 3.1. W ith the notation as above, w e have the isomorphism

1-1r(G, Z[G, .A1]) Hr(N, (rE Z ).

L et us define a  G-homomorphism EN  f ro m  Z [G ]  to Z IG /N I  by putting
N (a)=T N  (for every crE G ) .  We denote the  kernel o f 6N  b y  K [G , N ].  Then

it is easily verified that E N ( / [ G ] ) — / [ G / N ]  a n d  KEG, N iC I [G ] . Therefore we
have the following commutative diagram  of G -m odules w ith  e x a c t  row s and
columns

0 0

K [G , N ] K EG, N ]

eG

(3.1) 0 > I [G ] >Z [G ]  Z  - - >  0

6 N

0 -->  I [G 1 N ] — > Z [G I N ] - - - > Z  —> 0

O 0
Since Z [ G ]  i s  cohomologically tr iv ia l, this diagram satisfies the conditions of
case (III) o f Theorem 1.1. Hence we have

Lemma 3 .2 .  T w o cohom ology  sequences deriv ed f rom  0-4([G, N ]— >I[G]
—>I[GIN]—*0 and 0—>I[GIN]--*Z[GIN]—>Z—>0 are isom orphic, that is, th e  fo l-
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lowing diagram is commutative for ev ery  rEZ

•• • —> Hr(G, KEG, N1)—> Hr(G, IEG1)--> Hr(G, I1G I N1)—> H" - 1 (G, K[G, N]) - - > • • •

TN '
G I )

•• • ---> H r - 1 (N , Z )  - - > Z )  Hr(G , I [G I ND H r(N , Z ) - >

where TN•G is the transfer homomorphism from N to G.

Let us investigate the cohomology group of Z [G 1N ] more precisely. Let H
be another subgroup of G  and let E  be a  se t o f representatives for the double
cosets H aN . Then as H-module

Z[G I N ]= Gr E Z[HaN11171:--.• E Z [H IH no - No• - 1 ]

([1 ], Ch. M, (5.6) Prop.). Hence, from Lemma 3.1, w e have

Lemma 3 .3 .  Let H and N  be subgroups of G and let E  be a  s e t o f repre-
sentatives for the double cosets H aN . Then we have

Hr(H, Z) (rEZ ).
aCE

From the cohomology sequences derived from 0—>K[G, N]—>Z[G]—>Z[GIN]
-->0, w e have Hr+1 (H, KEG, 1\11).-Hr(H, ZIG/N]) fo r  every  r E Z .  Therefore,
from Lemma 3.3, w e have

Corollary 3.1. W ith the notation as above, we have

Hr+1 (H, K EG, N ]).-Hr(H, Z[GIN ]). E.1-1r(H no - No- 1 , Z) (re Z ) .

Now we consider the relation of the following two exact sequences

0 I [N ] --> ZEN ] --> Z  ---> O.

0 -->  K[G , N] --> Z [G] ---> Z [G / N] ---> O.

B y v irtue  o f  th e  fact that Z [G ] is  N-projective, the functor I n n  is  an exact
fu n c to r . S o, from  th e  upper exact sequence o f  above, w e obtain an exact
sequence of G-modules

0 --> 1nd, I [ N ]  - - >  Ind Z [ N ]  — I n d ,  Z  --> O.

W e can easily verify that Inn N ] and Ind,qv Z [N ]:.'Z [G ]. Hence
w e have

Lemma 3.4. W ith the notation as above, the follow ing tw o exact sequences
of G-modules are isomorphic

0 ---> Ind% /[N ] - - > Z [N ] - ->  In d Z  — O

11? 11?
0 — > K [G , N ] - - - > Z [G ] — >Z [G IN ]- - > .
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§ 4. L e t  k  b e  e ith e r  a n  algebraic number field o f  finite  degree o r an
algebraic function field over a  finite field, and K  be its finite Galois extension
with the group G .  Let be a place of k  and 13 be one of its  extensions to  K.
W e denote th e  decomposition group of 13 by N .  Let Kp" be a G-submodule of

consisting of all the ideles whose C-factors are 1 except when C divides p.
Let us fix a  canonical class e K , k  O f KI k and denote Artin's splitting module of
e K, k  by C K .  Here we shall construct a cohomologically trivial G-module IQ
such as the following diagram is commutative

0  > 1 ( "  >KT,'  K[G, _AT]  > 0
(4.1) a, I I '  ( N

0  >  CK > C  I [ G ]   >0,

where a, is  a  natural G-homomorphism and c N  i s  a l s o  th e  natural embedding
a n d  "cip  i s  a n  in to  G-isomorphism. Let eq3 be  the natural embedding from Ki
the multiplicative group of the  13-completion of K  to Kp". T h e n  w e  have the
following commutative diagram

(4.2)

el3 ap
112 (N , KO H2(N, 112(N, CA\  IT N , G

.112 (G  KO

By virtue of the fact that the restriction homomorphism p G, N : 1-12 (G,CK)—>11 2 (N,CK)
is an onto homomorphism, there exist a  canonical class of KI3/ k p denoted by eq3

such as
a p qq3(4 )  =  PG, N(e K k) •

Hence we have a commutative diagram

1    W K$, k z     1
(4.3) v

1 > C K 14 7  lc, k G  > 1 ,

where WK ,  k  and W K ,  k D are the W eil groups of eN , k  and e$, respectively. We

putTG = a,N , w ith  a1 = 1 .  W e set = a i  w hen  a belongs to the coset a i N.

Then any elem ent a  G  is uniquely written as the product aa(erE N ). There-
fore, if  we consider the 2-cocycles of E K ,k  and eq3 as the factor sets of the group
extensions of (4.3), we can take the cocycles u and u which satisfy the  follow-
in g  conditions. e l3 =  W I such a s  u [a , 7]= uo ur u;-„.' (a, T EN ), where a —>u „ is  a
cross section from N  to  W ,K13,kp, with u 1 = 1 .  eK, k=  i v }  such as v[a , - = v  Ø vr v '
(6r, e G ) ,  w here  o.--2) i s  the cross section from  G to  W N ,k  which satisfies
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vc=viiv7,=- vauzr, w ith  yr-=1, w here WKp , k p  is considered to be imbedded in W K ,  k •

Let us define the G-module structure of K,;" using  these  cocycles u  and y. We
consider Kp" is  a  G-submodule of Ifp" and so, for the purpose o f  defining a  G-
module structure on Kp", it is sufficient to define the G-action on K [G, N ] .  Since

K [G, N] is, as a Z-module,
1=1, PE N

 Z(a1p—a1), we can define the G-module struc-

ture of K „  by

u(a i p—a i )= aa i p—cla i + v[cr , a ip ]Iv[a , a i] (aEG, pEN ).

B y the definition of y , w e have

yEa, aipi/vCcr, a J = (v c a i va i0 - ')(v ,va i pv,a i e
- 1 )

= V 0.,,,210.7;"iV pl) c Z p  1 Vcrai - 1

- - aa j uEca z ,

Hence the above definition is well defined and from  the  fac t tha t a i p—a,=-d a i ,
—cl a , ,  the commutativity o f  th e  diagram  (4.1) is  o b v io u s .  L et us show  the
cohomological triviality of K ," .  Let K i  be Artin's splitting module of u. Then
w e see , as a  Z-module,

rif =KEG, AriEBK= i=1

w here a 1 (IG)-=-a 1 (K ) e a 1 (IEN1). Since the isotropy subgroup of K i  i s  N  and
y[a, a i p ]Iv [a , a i ]= a a i u [o - a i ,  p ]  (for every C E G , pE N ), w e see  a(a i (K,D)=
a a j (K 7 )=  a i (K 7 ) .  Therefore, from  a  characterization theorem o f  th e  induced
module (see, for exam ple, [1], Chap. Bl. (5.3) Prop.), we see Kp' '-'Indqv kTi. On
the other hand, w e see  K [G, N].'Ind7,1 I [N ] and K  I n d K .  Summarizing
these, w e can easily show

Lemma 4 . 1 .  W ith the notation as above, we have the following G-isomorphism
o f two exact sequences

0 --> Ki` --> Indqv i-C;)3̀ --> InOv IEN] - - 0

0 — > > K[G, N]—> 0 .

From  this lem m a, we see K .,"  is  cohomologically trivial.

Remark 1. In the above discussion, w e have fixed th e  cocycles y  a n d  u.
B u t, a s  is  w e ll k n o w n , Artin's sp litting  module is  un iquely  defined  by  the
cohomology class up to G-isomorphisms. Hence, we can consider the module
is defined by the cohomology class eq3 a n d  K  by E K ,k .

Remark 2 .  We can show the cohomological triviality of If ,' in a more straight
w a y .  For every H< G, w e  have the following derived cohomology sequence of
(4.1).
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3*

0 Hi(H, 111(H, K E G ,  N ]) — >H 2 (H, K p) — > H 2 (H , g")

- - >H 2 (H , K [G , N ]).
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From Corollary 3.4, we have 112 (H , K [G , N ]) -E-'11 1 (H , Z [G , N ])=0 . Therefore, to
show the cohomological triviality of Kp', it is necessary and sufficient to show the
connecting homomorphism 3 *  : H i(H , K [G , N ])-41 2 (H ,  K )  is  an isomorphism.
Let E  be a  s e t  o f  representatives fo r the  double  cosets H a N .  T hen , from
Corollary 3.1 and K  I n d  K ,  w e have the following commutative diagram

3*  1 1 1 (H , K [G , N ]) >112(H, Kp")

E  112 (11r10- N a - 1 , Z )-2 E  112 (Hno-No- ',
a EE aE E

Hence 3* i s  an isomorphism, and s o  K  is  cohomologically trivial.

§ 5. Let k  be an algebraic number field of finite degree and K /k  be a finite
Galois extension with the  group G .  In the fo llow ing, w e assum e the  number
of rea l places of k  which ramify in  K  is at most 1. Let us denote by CK the
idele class group of K  and by DK  the connected component of the unity of CK.
We denote by N  the decomposition group of the real place which ramifies in K.
Let e,,, k b e  the canonical cohomology class of 112 (G, Cs ). W e denote by 17K, k
the image of & , k  of a  natural homomorphism from CK to  C K ID K . Let us denote
A rtin 's splitting modules of EK , k and Y) 1 C ,k  by CK  and by CK /D K ,  respectively.
T hen  w e h a v e  th e  following commutative diagram  of G-modules with exact
rows and columns

D K     D K

CK — > I[G ] - -> 0

CKIDE - > CKIDK

Since CK  is  cohomologically trivial, we have the following lemma from Theorem
1.1 case (Hf).

Lemma 5 .1 .  For e v e ry  rE Z , the derived cohomology sequences o f  0->D K ,

Cs - C s ID s -AD and 0-4C s ID s - C s ID s ->I[G ]-40 are isom orphic, that is, the fol-
low ing diagram  is commutative
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- - >  H r(D ) H ( C )  - - >  MCI( 1 D — >  1 -1r ± i (D.K) — >

••• — >Hr - '(CK ID K )— >Hr - V [G 1 ) - - >  M C / D )  — >Hr(CK IDK )--> • .

Now, w e sha ll p rove  a  genera l proposition concerning the extensions of
groups as follows.

Proposition 5 .1 .  L et G  be a f inite group and N  be its subgroup and A  be a
G-m odule. L et pa, N be the restriction homomorpism f rom  H 2 (G, A ) to 112 (N , A).
W e f ix  a cohomology class C o f  HA G, A ) and denote p G. N e by  72. Then the fol-
lowing six  conditions are equivalent:

1) 77=0  in  TP(N , A).
2) L et -A-

$ and  A,2 be any  o f  A rtin 's splitting modules corresponding to C and
2, respectively . Then the extension 0->A -j1,2- 4 [ N ] - 4  sp lits  as  an extension

o f  N-modules and there exists an injective N-homomorhism lc such that the follow-
ing diagram  is commutative

0 > A

    

> I[N ] >0

I [G ] >0,

         

where the right arrow  is a natural embedding.
3) L et 1->A --63-+G-> 1 and  1 -A .-91 -4N -1  be any  of  the ex tensions of

groups corresponding to e  and 72, respectively. Then the extension 1-21.-491->N-41V
sp lits an d  there ex ists an  injective hom om orphism  2  such  that the following
diagrom  is commutative

1 >A  - - >

1 >A (13

 1

7C y
 G >1,

where the right arrow  is the natural embedding.
4) There exist a cocycle u of  e  which satisfies the equation

u [a, rp 1 =u [a, r], f o r an y  a , r E G  a n d  pEN  .

5) For any o f  A rtin 's splitting modules T4e corresponding to e, there exists an
injective G-homomorphism ,a such that the follow ing diagram  is commutative

Here the vertical arrow  is a  natural embedding.
6 )  For any  o f  A rtin 's splitting modules corresponding to e ,  there ex ists a
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G-module A which is an extension of I[G IN ] w ith the kernel A  and also exists a
surjective G-homonzorphism u such that the following diagram is commutative

 A 74,  i [ G ]  

O  A > I [ G ,  N ] >0,

w here I[G]— q[GIN ] is the natural onto homomorphism.

Pro o f . We can consider the  integral group ring Z [G ] to be a supplemented
algebra with a Z-algebra homomorphism 6 : Z [G] — Z. T h e n ,  from a  well known
relation of the extensions of groups, the 2-cohomology groups of groups and the
extensions of augmentation ideals, it is easy to show the equivalence 1)<=>2)<=>3).
(See, for example [2], Chap. XIV).

3) 4). We can take a cross section u  from N  to 9r2 such as

u,u r = u „ for ev e ry  a - , rE N .

We se t G = U  aN , where E  is  a  se t o f representatives. For every a E E , we
aE E

f ix  an element ua  E6 such as Tc(u„,)=a. In the same way a s  § 4, w e se t d=a
when aN =aN  (aG E ), and denote V ia  by ii. S in c e  e v e ry  e le m e n t a c G  is
uniquely written as the product ãã, we can define a cross section u from G  to
C3 by putting u =2/5.74 Then, for every a, rE G  and p E N , w e have

=

=U F7,014 ,- , - 1 14di - 1

-=1 1 -U

H ence we have  uA r p u „ p
- i=u a u r u „ - 1 . Therefore the  fac to r se t fu[a, r]=

u,u,u, - ll cr, t' E  G I satisfies the condition 4).
4) 5). Let Az, be Artin's splitting module of the cocycle u. Then the con-

dition 4) is nothing but the condition in order that the module K [G , N ] may be
a  G-submodule o f  7172 . L et A„, be Artin's splitting module of any cocycle u'
contained in E. S in c e  At, is equivalent to 71 , w e have a commutative diagram

0 >A  

0 >A  

  

I[G ] >0

  

>  I [ G ]  >0.

Then the restricted homomorphism p = i '  K E G ,  N]: KEG, N]— ;71„, satisfies the
required relation.

5) 6). Since A EI tt(K [G , N ]) is  a G-module, it is obvious that the sequence
N])— >I[GIN]-40 is  exac t a s  G -m odu les. S o , if  we denote

FA$ 1p(K [G, N ]) by A, A satisfies the condition 6).
6) 1). From th e  e x a c t sequence 0--J[GIN ]— >Z [G/N ]— >Z --0, we see
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IP(G, I[GIN ]) -=-Z I[G :N ]Z . Moreover, if  w e  se t d, N =aN — N  in I[G IN ], we
see cl[a]=-4 N  (CEG) is  a cocycle contained in  th e  generator of I-11 (G, I[GIN ]).
From  the commutative diagram of 6), we have the following commutative diagram
of cohomology groups

I-11(G, JIG]) ---> 11 2 (G, A)

111 (G, JIG/N ])
Hence, if  w e  p u t u[a, v ] =crcl, N —dorN +d , N  i n  21 (d N  i s  a n  element o f  A ), we
have e= {u} . Therefore, fo r any a, rE N , we have u[Gr, T. ] = a d N . W e define an
1-cochain p , with values A  by 13161=dN . Then w e have adN = (5P)[a, 7 ]  (a , 7

E N ). Hence pF ,N e= { ap} =0, which com pletes th e  proof.

R e m a rk . L et E(I[G ], A ) be th e  se t o f a ll the  equivalent classes of the ex-
tensions of G-modules of I[G ] and A .  T hen , as is w ell know n, E(I[G ], A ) is
considered to be a commutative group w ith Baer multiplication and E(I[G ], A)
is isomorphic to 112 (G, A ) in  a  natural w a y . In  th e  above proposition, w e  have
w ritten  "Au i s  a n y  o f  A r t in 's  sp litting  m odules corresponding to  e", w hich
means Au is  a n y  of the G-m odules belonging to the  equivalent class which cor-
responds to eEH 2 (G, A).

In  the  following discussion, one sh a ll s e e  T h e o re m  5 .1  is  tr iv ia l fo r  th e
c a se  w hen there  is no  real place of k  which ramifies in K .  Hence, in  the  fol-
lowing, we suppose there  exists a  real place p o o f  k  w hich ramifies in K .  Let
u s  f ix  one of the extensions of Po t o  K , and denote its decomposition group by
N .  From Corollary 3 of our previous paper [ 4 ] ,  w e  have H 2 (N, C K ID K )=0  and
I1 2 (G, CKIDK)=<Y hc,k>" -- 'Z I [G :N ]Z . Therefore 72K ,k  satisfies the condition 1)
o f th e  above proposition. So, there exists an  exact sequence of G-modules

(5.2) 0 —> CN /DN  —> CN /DN  - - -> I[G IN ]-->  0.

N ow  w e shall show th a t GN /DN  is cohomologically trivial. L e t  u s  denote  the
connected component o f  th e  unity  of the idele g ro u p  K  b y  H K .  Since D K  is
th e  closure o f  TIK =H K  K </K < in  C K  ([3 ], C h . B I., §  7 .2 ., L em . 2 .) , w e  have
th e  following commutative diagram of G-modules w ith  exact row s and columns

0

0 DN/Hic

0 > HA  > C K  >C K / H K  > 0
(5.3)

0 > DK > C K  C K / D I  > 0

DN/FIK 0

0
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Since DK /I7K  is  u n iq u e ly  divisible, w e  have an isomorphism I-12 (G, CKIF-1.0'.=
I12 (G, CK ID K ). W e shall denote by CK /FIK  the extension of I [G IN ]  w ith  the
kerne l CK /FIK  corresponding to 77K,k by  th is  isomorphism. Then, w e have the
following exact sequence of G-modules 0->DK/TIK->CK/HK- >CK /DK -> 0 . By vir-
tu e  o f  th e  f a c t  D K IN K  is  u n iq u e ly  divisible, for the purpose of showing that

CK /DK  i s  cohomologically trivial, it is necessary and sufficient to show  CK /HK

is  cohomologically tr iv ia l. H K  is  w ritten  in  the form H "cp.
p *p o , real p, im aginary

• K p xo , w here p runs a ll the  infinite places of k except po  a n d  ( Kp")+  denotes the
subgroup of K ‘," -= H IG consisting of non-negative elements of K .  L e t  I7K  be

43ip
the G-module H  (Kp"),• H • K14 ,  w here Kp'0 is  the extension of Kp"0

PON), real p, im aginary

by  K [ G, N ] defined in  § 4. T hen  it is  easy  to  show the following sequence of
G-modules are exact

(5.4) 0 —> fIK - > CK - >CKIHK - > O.

W e see f IK  is  cohomologically trivial from Lemma 4.1, and C K  is  a lso  cohomo-
logically  trivial. Therefore CK /HK  i s  cohomologically trivial.

Lemma 5 .2 .  Let n ic k be a generator of 112 (G, CK ID K ): Z / [G :N ]Z .  Then
there exists a cohomologically trivial G-module CK ID K  s u c h  th at  the following
diagram is exact as G-modules

From  Proposition 5.1 6), there exists a commutative diagram  of G-modules

0 0

K [ G, N ] K [ G, N ]

(5.5) 0 -->  CK /DK — > C K /DK  - - - >  I [G ]  — a .O

0 —> CK /DK — > C K /DK  - ->  /[G/N] —> 0

0 0

Since, for every r Z ,  Hr(G, KEG, 1\11). -'Hr - 1 (N , Z ) is a t m ost order 2, we have
the following Lemma from Corollary 1.1

Lemma 5 .3 .  From  the diagram  (5.5), we see the derived cohomology sequences
of 0-->CKIDK -+CK ID K -4 [G ]-4 ) and 0--gf[G , N ]-+I[G ]->I[G IN ]-40 are isomor-
phic, that is, the follow ing diagram  is commutative
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M K [G , N ])— >H (IE G 1 )— > H r(1 [G /N ])— >

- - >  M C K  I D K ) — >  M C / D )  — > H ( I E G ]) — > I P - "(C K / D K )— >  .

Combining Lemma 3.2, Lemma 5.1 and Lemma 5.3, w e h a v e  th e  following
commutative diagram

r N , G

— > Z )
 

> H '(G , Z ) > Hr  - 1 (G  IEG IN ]) — >

Hr - J(G, KEG, N ])— > I [G ])  — > HT - 1 (G  I [G I N ]) - - >

- - > C K I  K )  - - > I[G ])  — > M G , C K ID K )- - >

••• — > M G , DK)
 

> M G , CK) >M G , CKIDK) — >

(r Z ),

w h e re  T 1V ' G  i s  t h e  transfer homomorphism from  N  to  G .  Hence we have the
following theorem

Theorem 5.1. W ith the notation and assumption as above, we have the follow-
ing commutative diagram

r N ,G

• • •  - - >  Hr - 2 (N , Z ) >11r-2(C, Z) — >

— > H'/G, DK )

 

 M G , CK ) — > M G , CK ID K ) - - > (rE Z ) .

 

§ 6. First, we shall sum m arize the  m ain  results o f  [11].
L e t k  be an  algebraic number field of finite degree, or an algebraic function

field of one variable over a finite field. L e t  K I k  be a  finite Galois extension with
the  group G . S  denotes a  se t of p laces of K  satisfying th e  following conditions

(Si) S  is  stable under G.
(S2) S  contains all archimedean places.
(S3) S  contains all places ramified over k.
(S4) S  is  large enough so that every ideal c lasses of K  contains a n  ideal

w ith  support in S.

There exist exact sequences o f  G-modules :

a' a
(A) 0 - - > E - - > J - - > C - - > 0

b' b
(B) 0 - - - > X - - - > Y - - - > Z - - - >  ,

in  which :
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E  is  the group o f S-units of K , that is, elements of K  which are units at
all places 13 not in  S.

J  i s  th e  group o f  S-ideles of K , that is , ideles whose 13-component is an
unit for each place 13 not in  S.

C  i s  th e  group o f  S-idele classes, which in  view of condition (S4) is  G-
isomorphic to the group of all idele classes of K.

Z  is the group of integers, G operating trivially.
Y  is the free Z-module generated by the places 13 in  S , an element aG G

operating by the rule

a( E n $ 13)= E n(a13)-= E
$ CS1 3 e s 93Es

X  is the kernel of the natural map b  w hich takes a n  elem ent y =E n $ 13
into its coefficient sum, En 13.

In  these statements, Tate proved the cohomology sequence derived from (A) is
isomorphic to that derived from (B), after a dimension shift of two : that is , he
has constructed a commutative diagram

••• ---> H r(X ) — > H r(Y ) --> H r(Z ) — > H r+ 1 (X )--->

(6.1) 1 ce; I a'," I al-1  ce7
0
. 1 - 'v v

••• ---> Hr+2 (E ) - -> Fir + 2 (j) --->  H ' 2 (C ) -->  Hr+8 (E) — > • ,

in  w hich the  vertica l arrow s cea ,  fo r  i=1, 2, 3 a n d  r E Z , are isomorphisms.
Here we shall prove the above result in  somewhat restricted situation . We as-
sume the set of places S  satisfies the following additional condition

(S5) S  is  la rge  enough  so  tha t < G  G I3 i s  th e  decomposition group of
13ES>=G.

Under this assumption, any a E G  is written in  a  form

a = a i  am, w h e re  ai( 4 3 i  S).

Let us denote 70 =1 and r i =a 1 ••• a i (1 Then we see

K[G , G13i ]
Hence we have

d = a -1G <K [G ,

Therefore, from the fac t tha t ic/0 1 (c G) is a  Z-basis of I [G ],  we obtain

(S5 )' <KEG, G1311913GS>=I[G].

Conversely, we can easily show (S5)' (S5). Hence the condition (S5) is equiv-
alent to the condition (S5)'.

Remark. In case G is  abelian, the condition (S5) is equivalent to that the
homomorphism H°(G, J)— >H°(G, C) is surjective. From the fact H '(G , J)=0 , we
see the condition (S5) is satisfied, if and only if  Hi(G, E)=0.
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Note that the conditions (Si), • • • , (S5) are automatically satisfied if  S i s  the
s e t  o f  all places of K .  Let S o be a set of places of k consisting of all the  re-
strictions of p G S . Then, from the condition (Si), S  is considered to be the set
o f  p la c e s  o f  K  consisting of all the extensions of pES o . For a  place p o f k,
we dente by the G-module defined in  § 4, and b y U , th e  subgroup of
whose elements are units at all places lying over p. L et H' Ki," be the restricted

pESO

product o f  {Kpl with respect to  {U0 }.
L e t If2} 2,/ be the set of all mappings from S o to  S  such that, :for every

p  S o ,  j 2 (3 ) is an extension of p to  K .  Since Kp' is defined when one fixes an
extension of p to  K , one can define H' x U , for every f .  (A E I) . FrompEsop 4 s o
the condition (S5), there exist finitely many K[G, G$ i ] (i=0, ••• , m) such that

(6.2) <K[G,

Let f i =f2, be the mapping of { f2 }  which takes value 43i . J i  denotes t h e  G-
module H' K  x H  Up corresponding to the mapping f i . We denote the decom-peS00 $ S 0

position group of f i (p) by Gi (p). Then it is obvious that J  is a  G-submodule of
Ji and Ji /J is G-isomorphic to K[G , Gi (p )]. We also see that Y  E Z[G/G i (p)]

peSo peSo

E Z [G ]lK [G , G (P )], where each KEG, G i (p )] is embedded i n  Z [G ]  in  a
pESO

natural w a y . Then we have the following commutative diagram

(6.3)

c i c i Ci
0— JJ - - , . .  J, - - ) • •  E Z[G] - - -> . Y --> 0

pES0

/a
i C i t d i ill

0— CC - - - - >  C — >  Z [G ] — - • › Z - ->  0 ,

in  which row sequences are exact and the homomorphism a and b are surjective.
The homomorphism d, is also an onto homomorphism induced from th e  natural
projections. Since Ji  i s ,  a s  a n  abelian g ro u p , th e  d ire c t sum  o f  J  and
E KEG, G ,(p)], c, is a  G-homomorphism defined by putting

peso

ci(x)=a(x)=x mod E E C  , for a n y  x E j ,

c , (y )=  y  E C , for a n y  y  K [ G, (P)] •

From (6.2), we see 11 ci  : EL—>C is a surjective G-homomorphism. Let us denote

f i  c, b y  c. T h e n  w e  have the following commutative diagram
i= 0

c" 7n, c'7 T h c
0 J  -----> Jo ED ( EJz) G oIZEGED(E./i) Y --> 00=1

lal c
(6.4)

0 C >  Z [G ] Z 0 ,
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where c"=c o , c=coe0 and d=d o e i  c l t oc. (0 means the zero mapping).

Since all the homomorphisms a, b, c, d  are surjective, w e  h a v e  th e  following
commutative diagram of G-modules with exact rows and columns

0 0 0 0

0 — > E c—>Ker d X  -->  0

(6.5) 0 — >  - - >  j f  — > Y  -->  0

la c Id

0 ---> C  —> — >Z[G] - - - > Z  - - > 0

'1
0 0 0

where we denote j o e ( i  J i )b y  j  and ( Z [ G ] ) E 1 ) ( ii J i )  by J.F r o m  the as-
i= PeSo

sumption (S3) and the fact that Kp' is cohomologically trivial, w e  se e  J a n d  :I
a re  cohomologically trivial. Hence we see G-modules Ker c  and Ker d  are also
cohomologically trivial. Hence, from Corollary 1.2, w e have

Theorem 6 . 1 .  Let S  be a set of places of K  which satisfies the conditions
(Si), • • •  ,  (S5). Then the diagram (6.1) is  commutative and the isomorphisms cei
( r E Z ,  are obtained as the compositions of the connected homomorphisms
6* derived from (6.5).

Let us generalize the above theorem to algebraic tori. Let M  b e  a torsion
free  G -m odule . T hen , from (6.5) we have the following commutative diagram
of G-modules with exact rows and dolumns

0 -->E®/VT —> (Ker c)OM —> (Ker d )0 M -->X 0 M — > 0

F rom  [ 6 ]  Theorem 2 ,  G-modules jO M , f 2 )M , -C O M  and Z [ G ] ® M  a re  G-
modules of trivial cohom ology. Therefore we have

Theorem 6 . 2 .  L e t S  be the set of places of K  satisfying (Si), • • •  ,  (S5).
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Then, for any  torsion free G-module M , the cohomology sequence derived front
0—>E0M—>J0M—>COM—>0 is isom orphic to that derived from  0—>X0M—>Y OM
—111—*0; that is, we have the following commutative diagram

•-• — >!,f -P"(G , X O M ) — > H r(G , Y O M ) — > 1 -1r(G, M)

Hr+2(G ,H r + 2 ( G 9  j o m ) H r+2(G  com ) 9

where the vertical arrows are the isomorphisms induced from the connecting homo-
morphisms derived from (6.6).

R em ark . The above theorems are not general as those of [11] and the way
of approach does not really improves on that o f [11], but is primitive and shows
the essential relation of [9 ] and [11].

In the rest, we shall refer to th e  cohomology o f  algebraic tori. For the
sake o f  simplicity, we restrict ourselves to the case when S  is the set of all
places of K .  Let T  be an algebraic torus defined over k  which splits over K.
From [7], there exists an isomorphism between the category of tori defined over
k  and split over K  and the dual o f  th e  category o f  finitely generated Z-free
G-modules. We denote by D the character module of T  and by M=Hom (D, Z)
the  integral dual module of T .  Then Theorem 6.2 enables u s  to describe the
Galois cohomology groups o f  th e  torus T  in  terms of the Z-free module M.
For example, we can describe the Tamagawa number of T  o f k  by the cohomo-
logy o f  X , Y  and M .  Let T ,, be the group o f k-rational points of T  and TA,,
be the adele group of T  over k. The factor group T A ,,/T ,, is called th e  adele
class group of T  over k  and dented by Ck ( T ) .  Since K  is the splitting field of
T ,  it is know n that T K  '- 'M(g)Kx, TA ,  and CK (T):--_'MOC K . In [8],
T . Ono has defined the  numbers h(T ) and i(T ) for a  torus T

h(T )=[1 -11 (G, T )] -=[11 - 1 (G, M )],

i(T )=[CK (T) G : CK(T)]=EKer (H 1 (G, T i c) —> H l (G, T Ai d)] •

L e t z (T )  be the Tamagawa number of T  over k. Then one has the following
fundamental formula ([8 ], Main theorem),

r(T )i(T )=h(T ).

From Theorem 6.2, we have

i(T )=EK er(H '(G , X 0A 1)— > Y OM ))]

-= [Coker (I-I- 2 (G, Y O M ) ---> H '(G , M ))].

F o r  every place p o f  k ,  w e f ix  an extension of p to K  and denote it by q3.
Since Y  is G-isomorphic to E Z [G IG O  (p runs all places of k ), we have

Hr(G, Y OM , Hr(G T ,  M) (rE Z ).
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Here G13 denotes th e  decomposition group o f  $ .  Hence we have

117$
i(T )=[Cok er( 4 H - 2 (GT , M) > H - 2 (G, M ))],

w h ere  7$  i s  t h e  tra n sfe r  homomorphism f ro m  G13 t o  G .  From  th e  integral
duality, we have

n p $
i(T )=[K er(H 2 (G, > 112 (G$ ,  D))1 ,

w here p l3 i s  the  re stric tion  homomorphism from  G  to  G .  T h e re fo re  w e  have

r(T )=-UP(G, t i lK e r l i p $ (H 2 (G, VH2(G$,
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