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Introduction.

Various cohomology groups related to class field theory have been investigated
by many authors. Especially, there are important results on the Galois cohomology
groups of ideles and idele classes of finite Galois extensions of algebraic number
fields (see, for example [3]). The latter result was first obtained by J. Tate
[9]. He also announced the corresponding result for the multiplicative group of
the algebraic number field itself in [10], of which the proof was published
later in [11], under a more general setting. Recently, we have investigated in
[4] the Galois cohomology groups of the factor group of the idele class group
by its connected component of the unity. In [5], we have constructed an
isomorphism between the Galois cohomology groups of the unit group of a local
field and those of some Artin’s splitting module.

In this paper, we shall prove the following theorem on the cohomology groups
of finite groups and show the known results cited above appear as its special
cases.

Let G be a finite group. Suppose that we are given the following com-
mutative diagram of G-modules with exact rows and columns

S N N
Y S Y
S Y Y
Lo

Then we have the following theorem

Theorem (A). With the notation as above, we have
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() Let As and B, be cohomologically trivial G-modules. Then the long exact
sequences derived from 0—A,—B,—C,—0 and 0—C,—C,—C;—0 are isomorphic.
We have the similar results for the following cases

(I) C, and B, are cohomologically trivial.

(0) A, and C, are cohomologically trivial.

(IV) As and C, are cohomologically trivial.

(V) A, and B, are cohomologically trivial.

(VI) A, By and Cy are cohomologically trivial.

(M) A, B, and C, are cohomologically trivial (§ 1, Theorem 1.1).

In §1, we shall show the above theorem. In §2, we shall show the main
result of [4] is considered to be a corollary of the case (II) of Theorem (A).
In §3, we shall show several auxiliary lemmas on the cohomology groups of
integral group rings. In §4, we shall construct a cohomologically trivial module
k} including Ky as a G-submodule, for every place p of .. Here K is a finite
Galois extension of an algebraic number field # with the group G, and Ky is a
G-submodule of K consisting of all the ideles whose Q-factors are 1 except
when Q divides p. In §5, we shall study a new treatment of the Galois co-
homology groups of Cg/Dg using the result of §4, where Cx is the idele class
group of K and Dy is its connected component of the unity. In §6, we shall
show the announced result of [10] in a more general setting, but not quite
general as that of [11].

Notation and Terminology. Let G be a finite group and A be a G-module.
H™(G, A) always denotes the r-dimensional cohomology group and is often ab-
breviated to H"(A). For a cocycle x of H(G, A), {x} denotes the cohomology
class containing x. Although, in §1, we use several symbols to express the
connecting homomorphisms derived from the short exact sequences, in other
sections, we always denote the connecting homomorphism by 4. For a G-module
A, A% denotes a G-submodule of A consisting of all G-invariant elements of A.
Let B be a module and P be a condition on B. We denote by <x|x is the
element of B satisfying the condition P> the submodule of B generated by all
the elements of B which satisfy the condition P.

§1. Suppose that we are given two diagrams of modules

M, M
& &{A
(LD & M, and g3 M}
A gs
M, M;} ’

where g; and g; are homomorphisms. For the sake of simplicity, we denote
these diagrams by the symbols 4(M,, M,, M,) and 4(M;, M, M;). Let h; be the
homomorphisms from M; to M; (1=/=<3) which satisfy the conditions gi-h,=
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=hyog,, gsehs==hseg, gichy==h,og,. By abuse of language, we call the
triplet of homomorphisms i =(h,, h,, hs) an anti-homomorphism from 4(M,, M,, M)
to A(M;, M,, M;) when at least one of the diagrams is anticommutative. We
call h=(h,, h,, h;) an anti-isomorphism in case each homomorphism A; is an
isomorphism. In case all the diagrams are commutative, we call the triplet h=
(hy, hs, hy), as usual, a homomorphism from 4(M,, M, M,) to 4(M;, Mj; M;) and
an isomorphism when each h; is an isomorphism. If the triplet h=(h,, h,, hs)
is either an anti-homomorphism or a homomorphism, that is, satisfies the condi-
tions g oh =4 hyogy, geohe=thgog,, geohs==+h,°gs, we call A an (a)-homomor-
phism and an (a)-isomorphism when each h; is an isomorphism.

In the following, we shall prove a theorem on the cohomology of groups.
Although one can generalize the result in a natural way, using the functors Tor
or Ext, here we shall be concerned with only the case of the cohomology of
groups. Let G be a finite group. We are given a commutative diagram of G-
modules

0 0 0
l D1 ‘l‘ (/’1 l
0 A, —> A, A 0
la gy, g, e
(L2) 0 B, B, B, 0
LBy, LBy, o
0 C, > C, G, 0
l l l
0 0 0

Here, all row and vertical sequences are exact. Let us define the graded modules
X, Yy, Z; (1=i<3) by

Z= % H(C) (=i=3).

Let aj be the homomorphism from H™(G, A;) to H'(G, B;) induced from a;. We
denote the homomorphism ﬁ aj: X;—Y; by the same symbol «;. The homomor-
phisms B;, ¢; and ¢; are defined in a similar way. Let us denote the connecting
homomorphisms derived from (1.2) by

7itH(C)— H™(4,) (1=is3),
07: H'(Ay) —> H™'(Ay),
0% H'(Bs) —> H™\(B)),
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0% : H'(C3) — H™Y(C)) reZ).

We denote the homomorphisms ﬁ 1i:Z;—X; by ri and ﬁ 07 by 04 Then,

from (1.2), we have the following diagram

X - >V
(1.3) Xs l¢l Qg YS ¢ SDZ
&1 2
\ a \
X, > Y, .

Here the triplet a=(a,, as, a;) is a homomorphism. In the same way as a, one
sees that B=(f1 Ba Bs), ©=(¢1, @2 @s) and ¢=(¢,, ¢», ¢s) are homomorphisms.
On the other hand, one sees the following diagram is anticommutative (see for
example, [2], Ch. I. §4)

.3
z.— 5%,

(1.4) 0% Ox

1
ZI—T.*_%‘}(l

Hence 04=(04, 03, 03) and r4«=(r4, 7% 7} are anti-homomorphisms. Finally, we
have the following diagram

(1.5) Tk
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In the following, we treat the cases when two of the nine graded modules of
(1.5) are zero modules, especially the cases when the two G-modules of (1.2) are
cohomologically trivial. If the two of the nine G-modules of (1.2) are cohomo-
logically trivial, there remain two short exact sequences contained in (1.2) such
as non of the G-modules of the sequences are assumed to be cohomologically
trivial.  Then it is natural to expect the assumption implies some relation be-
tween the cohomology sequences derived from the remaining two short exact
sequences. Certainly, if we suppose the G-modules C; and C, are cohomologically
trivial, the diagram (1.5) coincides with the diagram (1.3) and the triplet a=
(@), @y, a;) is an isomorphism from 4(X,, X,, X;) to 4(Y,, Y, V;). We restrict
ourselves to the cases when the derived cohomology sequences of the remaining
two sequences of (1.2) are (a)-isomorphic. One can easily show that there are
only fifteen cases which satisfy the condition. The diagram (1.2) is symmetrical
with respect to the diagonal line A,, B,, C;. From the duality theorem of the
cohomolomology groups, the diagram (1.2) can be considered to be also sym-
metrical with respect to the diagonal line A;, B,, C;. Therefore, one sees that
there are essentially following seven cases (1), -, (Vl):
(1) C, and B; are cohomologically trivial. Hence Z,=Y,=0.
(o) A, and C, are cohomologically trivial. Hence X,=Z,=0.
() A, and B, are cohomologically trivial. Hence X;=Y,=0.
(IV) A; and C, are cohomologically trivial. Hence X,=Z,=0.
(V) A, and B, are cohomologically trivial. Hence X,=Y,=0.
(VI) Any two of the three modules 4;, B; and C, are cohomologically trivial,
that is, all the G-modules A4;, B; and C; are cohomologically trivial.
Hence X;=Y,=Z2,=0.
(V) Any two of the three modules A,, B, and C, are cohomologically trivial,
that is, all the G-modules A,, B, and C, are cohomologically trivial.
Hence X,=Y,=Z,=0.

Theorem 1.1. With the notation as above, we see that
For the case (1), 4(X,, X,, Xs) and 4(X,, Y,, Z,) are anti-isomorphic,
For the case (1), 4(Xs, Ys, Z5) and AV, YV, Yy are anti-isomor phic,
For the case (V), d(Z,, Z,, Z3) and 4(Xs, Y5, Zs) are anti-isomorphic,
For the case (M), 4(X,, Yy, Z,) and A(Xs, Ys, Z;) are anti-isomorphic,
For the case (), A(X,, Y., Z,) and AZ,, Z,, Zs) are isomorphic,
For the case (IV), 4(X,, Y3, Z,) and A(Y,, Y,, Y3) are isomorphic,
For the case (VI), 4(X,, Yy, Z,) and A(X,, Y,, Z,) are isomorphic.

Proof. Here, we shall prove the cases (1) and (I) which we shall use
later.

Case (I). It is sufficient to show the diagram (1.5) induces the following
vertical isomorphisms u and u’ such as the following diagram is commutative
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r r+1 r+1
a Bi

T
we = H'(CY) — Hr+1(A,) ————— HT™+1(B))

H™H(C)) = -+

® u ® u’ ©
r ¢§ ¢§ §+1 T+1
++ = H"(C,) ———— H'(C,) ——— H"(C;) —— H™*(C)) — - (r€2).
Construction of u. From the assumption, the homomorphisms ¢[*': H*!(4,)

—H™(A,) and 73: H(C,)—»H™*'(A,) are bijective. The isomorphism u:H™(A,;)
—H"(C,) is defined by (y7) 'e¢T*'. Then from the commutative diagram

HA(C) —> Hr1(4,)
o5 it
73

H7(C,) —/—> H™*(A4,) ,

we see the diagram @ is commutative.
Construction of u’. From the assumption, the homomorphisms dj: H(Bs)—

H™*'(B,) and fj: H"(B:,)—H"(C;) are bijective. The isomorphism u’:H™*'(B,)—
H'(C,) is defined by putting B3-(d5)"'. Then, from the commutative diagram

Bs

H'(By) T T—o H"(Cy)

8
2 A o5

7+1
Hr(B) ——> H™(C)

we see the diagram © is commutative. Now, we shall show the following

diagram ® is commutative

T41
H™(A,) _._al_; H”"(B,)

=

H™'(A) ® H'(By)

b e

H(Cy) ————> H'(Cy)

Let a be any cocycle of H™*'(A,). Then ay¢,(a)) is a cocycle of H*(B:)= {0}.
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Hence there exists a »-cochain b with values in B, such as d(b)=a,(¢pi(a)). Then
3(B:(b))=B:(0(b))=Balas(p1(a)))=0, and so B.(b) is a r-cocycle with values in C,.
From the equation d(b)=ax(pi(a)), we see 73({(B(b)})={pi(a)} in H™'(A,).
Therefore we have u({a})={B(b)}, and so ¢iou({a})={¢P:B.(b)} in H(C;). On
the other hand, from the condition p.(a,(a))=a,(p,(a))=0(b), we see 05({(:(b)})
={a,(a)}. So we have u’-al*'({a})={Bs°¢:(b)} in H"(C;). Hence, by virtue of
the fact Bse¢p,=¢s°B., we have ¢j-u=u’-ai*!, and so the diagram ® is com-
mutative.

Case (II). It is sufficient to show the diagram (1.5) induces the following
isomorphisms v and v’ such as the following diagram is either commutative or
anticommutative

Sr T+1 r+1
wor = H(B;) — 25 H™(B)) —& 5 Hr+y(By) — 5 Hry(B,) ..

Il @ v ® v ©

" 1
71; T+

> H*(Ay) ——> H™Y(B;) = - (reZ).

3

<= H'(By) > 11"(C,)
Construction of v. From the assumption, the homomorphisms 87! : H™+(B,)

—H™Y(C,) and 05: H'(C;)—H™(C,) are bijective. The isomorphism v:H™*(B,)

—H"(C,) is defined by (05)~'-B7*'. Then, from the commutative diagram

or
H"(By) ——— H™\(B,)
0}

H™(Cy) __./E/__) H™YC)

we have the diagram @ is commutative.

Construction of »”. From the assumption, the homomorphisms aj*': H+1(A4,)
—H™'(B,) and ¢7*: H"*'(A,;)—H™*(A,) are bijective. The isomorphism v’ : H™*!(B,)
—H™*1(4,) is defined by ¢7*'e(aj*!)"'. Then, from the commutative diagram

¢11-+1

HT™(A,) e Hr+1(4,)

Zagﬂ aitt

¢'7£+1

H™Y(B,) ——— H™'(B,) ,

we see the diagram © is commutative. Let us show the following diagram ®
is anticommutative
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A
H™'(B)) ———————> ["™(B,)

e

H™I(C) ® H™1(4,)
o
H7(Cy) B sy .

Let b be any cocycle of H™*!(B,). Since H™*(C,)=0, there exists a r-cochain ¢
with values in C, such as ¢3(B8:(0))=0(c). Hence 0(¢hs(c))=¢s(s(B:(6)))=0, and
S0 ¢y(c) is a cocycle of H'(C,). By the definition of the connecting homomorphism,
we have 05({¢s(c)})={B:(b)}. Hence we have v({b})=/{¢s(c)}. Since B is a
surjective homomorphism, there exists a r-cochain b with values in B, such as
B:(b)=c. Then we see ¢i({b})={p,(b)—d(d)} in H™*'(B,) and Bu(ps(b)—d(b))=
©3(B1(b))—0d(c)=0. Since a, is an injective homomorphism, there exists a (»+1)-
cocycle a of H™!(A,) satisfying a,(a)=¢.(b)—d(b). Then we have v est!({b})
={¢:(a)}. On the other hand, we see ¢s(c)=¢s(B2(0))=PBs(¢:(b)) and &(¢(b))=
Ga(0(D))=hs(a(b)— as(@)) = —s(az(a))=—as(¢s(a)). By the definition of the con-
necting homomorphism, we have 7i(¢s(c)})=— {¢.(a)}. Hence, we have v'-¢}*!
+7rio.v=0, and so the diagram @ is anticommutative. It is easy to show the
other cases in the same way as above.

From this theorem, the following corollary is obvious.

Corollary 1.1. For the case when one of the exponents of the graded modules
Xi, Xs, Z, and Z, is at most 2, all nine quadrilateral diagrams contained in the
diagram (1.5) are commutative. Hence, for all the cases (1), ---, (), two trian-
gular diagrams are isomorphic.

We shall show another application of the above theorem. We assume G-
modules A,, As;, B,, B;, C, and C; of the following diagram (1.6) are cohomolog-
ically trivial and all the row and vertical sequences are exact.

0 0 0 0
l b oo l
0 A, A, A; A, 0
l b oe l
(1.6) 0 B, B, B, B, 0
l b og l
0 C, > C, Cs C, 0
} l l |
0 0 0 0
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From this diagram, we get the following new commutative diagrams of G-modules
with exact rows and columns

0 0 0
l bow
0 A, A, Im¢p—0
l b oe
1.7 0 B, B, Im¢, 0
! Vo
0 Q, C, Im ¢, 0
; ! )
0 0 0 ,
0 0 0
l ! l
0 Im¢, As A, 0
! l )
(L.8) 0 Im ¢, B, B, 0
! l !
0 Im ¢, G, C, 0
) l i
0 0 0 )

where Im¢; is a G-module consisting of all the elements ¢;(x)(x&L;). Here
L,=A, L,=B, and L;=C, Let us denote the connecting homomorphisms of
above diagrams by

rii H(C;) — H™'(A)) (1=i=4),

7 H(Im¢y) — H'(Im¢,),

07 : H(Im¢;) —> H(M;) (1=i{<3),
where M,=A,, M,=B, and M,=C,.

07 H'(N) —> H*'(Im¢y;) (1=<i<3),
where N,=A,, N,=B, and N,=C,.

Then, from Theorem 1.1 case (VII), we have the following diagram
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v > (A ——> H(B)) ——> H(C) — s HTH(A) > e

l?sr ® R ® R © R

Fr+l

(L.9) o= H™(Im @) — H™(Im ¢,) = H™(Im ¢g) —> H™*(Im ¢) — -+

Rarl ® Ro ® Do ©® 120

2
77

e o HT2(A)) ——> H"”(B;) — H™(C,) ——> H™3(A,) — - (reZ).

In this diagram, the diagrams @, @, ® and ® are commutative and © and ©
are anticommutative. Hence, we have

T1l-+2(6§+1 05'{;) — (7,11'+2 °5§+1)5‘g — (_51{+2 ° fr+1)gg: —5I+2(fr+l ° 59
=07H(07H ey ) =(07* %07+ )r1.
Finally, we have the following commutative diagram

o —> H(A) —> H(B,) —> H'(C,) —> H"(A) —> -

(L.10) |2 |2 |2 |2

o —>H™A)—>H™**(B)—H**C)—H*"(A))—> - (r€2).

Here the vertical arrows are the compositions of the connecting homomorphisms
of (1.9). We define the graded modules X;, Y; and Z; (1=/<4), in the same
way as Theorem 1.1 and denote the homomorphisms corressponding to 67 and
8% by 04 and §i. Then we have

Corollary 1.2. Suppose that the G-modules A;, As, Bs, B;, C; and Cs of the
diagram (1.6) are cohomologically trivial. Then the triplet of homomorphisms
(Okob%, 02003, 03°6}) is the isomorphism from A( X, Y. Z,) to 4(X,, Y, Z,), that
is, the diagram (1.10) is commutative.

§2. Let G be a finite group and A be a G-module. Let & be a 2-cohomology
class of A and let A be Artin’s splitting module of & Then we have the
following lemma which was proved by J. Tate ([9], Theorem 1).

Lemma 2.1. With the notation as above, the following two conditions are
equivalent :

i) HYN, A)=0 and H*N, A) is a cyclic group of the same order as N,
generated by pg n&, for all subgroups NCG. Here pg n is the restriction
homomorphism from G to N.

iiy HWN, A)=H¥N, A)=0 for all subgroups NCG.

Remark. It is well known that if A satisfies the condition ii) of this lemma,
A is cohomologiclly trivial, that is, H"(N, A)=0 for all subgroups NCG and for
all integers rZ ([3], Ch. I, Th. 8.1).
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In this section, we shall treat the G-module A and the cohomology class &
satisfying the conditions i) and ii) of the above lemma. We assume we are
given an exact sequence of G-modules:

a
2.1 0—C—>A—>B—0.

Let us denote the 2-cohomology class ax(§)e H¥G, B) by » and Artin’s splitting
module of % by B. Then we can define a G-homomorphism @: A—B by putting
ala+x)=a(a)+x, for every a€A and x€I[G]. Here I[G] is the augmenta-
tion ideal of the group ring Z[G] generated by d,=o—1 (¢=G). Then it is
easy to show kera=C. Hence we have the following exact sequence of G-
modules

- a
(2.2) 0—C—>A—>B—0.

Combining (2.1) and (2.2), we have the following commutative diagram of G-
modules

(2.3) — J[G] — 0

L7

O We— Dle— Ne— o

lQl

IfG] —0

I

[en)
Ce—Pe— N <— Oe— o

Since A is cohomologically trivial, we have the following theorem from (II) of
Theorem 1.1.

Theorem 2.1. Let A, A, B, C and I[G] be G-modules in (2.3). Then the
following diagram is commutative for every reZ

) 5
s —> H(B) —> H"(B) —> H'(I[G]) —> H™*(B) —> ---

e e e,

o —> H'(B) —> H™*Y(C)—> H™Y(A) —> H™*(B) —> -+,

where 04 is the connecting homomorphism and we have abbreviated HYG, X) to
HYX) for a G-module X.

Let us write the isomorphism dy: H"(B)=H™+'(C) in a more explicit form.
First, we fix a 2-cocycle u contained in & Though the module A4 is determined
only up to G-isomorphisms, we can regard the module A as the splitting module
of u. Since v=a(u) is a 2-cocycle contained in %, the module B is similarly
regarded as the splitting module of v. Therefore we can consider the mapping
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d : G—I[G] satisfies the following equation in A
od.=ds,.—d,+ulo, ], for every o, G,

where we set d,=u[l, 1]. Then we see HYG, I[G])=Z/[G:1]Z is generated
by the cohomology class {d}. For the sake of the following proposition, we
replace the integer » by p+1. Let N,CH?(G, Z) be the subgroup consisting of
all the cocycles h satisfying the condition

*) WWh=dg,

where g is a (p+1)-cochain with values in B and U denotes the correspondence
of cochains which induces the cup product (for details, see [3], Ch. I, §6.4).
Let My, be the subgroup of H?*(G, B) consisting of all the cohomology classes
{dUh—g}, where h and g satisfies the above condition (*). It is easily verified
that Mpy,=H?*(G, B). So we obtain an explicit form of dy:H?* (G, B)=
H?+%(G, C) by

Ox{dUh—g} ={u\Vh—0d(s-g)},

where s is a cross section from B to A such as ae.s=idp.

Here we shall show this explicit form implies the main theorem of our pre-
vious paper [5]. Let % be a local field and K be its Galois extension of finite
degree. We denote the Galois group by G. Let us denote the unit group of K
by Ux. Then we have the following exact sequence of G-modules

a
l—-Ugx—K—Z—1.

Here a is the normal exponential valuation with respect to K. Let &x .= {u}
be the canonical cohomology class for K/k. Let us denote ay(ég, )= {a(u)=v}
by 7k, and Artin’s splitting module of nx,, by Z. Then, in our previous paper
[5], we have showed there exists an isomorphism v,: H?*¥G, Ug)=H?*\(G, Z)
for every integer p.

Proposition 2.1. ([5], Theorem). For every integer p=Z, we have an iso-
morphism

vy HP*¥G, Ug)y=H?*'(G, Z),
such that the following diagram is commutative

o —> HPHY(Z) —> HP+\(Z) —>HPY(I[G])—> HPYHZ) —> -

A
| | ¥» {
o —> HPH(Z) —> HPH(U ) —> HPY(K) —> HPYHZ) —> - .

Let us replace A, B and C of Theorem 2.1 by K*, Z and Ug, respectively
and other morphisms and symbols by corresponding ones. From the explicit
form of d,, we have

04 HP*'(G, Z)=HP**G, Ug) and d4{d\Uh—g}={wu\Uh)/d(sg)},
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where s is a cross section from Z to K* and h is a p-cocycle of H?(G, Z) and
g is a (p+1)-cochain with values in Z which satisfy the condition (*). On the
other hand, by the definition of v,, we can easily verify that

vp{(w\Jh)/d(seg)} ={d\Uh—g}.

Hence v,=(d4)"'. Therefore Proposition 2.1 is obtained as a corollary of
Theorem 2.1.

§3. Let G be a finite group and N be its subgroup of index n. We put
G=_\20,~N with ¢,=1 (the identity of G). Let us denote by Z[G/N] the free

Z-module generated by a;N (1=7/=n). Let ¢z be an onto G-homomorphism from
Z[{G/N] to Z defined by putting ss(c;N)=1 for every 7. Then we have the
following exact sequence of G-modules

0—I[G/N]— Z[G/N] —E—G—>Z—>O,

where I[G/N] is the kernel of ¢¢. Since G is a finite group, Z[G/N]=Ind% Z
is isomorphic to Homgzy1(Z[G], Z)=Coind% Z ([1], Ch. I, (5.9) Prop.). There-
fore we have

Lemma 3.1. With the notation as above, we have the isomorphism

H(G, Z[G, N))=H"(N, Z) (reZ).

Let us define a G-homomorphism ey from Z[G] to Z[G/N] by putting
en(o)=aN (for every c=G). We denote the kernel of ey by K[G, N]. Then
it is easily verified that e y(/[G])=I[G/N] and K[G, N]JCI[G]. Therefore we
have the following commutative diagram of G-modules with exact rows and
columns

0 0
! !
K[G, N] =—=K[G, N]

i

3.1 0 I[G] Z[G] Z —>0

l fev |

0— JI[G/N] — Z[G/N] — Z —0

l l

0 0

Since Z[G] is cohomologically trivial, this diagram satisfies the conditions of
case () of Theorem 1.1. Hence we have

Lemma 3.2. Two cohomology sequences derived from 0—K[G, N]—I[G]
—I[G/N]1-0 and 0—I[G/N1-Z[G/N1—>Z—0 are isomorphic, that is, the fol-
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lowing diagram is commutative for every reZ

= H(G, K[G, ND)—H"(G, I[G])—~H'(G,I[G/N]))—H* G, K[G,N])— -

H? . ¢ \2 ; ”2

<~ H"YN,Z) —> H"YG,Z)—>HG,I[G/N])—> H(N,Z) —> .-,

where t is the transfer homomorphism from N to G.

Let us investigate the cohomology group of Z[G/N] more precisely. Let H
be another subgroup of G and let E be a set of representatives for the double
cosets HoN. Then as H-module

Z[G/N]z%“EZ[HoN/N]; %)EZ[H/HﬂoNa"]
([1], Ch. M, (5.6) Prop.). Hence, from Lemma 3.1, we have
Lemma 3.3. Let H and N be subgroups of G and let E be a set of repre-
sentatives for the double cosets HoN. Then we have

H'(H, Z[G/N])E%)EH’(H(\JNG", Z) (reZ).

From the cohomology sequences derived from 0—-K[G, N]1-Z[G]—Z[G/N]
—(0, we have H*(H, K[G, N])=H"(H, Z[G/N]) for every rZ. Therefore,
from Lemma 3.3, we have

Corollary 3.1. With the notation as above, we have

H™*(H, K[G, N))=H(H, Z[G/N])= a%)EH'(Hf\oNa“, Z) (rez).

Now we consider the relation of the following two exact sequences
0—> I[N]—Z[N]—Z —0.
0—> K[G, N]—Z[G]— Z[G/N]—0.

By virtue of the fact that Z[G] is N-projective, the functor Ind$ is an exact
functor. So, from the upper exact sequence of above, we obtain an exact
sequence of G-modules

0—>Ind$ I[N] —> Ind§ Z[N] —Ind% Z — 0.

We can easily verify that Ind§ ILN]=K[G, N] and Ind§ Z[N]=Z[G]. Hence
we have

Lemma 3.4. With the notation as above, the following two exact sequences
of G-modules are isomorphic

0 —>Ind§ ILTN]—>Ind$ Z[N] —> Ind%Z — 0

| I l

0— K[G, N] — Z[G] —Z[G/N]—0.



On the cohomology of groups 379

§4. Let k2 be either an algebraic number field of finite degree or an
algebraic function field over a finite field, and K be its finite Galois extension
with the group G. Let p be a place of 2 and P be one of its extensions to K.
We denote the decomposition group of B by N. Let K be a G-submodule of
K consisting of all the ideles whose Q-factors are 1 except when £ divides p.
Let us fix a canonical class &x,, of K/k and denote Artin’s splitting module gf
&x.» by Cx. Here we shall construct a cohomologically trivial G-module Ky
such as the following diagram is commutative

0 Ky Kr K[G,N]—> 0
4.1) la, ldp lzN
0 Cx >Cx I[G] —0,

where a, is a natural G-homomorphism and ¢y is also the natural embedding
and g, is an into G-isomorphism. Let ¢y be the natural embedding from K3
the multiplicative group of the PB-completion of K to Ky. Then we have the
following commutative diagram

¢ a
HXN, Ky) >———> H(N, K§) ——> H¥(N, Cx)

4.2) \ J.L.N,o
H*G, K3;)

By virtue of the fact that the restriction homomorphism pg¢, » : H¥G, Cx)—H*N, Cxg)
is an onto homomorphism, there exist a canonical class of Ky/k, denoted by &g
such as

apotp(p)=pc, vEx 1)

Hence we have a commutative diagram

1 > K3 W ks N 1
A
1 Cx Wi s G 1,

where Wy, , and Wy 4, are the Weil groups of £x,, and &g, respectively. We
n
putXG=iL=jlaiN, with a,=1. We set 6=a; when ¢ belongs to the coset a;N.

Then any element ¢ =G is uniquely written as the product 4(6 =N). There-
fore, if we consider the 2-cocycles of &k, , and &g as the factor sets of the group
extensions of (4.3), we can take the cocycles u and v which satisfy the follow-
ing conditions. &y={u} such as u[o, r]=u,u.u;! (¢, reN), where 6—u, is a
cross section from N to Wy s, With u,=1. &g ,={v} such as v[e, 7]=v,0.0;}
(0, €G), where ¢—v, is the cross section from G to Wg , which satisfies
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Ve=v5V;=vzug, With vi=1, where Wx, ,, is considered to be imbedded in Wy_,.

Let us define the G-module structure of ]Z, using these cocycles u and v. We
consider K, is a G—s%module of Ky and so, for the purpose of defining a G-
module structure on Ky, it is sufficient to define the G-action on K[G, N]. Since

K[G, N]is, asa Z-module, lzn)eN Z(a;p—a;), we can define the G-module struc-
~ t=le
ture of K; by
o(aip—a)=0da,p—oa;tvlo, a;pl/vle, ai]l (0€G, peN).
By the definition of v, we have
vlo, aiP]/U[O'y ai]:(Uaaivai_lva—l)(vuvawvo‘a“)_1)
=ViaVsa;VpVsae Vaa; '
R ~~

=ga;uloa; pl]EK;.

Hence the above definition is well defined and from the fact that a;0—a;=d.,;p
—dg,, the commutativity of the diagram (4.1) is obvious. Let us show the
cohomological triviality of ]z Let Kj be Artin’s splitting module of . Then
we see, as a Z-module,

Kr=K[G. NI®K;= gai(ff),

where a;(Kg)=a;(K$)@®a;(I[N]). Since the isotropy subgroup of Ky is N and
vla, a;p]/vla, a]=vaulca, ol (for every 6€G, peN), we see a(a,(Kg))=
ga,(Ky)=0da;(Ky). Therefore, from a characterization theorem of the induced
module (see, for example, [1], Chap. 1. (5.3) Prop.), we see Iz*zlnd?} Kj. On
the other hand, we see K[G, N]=Ind% I[N] and K;=Ind$ K. Summarizing
these, we can easily show

Lemma 4.1. With the notation as above, we have the following G-isomorphism
of two exact sequences

0 —> Ind$ K¢ —> Ind$ K§ —> Ind§ I[[N] — 0

c ok

0— Ky Ky K[G, N]—0.

From this lemma, we see K;* is cohomologically trivial.

Remark 1. In the above discussion, we have fixed the cocycles v and wu.
But, as is well known, Artin’s splitting module is uniquely defined by t@
cohomology class up to G-isomorphisms. Hence, we can consider the module K*
is defined by the cohomology class &g and Cx by &g, s.

Remark 2. We can show the cohomological triviality of I?; in a more straight
way. For every H<G, we have the following derived cohomology sequence of
4.1).
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~ 6 ~
0— H'(H, Ky')— H'(H, K[G, N])—*>H2(H, Ky) — H*H, Ky)
— H*H, K[G, NJ).

From Corollary 3.4, we have H¥(H, K[G, N])=H'(H, Z[G, N])=0. Therefore, to
show the cohomological triviality of ]?.; , it is necessary and sufficient to show the
connecting homomorphism dx: HY(H, K[G, N])—H*H, K;) is an isomorphism.
Let E be a set of representatives for the double cosets HoN. Then, from
Corollary 3.1 and Ky =Ind% K, we have the following commutative diagram

0« :H'(H, K[G, N]) H¥H, Ky)

| l

> HHNoNe™?, Z)= 3 HX(HNaoNo™', Kp).

JEE ¢EE

Hence 04 is an isomorphism, and so K is cohomologically trivial.

§5. Let & be an algebraic number field of finite degree and K/k% be a finite
Galois extension with the group G. In the following, we assume the number
of real places of % which ramify in K is at most 1. Let us denote by Cx the
idele class group of K and by Dy the connected component of the unity of Cxg.
We denote by N the decomposition group of the real place which ramifies in K.
Let &k, be the canonical cohomology class of H*G, Cx). We denote by 7, .
the image of & , of a natural homomorphism from Cx to Cx/Dg. Let us denote
Artin’s splitting modules of &x,, and 9k, by Cx and by Cx/Dyg, respectively.
Then we have the following commutative diagram of G-modules with exact
rows and columns

0 0
l l
Dy = Dg
Lo
0— Cx — Cx —I[G]—0

l oo

0 —Cx/Dx—> Cx/Dg—> I[G] —> 0

T

0

Since Cx is cohomologically trivial, we have the following lemma from Theorem
1.1 case ().

Lemma 5.1. For every vr&Z, the derived cohomology sequences of 0—Dj—
Cx—Cx/Dg—0 and 0—-Cy/Dr—Cx/Dg—I[G]—0 are isomorphic, that is, the fol-
lowing diagram is commutative
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wo—>  H'(Dg) —> H(Cg) —> H(Cg/Dg) —> H*'(Dg) —> -

2 2 H I

- —>H""Cx/Dg)—>H NI[G])—> H(Cx/Dx) —>H (Cx/Dg) —> .

Now, we shall prove a general proposition concerning the extensions of
groups as follows.

Proposition 5.1. Let G be a finite group and N be its subgroup and A be a
G-module. Let pg,n be the restriction homomorpism from HG, A) to HXN, A).
We fix a cohomology class & of H*G, A) and denote pg, yé by n. Then the fol-
lowing six conditions are equivalent:

1) 5=0 in HXN, A).

2) Let A; and A, be any of Artin’s splitting modules corresponding to & and
7, respectively. Then the extension 0—>A—>71,7—>1[N]—+0 splits as an extension
of N-modules and there exists an injective N-homomorhism k such that the follow-
ing diagram is commutative

0 A a, IIN] 0
| % |
0 A A I[G] >0,

where the right arrow is a natural embedding.

3) Let 1-A—-8—>G—1 and 1-A->N—>N—1 be any of the extensions of
groups corresponding to & and ), respectively. Then the extension 1-»A—->N—->N—1%
splits and there exists an injective homomorphism A such that the following
diagrom is commutative

1 > A R N 1
U L
1 A s G 1,

where the right arrow is the natural embedding.
4) There exist a cocycle u of & which satisfies the equation

ule, tpl=ulo, 7], for any a,7€G and peEN.

5) For any of Artin’s splitting modules A; corresponding to &, there exists an
injective G-homomorphism p such that the following diagram is commuiative

K[G, N1
P
a5 > 16.

Here the vertical arrow is a natural embedding.
6) For any of Artin’s splitting modules corresponding to &, there exists a
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G-module A which is an extension of I[G/N] with the kernel A and also exists a
surjective G-homomorphism v such that the following diagram is commutative

0 A A, I[6G] ——0
lv
A

where ILG]—I[G/N] is the natural onto homomorphism.

ITG, N] >0,

v
0 A

Proof. We can consider the integral group ring Z[G] to be a supplemented
algebra with a Z-algebra homomorphism ¢: Z[G]—Z. Then, from a well known
relation of the extensions of groups, the 2-cohomology groups of groups and the
extensions of augmentation ideals, it is easy to show the equivalence 1)&2)&3).
(See, for example [2], Chap. XIV).

3)=4). We can take a cross section » from N to N such as

UgUe=1Ugr for every o, 7EN.
We set G= UEaN, where E is a set of representatives. For every a<E, we
ae

fix an element u,€® such as 7(u,)=a. In the same way as §4, we set é=a
when ¢ N=aN (a€E), and denote 6 !¢ by &. Since every element c=G is
uniquely written as the product 64, we can define a cross section u from G to
® by putting u,=usu;. Then, for every ¢, G and peN, we have

uz-pua.-p_]z(ufu?p)(uv?p-luri_r—])
=uz(uzupUp "Ugr g
=ususig: Uz

:urua:-l .

Hence we have u,ucous:p '=usu.us."'. Therefore the factor set {u[g, t]=

U,uug. o, t€G} satisfies the condition 4).

4)=5). Let A, be Artin’s splitting module of the cocycle u. Then the con-
dition 4) is nothing but the condition in order that the module K[G, N] may be
a G-submodule of A,. Let A, be Artin’s splitting module of any cocycle u’
contained in & Since A, is equivalent to A4,., we have a commutative diagram

A A, I[G) 0
N L
0 A Au I[G] 0.

Then the restricted homomorphism p=p'|K[G, N]: K[G, N]—A,. satisfies the
required relation.

5)=6). Since A.;/p(K[G, N]) is a G-module, it is obvious that the sequence
0->A—A:/p(K[G, N)—I[G/N]—0 is exact as G-modules. So, if we denote
A¢/u(K[G, N1) by A, A satisfies the condition 6).

6)=1). From the exact sequence 0—I[G/N]—Z[G/N]—Z—0, we see

0
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HY G, ILTG/N1))=Z/[G:N]Z. Moreover, if we set d,y=cN—N in I[G/N], we
see d[o]=d,y (6=G) is a cocycle contained in the generator of HY(G, I[G/N]).
From the commutative diagram of 6), we have the following commutative diagram
of cohomology groups

HYG, ILG]) — H*(G, A)
|
HYG, ILG/N])

Hence, if we put u[e, t]=0d.xn—ds.y+dony in A (dy is an element of A), we
have £&={u}. Therefore, for any ¢, t€N, we have ul[o, t]J=0cdy. We define an
1-cochain §, with values A by Blo]=dy. Then we have gdy=(0p8){c, 7] (0, T
€N). Hence pr y6=1{08} =0, which completes the proof.

Remark. Let E(/[G], A) be the set of all the equivalent classes of the ex-
tensions of G-modules of I[G] and A. Then, as is well known, E(I[G], A) is
considered to be a commutative group with Baer multiplication and E(/[G], A)
is isomorphic to H%G, A) in a natural way. In the above proposition, we have
written “A. is any of Artin’s splitting modules corresponding to &”, which
means A, is any of the G-modules belonging to the equivalent class which cor-

responds to £ H3(G, A).

In the following discussion, one shall see Theorem 5.1 is trivial for the
case when there is no real place of %2 which ramifies in K. Hence, in the fol-
lowing, we suppose there exists a real place p, of 2 which ramifies in K. Let
us fix one of the extensions of p, to K, and denote its decomposition group by
N. From Corollary 3 of our previous paper [4], we have H*N, Cx/Dg)=0 and
H*G, Cx/Dg)={ng.1>=Z/[G:N]Z. Therefore 7k, satisfies the condition 1)
of the above proposition. So, there exists an exact sequence of G-modules

(5.2) 0—> Cx/Dx —> Cx/Dgx —> I[G/N]—> 0.

Now we shall show that C/;/\D,/( is cohomologically trivial. Let us denote the
connected component of the unity of the idele group K; by Hy. Since Dg is
the closure of Hy=Hy K*/K* in Cgx ([3], Ch. 1., §7.2., Lem. 2.), we have
the following commutative diagram of G-modules with exact rows and columns

0
I
0 Dx/Hg
! L
0 HK CK CK/HK ——_)O
5.3) | | |
0 D[K Cx Cx/Dp —0
Dyx/Hxk 0

;
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Since Dx/Hy is uniquely divisible, we have an isomorphism H*G, Cx/Hyg)=
H*G, Cx/Dg). We shall denote by C;TFI: the extension of I[G/N] with the
kernel Cx/Hy corresponding to 7g,, by this isomorl)h\ise. m we have the
following exact sequence of G-modules 0—Dy/Hg—Cx/Hg—Cx/Dg—0. By vir-
tue of the fact Dx/Hy is uniquely divisible, for the purpose of showing_t\/lmt
C:/\ﬁ,; is cohomologically trivial, it is necessary and sufficient to show Cx/Hg

is cohomologically trivial. Hg is written in the form TI (Ky).- II Ky
p#pg, real p,imaginary

-Ky:, where p runs all the infinite places of k except p,, and (K;*). denotes the
subgroup of K,’=TI K4 consisting of non-negative elements of Kg. Let Hyx be
Bip

the G-module II l(K,,*)ﬂu 11 K;-f(:;, where I?.:f) is the extension of Ky
p a

#pg, re p,imaginary
by K[G, N] defined in §4. Then it is easy to show the following sequence of
G-modules are exact

——~——

(5.4) 0—> Hy —> Cx —> Cx/Hx —> 0.
We see Hy is cohomologically trivial from Lemma 4.1, and Cx is also cohomo-

logically trivial. Therefore Cx/Hg is cohomologically trivial.

Lemma 5.2. Let g, , be a generator of HNG, Cx/Dg)=Z/[G:N1Z. Then
there exists a cohomologically trivial G-module Cg/Dy such that the following
diagram is exact as G-modules

0—> Cx/Dg —> Cx/Dx —> I[G/N]—> 0.

From Proposition 5.1 6), there exists a commutative diagram of G-modules

0 0

l !

K[G, N]=—=KI[G, N]

l l

(5.5) 0—)CK/DK—> CK/DK I IEG] ——>O

H l l

0 —>Cx/Dx—> Cx/Dx —> I[G/N] —>0

1 l

0 0

Since, for every re€Z, H(G, K[G, N])=H"'(N, Z) is at most order 2, we have
the following Lemma from Corollary 1.1

Lemma 5.3. From the diagram (5.5), we see the derived cohomology sequences
of 0-Cx/Dg—Ck/Dg—I[G]—0 and 0-K[G, N]1-I[G]—=I[G/N]—0 are isomor-
phic, that is, the following diagram is commutative
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o —>H"I[G/N]1— H'(K[G, N)) —H'(I[G]) —> H"(I[G/N]) —> ---

[ ? | K

:—> H'(Cx/Dx) —> H'(Cx/Dx) —>HULG]) —>H(Cr/Dg)—> ---.

Combining Lemma 3.2, Lemma 5.1 and Lemma 5.3, we have the following
commutative diagram
TN’G

o> HN, Z) —— H"%G, Z)—> H\(G, I[G/N]) —> -

| ! |

- —> H""YG, K[G, N)— H"YG, I[G]) — HYG, ILTG/N]) — -

{ {
—>HT‘(GI‘, Cx/Dx) ——>HT"(HG. I[G]) — H'(G, ‘CK/DK)—_)"‘
2 g |

—>H(G, Dg) ——> H(G, Cx) —> H'(G, Cx/Dg)—> -
re),

where 7¥:¢ is the transfer homomorphism from N to G. Hence we have the
following theorem

Theorem 5.1. With the notation and assumption as above, we have the follow-
ing commutative diagram
TN'G

v —> H (N, Z) ——> H%(G, Z)—> H(G, I[G/N])—> -

K K K

<+ —> H'(G, D) —> H'(G, Cx) —> H'(G, Cx/Dg) —>+ (r€Z).

§6. First, we shall summarize the main results of [11].

Let % be an algebraic number field of finite degree, or an algebraic function
field of one variable over a finite field. Let K/ be a finite Galois extension with
the group G. S denotes a set of places of K satisfying the following conditions

(S1) S is stable under G.

(§2) S contains all archimedean places.

(S3) S contains all places ramified over k.

(S84) S is large enough so that every ideal classes of K contains an ideal
with support in S.

There exist exact sequences of G-modules:

4

a

(A) 00— E—]—C—0,
b’ b

(B) 0—X—Y—Z7Z—0,

in which:



On the cohomology of groups 387

E is the group of S-units of K, that is, elements of K which are units at
all places P not in S.

J is the group of S-ideles of K, that is, ideles whose P-component is an
unit for each place P not in S.

C is the group of S-idele classes, which in view of condition (S54) is G-
isomorphic to the group of all idele classes of K.

Z is the group of integers, G operating trivially.

Y is the free Z-module generated by the places P in S, an element c=G
operating by the rule

G(qésnsa%):mze‘asnﬂs(oﬂ”:qg‘sna-ls@-
X is the kernel of the natural map b which takes an element y=XnaP
into its coefficient sum, Xing.

In these statements, Tate proved the cohomology sequence derived from (A) is
isomorphic to that derived from (B), after a dimension shift of two: that is, he
has constructed a commutative diagram

oo —> H(X) —> H'(Y) — H'(Z) — H*{(X) —>---
6.1) ll al l aj l aj l ajtt
e ——> HT+2(E) qu+2(j) _— HT+2(C) . HT+3(E) — > e ,

in which the vertical arrows aj, for /=1,2, 3 and reZ, are isomorphisms.
Here we shall prove the above result in somewhat restricted situation. We as-
sume the set of places S satisfies the following additional condition

(S5) S is large enough so that <Gg|Gg is the decomposition group of
BPeS>=GC.

Under this assumption, any ¢ <G is written in a form
C=0,""0n, where o¢,€Gyg, (B:€9).
Let us denote 7,=1 and 7;=0;---0; (1=/<m). Then we see

7,— 7. €K[G, Gg,] (1=i<m).
Hence we have

d,=0—1€<K[G, GplI1=i=m)CI[G].
Therefore, from the fact that {d,} (¢=G) is a Z-basis of I[G], we obtain
(85) <K[G, Ggl|BeS>=I[G].
Conversely, we can easily show (S5)’=(S5). Hence the condition (S5) is equiv-

alent to the condition (S5)’.

Remal;k. In case G is abelian, the condition (S5) is equivalent to that the
homomorphism H%G, J)—>H*G, C) is surjective. From the fact HY(G, J)=0, we
see the condition (S5) is satisfied, if and only if HYG, E)=0.
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Note that the conditions (S1), ---, (S5) are automatically satisfied if S is the
set of all places of K. Let S, be a set of places of & consisting of all the re-
strictions of peS. Then, from the condition (S1), S is considered to be the set
of places of K consisting of all the extensions of peS,. For a place p of &,
we dente by l?;* the G-module defined in §4, and by U, the subgroup of K
whose elements are units at all places lying over p. Let ,,Qg; 1?,,* be the restricted

product of {f(}} with respect to {U,}.

Let {fi}e; be the set of all mappings from S, to S such that, jfor every
pES, fi(b) is an extension of p to K. Since ]?; is defined when one fixes an
extension of p to K, one can define ple'!g’o k:‘xpgoUp for every f; (A€I). From

the condition (S5), there exist finitely many K[G, Gg,] (:=0, ---, m) such that
6.2) (K[G, Gg,]10=i=m>=I[G].

Let f;=f1, be the mapping of {f;} which takes value P;. J; denotes the G-
module le KX g U, corresponding to the mapping f;. We denote the decom-
PESY P&So

position group of f;(p) by Gi(p). Then it is obvious that J is a G-submodule of
Jiand J;/] is G-isomorphic to FEZS) K[G, Gi(p)]. Wealso see that szeZS} Z[G/G;(»]
0 0

= eESZ[G]/K[G, G:(p)], where each K[G, G;(p)] is embedded in Z[G] in a
vESy
natural way. Then we have the following commutative diagram

n 4

4 l; 4
0—> ] ——> >p§02[c]——‘->y-—>o

o h T )

0—>C > C > Z[G] > Z —>0,

in which row sequences are exact and the homomorphism a and b are surjective.
The homomorphism d; is also an onto homomorphism induced from the natural
projections. Since J; is, as an abelian group, the direct sum of J and
ES K[G, G;)], ¢; is a G-homomorphism defined by putting
pES)

cix)=a(x)=xmod E€C, for any x€&],

c:(y)=yeC, for any yeK[G, G,p)].
From (6.2), we see f[ ¢;: 2 J,—C is a surjective G-homomorphism. Let us denote

i=o0

ﬁ ¢; by ¢. Then we have the following commutative diagram
i=0

0— ] —> 1OB I ——> (5 206DB(FJ) —> T —0

(6.4) la (J; ld lb

0—>C > > Z[G] ———> Z —>0,
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m .
where ¢"=¢,, ¢/=¢Pid, (=¢,P0 and dzdo@;:]ldioz; (0 means the zero mapping).

Since all the homomorphisms a, b, ¢, d are surjective, we have the following
commutative diagram of G-modules with exact rows and columns
0 0 0 0

ool

0— E —Kerc—>Kerd— X —> 0

O L

(6.5) 0—J] — | — | —Y —0
N T

0—C — C —Z[G]— Z —0
ool
0 0 0 0

where we denote ]ﬁ}(ﬁ ji) by J and (E Z[G])@(in‘,j,) by f From the as-
i=1 _ pES, i=1 . .
sumption (S3) and the fact that K;* is cohomologically trivial, we see J and J

are cohomologically trivial. Hence we see G-modules Kerc¢ and Kerd are also
cohomologically trivial. Hence, from Corollary 1.2, we have

Theorem 6.1. Let S be a set of places of K which satisfies the conditions
(S1), -++, (S5). Then the diagram (6.1) is commutative and the isomorphisms aj
(reZ, 1=i=<3) are obtained as the compositions of the connected homomorphisms
04 derived from (6.5).

Let us generalize the above theorem to algebraic tori. Let M be a torsion
free G-module. Then, from (6.5) we have the following commutative diagram
of G-modules with exact rows and dolumns

0 0 0 0

| l l |

0 —EQM—> (Ker c) QM —> (Ker d)QM —> XQM —> 0

| l l l

(6.6) 0— JQM — JQM ——> JOM —>YQM—>0

l l i l

0 —>CQM—> CROM — Z[GCIQM —ZRQM —0

l | } l

0 0 0 0

From [6] Theorem 2, G-modules @M, JQM, CQM and Z[GIRM are G-
modules of trivial cohomology. Therefore we have

Theorem 6.2. Let S be the set of places of K satisfying (S1), ---, (S5).
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Then, for any torsion free G-module M, the cohomology sequence derived from
0—=EQM—]JQM—-CRM—0 is isomorphic to that derived from 0—-XQM—-YRQM
—M—0; that is, we have the following commutative diagram

- —H(G, X®M) — H'(G, YQM) — H(G, M) —>--

R R E

o —> H*¥G, EQM) — H*¥G, JQM) —> H*¥G, CQM) — -+,

where the vertical arrows are the isomorphisms induced from the connecting homo-
morphisms derived from (6.6).

Remark. The above theorems are not general as those of [11] and the way
of approach does not really improves on that of [11], but is primitive and shows
the essential relation of [9] and [11].

In the rest, we shall refer to the cohomology of algebraic tori. For the
sake of simplicity, we restrict ourselves to the case when S is the set of all
places of K. Let T be an algebraic torus defined over % which splits over K.
From [7], there exists an isomorphism between the category of tori defined over
k and split over K and the dual of the category of finitely generated Z-free
G-modules. We denote by 7" the character module of T and by M=Hom (T, Z)
the integral dual module of 7. Then Theorem 6.2 enables us to describe the
Galois cohomology groups of the torus T in terms of the Z-free module M.
For example, we can describe the Tamagawa number of T of %2 by the cohomo-
logy of X,Y and M. Let T, be the group of k-rational points of T and T,
be the adele group of T over k. The factor group T,,/T, is called the adele
class group of T over k and dented by C,(T). Since K is the splitting field of
T, it is known that Tx=MQK*, T,,=2MKK; and Cx(T)=MQCk. In [8],
T. Ono has defined the numbers A(T) and #(T) for a torus T

WT)=[H G, TYI=[H G, M)],
{(T)=[Cx(T)¢: Cx(T)]=[Ker (H'(G, Tx) —> H G, Tag)].

Let #(T) be the Tamagawa number of T over .. Then one has the following
fundamental formula ([8], Main theorem),

o(T)i(T)=h(T).
From Theorem 6.2, we have
i(T)=[Ker (H G, XQM)—> H (G, YRQM))]
=[Coker (H™*G, YQM) — H¥G, M))].

For every place p of %, we fix an extension of p to K and denote it by PB.
Since Y is G-isomorphic to %‘,Z [G/Gx] (p runs all places of k), we have

H7(G, Y®A1)E§HT(G1, M) (reZ).
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Here Gy denotes the decomposition group of . Hence we have

i(T)=| Coker (S H*(Gs, M) o e, )],

where 7q is the transfer homomorphism from Gg to G. From the integral
duality, we have
Mo

z‘(T)=[Ker (%G, ) TIHGs, T))] :

where py is the restriction homomorphism from G to Gy. Therefore we have

o«(T)=[HXG, T)1/[Ker I1ps(H*G, T)—>1pTH2(G»1;, H].
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