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Introduction. The classical theorem of Hadamard concerning entire functions
of a complex variable is composed of the following three assertions: (i) If f is
an entire function of finite order 4, then the order of the zero locus of f does
not exceed A. (ii) For a divisor A of finite order A prescribed on the complex
line C, there exists an entire function F of the same order A having A as its
zero locus. F is given by a canonical product of genus ¢ with A—1=¢<2A. (iii)
In the same situation as (ii), every entire function f of finite order with zero
locus A is written as f=e¢FF with a polynomial P. The order of f is
max {4, deg P}.

Now let 2 be a domain in the space C™ of m complex variables t=(¢!, ---, t™).
We consider holomorphic functions f and divisors A on CxQ. They can be
respectively regarded as families of entire functions and divisors on C depending
analytically on the parameter t€2. Their orders are then defined as functions
of ¢. In the present note we will investigate the problem: To what extent do
the properties corresponding to the above Hadamard theorem remain valid for
these analytic families ?

For a function or a divisor on C X2 we consider, along with the order A(t),
the regularized order A*(¢) introduced by Lelong [7]. They take on the same
value except on a pluripolar set in £. We shall find that the concept of regu-
larized order is adequate for our investigation since A*(f) bounds the rate of
growth uniformly in the vicinity of the point ¢ in . Some basic properties of
A*(t) are resumed in §1.

The central part of our problem concerns with the existence of a holomorphic
function of finite order with prescribed divisor A. We want to obtain such a
function by forming a canonical product for each t=£. To do this the genus
g of the canonical product should be chosen. We wish to choose ¢ independently
of the parameter f, while ¢+1 cannot be smaller than the order A,(¢) of the
divisor A in order to guarantee the convergence. This is impossible when 1,(¢)
is unbounded. So we first restrict the variability of ¢ to a subdomain 2’ of @
on which A4(f) is bounded, and construct canonical products for t€Q’. It is
crucial to show that this construction actually yields a holomorphic function
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F(z, 1) on CxQ’. This is proved in §2 with the use of the Poisson-Jensen
formula relative to the variable z as well as the parameter f. This result is
stated in Griffiths [3] without proof.

Every holomorphic function f on C X’ of finite order with zero locus A
has the form f(z, t)=eP*YF(z, t), where P(z, t) is holomorphic on C X’ and
polynomial in z. Two problems are left: (a) Is there an f for which the
equality A,(1)=2,4@), or at least A¥(t)=2%(t), holds ? (B) Is there an f which can
be analytically continued to all of CX£2 ? In §3 we show that the answers are
negative in general, by giving an example.

§ 1. Orders and regularized orders.

1.1. Let 2 be a domain in C™ and R, the real half line: 0=r<+oco. We
consider a non-negative function s(r, ) on R,xX£ which is non-decreasing
relative to » for every fixed t. The order A;(t) of s at ¢ is defined by

2s() : =lim sup log s(r, t)/log » (=+o0).

Generally, for a subset E of 2, the order A,(E) of s on E is defined by
A(E) :=lim sup stgg log s(r, t)/log r.

This is equivalent to the following definitions:

A(E) :=inf {#>0]s(r, t)/r*—0 uniformly on E as r—oo},
A(E) ::inf{y>0|5+ws(r, t)/r#+*'dr is uniformly convergent on E}.

Their equivalence can be shown in a way parallel to the case of a single
variable (see for example Nevanlinna [8]).
We define the regularized order A¥(f) of s at ¢ by

@) :=i{]1f AU),

where U runs through the set of all neighborhoods U of ¢. The regularized
order A¥(t) is upper semi-continuous and satisfies the inequality A,(1)<A¥().

1.2. For a real-valued function v(z, t) on C X, its order A,(E) and regular-

ized order A¥() are defined to be those of the function s(r, t):susp v¥(z, 1),
l1zIsr

where v*(z, f)=max {v(z, t), 0}.

Theorem 1 (Lelong). If v(z, t) is a plurisubharminic function on C X2, then
(1) AX@) is the upper envelope of A\l), i.e., Zi',‘(t)zlir? sup 4,(t’) .
(ii) AW =2A,(t) except on a negligible set in Q.
(i) —1/AF®) is a plurisubharmonic function on Q.

For the proof we refer to Lelong [7, Chap. VI, Théoréme 6.6.2.] (see also
Kieselman [5]). We need thereby some remarks.

(1) In [7], the relative order and the regularized relative order are treated.
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We can easily modify the argument for order and regularized order.

(2) In [7], the regularized (relative) order is defined to be the upper envelope
of the (relative) order, differently from our definition. Their equivalence is
known by [7, Théoréme 6.6.4].

(3) Negligible sets and pluripolar sets are equivalent by a theorem of Bedford-
Taylor [1].

Corollary. A¥(t) is either finite throughout & or identically infinite.

Proof. —1/2¥() is non-positive and plurisubharmonic. Therefore, if
—1/2¥(t;)=0 at some point {, in £, then —1/2*({#)=0 on £ by the maximum
principle.

For a holomorphic function f(z, #) on C X £, its order and regularized order
are defined by A,()=2,(t) and ¥@)=2a¥1), where v(z, t)=log|f(z, t)|. Since
v(z, t) is plurisubharmonic, we have

Theorem 1. If f is a holomorphic function on CX8, then A,(t) and 2A¥({)
have the same properties as in Theorem 1.

1.3. Now we are about to define the order and the regularized order for a
divisor on CxX£2. Some preliminaries are necessary. A divisor (Cousin II data)
on CXx§ is represented by a formal sum A= m;A; where A; are analytic
sets of codimension 1 in C X2 such that supp A=\ A; is also an analytic set
in CX£, and m; are integers>0. We put

X=X(A)={teR|C x {t} Csupp A}.

Then X is an analytic set in £, because it is the intersection of the analytic
sets {teQ](z, t)esupp A}, zeC. We will first restrict attention to 2\X.

For every point ¢ in £\X, the divisor A cuts out on the complex line
C X {t} a divisor A;, which is represented by a sequence a.(t), veN, of the
z-coordinates of the points of A, counted with multiplicity. The set of indices
N, depends on ? and it may occur that N, is finite or empty. Therefore the
notation a.(¢!) does not mean that it is a function of ¢.

The cardinality of the set {veN,||a.(t)|=r} is denoted by u(r, 1), (r, )
R.x(Q\X). The (modified) counting function is defined by
R u(r, t)
Sa r

Ns(R, 1)= dr= ¥ log————+n(, t)log 5

i<iay () IsR | L(t)|
for (R, t)e {R>0} X (2\X). Here 0 is a constant>0. When n(0, {)=0, the case
0=0 is admitted. If J is replaced by another constant, then N;(R, t) undergoes
a change only by a continuous function of ¢. This subscript 6 will be omitted
when its choice is irrelevant.

We consider the integrals and the series

ING, 1) ® n(r, 1) _ 1
]1 #(R Z) S ;l+1 d jZ /I(R l) g ;1+1 dr ja ”(R t) o<a§)sR|ay(Z)|‘u.
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Lemma 1. [f one of the above quantities is uniformly convergent on a subset
E of Q\X as R— oo, then so are the others.

Proof. First we notice that, by partial integration

R
JeuR, = A0 NED R,

We let R— oo and examine uniform convergence on E. Suppose that J; .(R, )
is convergent. Then, by the inequality

S N(r, 1)
R

e

, 1 N(R, ¢
Mo arzNR, o] —prdr= ’;Rﬂ),

it follows that N(R, t)/R*—0. Hence [, ,(R,?) is convergent. To see the
converse we notice that, for R,<R,

SR e, t) o 1 S” nr, 1) 4, _—[N(R )—N(Ro, 1)1,

Ry r/z+l = R;l d

and hence
N(R, /RIS Je w(R, )= ]2, u(Ro, )]+ N(R,, 1)/ R

Suppose that [, (R, t) is convergent. The first term on the right tends to 0 as
R, R—oo. The second term tends to 0 when R, is fixed and R—oo. There-
fore N(R, t)/R*—0 and ], (R, t) is convergent.

The equivalence of convergence of /, (R, t) and J; (R, t) can be shown in
the same manner.

By vertue of this lemma, the orders of n(r, t) and Ns(r, ) coincide. For
the divisor A we define its order and regularized order by
{Zn(t)=2N(t) for teQ\X,
for telX;

AA=2%@) for (eQ\X,
A=

lim sup A%(") for teX.

INXStL —t

Aat)=

These definitions will be justified by the following arguments.

1.4. If f is a holomorphic function on C X2 and A is the zero locus of f,
then we have by Jensen’s formula

1.1 Ni(R t)——l—g“l | f(Re®, 1y do— ("1 8¢t 1)do

We notice that the both sides of (1.1) depend on the divisor A rather than f.
Important consequences can be derived from this formula.

Suppose that a divisor A is given on CXQ2. Let {, be any point in £Q\X.
We choose 6=0 so that supp AN({|z|=0d} X {t,})=@, and then choose a polydisc
4 in 2\X with center ¢, so that supp AN({|z| =06} Xx4)=¢.

Lemma 2. Under this situation N;(|z|, t) is a plurisubharmonic function on
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{|z| >0} x4. (Cf. Kujala [6, Proposition 2.3.7.)

Proof. By the classical solution to the Cousin II problem there is a holo-
morphic function f on C X4 having A as its zero locus. We substitute R=|z|
into the formula (1.1). The first integral on the right is a plurisubharmonic
function of z and ¢; the second integral is a pluriharmonic function of ¢, since
f(z, )#0 for |z|=4. This proves Lemma 2.

Theorem 1”. If A is a divisor on C X8, then A41) and A%() have the same
properties as in Theorem 1.

Proof. For tefQ\X the theorem is true by virtue of Lemma 2. The prop-
erties (i) and (ii) hold for all t=Q by the definition and the fact that X is a
negligible set. To see that —1/4%(¢) is plurisubharmonic on £, we note that it
is bounded above by 0. By a theorem of Grauert and Remmert [2] on extension
of plurisubharmonic functions we obtain the required result.

Another consequence of Jensen’s formula (1.1) is the following theorem. It
is a trivial generalization of the classical result, i.e., the first assertion of
Hadamard theorem mentioned in Introduction.

Theorem 2. If f is a holomorphic function on C X8 and A is the zero locus
of f, then we have 2,(3)<2;(1) and AZEQ=AK().

§2. Analyticity of canonical products.

2.1. Let us first recall results of the classical theory. We consider a divisor
A=1{a,}, on C of finite order 1, and assume that a,#0 for simplicity. Let p,
be the least integer such that 3)1/|a,]?° is convergent. Then po—1=A4=p,.
The number p,—1 is called the genus of A.

For every integer p=p,, the canonical product of genus p—1

z z 1/ 2\ 1 z \r-1
E@=11(1—-2)exn| 5 () + 5 5(5)" ]

is convergent and defines an entire function with zero locus A. We note that,
if we take the ¢-th logarithmic derivatives of both sides (¢=p), we get

FZ; (@-1

7)
where @, is the meromorphic function defined by the series

Qq(z)=; 1/(av_z)q-

=—(g—D!0,,

The entire function F,, has the same order as A:,lppo:lA. Every entire
function f with zero locus A is written in the form f=eF, with an entire
function g. The order 4, of f is finite if and only if g is a polynomial; and
As=max {44 deg g}. If we take the ¢-th logarithmic derivative of f (g=p,),
we get
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(J;— o go_g-1)10,.
This implies that, g is of degree<g—1 if and only if (f//f)¢ P=—(@g—D!®,
It follows in particular that F, is of order=p.
In the sequel we will first construct the meromorphic function @, depending
analytically on the parameters and then obtain the entire function F, by inte-
gration.

2.2. We consider a divisor A on C X2 whose regularized order A%(¢) is
bounded on 2. To be specific we take an integer p=1 and pose the following

Condition (Cp): The integral J,, o(R, 1) (Jo.p(R, 1) or [Js (R, 1) equivalently) is
uniformly convergent as R—co on every compact set in 2\X.

If p>A%() for all ¢ in 2 then Condition (C,) is satisfied; and (C,) implies (Cp)
for all p'=p.

Theorem 3. [If the divisor A satisfies Condition (Cp), then the expression
1
Dp(z, )=0 4, 5(2, l)—xe%tm

defines a meromorphic function on CX8.

Strictly speaking @, is defined only on CX(£2\X). But it is extended mero-
morphically to all of Cx£2. We prove first the following lemma. The essential
step of this section lies in its proof.

Lemma 3. In the same situation, suppose further that supp AN({0} X Q)= @.
Then

1
Sy0=54:0= % 5

is a holomorphic function on .

Proof. In view of Hartogs’ theorem on separate analyticity, it suffices to
consider the case m=1, i.e., 2CC. By the classical solution to the Cousin II
problem, there exists a holomorphic function f on C X £ whose zero locus is A.
For convenience we assume f(0, t)=1.

By the Poisson-Jensen formula, we have for |z| <R, t€,

l0g /(2. =5 . Rett2 L e

where the sum is taken for all a,=a,(f) such that |a,|=<R. When the operator
20/0z=0/0x—id/0y (z=x-+iy) is applied to both sides this yields

fe 1 28 dag
7(2’ D= 27rS1€| =r ({— 2)2 L

Further differentiating p—1 times relative to z, we have

log| f(C DI

+5{ L ,_& b

z—a, R*—a,z

loglf(& ==
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0 \»-! f,
(g) fT 2, t)

i 2 d
o 2ﬂSlCI=R (C—-z)p“"l loglf(c’ t)| ZC (17 1) ‘ E{

In particular putting z=0, we obtain

1 _ a,’ }
(a,—2)? (R*—a,2)?

@.1) (5) L0 0=p 1R 0= -D18,R, 0,
where
o Sik, 0= 2, afp b

LR, )= 2o logl 6 01

The left-hand side of (2.1) is a holomorphic function of ¢. Both of S,(R, ?)
and I,(R,t) are continuous with respect to R and t. We assert that S,(R, ?)
converges to S,() as R—co uniformly on compact sets in £2. Indeed we have
1 la,|? _ 1 n(R, 1)

ayi>R|a,|P  ieiisk R?P T a>r|a,|? R?

[Sp(R, )—S, t)|<

which tends to 0 as R—oco by Condition (C,). Consequently S,(¢) is continuous.
It follows that I ,(R, ?) also converges uniformly on compact sets to a continuous
function 7,(t):=lim I (R, t). We have thus obtained the formula

- 1 »=1 f,
@3 So®=pIo(t)— -~ 1),( ;) A0,

The proof is reduced to showing the analyticity of I,(2).

Let us take a closed disc |[{—{,|=<p in £ and restrict our consideration to
this disc. With no loss of generality we assume f,=0. We apply the Poisson-
Jensen formula with respect to the variable ¢:

T+t —a,t

" log /¢, 91 -3 log m :
where a,=a,({) denote the ¢-coordinates of the intersection points of the divisor
A and the disc {({, )| [¢|=p}. We substitute (2.4) into the expression of
I(R, 1) in (2.2):

2.4 log | (G, t)lz'z%swwa

2.5) IR, )= 2ﬂ5m Rczp[ 1 Sm=RR T+t 7 log| /1, )|—] dcc
1 dg
27TS|C| R (P 7o 2 log p(l Z

Reversing the order of integration, we find that the first integral equals to

1 T+t
_Sm—pRe T—t p(R T)

2
This converges as R—co to
1 T+1
2.6) 277.'S|r| oRe T—1 p(T)—
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which is harmonic in [{] <p.

As for the second integral in (2.5), we notice first that logl(t‘% =0,

that the absolute value of the integral is bounded by

A0 2 e
ZﬂSICl=R R? = log P(l— x) i

We want to show that this quantity tends to 0 as R—oo. For this purpose we
consider the mean value of (2.4) over the circle [{|=

1 T+t dr 1 p dC
/ e _ —
@7 No(R, 1) 27fSlr!=pRe T—t No(R, 77 it 27"S|C|=RZ log p(t— ,,) F
Here we have used that
1 da¢
7 -
N(R, D= . log| /. 01,

which follows from Jensen’s formula and the assumption f(f, 0)=1. We divide
the both sides of (2.7) by R?. When R—oo, the quotients tend uniformly to 0
on the disc [t|=p, because so is Ny(R, t)/R?. It follows that the second integral
in (2.5) tends to 0.

Thus I,(#) is represented by the Poisson integral (2.6), so that it is harmonic.
By (2.3) the series S,(t) is also harmonic.

To prove that S,(f) is holomorphic, it suffices to see that, for a non-constant
holomorphic function ¢(f), the product ¢(#)S,(t) is also harmonic. Indeed, if this
is the case, then from

0 0S,N\_ dop 0S,
0= atat <sosp) ( ot )*W ot

it will follow that 9S,/0{=0.
We introduce a new coordinate system (z’, {) on CX& defined by z'=¢(t)z,

where ¢(f) is holomorphic, non-vanishing and non-constant on £. Let S;(@)
denote the series corresponding to S,(t) relative to the new coordinate z’:

1 1
Sypi)= = S,(t).
D=2 Goawr — gor o
Performing the argument relative to the coordinate z’, we know that Sp(f) is
also harmonic. Hence S,(¢) is holomorphic. q.e. d.

Proof of Theorem 3. First we show the meromorphy of @4 , on C X (£2\X).
Let (z,, t;) be any point in C X(2\X). Choose R,>|z,| such that supp AN({|z]
=R,} X {t,})=@, and then choose a polydisc 4 in £\X with center ¢, such that
supp AN({|z| =R,} X d)=¢@. The restriction of the divisor A to C x4 is decom-
posed as Al¢xs=A’+A” in such a way that supp A’C {|z| <R,} X4, supp A’C
{lz| >Ry} x4. Correspondingly we have the decomposition @4, ,=®@ 4, ,+ P4 p,
where
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1
D4 (2, t)—,aﬁkom,
D 4oz, D= :

lay'2>30 (at)—2)?"

The divisor A’ is the zero locus of the polynomial in z:
Wz, )= II (z—a.(t),
la,I<Ry

which is holomorphic on C X4 by Weierstrass preparation theorem. Therefore

1 0 \r-1 W,
Dy (2, t)_—(p—l)! (“a;) W(Z, 1)

is meromorphic on Cx4. On the other hand, @, , is expanded into the power

series in z:

p+k—1
p—1

We apply Lemma 3 to the divisor A” and know that Sy ,.+.(), 2=0,1,2, -,

are holomorphic on 4. Further, we have

(28) ¢A’,p(2, l):SA',p(t)+pSA',p+1(t)Z+ +( )SA', p+k(t)2k—|— e,

1 < 1 1

(D] S R S L
Samee®DI= 2 0TS RoF 1 me (@07

Since this last series is uniformly convergent on 4 by Condition (C,), the sum
is bounded by a constant. It follows that the series (2.8) is uniformly convergent
on compact sets in {|z| <R,} X4, and @, , is holomorphic there. Thus @, ,=
@4, p+@ 4 , is meromorphic in a neighborhood of (z,, t,).

Now we are to show that @, , can be extended to all of CX£2. Let X!
be the union of all irreducible components of codimension 1 of X=X(A). Then
Cx X' consists of some irreducible components of supp A. We decompose the
divisor A=>m;A; into the sum A=A+ A", where the divisor A° is the sum
over the components A;GCXX! and A' over A;CCxX' It is clear that
X(AY)=X" and that X(A° is of codimension=2. We apply what we have shown
thus far to the divisor A° in place of A, and obtain a meromorphic function
D 40, on CX(2\X(A%). Obviously A,=A° for teQ\X, and hence @ ,,=P4 »
on CxX(2\X). This implies that @, , is extended to C X(2\X(A%). Now that
CxX(A" is of codimension=2, we can extend @, , to the whole C X2 by
Levi's theorem on analytic continuation of meromorphic functions. Thus Theo-
rem 3 is proved.

[t should be remarked that the set of poles (and indetermination points) of
D, , is exactly supp A°.

2.3. We continue considering a divisor A on C X £ satisfying Condition (C,).

Theorem 4. Suppose that supp AN({0} X Q)=@. Then the cononical product
of genus p—1
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z z 17 z \2 1 z \p-!
Fy(z, t)—_‘el'llvt(l-— a,,(t))ekp[ .0 +7( a,(t)) + - +—p—1(_—a,(t)) ]
s a holomorphic function on CX8Q with zero locus A such that
{ ZA(I)§1FP(Z‘)§H13X{I7‘1: A0},
O =4F (=max{p—1, Z®}.

2.9)

Proof. We integrate —(p—1)! @,(z, 1) relative to z from the origin to =z
termwise p—1 times for each fixed ¢ in £, and take the exponential. Then we
obtain F,. Its analyticity is obvious from this construction. The first line of
(2.9) is a consequence of the one variable theory. The second is obtained by
taking the upper envelopes. Thus Theorem 4 is proved.

In particular this theorem shows that the condition supp AN{0} X2)=0@
implies the solvability of the the Cousin II problem. In the general case we
must pose the latter condition.

Theorem 5. Suppose that the Cousin II problem is solvable for the divisor A
on CxX8Q. Then there is a holomorphic function F on C X2 with the zero locus
A satisfying the inequalities (2.9).

Proof. Let f be a holomorphic function on Cx £ with zero locus A. Con-
sider its p-th logarithmic derivative (9/0z)?"*(f,/f). It is defined at first only
on Cx(Q\X), but is extended meromorphically to Cx£2. To see this we take
again the decomposition of the divisor A=A°+ A! as in the proof of Theorem 3.
For any #, in X we take a polydisc 4 in £ containing {,, We can factorize f
into the product f=/°f! on CX4. Here f° f' are holomorphic on CXx4 and
have the zero loci A° A' respectively; and f! depends only on ¢&. Then we
have (0/02)?7*(f,/ f)=(0/02)?"'(f",/ f°) on C X (4\X). The right-hand side provides
the extension of (3/0z)?~(f./f) to CX(4\X(A%) and further to Cx4 by Levi’s
theorem. This shows our assertion, and also that the poles of (3/0z)?7'(f./f)
lie on supp A°.

The meromorphic functions (0/0z)?~'(f,/f) and —(p—1)! @, have the same
principal part, i.e.,

h, z):(%)”"»?— 2, )+ (p—D1 D, 1)

is holomorphic. This is obvious on CX(2\X); and since the right-hand side
has the poles only on supp A°, & is holomorphic on C Xx£.

We integrate h relative to z from the origin to z, p—1 times for each fixed
t in £ and obtain a holomorphic function g on CXQ2. We define

F(z, )=f(z, t)exp[—gl(z, 1)].

Then F has the same zero locus A. The p-th logarithmic derivative of F rela-

tive to z equals to —(p—1)!@,. From this fact follows the inequalities (2.9) as
was mentioned in 2.1. q.e. d.
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§3. Analytic continuation of canonical products.

3.1. We discuss an example to illustrate the problem.
Let 2 be the right half plane: Ret>0 in C. We notice that every Cousin

Il problem on C X is solvable. We give on C X2 a divisor A= z)lAn where

A,={(z, )eCxR|z=n?}. The restriction A, of the divisor A is represented
by a,(t)=nt, n=1, 2, ---.
1) To find the order of A, it suffices to examine the series

Slaa) =S n-rRet p>0,
which is convergent if #Ret>1 and divergent if #Re!=1. It follows that
A =241=1/Ret.

2) Let 2,={Ret>1/p}, p=1,2,---. On £, we have A%(/)<p and Condition
(Cp) is satisfied. Hence on C X2, we have the meromorphic function

3.1 D,z )= i(*n%z)'i

by Theorem 3, and the holomorphic function

.2 R 0= 3 (1= et 2t -+ 55 (50) "]

by Theorem 4.

3) We examine whether analytic continuation of F, to CXx& is possible. We
compare the expressions (3.2) for F, and F, (p<q):

3.3 ————g:’)(é” tt)) :exp[%2<%)p+ +q_iTZ(%)q—l]

=exp[%§(pt)z”+ +q%1C((q—l)t)zq“] on CX82,.

Here &(s) is Riemann’s zeta function; it is defined by the series > n~° for
Re s>1, and continued to a meromorphic function on C with a simple pole at
s=1 and holomorphic elsewhere. The right-hand side of (3.3) is holomorphic
except for the essential singularities on the lines ¢t=1/p, 1/(p+1), ---, 1/(g—D).
By means of the relation (3.3) we can extend F, to a holomorphic function on
CxX@®@\{1/p, -+, 1/(g—D1)}). This procedure is possible for all ¢>p. Hence F,
is extended to CX(@\{1/p, 1/(p+1), ---}) with essential singularities on the

lines i=1/p, 1/(p+1), ---. It is also clear from (3.3) that the extended function
F, has the zero locus A.

4) The order of F, is given by

I 1/Ret on Q\{l/p, 1/(p+1), -}\Qp,_,,
(3.4) le(t)——‘
l p—1, on 2,,.

To prove this we first notice that lpp(t);XA(t)zl/Ret for all t by Theorem 2,
and that



266 Tetsuo Ueda

Ap (H=2,0=1/Ret, on Q,\2,..,
(3.5), {F” 0= n A

ZFP(t)ép—l, on Qp_l

by Theorem 4. Hence (3.4) is true for t€£,\2, ,. Suppose that ;€Q\{1/p,
1/(p+1), -~ }1\2,. Then teR\2,., for some ¢>p, and we have

Fyte, D= Fife, Dexp| = 5 Lper— - =3 Wg—Dozr-].

We have qu(t)zl/Retgq—l by (3.5),, and the exponential factor is of order<
g—1. Hence ipp(t)_gzpq(t)zl/Re t. This shows the first case in (3.4). Now
suppose that (€2,_,. Then t€2,\2,_, for some ¢’<p, and we have

Fplz, )=Fy(z, t)exp[;l,-C(q’t)z“'—l- -I—E—l_—TC((p—l)t)zp‘l].

We have Ar,(z, )=¢'—1<p—1 by (3.5),;. The exponential factor is exactly of
order p—1, since {(p—1)1)#0 if Re((p—1))>1. Hence Rpp(t)=p—1. This
proves the second case in (3.4).

Since pr(t) is continuous we have A% p(t)lep(t).
5) Now we examine analytic continuation of @,. For this purpose it suffices
to consider the p-th logarithmic derivative of (3.3) relative to z and recall that

19N (Fy),
D5z, == ", () R 0.
We obtain for ¢>p
_ 1 0 \P1 (Fy), ]
+<Z:})C((q—l)t)zq‘?’“, on CxQ,.

This implies that @, is extended to CX£2, with poles on supp A and on
the lines t=1/p, 1/(p+1), ---, 1/(g—1). Since this is valid for all ¢>p, @,
can be extended to all of CxQ with poles on suppA and on the lines
t=1/p, 1/(p+1), ---.
6) Let 4 be a (connected) subdomain of 2 containing the point t=1/p and f be
a holomorphic function on C X4 with zero locus A. Then Z¥)=p for all t in 4.
We prove this by contradiction. Suppose that there is a point ¢, in 4 for
which 2¥({,)<p. Then there is a neighborhood U of ¢, on which 2,()<p.
(Necessarily UCANR2,.) We consider the p-th logarithmic derivative of f. As
was mentioned in 2.1, we have

(fe/ P P==(p—D'!D;.

on CXU. This identity should be extended to all of C x4. The left-hand side
is meromorphic and has the poles exactly on supp A, while the right-hand side

. 1 L. _
has the poles on supp A and on the line t:;, which is a contradiction.

Thus the present example shows that the complete analogue of the second
assertion of the Hadamard theorem mentioned in Introduction is no more valid,
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even locally, for the case of analytic families.
7) Let f be a holomorphic function on CX8Q whose zero locus is A. Then
) =—+o0 on Q.

This follows immediately from 6).

3.2. The above observations can be formulated in the general situation.
Let £ be a domain in C™ and A a divisor on Cx Q. Recall that A is decom-
posed into the sum A=A°4 A! as in the proof of Theorem 3. Suppose that A
is of finite order and that Cousin II problem is solvable for A. We take an
integer p and a subdomain £’ of 2 such that A%(@#)<p for t€Q’. Then Condi-
tion (C,) is satisfied on £’ and we have the meromorphic function @, on
Cx’. Under this situation we have

Theorem 6. There exists a holomorphic function F on CX8 with zero locus
A such that 3F@)<p for i€’ if and only if @, is extended to a meromorphic
Sfunction on C X8 whose poles lie exactly on supp A°.

) 1 d \r-! F, .
Proof. 1If there is such an F, then —T{_T)'—(§> T provides the

desired extension of @,. Conversely if @, admits such an extension, then we
can construct an F with the desired properties by the same procedure as in the
proof of Theorem 5. qg.e. d.

DEPARTMENT OF MATHEMATICS,
KyoTo UNIVERSITY.
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