J. Math. Kyoto Univ. (JMKYAZ)
25-3 (1985) 473-488

Moment estimates for parabolic equations
in the divergence form

By
Hirofumi OsApA

(Received May 29, 1984)

§0. Introduction and main results.
In [4], J. Nash obtained the following estimate; if (a;,(¢, x)) satisfies a;;=
aj; and

©.1) C g z: Aty DELSCylE|Y E=E)ER™,

i 1

(t, x)€[0, o)X R™ for some constants 0<C,<C,, then there exist constants 0<
C;<C, depending only on C, and C, such that

02 C—s= (Bei—x0)"pis, x 1, Ndy=Cine—s),

R
where p(s, x, t, y) is the fundamental solution of

0 6>.

V,—A=V,— i'élviaijVj(Vt=7, V,= 0

An importance of the estimate (0.2) lies in the fact that C, and C, are inde-
pendent of the dimension n. The purpose of this paper is to obtain similar
results for general moments of p(s, x, t, ¥).

For this we assume the following conditions on (a;;(¢, x))((a;;) is not neces-
sarily symmetric).
0.3) g": ait, DEL;=v|E]*  for every (4, x)€[0, o) X R™.

i 1
(as; is in the form; there exist a symmetric matrix (b;;(¢)) and a matrix (c;;{, x))

such that a”(t, x)=bi,~(t)+cij(t, x),

(0.4) sup 3 [bis()| <2
1sjsn i=1
and
(0.5) | Sup, | eijt, x)lg% for every (¢, x)€[0, o)X R™.
i, jsn

Here we assume that the constants 4, g, v are independent of the dimension n.
The assumption b;;=b;; is no loss of generality because, if b;;=—b;;, then we
have :
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n

2 Vilbi¥)= 2 (Vibi)Vy+ 3 biy¥.9,=0.

i, 1 i, j=1

Under these assumptions we obtain the following results.

Theorem 1. Let p and q be non-negative integers. Then there exist positive
constants Cs and Cq depending only on A, p, v, p and q such that

(0.6) Csn*!(t—s)(pro/e

ésm(i_i}l Ixi—yil")(él Ixi—yil)qp(s, x, t, y)dy

éCGTlQ+1(t—S)(p+q)/2
for all x€R™ 0=s<t<oo.
In the case of p=0 and ¢=1 (or p=1 and ¢=0), we have more precisely

Theorem 2. For any x€R",

. i) [xi—p:[p(s, x, ¢, y)dy
{ R {=1

0.7) lim inf T }>(wre )2y
TERT

{SR"E [x:—y:| p(s, %, ¢, y)dy}_ (e +2)

(0.8) lim sup ni—s) V%

n”m.tte>lstn
where ¢ and (e~ <c*) are roots of the equation
es

o7 (ﬁ)”z(ﬂﬂ)(xw).

Note that the equation e*=C(x+2) has just two real roots when e *<C<co.

Our study of such estimates for moments is motivated by the following
problem of interacting diffusion processes in pl‘ObabllltY theory. Let L, be a
diffusion operator given formally by

1

(0.9) Ln:_2‘A+ m;jjts(xl—xj)vj,
which can be rewritten as

1 1 n
(0.10) Ln—fA—i— 2n—1) 1§}= ViH(x;—x;)V;,

where H(t)=(1/2)1>0—(1/2)1i,<e;. Therefore we can define the diffution process
{X.®O}={(XL®, ---, Xr@®))} with generator L, by the fundamental solution of
V.—L,. The problem posed by H.P. McKean in [3] is to show the propagation
of chaos for this {X,(-)}; that is, for any fixed integer m, if {X,.(-)} starts
from some identically and independently distribution, then {Y2(.)} = {(X1(-),

X™(-)} converges in C([0, 0)—R™) to the m-independent copies of the Burgers
processes. One of the key steps to show this fact is to establish the tightness
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of the marginal processes {Y7(-)}5-n. However this follows immediately from
Theorem 1 if we observe the symmetry of the process {X,(-)}. Actually in
Theorem 1 setting (p, ¢)=(3, 0), we have

E{ 3 1Xi0—Xi6)1°} <Conlt—s]".

This together with symmetry of {X,(-)} implies
E{|Xit)—Xi(s)|*} =Cqlt—s]|?®

for every 1=/=n, which assures the tightness of {Y2(-)}%.,. Although it is
not complete, a partial result for the convergence of {Y?(-)} as n—oo has been
given in [6].

The author would like to express his profound gratitude to Profs. S. Watanabe,
S. Kotani and T. Fujita for their valuable comments and encouragement.

§1. Preliminary lemmas and notatinos.

In this section we prepare some lemmas and notations which will be used
in the subsequent sections. First, we clarify the notion of fundamental solution

of v,—,4=<7:—z§’:= Viai,;.

Definition 1.1. A measurable function p(s, x, ¢, ) is said to be a funda-
mental solution of V,—A if it satisfies the following conditions :

(1) p(s, %t »20 and | p(s, 5, 1, 3dy=1.

(ii) Let s=0 be fixed and ¢ be a continuous function on R™ with compact
support. Set u(t, y)={ p(s, ¥, ¢, y)p(x)dx. Then Viue L¥(e, bIXR™) for all
s<a<b<oo, u(t, y)—¢(y) uniformly on R™ as t—s(t>s) and

for every continuously differentiable function ¢(¢, y) on (s, 00) X R™ with compact
support.

Lemma 1.1. There exists a unique fundamental solution of V,—A. It is
continuous and satisfies

(i) [0 58 90 3, w, 2dy=p(s, 5, 2, 2
(i) Cilt—s) " exp{—Col x—y|%/t—) Zp(s, 5,1, 9)
=Ci(t—s) 2 exp{—C,l x—y|*/(t—9)}

for 0=s<t<u<oo, x, y, zER™", where C,, C,, C; and C, are positive constants
depending only on A, v, p and n.
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See Aronson [1], [2] and Nash [4] for the proof.
The next lemma is due to J. Nash [4] and plays an important role in our
argument.

Lemma 1.2.

((1/2)m)! )2’"
14+(1/n) )

Since the constants appearing in Theorem 1 and 2 do not depend on the
smoothness of (a;;), in order to show Theorem 1, we may assume that (a;;) are
smooth and hence the strong perivative V,p(s, x, ¢, y) exists. We may also
assume (s, x)=(0, 0).

We introduce some notations.

(s, x,t, P)S(favm(t—8)) V2" where fnz( n-?—Z )(

Pzp(o) 0, t! x))
Xp:élxilp for x=(x;)ER",
Xo=(X= (3 1xl)"

For integers p and ¢, we set

M(p, g)={ _ X,X?Pdx=0,
E(, oy=—|_ X, X?Plog Pdx,

F(p, 9=E(p, )= 5 nM(p, o) log (frva)20,

where f, is the constant defined in Lemma 1.2,

Gp, )=|,_ X, X1P ¥ (V,log Pydx=0,
H(p, )=, X, XiP(log Py'dx20,
I, 9={_ X, X133 |V:P log Pldx={_ X,X1 3 |(V, log P)log P|Pdx=0,
Ko, 9= X, x5 19.Plax=]_x,X13 %10g P|Pdx20,

L(p, )= X,X?|log P| Pdx=0.

Also we set

M(p: Q): PEO and qgo

M*(p, q):{
0 , »<0 or ¢<o0,

and similary for E*(p, q), F*(p, q), -, L*(p, q).
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Theorem 1 is obviously concerned with the estimate of M(p, ¢). In [4]
Nash estimated M(0, 1) by obtaining inequalities between the moment M(0, 1)
and the entropy E(0, 0). Here we would like to follow this idea of Nash by
obtaining similar inequalities among M(p, ¢) and E(p, g—1). In obtaining these
inequalities, however, there involve the auxiliary quantities F(p, ¢—1), G(p, ¢—1),
-+, L(p, g—1); but these quantities can be managed by the induction on p and
g. In the subsequent section 2, we obtain estimates which is necessary to
perform the induction. Before proceeding, we state some simple properties of
these quantities in the following lemma.

Lemma 1.3.
Jb, =(nG(p, Hp, P)**,
K(p, =(nG(p, M (p, )%,
L(p, 9=(H(p, Q)M(p, g)''*.

Lemma 1.3 is obtained by the Schwarz inequality immediately.

§.2. Recurrence inequalities among M, F, G, ---.

Main object of this section is to obtain Lemma 2.4 and Lemma 2.5 which
are key lemmas for the induction procedure in section 3.

We denote by I;(x) the function I(x;), i=1, 2, ---, n, x=(x,, **-, x,) where
IO=1i>0—li<a.

Lemma 2.1. For non-negative integers p and q and for any t,
(2.1) IV M(p, 9| =p(p—DAM*(p—2, ¢)+pgAM*(p—1, ¢—1)
+ o u+DK*p—1, )+qlu+DK*(p, g—1).

Proof. We show (2.1) in the case p=2 first. By an integration by parts

2.2) VoMb, ==, VX, Xa,7,Pdx
:—pSR" ;Zl;]ilxi] p'quaijVdex

—QSR" ij X,,IiX"'laUVdex .
Since p=2, (V;[)|x;|?~*=0 in the distribution sense and hence we have

@.9) |—2{,., & 1%l 72 X,9,Pdx |
=|po-0{_, & 157X Pz

SSZANDIIAEALY B M IEY
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<p(p—DAM(p—2, @)+ pgAM(p—1, ¢—1)

Clearly we have

@.4) AN IAEALS CRAZE | <pn-pk(p-1, )
and
@2.5) lqgm izj X[ X a,¥,Pdx ‘ <g(u+ DK, g—1).

By (2.2)~(2.5), we obtain
(2.6) IV Mp, 9l =p(p—1)AM(p—2, @)+ pgAM(p—1, ¢g—1)
+pntuK(p—1, @)+qlu+DK(p, ¢—1).

In the case p=0, we have

@.7) 9.MO, )1 =| - 3 VunX9a,7,Pdx |

=|=4|,, & nx1i0,9;P x|
=q(p+DKO, ¢—1).
Next we consider the case p=1. Since M(l, ¢)=n"'M(0, g+1), we obtain by (2.7)
(2.8) V. M(1, ¢)| =n ' (g+D(e+DKQO, ¢)
=n"Yu+DK0O, ¢9)+q(ue+AK(, ¢—1)
By (2.6)~(2.8), we obtain (2.1).
Lemma 2.2. Let p and q be non-negative integers. Then, for 0<t<oo,
2.9  vG(p, 9=VED, Q+p(p—DAEXp—2, ¢)|+pgAL*(p—1, ¢—1)
+an|log (favrt) | M¥(p—2, @)+ p(A+pmn ' K*(p—1, ¢)
+p@A+mn ¥ p—1, 9)+9@A+mK*(p, ¢—=1)
+g(A+pn' *(H*(p, g—DG*(p, g— 1)
Proof. In the case p=2, we have

2.10) V.E®, q)=—SRnXpX"(l+log P)V,Pdx
=SRnXqu 3 (W, log P)(V;log P)a,;Pdx
)
., 3 1il 4177 X1a,,(V,P)(1+ log Pdx
ni;

+qSRn :n% I.Xp, X a;(N;P)(1+log P)dx .
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First we shall estimate the second term on the right hand side of (2.10). Since

(V;P)(1+1og P)=V,(Plog P)
and

Vil )| x4177'=0
we have

2.11) MR" g"“.,jlilxilP*quij(v,P)(Hlog P)dxl
=|~p—1,, 3 1x:7-*X::Plog Pdx
RM =1
—pqSR 33 Il x4 2 ,X4b,,P log de|
ni,j

= \ p(p—l)g E EA "'2X‘1biiP(— log P+ %n log ( f,,wrt))dx

RT

—po-0{{ , & 157t XtbPdx} 3 log (fwrt)

—pqSRni.zn.:flilxilp_lIqu_lbijPlog de‘
Zp(p—DAE(p—2, 9|+ p(p—1)An|log (f.vxt) | M(p—2, q)

+pgAL(p—1, ¢—1),

here we used —log P+(1/2) log (f,vrt)=0, followed from Lemma 1.2. Clearly
we have

(2.12) |9 0 25 1al a7 X0,(T,P) 1+ log P)dx |
Sppn~J(p—1, @+pun—'K(p—1, q).
By (2.11) and (2.12), we obtain
@2.13) ngzzn B Ll 7 X007, P+ log P)dx|
Sp(p—DAE(p—2, )l +p(p—1)An|log (f,vat) | M(p—2, q)
+pgAL(p—1, g—V)+pun~J(p—1, )+ ppun~'K(p—1, q).

Next we shall estimate the third term on the right-hand side of (2.10).
We have

@.14) MR 3 1,X, X0 1a;(7,P) log Pdx ]
ni’ j

=qA+wJ(p, ¢—D=qA+p(nH(p, ¢—1)G(p, g—1)'*
and

2.15) qum i} IiXqu"a,-jVdexl <q+mK(p, ¢—1).
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Hence we obtain
2.16) MR" B 12, X a1+ log P)V;Pdx

<qU+pnH(p, 4= DG(p, 4= D"+t KD, 9=
Using (2.10), (2.13) and (2.16) and noticing

SRnprq iJ (V: log P)(Y, log P)ai;Pdx=vG(p, q)

we can conclude (2.9) for p=2. In the case p=0, (2.9) is clear, and when p=1,
the similar device as in the proof of Lemma 2.1 yields (2.7).

To show the following, it is not necessary that P is a solution of the
parabolic equation.

Lemma 2.3. For non-negative integers p and g and any t, 0<t<oo, we have

(2.17) H(p, 9)<4M(p, 0+2)+<%n2(log ( f,,vnt))2+1) M, )
+6e71n?*(p+q+1)!.
Proof. Let
falx)=x(log x)*—ax, a>—1.
Then

maX fa(x)=fa(exp(—1—1+a)''*)
o<zrse-1
Therefore, if 0<P=<e~! we have

(2.18) fa(P)=2(1+(14+a)®) exp (—1—(1+a)'?).

Putting @¢=4X2—1 and multiplying both sides of (2.18) by X,X? we then inte
grate them over {x: P<e™'}. Then we obtain

[, X»XeP(log Py dx—4] X, X Pdxt | X,XPdx

P<e-1 P<e
§2e'lg X, Xte-t¥1 dx+4e'1g X, Xo+1e-2¥1 dx
Pge-? P<e-!

S6e 'n®*3(p+q+1)!.
Hence

2.19) SP«_IX,,X‘IP(log P)tdx<4M(p, g+2)+6e- nt*2(p+g-+1) 1.
Clearly we have

(2.20) XpXP(log P)*dx=M(p, q).

Se-lsP<1

On the other hand by Lemma 1.2 we have

(2.21) SlsPXpX"P(log PyYdx= % n?M(p, g)(log (f.vxt))®.
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Combining (2.19), (2.20) and (2.21), we obtain Lemma 2.3.
Set

F,=p(p—DAM*(p—2, )+ pgAM*(p—1, =)+ pn ' A+ K*(p—1, @),

Fo=q(A+m)v - nM*(p, g—1)'2,

Fo=p)p—DA|E*(p—2, g—1)|+An|log (fremt)| M*(p—2, g—1)
+p@A+pn K*p—1, g—1)+plg—DAL*(p—1, ¢—2)
+p@A+pmn X p—1, ¢—1)+g—D@A+mK*(p, ¢—2),

F,=(q—D@A+p)(nGX(p, q—2)*",

Efs=(—i—n2(log (f vt +1)M*(p, q—2)+6e~ ni(p+q—1) !

Then by means of the previous three lemmas and Lemma 1.3, we conclude
the following.

Lemma 2.4. For non-negative integers p and g and for any t(0<t<o0),
2.22) |V Mp, QISFi+TF(VE(D, ¢— D)+ Fo+F(AM(D, )+ T

Next we obtain an estimate on M(p, ¢) from below as Lemma 2.5. It should
be remarked that only the following three properties of P will be used:

PU, x)=0, SRnP(t, X)dx=1 and P, x)=(fpwmt)- 100,

Lmma 2.5. For non-negative integer p and g,

(i) Cin*'exp{(E(p, g—1)—n"*'—1)/((n+p+g—DM(p, g—} =M(p, @),
where C, is a positive constant depending only on p and q,

(ii) —;‘e"(n+ﬁ+q—1)M(1>, q— Dt ((favm)= W2 h(p, g—1)) 7t/ (¥

exp {(F(p, g—1)—t®* D) [(n+p+q—1DM(p, g— 1)} = M(p, q),

where h(p, q—1)=SMX,,X"'1e‘“’1 dx,

(i) ConM(p, g—1)*?exp{—tP*21/((n+p+q—1)M(p, ¢g—1)} =M(p, q),
where C, is a positive constant depending only on p, g and v.

Proof. For any fixed @ we have
min {x log x+ax}=—e %1,
x>0

Hence
Xp X' {Plog P+P}=— X, X" le-*"1,

Letting a=gX,4y, where 8 and y are constants, and integrating by Lebesgue
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measure, we obtain

(2.23) —E(p, g—1D)+BM(p, ¢+rM(p, ¢—1)

Z—e""S XXl AX1dx
RT

=—e T2/ h(p, g—1).
Here we choose 8 and y such that
B=n'/M(p, ) and e77'(2/B)"*P*h(p, g—1)=1.
Then by (2.23), we obtain

(2.29) TM(p, g—DZE(p, ¢—1)—n?"—1

and

(2.25) e'=e7'2M(p, g)n=WFV)"+PHh(p, g—1).
Combining (2.24) and (2.25) we obtain

(2.26) exp{E(p, g—1)—nt'—1)/((n+p+g—DM(p, ¢—1)}

(e h(p, q— L) HPHIIMp, g)n” @D

Since inf (h(p, g—1))¥/+P+a-D>(, (2.26) implies (i).
To show (ii), we choose B and 7 in (2.23) such that

B=n+p+g—1)M(p, g—1)/M(p, 9)
and

e—f—l(z/ﬁ)n+p+q—lh(p’ q_l):t(p+q—l)/2.
Then we have

Q2 @r=e @M, /(n+prq—DM(p, g— )P h(p, g— 1)1 2D
and
228)  7M(p, g—DZE(p, g—D—(n+p+q—DM(p, g—)—t+-Dre
=F(p, gD+ (3 nlog (fwe)—(n-+ p+g—D)M(p, g—1)
—tpre-nJ2

Combining (2.27) and (2.28) we obtain

exp(1UF(p, q—D—tP*-9)/M(p, gD} + 5 n 1o (fat)—(n-+p+g—1)

<e@M(p, 9)/((n+ p+g—DM(p, g—1)™?"07 h(p, q— Dt~ 4/ >+a-D,

Therefore

F(p’ q_l)___t(p+q-1)/2 }
(n+p+g—1M(p, g—1)

Zh(p, g=DVPHV2M(p, @)/ (n+p+g—1)M(p, g—11'%),

(2.29) e"(f,,wr)”’“"“’*q'”exp{
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which yields (ii). Since lim f,=4/e, sg?(h(p, g—1))m+P+a-D <o and F(p, g—1)

=0, (iii) follows from (2.29) immediately.

§3. The proof of Theorems.

In this section we shall complete the proof of Theorem 1 and 2 given in
Introduction. First, we shall obtain estimates of M(0, 1), E(0, 0) and G(0, 0).

Proposition 3.1.
(1) (ve~) e <lim inf{M(O, D/(n*"*)},

13?2 sup {M(QO, 1)/(n*t/")} = (p+A(*+2)(20)"%,

where ¢~ and ¢* are the constants defined in Theorem 2. There exist positive con-
stants C;, C, and C; depending only on 2, p and v, such that

(ii) fim sup {St(VsE(O, 0= ds/eitn} <C,,
n-o t>0 \Jo
_ t

(iif) lim sup {S G(0, 0)1/2 ds/t”zn}écz,
n-oo t>0 WJo

(iv) ﬁESllE(O, 0)| ds/n*<C,,

Proof. We are choosing a non-Euclidean metric, hence we have to modify
the argument of J. Nash [4]. By Lemma 2.4,

3.1 | V. M(0. 1) v~ "2 (u+An(V.EQ, 0))"/
Sy 9P (u+On(VFQO, 0)+n/2t)2.

It should be remarked that V,E(0, 0)=0. Here we used the definition of F and
M@, 0)=n. Since ltm;x M, 1)=0, we have

(3.2) M, 1)§v“””(y+1)nS:(V,F(0, 0)+n2/25)"/2 ds

om0 (et D 1(@5)72/20)09,F (0, 0+ n/(@s) ) ds

Sv O (et Dn (2072 /2n)F (O, 0)+n(@0}.

Here we used the fact F=0 and the following inequality (a+5)'/2<a/(2b'/*)4b/*
for b>0 and a+b>0. By (ii) of Lemma 2.5,

3.3 %e“(f,,m)”zn‘”"e”"'°”"2e'”"2§M(0, 1)/(n%/?)
Combining (3.2) and (3.3), we obtain
(3.4) —1-e‘“"'z(fnuﬂ)”zn'”"e“‘" 0)/n2

2
=M, 1)/(n*t"*)
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S(p+A@2)"Y2((F(0, 0)/n*)+2)
Since Li_rﬂ-%—e'""‘”(fnun)”zn‘”"z(wre‘a)‘”, we obtain
(vre=®)Y2exp {}Ti% 1Lr>1£ F(0, 0)/n?}
é(#+l)(2v)"”2’(}% lgg {F(0, 0)/n® +2)
which implies
(3.5) éﬂ fF(O 0)/n2=c*
and similary we have

(3.6) ¢~ <lim sup F(0, 0)/n*<c*.

n—oo >0
By (3.4), (3.5) and (3.6), we obtain (i). Since (3.1) and (3.2) imply

(2,)1 2

S:(V,E(O, Nt ds=——F(0, 0)+n(2)'2,

we obtain (ii). (iii) follows from Lemma 2.2 and (ii). By the definition of
F(0, 0), we have

3.7) |EQO, 0)| <F(0, 0)+%n2| log (fawrtt)|.

By (3.6), (3.7) and lim f,=4/e, we obtain (iv).

Now Theorem 2 is a consequence of (i) of Proposition 3.1. Next we shall
proceed to the proof of Theorem 1 through showing one proposition.

Proposition 3.2. Let p and q be non-negative intgers. Then

(i) M(p, 9 =Cnetitrroiz, (<t <0,
(ii) [[sovanr B2p, g—1)] ds=Conet,
(iii) S:(G*(p, g—1)12 ds<Cen@tr2,
(iv) S:H*(p, 9—2) ds=<Cynt,
1
(v) [kxp, g1 dszComar,
where C,, ---, Cy are positive constants depending only on A, g, v, p and q.

Proof. We first remark that it is sufficient to show

. < ;
(i) §<‘%E;M(p’ @=Cn*

n
in order to prove (i). For A‘:iz; V.a;;(t/e% x/e)V; also satisfies the conditions
2 J

(0.3), (0.4) and (0.5) with the same A, ¢ and v, and C, does not depend on the



Parabolic equations in the divergence form 485

smoothness of the coefficients. Hence (i) and (i)’ are equivalent.

In the following C; always denote poitive constants depending only on 4,
#, v, p and q.

We introduce the following order — on the set {(p, ¢): p=0, ¢=0} :

(p, 9 — (', q"
if and only if
pt+g<p’+q’
or
p+g=p’'+q" and p<p’.

We shall show Proposition 3.2 by induction on (p, ¢) with respect to this order.
If (p, ¢)=(0, 0), then, every estimate is trivial. In the case (p, ¢9)=(0, 1),
(iv) is clear and the other statements follow from Proposition 3.1 and Lemma 1.3.
Choose (p, ¢) and assume that the statements (i):---(v) have been already
proven up to (p, g). Then we have to show all the statements also for this
(p, q@). First we consider the case ¢=0. In this case (ii):--(v) are trivial. To
prove (i), we use Lemma 2.4; since ¥,=0, we have

[V M(p, O)|=F,=p(p—1DM*(p—2, 0)+pA+mn- K*(p—1, 0).
Since (p—2, 0)—(p, 0) and (p—1, 1)—(p, 0), the hypothesis of the induction implies
S:'Cf‘ ds=Cyn

Therefore, noting ltln;l M(p, 0)=0, we have

M(p, 0= |9.M(p, 0)] ds=<Cpn,  0<t=1,

which proves (i)’.
Secondly we consider the case ¢=1 and (p, ¢)+(0, 1). By the hypothesis
of the induction and Lemma 1.3, we have

3.9) |\ ds=cine,
(3.9) g2écut(l/4)(p+q—l)n(1/2)(q+l), 0<t<OO,
(3.10) S:s“’”“’”‘”n @O(F+F(AM(P, )+ o)) ds

S Cian® @0+ Coyn @2 sup M(p, Q)"
o<tsl

here we used p+4¢=2. Combining (3.8)~(3.10) with Lemma 2.4 and noting
liﬂol M(p, ¢)=0, we obtain

(3.11) M(p, q)§Clon‘1“+C“(n‘”‘S:s(”2"1’+q“’VsE(p, g—1)ds
+Cuan® @0 Coan @5 sup M(p, @)%,
o<tst

for 0<t=<1. Now,
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[lsornev,Bp, g1 ds
=[s#400E(p, g—Dlim 5 (p+a— D[ E(p, g=Dstre-nreas,

By Lemma 1.1. and %(p+q—l)>0, we see
lpin;l t“’*‘l‘””E(p, q—1)=0.
Moreover we have by Lemma 1.2 and the hypothesis of the induction
E(p, q—l);%nM(p, g—1) log (fynt)=—Cyynt, for 0<t=1.
Hence
(3.12) sup S’sww-“ﬂvxE(p, g—1) ds
o<ts1J0
gosé‘zgl(t(pH]—l)/Z(E(p’ q__1)+Cl7nq+l)_t(p+q—1)/2cl_lnq+:
+t(p+q—l)/2cl7nQ+1)
=sup (E(p, g—1)+Cpn*)
o<ts
= sup (E(p, g—1)—n®'—1)+C,en*'.
o<ts1
By (3.11) and (3.12), we obtain
(3.13) sup M(p, ¢)SCyon?*'+Cyy(n?** sup (E(p, g—1)—n*'—1)
o<ts1 o<ts1
+c19112(q+1))1/2+Cz(;ns(q+1)/4(o§lllplM(p’ q))lM.
s

To prove (i)’ and (ii), we divide the situation into two cases. First suppose
0s<1t1£>l(E(p, g—1)—n?*'—1)<0. Then (3.13) gives

sup M(p, q>/nq+l§C21+czo( sup M(p, Q)/nq+l)1/2;
0<Is1 0<ts1
which yields (i)’. Lemma 1.3. combined with E(p, ¢—1)=n?"'+41 implies
|E, ¢~ Snt*i+143nM(p, g—Dllog (fvmt)|,  0<t=1,

which shows (ii). On the other hand when Os<1t1£>1(E(p, g—1)—n*1—1)>0, we
have by (i) of Lemma 2.5 and 0213 M(p, g—1D)(n+p+g—1)=C,,n?*" (this comes
from the hypothesis of the induction),

(3.14) Cyn®*exp (sup (E(p, g—1)—n?*'—1)/(n?"'C,,)) = sup M(p, q)
<tsl - o<ts1
By (3.13) and (3.14), we obtain

(3.15) Cysexp (oiggl(E(P, g—1)—n?*1—1)/(n?"Cy))
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= sup M(p, q)/n?*!
o<ts1
§C10+C14(05<1;1£1(E(p, (]_‘1)_'71“1_1)/"‘1“"‘6‘19)”2
+Co( sup M(p, g)/n®*)H*
0<ts1
However, it is easy to conclude from the inequality
{ Cos€XP (¥/Co) S x ZC1pF-Cra(y+Cig) 24 CooxM*
0=y
that x<C,, and y=C,;. Hence we obtain
(3.16) sup M(p, ¢)=Cs,
o<tsl
3.17) sup (E(p, g—1)—nt—1)=<Cpn?t?,
0<ts1

(3.16) implies (i)’. (3.17) together with Lemma 1.2. gives (ii).

As for the proof of (iii)~(v) we proceed as follows. (iv) is an immediate
consequence of Lemma 2.3 and (i). (iii) follows from Lemma 2.2, (ii) and (iv).
Since K(p, g—1)S(nG(p, g—1)M(p, ¢g—1))''?, we obtain (v) from (iii). Now the
proof of Proposition 3.2 is complete.

The final step of the proof of Theorem 1.

In the statement of Theorem 1, the estimate from above can be obtained
by applying Proposition 3.2. The lower estimate is shown without any difficulty
by using (iii) of Lemma 2.5 inductively. There readers should remark inequalities
nM(p, —1)=M(p—1, 0) for p=1, 2, ---.

Remark 1. In the case p=0, Theorem 1 can be obtained under a weaker
assumption (0.6)” or (0.6)” :

(0.6) Sup. 1;1 lci; 1 Sp,
06 | Seofms|Spléllyl,  forany =), 7=()=R".

Remark 2. Theorem 1 is obtainable for a slight more general class of
parabolic equations; let

B: 2 Vi(l,'j(t, X)Vj'f' E ( E vjdij(t, x))VL-
%, j=1 =1\ j=1
where (a;;) satisfies the same conditions as in Section 0 and (d;,) satisfies

ldi@, x)|=4/n
and

S ildij(t, X)V:V0(x) dx=0 for any eC}(R").

RN, j=

Then there exists a fundamental solution satisfying Theorem 1. See [5] for
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the precise meaning of a fundamental solution and its existence.

(1]
[21]
(31
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(5]
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