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Introduction.

Consider a partial differential operator of Schrédinger type:
(1) P(x, Dz, D)=D,+ ﬁ)l(Dj—aj(x))z-FC(x), (x, ) e R*XR*,
£

where a;(x), c(x) are complex-valued functions in B=(R™).

190 1 0
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We are concerned with the Cauchy problem for P(x, D., D,) both for the future
and for the past in H>-space:

{ P(x, D, Dyu(x, t)=f(x,t) in R*"X[-T, T],

D (I=j=n).

@

u(x, 0)=uy(x).

Recently, W. Ichinose [4] has given a necessary condition (*) for the Cauchy
problem (2) to be H>-wellposed :

There exist constants M and N such that

™)

sup
(z,w)ERMxSN-1

S:Ji)llm a,(x+00)w,d0 | <Mlog (1+0)+N  for p=0.
To prove this result, he used localization in phase space along the classical
trajectories for Hamiltonian |&|% His method is an extension of the method
developed by Mizohata [7] for hyperbolic equations.
In this paper, using asymptotic solutions, we shall give another proof of
this result for higher order operators “of Schrodinger type” with distinct chara-
cteristic roots.
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§1. Statement of the results.

Consider a linear partial differential operator

(1.1) P(x,t, Ds, D)=Dp+a\(x, t, Do)DPF '+ - +an(x, t, D),
where
(1.2) a;(x, t, DI)=I ) jaaj(x, HDg, (A=j=m),

als?2

Qajx, )E B(R*X RY).

We are concerned with the Cauchy problem for P(x,t, D, D,) both for the
future and for the past in H>-space:
3 { P(x’ t: Dl‘y Dt)u(x) t):f(x) t) in Rnx[_T’ T:l’
(1.3)
Diu(x, 0)=uyx), O=;j=m—1).

We say that the operator P(x, t, D., D,) is “of Schrédinger type” if the Cauchy
problem (1.3) for P(x,t, D, D, is wellposed both for the future and for the
past in appropriate function space. (cf. Takeuchi [12], [13].)

The first assumption is the following :

Condition (A.1). a.(x, )=a.; (constant) for |a|=2j, 1=j7=<m.

Denote the principal symbol of a;(x, ¢, D;) by a%§) and the homogeneous part
of a;(x, t, & of degree 2j—Fk by a%(x, t, &), i.e.,
9UEY= La k — ) a
(1-4) (1](5) Iangjané » aj(xy t’ E) Ialﬂzj-ka“](x’ t)& ’
(I=k=25, 1=7=m).

(If £>2j, we assume that a%(x, ¢, &) is identically zero.)
Denote the principal symbol of P(x, t, D,, D,) as 2-evolution in the sense

of Petrowski by Pon(&, 7)1

(L.5) Pen(§, D)=1"+a})r™ '+ -+ +ak(8).

Put

(1.6) Pom_i(x, 8, &, D)=al(x, t, )T '+ - +ah(x, £, §), (1=k=2m),

and
Pon(x, t, & ©)=Pon(§, 7).

The second assumption is as follows:

Condition (A.2). The roots of Pyn(&, 7)=0 are real, distinct for &= R™\ {0},

i.e.,

.7 Pen(§, )= Jli(f—lj(é)), O #F:E), (G#k E+0).
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Remark 1.1. 2;§) is homogeneous of degree 2 in & Poy-i(x,t, & 1) is
quasi-homogenous of weight (1, 2), i.e.,

sz—k(x; t: PE: pzt):pzm_kp2m—k(x) ty E; T)’ fOl‘ pERl‘
Remark 1.2, It is necessary for the Cauchy problem (1.3) to be H>-wellposed
that the roots 2;(¢)(1=7=m) are real for £ R". (cf. Petrowski [11], Mizohata
[71.)

The third and main condition is the following.

Condition (A.3). There exist constants M and N such that

(1.8) sup

(z,)ERMxSN-1
1sjsm

=Mlog(1+|p|)+N, for peR.

S:’Im Pomoy(x+5(Te2) (@), 0, @, A;@))ds

Our results are as follows.

Theorem 1. Under the assumptions (A.1) and (A.2), it is necessary for the
Cauchy problem (1.3) to be H>-wellposed that the condition (A.3) holds.

Corollary 1. Under the assumptions (A.1) and (A.2), it is necessary for the
Cauchy problem (1.3) to be H3-wellposed that the condition (A.3) with M=0 holds.
(cf. Takeuchi [13]. See also Mizohata [8], [9], [10], Ichinose [4], Takeuchi
(141, [151.)

Corollary 2. Assume the conditions (A.1) and (A.2). Moreover, assume that
one of the roots of Py (&, t)=0 is identically zero. Then, it is necessary for the
Cauchy problem (1.3) to be H>-wellposed that Im aqn(x, 0)=0 (|a|=2m—1) holds.
(cf. Ichinose [4].)

Remark 1.3. We shall prove this theorem by constructing the asymptotic
solutions. (cf. Birkhoff [1], Leray [5], Maslov [6], Mizohata [8].)

§2. Asymptotic solutions.
For simplicity, we put
2.1 Pon(§, 1)=(@—26)QE, ©), QE, A&)+#0, (E=+0),

and pt=s where p is a real parameter, so that D,=pD,. We define the phase
function ¢(x, s, ®) by

(2.2) olx, s, o)=wx+Aw)s, wsS"!,

so that ¢(x, s, w) satisfies Pip (%— %%):0. We construct the asymptotic

solutions of the following form:

(2.3) u(x, t, w)=e**?¢ > (x, s, w), (s=pt).
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Applying P(x, t, Dz, D)) to u(x, t, w), we have
(2.4) enier @ W P(x, 5/p, Day pD) (0% 0(x, 5, )
=0 'M,(x, s, D, D)v(x, s, ®)
+0*™*My(x, s, D, Dv(x, s, o)

+Mn(x, s, Dz, Dv(x, s, 0).
Here M,(x, s, D, D) is a differential operator of order r:

(2.5) M(x, s, Dz, Dy)
Sh

k+iaitith=r @l /!

Pz(r'i'»'—lk)(o,h)(X, 0, w, Aw)D2D§,
where

(2.6) Pz(ﬁ'{'-lk)(ﬁ,h)(x; 0, o, Aw))

d \e/ 0 i) 0
:(¥> (a—?)l<-é?>ﬁ<—at—>hpm_k(x’ £é ) (t.6,1=0,0, 2(@)

Especially, M,(x, s, D, D;) and M,(x, s, D, D;) have the following forms:

2.7 Mx, s, Ds, D)=Pin" (0, @)D

—l—lg‘,:le‘,%'“’(w, A@) D+ Py _i(x, 0, 0, X))

=Q(w, Aw)[Ds— eA) () D]+ Pom-1(x, 0, 0, Aw)),

(2-7)2 MZ(x) S, D.l‘r Ds)

= % 1 pev, iw)DaD:

o laiFi=2 a!l!

P8 (x, 0, o, Aw))D3D;

laifi=1 a!l!
+5Pm-10,0(x, 0, @, A(@)+Peom_s(x, 0, 0, Aw)).
We put v(x, s, w)= f}op“fvj(x, s, w). Then we have
iz
(2'8) e—ip¢(x,8,w)P(x’ S/Pr DI; st)(eip‘D(I,s'm)v(xy S, (l)))

=p2m'1Ml(x, S, Dx, Ds)vo(xv S, CD)

+o" "2 {Mi(x, s, Dz, Dovi(x, s, @)+Ms(x, s, Dz, Divo(x, s, )}

+ 0™ N My + Moy 1+ - +Momtys1-am}
02 N M+ My i+ - +Mombnso-zm}
+ PN Mg+ My 4 - 4+ Mombyss-2m)
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+P_NM2mvN .

We solve the transport equations:

Mi(x, s, Dz, Dgovo(x, s, w)=0,
(2.9), {
vo(x, 0, @)=g(x),
and
29 M(x, s, Dz, Dyvj(x, s, ®)+Myw;_+ -+ +M;.v,=0,
@3 { vi(x, 0, =0, (I<j=N),

where M,(x, s, D, D;)=0 if 2>2m. Put

(2.10) vi(x, 5, @)=e¥F2Vyi(x, s, ), (0Z7EN).

From (2.9),, we have

(2.11) d(x, s, w)=—S;sz_l(x—}-s’(vel)(w), 0, w, Aw)ds'/Qw, Aw)),

and

(2.12) wo(x, s, @)=g(x+sV:A)(w)).

Lemma 2.1. ¢(x, s, w) and wy(x, s, w) have the following properties:
(2.13) Px+s' Ted(), s—s’, o)=¢(x, s, ©)—P(x, s’, w),
(2.14) wo(x+5'(Ved)(w), s—s’, w)=wy(x, s, w).
Proof. Obvious.
Substituting (2.10) into (2.9);, we have
Q@, A@)[Ds—VeA)(w):DoJwy(x, s, ®)
+e @M (x, s, Dy, Dy)eE 59w, (x, s, w)
(2.15); +oeee e +

+e-t@saNM (x, s, Dy, Ds)e¥ @ y(x, s, w)=0,

wj(x, 0, @)=0.
Lemma 2.2. The solution of the equation
0 0
(—53——0-?) w(x, s)=g(x, s), (aeR"),

w(x, 0)=0
is given by

w(x, s):S:g(x+s’a, s—s’)ds’.
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Proof. Obvious.
Using Lemma 2.2, we can prove

Lemma 2.3. The solution of (2.15); has the following form:
(2.16); wilx, s, ®)=e WEEON (x5, D, D)eE =9 wy(x, s, o)

where

~ —1 (s s s
@17, Ny, s, D, Ds)—[m] Sods,.gsjdsj_l ...ngdsl
X 95350 My(x 45 (Ted) (@), S—5; Dy, Dy)e~ 196245

X' @it O My(x+5;-1(Ved) (@), $—$j-1, Dz, Dy)e 2512

X 93O Mo (x4 5,(Ved)@), s—S1, Dy, Dy)e ¢ 50
+(lower order terms).
Proof. For simplicity, we omit the variable w of functions ¢(x, s, ®) and

wo(x, S, w) in the proof. It follows from (2.15), that

d 0
[—8? —(Ved)(w)- 7\7] wy(x, s)

—1I
=—— W@\ (x, 5, Dy, Dy)et¥ TP wy(x, s).

Qo, Aw))
By Lemma 2.2, we have

s
e—i«,’:(.r+s' (Fed) (@), s-5")

Qw, Aw)) Jo
X My(x+s'(Ved)(w), s—s’, Dz, D)

wl(xy s):

X @i @+ Fed @50y (x4 " (T ) @), $”)|goms-srdS’
S S WSV IEN ' =’
Qo, Aw)) So" My(x+5' (Ved) (@), s—s', Dz, Ds)
X i@ 0=y (x §)ds’  (by (2.13) and (2.14))
= W @INM(x, 5, Dsy, D)e = wi(x, $),

which proves (2.16), and (2.17),. From (2.15), and (2.16),, we have

; 2
: ] Ssdsze-w(usz(yezuw),x—sz)

wste: 9= gz |

X M+ $:(TeD(@), 555, D, D) | ds,

X i (3+327e D @) M, (x4 5,(Ve D) (@) + 5:(Ved) @), s—52—$1, Dz, Ds)

X e—i</:(x+s2(751)(w).s,)ei¢(x+sz(yel)(w). $-83)

X wo(x+52(Ved)(w), S—52)
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+ G T [ ds,emsoeesnaren i My (x4 5,Te@), 552, De, D)
X ei¢(z+:2(751) (), 8'82>w0(x+82(v51)(a)), 3_52)

—7 2(s )
=[] Tidsse oo x5, Tea), 5=, s, D

Xg;dsle‘w‘“l"""x'32’]M2(x+sl(V52)(w), s—s1,Da, Dy)
Xe—i[¢(x.31)—¢(x,sz)]ei[(/!(.t.s)—¢(z,32)lwo(x, S)
+mg:dsge"W"'"‘*”""Z’JMs(x—l-sz(Vel)(a))), s—5s3, Da, Dy)
Xei[gb(z,s)—gb(z,az)]wo(x’ s)
=e W=, (x, s, Dy, D)et$=Pwy(x, s).
By induction in j, we can prove (2.16); and (2.17);. Q.E.D.

In view of (2.17);, we have

Lemma 2.4. ¢(x, s, w) and wy(x, s, ) have the following estimates:

(2.18) [¢(x, s, w)| =const.(14]s]),
(2.19) lwji(x, s, w)| =const.(1+]s|)*/ -sup|w(x, s, w)|,
(2.20) suppzLw;(-, s, @) ]Csupp.[we(:, s, ®)] for each (s, w).

Summing up, we have the following asymptotic solutions;
) N
(2.21) u(x, t, a))"—‘e”"‘/""”'-‘"’*‘”"'P"“’”j2=0p'fw,~(x, ot, w),

where wq(x, s, w) and wy(x, s, ) are of the form (2.12) and (2.16); respectively.
u(x, t, w) satisfies the equation

(2.22) P(x, t, D,. DYu(x, t, o)=f(x, pt, ),

where

@23) [z, s, @)=eitermnertd@nanfgin-a-y
X {e @O M (x, s, Dy, Dy)e? @5y (x, s, @)+ -
Fe W@ e ONM, (%, s, Dy, D)e =5y y 0 on(x, s, o)}
+p* "N {em W@ O M(x, s, Dy, Dy)et? @y y(x, s, )

-+ .. +e—i¢(x,s,w)M2m(x' S, D.r’ Ds)ei¢(1's'w)wN+s—2m(xy S, 0))}

+p_Ne—i¢(x's‘w)M2m(x; S, D.z’r Ds)ei¢(x,8‘m)wN(xy S, w)]'
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§3. Proof of Theorem 1.

3.1. Using the asymptotic solutions constructed in a previous section, we
shall prove Theorem 1. H>=-wellposedness of the Cauchy problem (1.3) means
that there exists non-negative integer ¢ such that

G I, Dl =CDlut, M+ |{ 176, Olwdr |}, tel-T, 1,
where

(3.2) -, D= 31— 1™/ Dulx, Dl

3. utx, Dlitp= 3 _IDguCx, Dlies -

Assume that the conditions (A.1) and (A.2) hold, but the condition (A.3)
does not hold. Then we shall construct a sequence of solutions of the Cauchy
problem (1.3) which violate the inequality (3.1).

The following Lemma is essentially due to Ichinose [4].

Lemma 3.1. Assume that the condition (A.3) does not hold. Then, for any
positive integer k, there exists (x'®, w'®, p,)E R*XS™ ' X R* such that

(3.4) S:klm Pon-1i(x®P+a@T D@ ®), 0, 0P, A0®))da/Q@®, Aw?®))

Zklog(1+]p.)t+k,
(3.5) lim p,=-+o0,

k—+co

and
36 | "Im P (x0T, 0, 00, A0 da/Q, M)

>0 for 6<l0, 1].

Proof. (3.5) follows from (3.4). Thus we only prove the Lemma with (3.4)
and (3.6).

(i) By the assumption, for any positive integer k, there exists (£%°, @‘®,
0r)ER™X S 'XR! such that

3.7) IS:”Im Pona(F P+ a(TD@™), 0, 0P, A0®)da/Q@ P, A@®))

=klog(1+1p.)+k.
Set

0= "1 Pom (D 0T ), 0, 0, 2w PN/ Q™ A ™)
for 6<[0, 1].

If U,(1)<0, we put ¥ =2%+45,(T:)@?), pp=—75,. Then we have
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A

:klm Pomi(E+0{ D (0®), 0, 0®, A0 ®)da/Q™®, Aw™®))

ey

== ["MIm Py (4040 (TeD@P), 0, 0P, A *)da/Qu ™, Ho™))
0.

v

Thus we can assume that ¥ ,(1)=0.
(ii) We take 6,<[0, 1] such that orsrl(}glwk(ﬁ)=¥fk(0k). We put

{ x"”=£”"+0kﬁk(V52)(w"”),
szﬁk_ekﬁk'—'(l—ek)ﬁk-
Then, for t=0p, (0<[0, 1]), we have

[1m Poms (e D+ 0T @), 0, 00, 0 ) da/Qu ™, Aw ™)

=S”0f"”lm Pon(FD +0(TeD)@™), 0, 0P, 2@*)da/Q@™, Aw™P))

Orpp

_—‘@k(e(l—0k)+0k)—wk(0k)§0-

(i) [ 1m Pom- (2O +0(Te(@P), 0, 0P, A0 PNda/Q™®, Aw ™))

Sﬂk”k?k ek . .
= Im Py (2% +0(Ve)@®), 0, 0P, A@'®))da/Q?, Aw™))

Orok
=S§z3klm Pon (2P +0(Ved)(0*P), 0, 0P, A0 ®)da/Q0®, Aw™))
=D+ {=V ()}
2¥M 0 0=V,0z min ¥ (O)=¥.(0:)

Zklog(1+]ge)t+%
Zklog(+lpeDtk  Co lorlS18:D). Q.E.D.

3.2. Let G(x) be C~-function such that
(3.8) G(x)>0 for |x|<1, suppGx)C{xeR™; |x|=1}.
In (2.12), (2.21) and (2.23), we define
3.9 go(X)=1px|™*G(| o | (x—(x®+ 0, (VeA)@*))).

In (2.21), (2.22) and (2.23), we define p=p}, t=p;% o=, so that pt=p,. We
denote u,(x, H)=u(x, t, ®*), fu(x, )= f(x, s, ®*) with g,(x) in (3.9). By (3.1),
we have

(3.10) e (-, pis)lll(oéC(T){llluk(-, O)lllgr+ 1 ox*

{7174, s0lwas|}-
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3.3. Evaluation of [lu,(-, prllw. ux(x, p&®) is the following form:
B.11)  uu(x, ppt)=etrhe@en itz on
X [wo(x, po)+ ot otwi(x, p))+ - +pr¥(er*¥wu(x, p4)].
It follows from (3.11) that, for large &,
(B.12)  uw(x, o)l
Zzexp |1 1m Pom-s(x+0(TDOD), 0, 0®, 2w *)da/Q®, Aw™®))]
X {lwolx, p)l— el ortwilx, p)|— - — Lol Y] pi*¥walx, pe)}
;%lw(.(x, pk)lexp[S:kIm Poms(x+0()(0®), 0, 0, Ao®)da/

Q™, 2w ™))
(by (2.19) in Lemma 2.4)
1

=7epr:"[m Pynos(x P+ (VD) (@), 0, 0%, A0'*))da/Qw™®, Z(w"”))]

X exp [S:d@g:dq Im (Vo Pom-)(x P+ 0,0 (Ved) @)+ 0 (x —xP)

0, 0, A™M))- pa(x—1)/Q@™, Z(w”")]lwo(x, on)l.

By (2.12), (3.8) and (3.9), we have

(3.13) wo(x, pr)=1px|"*G(| ps|(x—x®)),
(3.14) supp wo(x, pk)C{xER"; Ix—x"”lé——l—}.
|Pk|
In view of (3.12), (3.13) and (3.14), we have, for large %,
(3.15) (e, peMleoy = Nuel-, 0w

= Cl G sacams 50| |41 Pom-s(x 0+ 0 (Ted) 0,

0, 0¥, Aw™*))do/Q™®, l(w""))]
ZCollG()llz2eny (14104 D)*,  (by (3.4) in Lemma 3.1),

where C, is a positive constant independent of k.

3.4. Evaluation of [Ju.(-, O)llp.
It is easy to see that, for large &,

(3.16) llze (-, OMlllcqr

={% =, 1D8—80m D uyx, Dt iwof

j=1 lals
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m 1/2
const.[ B 3 {1pu19 gy <m0+ 52p TG0

lalsq

<const. | o [TV G(xX)l (o) -

3.5. Evaluation of S:kll fe(, $Dl@ds’. In view of (2.13) and (2.14) in

Lemma 2.1 and (2.19) in Lemma 2.4, we have, for large %,

3.17)

o174k, M|

_Jfer
pk‘So [fe(x+s"(Ved)@®), pp—sNpds’
Sconst. | pk | -4+4(2m-2-N)+4q
% lS‘nk”e—lm¢<z+s'(751)(m(k)),pk—s',w(kn
L]
X {e-i¢(x+8’(Vél)(w(k)),pk-s’.w(’”)Mz(x_i_sl(vel)(w(k))’ pk—s', D., —Dy)
XM+ (VeD(@™®), pa—s’, Di, —Dy)eid s meh @, pymsrwtn)
Xwo(x+5"(Ved) (@F), pp—s’, )| ds’
<const. l Ok I -4+4(2m-2-N)+4q+3N +2

ok ,
X IS “e-lmub(z.pk.w<k>)—¢(z,s ,wU'))on(x’ Ok w"”)l[mds’
0

=const.|p, [4emre-10-N

S"ke_xmw(x(k), p @By =g(z k), s, wlh))]
0

X “e—lmcg&(z,pk,w<k>>—¢<z(k>.p,,.w(k>n+1mc¢u,sr,m(k))_¢<x(k>,s'.wm)]

Xwo(x, pr, ®*)| 0 ds’ l
(3~18) —Im [¢(xy Ok, w(k))_¢(x(k)y Ok w(k))]

= I ) D+ 0—2P), ps, 0P)-(x—xP)db

={,d0] " 1m (T Pum ) (x D +0(x—x ) +0(Te (@), 0, 0P, A ™))
(=2 9)d/Q™, M ™))
=S:d0§:d0’Im(V,sz_l)(x"”+0(x—x"")+pka’(V52)(w""),
0, o®, A®)): pu(x—x®)/Q™®, Aw™)),

which is uniformly bounded on supp we(x, g4, w"")={xeR" P lx—x gﬁ}
Ok

Similarly, Im[¢{(x, s/, 0*)—¢(x®, s/, ©®)] is bounded on supp we(x, ps, @®)
uniformly in %2 and s’(|s’|=]|p.|). Thus, using (3.6) in Lemma 3.1, we have,
for large &,
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(3.19)

(e
ox' M1t s’
<const. | p [42mH0 9N g=Im @B o0 BN G x|
=const.| o | “*™+9 Y G ()

Xexp[S:"lm Pons(x P +a(Te@P), 0, 0P, A0®)da/Q@™P, R(w""))].

3.6. Proof of Theorem 1. In view of (3.15), (3.16) and (3.19), from (3.10)
we have the following inequality.

(3.20) CollG(x) e m 6P th
SCDH{C ] pp P ™ VG ()] 0+ Col p | ™ HO 2N
XIG)]| e m = ®ronp),
where C,, C,, C, are positive constants independent of k. If we choose N=
4(2m+q—2), then (3.20) is impossible as £ tends to infinity. This completes the
proof of Theorem 1.
§4. Examples.

Examepl 4.1. Consider an operator of the following form:

(1) P(x,y, Dz Dy, DO=Ditd:t 3 aytx, 5)Ds,

+ ki_lbk(X, WD, ,+clx, y) in R®"XR*XR*.

Denote the dual variables to (x, y)€R™XR" by (§, )€ R™XR"™ The condition
(A.3) means that there exist constants M and N such that

4.2)

p(m 7
(z,V)seul?me" So{ j2=11m aj(x-l_se’ y)$j+ Ellmbk(x-i_ss’ y)ylk}ds‘
(5_,7)Esm+n-1
=Mlog(1+|pl)+N, PER.
We take £=0 in (4.2). Then we have from (4.2) that
Imbk(x’ J’)EO, (lékgn)-

Thus, from (4.2), we have

S: 35 Im a,(x+ s, y)oyds|<Mlog (1+]p)+N, p R,
p2

Squ n
@.3) | CREEIR
Imb,(x, y)=0, (1=k=n).

Note that (4.2) is equivalent to the inequality in (4.2) with p=0. When
(4.3) is satisfied, we would like to say that the operator (4.1) is of Schrodinger
type in the direction (£, 0) and of hyperbolic type in the direction (0, 7).



Schriodinger equations 471

Example 4.2. Consider an operator

4.9) P(x, Dz, D)=Di— (3, D3) + B(x, D, D)),
defined on (x, t)e R®*X R!, where

4.5) B(x, Dz, D)=by(x, Do)Ditbix, D.),
and

4.6) bx, D)= 3 bufx)DS, =1, 2.

The principal part of P(x, D, D,) is
) Di— (% 03 '=—[(5)"+a2),

which is appeared in the equation of vibrating plate. (See Courant-Hilbert [2, p.
252]. See also Takeuchi [14].) The condition (A.3) means that there exist
constants M and N such that

(4.8) sup ’Splm b*(x+sw, w)ds
(r,w)ERMx8n-11J0
=Mlog(1+]p)+N, PERY,
where
4.9) b*(x, $)=% {b3(x, §/1&1) b, E/1ED} €I,
(the same sign)
and
(4.10) bY(x, §)=ml=2“_lbaj(x)5", (=1, 2).

The condition (4.8) is equivalent to the following.

4.11) sup

(z,w)ERNXx SN-1
j=1,2

S: Im bY(x+sw, w)ds

<Mlog(1+|p)+N, peR.

Note that (4.8) and (4.11) are equivalent to the inequalities in (4.8) and (4.11)
with p=0 respectively.

Acknowledgement. The author wishes to express his sincere thanks to
Prof. S. Mizohata and members of Mizohata Seminar on Partial Differential
Equations for valuable discussions and comments. Also he wishes to express
his hearty thanks to Mr. Wataru Ichinose for making manuscripts of [3] and
[4] available to him.

IRON AND STEEL
TECHNICAL COLLEGE



472

(1]
£21]
£3]
(4]
5]
(6]
£7]
L8l
£ol
[10]
(11]

(12]
(13]

(14]

[15]

Jiro Takeuchi

References

G.D. Birkhoff, Quantum mechanics and asymptotic series, Bull. Amer. Math. Soc.,
39 (1933), 681-700.

R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I, Interscience,
1953.

W. Ichinose, Sufficient condition on H.. wellposedness for Schrodinger type equa-
tions, Comm. in Partial Differential Equations, 9 (1984), 33-48.

W. Ichinose, Some remarks on the Cauchy problem for Schrédinger type equations,
Osaka J. Math., 21 (1984), 565-581.

J. Leray, Lagrangian Analysis and Quantum Mechanics. A mathematical structure
related to asymptotic expansions and the Maslov index, MIT Press, 1981.

V.P. Maslov, Theory of Perturbations and Asymptotic Methods, Moscow, 1965.
(French translation from Russian, Dunod, Paris, 1970.)

S. Mizohata, Some remarks on the Cauchy problem, J. Math. Kyoto Univ., 1 (1961),
109-127.

S. Mizohata, On some Schrédinger type equations, Proc. Japan Acad., 57 (1981),
81-84,

S. Mizohata, Sur quelques équations du type Schrédinger, Séminaire J. Vaillant
(1980/81), Univ. Paris VI

S. Mizohata, Sur quelques équations du type Schrédinger, Journées “équations aux
Dérivées Partielles”, Soc. Math. France, 1981.

I.G. Petrowski, Uber das Cauchysche Problem fiir ein System linearer partieller
Differentialgleichungen im Gebiete der nichtanalytischen Funktionen, Bull. Univ.
Etat Moscou, 1 (1938), 1-74.

J. Takeuchi, On the Cauchy problem for some non-kowalewskian equations with
distinct characteristic roots, J. Math. Kyoto Univ., 20 (1980), 105-124.

J. Takeuchi, Some remarks on my paper “On the Cauchy problem for some non-
kowalewskian equations with distinct characteristic roots”, (Schrédinger equations
and generalizations; I), J. Math. Kyoto Univ., 24 (1984), 741-754.

J. Takeuchi, Remarks on the Cauchy problem for linear partial differential opera-

2
tors with the principal part (ait) +4%, (Schrédinger equations and generalizations ;

II), Bull. Iron and Steel Technical College, 18 (1984), 15-23.

J. Takeuchi, On the Cauchy problem for systems of linear partial differential equa-
tions of Schrédinger type, (Schrédinger equations and generalizations; III), Bull.
Iron and Steel Technical College, 18 (1984), 25-34.



