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§ 0 .  Introduction

In two previous papers by the author [4] and [5], it was shown for second order
operators by the factorization method that effectively hyperbolic operators are
strongly hyperbolic. This fact will easily be extended to the general cases of single
operators of higher order, because the essential and difficult points of the proofs
have been settled through the above papers. This paper aims the proof of this
extension by the method which we call the recombination of characteristics. And
also it will be shown that it is able to apply to the Cauchy problem for non-linear
equations by virtue of the Nash-Moser implicit function theorem. The conclusion
of our clarifications and of the results by V. Ya Ivrii and V. Petkov [3] is that the
effective hyperbolicity is equivalent to the strong hyperbolicity with respect to the
non characteristic Cauchy problem for single partial differential equations. We
leave the commentary of the related fields to V. Ya Ivrii and V. Petkov [3] and to
the author [6].

§ 1 .  Notations, Assumptions and Results

We consider a single partial differential operator p of order m on an open set
of Rn+1 . The non characteristic Cauchy problem is to find a solution of the equation
pu =f  on Q satisfying the initial data on a hypersurface of the derivatives up to
m - 1 of u to the conormal direction of the surface. We here use the notation "well
posed" defined by following in this connection.

Definition 1.1. 1 )  The Cauchy problem for p  is said to be well posed at a
point x -  with respect to a non characteristic direction 0  0 if there exists a neighbor-
hood 0  of x -  fo r  any infinitely differentiable function 4) satisfying 49(x)=
and c/4•(x- )= 0 such that the following statements (E), and (U), hold for any small t.
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( E ) ,  For every f  belonging to C ° (Q ) there is a distribution u belonging to 6"'(C2)
and satisfying the equation pu =f  on Q„ where 0, is the set of x in S2 such that (b(x)< t.
(U) t I f  u belonging to S'(2) satisfies pu =0 on Q„ then u vanishes identically on

2 )  The Cauchy problem for P is said to be e-well posed if the above distri-
bution solution u is always infinitely differentiable.

V. Ya Ivrii and V. Petkov showed us that the strongly hyperbolic operators
should be effectively hyperbolic. The notations, appearing in this statement and
the converse one we are going to complete, stand for the following ones defined to
the principal parts pm .

Definition 1.2. 1 )  Let p„, be hyperbolic with respect to  the direction O  0 .
pm  is said effectively hyperbolic (with respect to the direction O4 0) if the fundamental
matrix at any singular point of {Pm= 0} has non zero real eigenvalues. (Refer to [6].)

2 )  pm  is said strongly hyperbolic (with respect to the direction B *0) if the
Cauchy problem for p with any arbitrary lower order term is well posed (with respect
to the direction O  0).

We quote the results for the operators of second order from the author
[4 ] and [5 ], and assume them. We consider the operator p , which is a classical
pseudodifferential operator in the variables x  and a differential operator in the
variable x , of second order. Namely, we suppose that p is written as

p = -ag+ a ( x o , x, 0)0 0 + b - (x o , x, 0)

with pseudodifferential operators a-  and b-  of order 1 and 2 in x, respectively. So
we denote the principal symbol of p by 132 .

P2 = —  +a7(xo , x, 04+ ba(x o , x,

Moreover we assume that p  depends smoothly on another parameter t varying on
the interval [0, 1]. We obtain Theorem 1.1 from [5] and Theorem 1.2 from [4].

Theorem 1.1. A ny  ef fectively  hyperbolic p 2 w ith inf initely  dif f erentiable
coefficients is written locally  as

P 2 = — + b2 ,

where A o , A 1 and b 2 are  infinitely differentiable functions in (x o , x, c ,  t) of  homo-
geneous order 1, 1 and 2 in respectively, such that

b2 >0,

{ o — Ao , A t } >0  a t  A0 —A 1 =b 2 =0

and

{ o—Ao, b 2 }  +cb 2 =0

with an infinitely differentiable function c in (xo , x,
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Theorem 1 .2 . I f  p2 f orm s lik e  the conclusions of  the above Theorem 1.1 on
a  neighborhood of  0<x 0 <T , then the Cauchy  problem f o r p w ith the principal
part 192 w ith respect to dxo ,

p u =  f  o n  0< x 0 <  T
and

u  = 0  on x 0 <O,

has the unique inf initely  dif ferentiable solutions u f o r  inf initely  dif ferentiable
and compactly  supported data f  vanishing on x0 < 0 .  The solution u satisfies the
estimates, by the Sobolev norms on xo <T, that Ilulls <C,Ilf il s + i  w ith some constant
1 independent of s and the param eter t.

Remarks. 1 )  Theorems 1.1-2 have been proved at [5] and [4 ] in the case of
p not varied by the parameter t. However their proofs assure the results in this
article by treating the parameter t as well as the variables x  in the first case and
by verifying all processes of the proof are uniform on the parameter t in the second
case. This uniformity of the results in the parameter t makes it easy to verify the
uniformity with respect to small perturbations of coefficients.

2 )  The constant I  naturally depends on the first order terms. However, if
it is described as

p i  = + E3= i f( o  — A; )+g -Pb 2 ,

with pseudodifferential operators q 1 , f i and g, then the constant 1 depends only on
the bound of q  in the space of pseudodifferential operators and is independent of
ones of f i and g.

Under assuming Theorems 1.1-2, we shall prove Theorem 1.3, being the main
theorem for single linear equations, and Theorem 1.4, being the extension to non-
linear equations. Theorem 1.3 will be proved by a somewhat different method from
the usual one. And the Nash—Moser implicit function theorem will apply to showing
Theorem 1.4 because all requisites for linear parts will be assured by Theorem 1.3.

Theorem 1 .3 . L e t p  b e  a  single partial dif f erential operator o f  order m.
If  p is effectively hyperbolic with respect to dxo  a t  a  neighborhood of  the origin,
then p is p o s e d  a t  the origin w ith respect to dxo . M oreover there exists a
lens neighborhood 0 of  the origin contained in  a neighborhood given beforehand
such that for any  inf initely  dif ferentiable function u on Q supported on x0 >0, it
holds the estimates

f or any  real positive s and for a f ixed 1, where a is coefficients of p and where
stand for the Sobolev norms on the lens domain

Q= {(x0 , x ): — s<x 0 <e - 1x12 }.

D, the constants Cs an d  1 are uniform  as far as the hyperbolic principal parts p,„
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and coef f icients a of  p  belong to a  sm all neighborhood o f  a f ixed effectively
hyperbolic one and a bounded set in the space of infinitely differentiable functions,
respectively.

Let us consider a non-linear equation of order m

pu = p(x o , x, 02 14)=0

where (alu) k i ,..i stand for /-th derivatives of the real valued function u and p is a real
valued infinitely differentiable function in the variables (xo , x, no,)1„1 ,,, with multi-
indices a =(a 0 ,..., a„). We define the principal symbol pm  of p by

PJxo, x, a"(1, o , )=  E I t3 l=m (
(3

/01/p)P(Xo, X, O
Œ u ) (

Definition 1 .3 .  p is said to be effectively hyperbolic at (4', x - , u- ) with respect
to dx, if u-  is a formal solution of p(x -0', x- , Oau ) = 0 at (xo , x)=(x -6, x- ) and if the
principal symbol pm(xo , x, aœu, G, 0 is an effectively hyperbolic symbol with respect
to dx, at a neighborhood of (4, x - , u- ).

Theorem 1 .4 .  Let a non-linear operator p be effectively hyperbolic at (x 0 , x, u)
=(0, 0, 0) with respect to dxo . Then at a sm all neighborhood of  the origin there
exists uniquely an infinitely differentiable solution u satisfy ing that

pu= p(x o , x, 3au)=0

and

(01Ox0 )jul x 0 , 0 =0 (j=0 ,..., m -1 ).

We show an example. Let us consider the following equation on R2 .

pu = —  Oy(a(x, y , u)Oyu) —  b(x, y , u, a u ,  u ) = 0,

ulx=o=uo a n d  êx ulx , 0 =u 1 ,

where a(x, y , u) and b(x, y , u, v, w) are infinitely differentiable functions and a
is non negative. If the function

Oca(x, y , u)+2O .„Oua(x, y , u)v+0,a(x, y , u)v2

is positive at (x, y , u, v )= (0, 0, u0 (0), u1(0)) when a(0, 0, u0 (0)) vanishes, then p is
effectively hyperbolic so that the non-linear equation has a unique solution at a
neighborhood of (x, y) = (0, 0).

§ 2 .  Recombination of Characteristics

The characteristics of hyperbolic operators with the multiplicity of at most
two is micro-locally equivalent to one of hyperbolic operators of second order.
Therefore the results for equations of second order are extended to equations of
general higher order. However, the usual method needs the micro-local estimates
for the equations of second order, which are apparently moreprecise and more
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intricate than the global estimates. We have to improve the previous results in
spite of the repetition of the same technics if we wish to take the usual method.
In order to avoid this repetition we shall introduce another method which we call
the recombination of characteristics.

A basic lemma is the following variation of well known and simple ones with
respect to commutations of two involutive operators of first order.

Lemma 2 . 1 .  L et a and b be two pseudodifferential operators of  order 1 in x
(with the param eter x 0 ). A nd put two operators p and q as p= a and q= 0 — b.
We assum e that the principal parts p l  an d  q 1 o f  p  and q are real and involutive
to each other, that is,

{p i , q i } = c(p i — qi )= c(b — a 1 )

with c a pseudodifferential operator of order O. Then there exists another pseudo-
dif ferential operator d of  order 0 in x such that

(2.1) (p + c)(q + d — c)— (q + d)p

is a  pseudodifferential operator of  order — 1 (0<l < + oo) in  x. Particularly , if
p =q , therefore c=0, on  a conic dom ain F w hich is inv ariant w ith respect to the
Hamilton flow defined by p l , then d may be taken as d=0 on F.

P ro o f . Solve asymptotically the equation

pd— dp = qp — pq+ pc— cq (=f ).

The principal part is

{Pi, do} =fo. q. e. d.

We prepare another same type of lemma.

Definition 2.1. 1 )  We say p a Kovalevskian d —ps — d operator of order m if

p is a differential operator in xo w ith coefficients of pseudodifferential operators
in x such that

p=Dre,+ET=iai(xo, x,

where the order of a < j.
2 )  We say r a (general) d —ps — d operator of order k and differential order m

for convenience' sake if

r= E7=o bi (xo , x, a)ari
and

k =M ax ; {in — j + order of bi }

with pseudodifferential operators bi  in x.

Lemma 2 .2 .  p and q  are  two Kovalevskian (hyperbolic) d— ps—d operators
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defined micro-locally of  order m  and  n. L et us assum e that the principal parts
Pm and qn hav e no common ro o t .  Then f o r giv en r a  d— ps—d operator of  order
an d  d if f e ren tial o rder m + n -1 , there  ex is t a  an d  b  operators o f  o rder and
dif f erential order m -1 and n - 1 ,  respectively, such that

(2.2) (p+ a)(q + b)— (pq+r)=EV 8 0 ", ^)c

where c ;  are  pseudodtfferential operators of  order — l— j (0 < l < + co). a  a n d  b
are unique modulo d— ps— d operators of order — 1— n and —1—m, respectively.

The same statement holds for

(2.3) (p + a)q — (q + b)p

with respect to given p and q.

Lemma 2 .3 .  The last statement of Lemma 2.1 assures a partial com m utation
of p and q on a conic domain F o  surrounded by another conic domain I', invariant
with respect to the Hamilton flow defined by p l , on w h ich  p =q . In another point of
view, it means that the characteristics of  p and q are able to exchange one of each
other in  p art .  (Refer to the figure.)

p 1 = 0 q 1 = 0 p1q1= r1s1= 0 r1= 0  
s1=0

        

■

    

4—+ 4—+

 

„

         

We apply this techinic to hyperbolic operators with double characteristics,
namely, whose multiplicities of characteristics are at most two. Then we obtain the
next proposition.

Proposition 2 .1 .  L et p  be  a  hyperbolic Kovalevskian d—  ps— d operator of
order m >2 with double characteristics. If  the dom ain in x o  is sm all, then there
ex ists a  strictly  hyperbolic K ovalevsk ian d—  ps—  d operator q o f  o rd e r m -2
such that

(2.4) qp — rw r( 2 ) . • •r(n_ 1 ) =
E y L 10er(q p)-1a  j a.4

where the principal part of  qp has the double characteristics, r ( J )  m - 1)
are  hyperbolic Kovalevskian d—  ps— d operators of  order 2, and a ;  are  pseudo-
differential operators of order — 1—  j in x (0 l < + co). The double characteristic
points of  r( J )  coinside exactly  w ith ones of  p so that, if  p is ef fectively  hyperbolic,
then all r ( J )  are  also effectively hyperbolic.

Remark. If p is varied in a small neighborhood of hyperbolic operators with
infinitely differentiable coefficients, then the width of the interval in xo and the bound
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of coefficients of q, r ( J )  and the ramainder term are fixed commonly. Particularly
the coefficients satisfy the estimates as

ial s Cs ,i(lbl 5 .4.1
, +1)

with a uniform number l' depending on the finite number 1 fixing the class of the
remainder term, where a stands for the coefficients of q, r ( J )  and ap  and b for all
ones of p, and w here  .1 , stands for some weighted Holder norms of pseudo-
differential operators.

P ro o f . We may assume m> 3 because the case m =2 is trivial. Let the principal
part of p be p .  The ordered roots of p„, are denoted by A i (xo , x, ( j = 1 , . . . ,  m )
such that

Ai<Ai+i m -1 ) .

Since the multiplicity of the roots is at most two by definition, so there exist m-2
distinct smooth functions i/i ;  in (xo , x, (homogeneous in such that

Ai<tki<Ai+2 ( j= 1,—, m - 2 ).

Q.= {(x0 , x, Ai +  = 0 ; }

are closed conic domains ("closed domain" stands for the closure of an open set) and

A j+  1 /  0  11/ j }  - 0

at a neighborhood of Of . If we put the principal part qm _. 2 of q as

q = - 0.- 2 ;),

then we can find the lower order terms of q such as the lem m a holds. In fact we
define the principal parts r ( J ) 2  of r( J )  by

r ( J ) 2 -  A 7 ) 07) ,
where

=21,

07 = 0  A7+ 1 =A + 1 i f  0 + 1
and

= Ai+ 1, A7+1 = otherwise

fo r j= 1 ,..., m -2 . It is  c lea r tha t r ( J ) 2  are smooth. (Refer to the figure.)
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Now we will find the lower order terms of r( J) and q  with given principal parts
as at the above. It is proved by induction in m. To do so we consider r( ,) , q ( , )

and q ( 2 )  with the principal parts

qu i = r ( 1 ) 2 ,

q(1)1 = — ti/

and

q(2)„,_ 3 =-4 1 7 :3  ( ,3 - 1//j) (if necessary),

respectively. We show that the lower order terms of risi) and q( , ) are found such that

(2.5) qmp rz -o r ,

where if is an operator of order m —1 with the principal part

P,7,- = - /13) 117=3 (4 -2 ; ),

which satisfies the conditions in this lem m a. If m  =3, then the proof is complete,
and if m >3, then the assumption for induction yields that there exist r ( f )  ( j =
m —2) and q( 2 )  with the principal parts r ( J ) 2  and q( 2 ) „,_ 3 , respectively, such that

On the other hand we take qi- 2 )  and r( 1 )  such that

rwq(2)5

by (2.2) for (2.3) in Lemma 2.2 because q( 2 ) „,_ 3 and r ( 1 ) 2  
have no common root to

each other. Therefore we get

q -(2) C ) P  --q(2)r -6)P -

r ( o r ( 2 ) • .r o •

We have to prove (2.5) in order to complete the proof. It is done by applying
Lemma 2.3 at a neighborhood of 0 1 and Lemma 2.2 outside of it.

We can pick out P ( 1 )
 a n d

 p ( 2 )  from p  at a neighborhood of 0 1 by Lemma 2.2
such that the principal parts of  P ( j )  are

Po 1 = go — fo r  j = 1, 2,

and

P (3)m -2 = F17= 3 g0

and that

(2.6) P P(1)P(2)P (3) ,

because their characteristic are separated there. Now Lemma 2.3 applies to
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P(2)' s ( 1 ) and s( 2 ) , where the principal parts of q-o ) , s( 1 ) and s( 2 )  are g o —OA (0 — ' j )
and g o —,172 ), respectively. Then there exist the lower order terms of qi- o , S( l )  and
S(2 ) such that

qi'l)P (2 ) S(1)S(2) •

Moreover q ( l )
 is defined as

g(l)P(l)--=P6)qii)

by finding the lower order terms of g ( l ) , and of pi- o  with the same principal part as
one of p (1 ) ,  because their roots are separted. Then we get on a neighborhood of
0,

q(i)P q(i)P(oP(2)P(3)

=- Pii) 11•)P(2)P(3)

Pii)sms(2)P(3)

if we put

and

s(2)P(3)•

On the domain that t/Ji  </1.2 , we extend the lower order terms of q ( l )  from on a
neighborhood of 0 1 and find one of p" ) such that

P1)0.)P - -

Then we put

r(1) =qcoP(1)
to get

q( 1 ) p_—r( 1 ) p .

ri- i )  and p- are smoothly connected from on a neighborhood of Q1 because the
decomposition is unique.

On the domain that tki  >2 2 , we also pick out r ( l )  from  p as (2.6) such that
the principal part of r ( l )  is

( o - 1 ) ( o —'2)

and
p

We use again Lemma 2.2 to get the lower order terms of g ( l ) ,  q6 ) and r ( l )  such that

q( 1 ) r ( 1 )  r ( l )q ) .
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Putting

=qi- oP(3),
we get

q(i)P

g (l ), r (1 ) and p -  are also smoothly connected from a neighborhood of C21 . Therefore
we have proved (2.5). q. e. d.

§ 3 .  Stability for Smooth Perturbations

A well known fact is mentioned here about the stability of solvability with
respect to perturbations of lower order terms.

Let us consider two Kovalevskian d — ps — d operators p  and q  of order m,
which are differential operators in xo  with coefficients of pseudodifferential operators
in x such as

(3.1) 07:1+ I7=1 a si(xo , x, a x )Obn- j,

where the order of a . < j .  W e  suppose that they have the same principal part, that
is,

(3.2) r p —q

=-E7= 1 bi (xo , x, ax )abn— i,

where the order of b i < j —1, namely, the order and the differential order of r <m - 1.
W e give a  sufficient condition for holding the proposition tha t the Cauchy

problem for p  is well posed if the order of the perturbed term r is small with respect
to fixed q. Let H s(t, T ) for t< T stand for subspaces of the Sobolev space H s on
{(x0 , x): x o  < T} consisting of all elements supported on {(x0 , x): x o  t }. Then, p is
an operator from H s(t, T ) to  Hs - m(t, T) for sufficiently many s  and for all (t, T ):
0 < t< T < 1 .

Definition 3 . 1 .  We say here the Cauchy problem for p  strongly well posed on
the level / if there exists an operator r  from H s(0, 1) to  Hs+I(0, 1) with a constant
/ such that r is the inverse of p for sufficiently many s with respect to / and also satisfies

the estimate

(3.3) Ilrflls+i,t Cs It fit s,,cit

with respect to the n o r m  .11s,T of Hs(0, T).

Remark. 1) N aturally , the level / should be less than m as far as the non
characteristic Cauchy problem is considered.

2 )  Let r be an operator from Hs(0, 1) to H '(O , 1) satisfying

(3.4)I I  rf C I f  It
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for all t (0< t < 1). We are able to obtain the estimate (3.3) for r making a concession
of the level 1 to l - 1 .

There is no result known up to the present except for ones yielding the well-
posedness for the infinitely differentiable class of the Cauchy problem in the sense
of Definition 3.1, if they are modified to the global case in x .  Therefore we shall
show the stability of such strong wellposedness.

Proposition 3 . 1 .  Let p , q  and r  be defined as (3.1) and (3.2). If  q  is strongly
well posed on the level I and if  the order of r  is less than or equal to l, then p--- q+r
is strongly well posed on the level 1.

We prepare a lemma before proving the proposition.

Lemma 3 . 1 .  1) L et h be an  operator on Hs(0, 1) satisfy ing (3.3) w ith 1=0.
Then I + h has the inverse on Hs(0, 1), which is also the identity  p lus an  operator
on Hs(0, 1) satisfying (3.3) with 1=0.

2 )  Let q be strongly well posed on the level 1. If  r is an operator from Hs(0, 1)
to Hs - 1 (0, 1) satisfy ing (3.4), then p=  q+ r is strongly well posed on the level 1.

P ro o f . 1 )  (I + h )u = f i s  a  Volterra's equation. Therefore the Neumann
series converges.

2 )  Let us put h= q - ' r  or rq - 1 . They satisfy the conditions of 1). Therefore

p -i = --q  1 (1 q. e. d.

Proof of Proposition 3.1. Let us consider

A = ao <D>

which is an operator from Hs(0, 1) to Hs - 1 (0, 1) and invertible. A  and A  sa tis fy
(3.4) with 1= —1 and 1, respectively. Therefore A may seem strongly well posed on
the level 0. q+ r is divided as

(3.5) q + r= (l+ ro )q + r i,

where ro is an operator on H s(0, 1) satisfying (3.3) with / = 0, and r1 is an operator
from Hs(0, 1) to Hs - '(0 , 1) satisfying (3.4). In fact we consider

r=

Then Anl- tr is a general d — ps — d operator of order m and the order of differential
operators in xo included in it are at most 2m —1— l. Therefore the division by q
yields

A m -lr= ra+ rT ,

where r-
0 and are general d — ps — d operators of order 0  and m including

differential operators in x , of order at most m — / —1 and m - 1 ,  respectively. Thus,
Ai-m+i r -

0 is an operator on Hs(0, 1) satisfying (3.4) so that Ai - mr -
o = r 0  is one from

Hs(0, 1) to Hs+ 1 (0, 1) satisfying (3.4), namely, (3.3) on H s(0 , 1 ) . It is also clear
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that Ai - m r7=r, is an operator from Hs(0, 1) to Hs -AO, 1) satisfying (3.4).
Lemma 3.1 applies to (3.5) to imply the conclusion as follows. 1) Lem m a 3.1

applies to (1+ ro) to show the existence of (/ + ro )- 1 . 2 )  a p p lie s  to  q +( l+r 0 ) -
1 r 1

to yield

(q+r) - 1=(q +(1 +ro )1 ri) - 1(1+ro)'• q. e. d.

§ 4 .  Proof of Theorem 1.3.

We use the decomposition at Proposition 2.1 and show that p is strongly well
posed. It implies immediately Theorem 1.3 because the effective hyperbolicity is
invariant under the Holmgren transformation. So, we may assume that q • p is a
Kovalevskian d —ps — d operator of order 2m —2 which is a product of Kovalevskian
d — ps — d  operators of second order r( , ) • • •r( „,_ modulo smooth perturbations.
We have assumed Theorem 1.1-2 in this paper. We may suppose that each r ( J )  is
strongly well posed with a fairly low level 1 in the sense of Definition 3.1, since all
r ( J )  (j=1,..., m —  1) are effectively hyperbolic if p  is effectively hyperbolic. In
fact, if r is a Kovalevskian d — ps — d operator of second order and effectively hyper-
bolic, then r is decomposable as Theorem 1.1 and so  applicable to Theorem 1.2.
Here the constants Cs at (3.3) and the level 1 are uniform if the principal part of r
lies on a small neighborhood of a fixed effectively hyperbolic operator and if other
lower order coefficients belong to a bounded set of the space of pseudodifferential
opera tors. If otherwise, we can choose a convergent sequence of operators rs to an
effectively hyperbolic r o such that they could not holds the uniformity of C, and I.
Choosing the subsequence, we can construct an operator with parameter t such that

= ro ,

r -u s  = rn

and r t-  is infinitely differentiable in  t ,  by virtue of the convexity of hyperbolic
operators of second order no ted  in  L em m a 4.1 . It contradicts the results of
Theorem 1.1-2. However, the level I never depend on terms of subprincipal parts
expanded by the first derivatives 17  pm of the principal symbol pm , as noting at Remark
after Theorem 1.2, because they are expanded by ones of r ( f )  even in the subprincipal
parts of r( ; )  after the decomposition.

Lemma 4 . 1 .  Let p;  ( j=0 , 1 )  be two quadratic polynomial in t w ith only  real
roots such that

p ;=(t

then

A =(T - 8a0  — (1 — )a 1)2
 — Ebo  — (1 —8)b 1

has also only  real roots for 0<e< 1.

The results for r ( J )  imply that q•p is strongly well posed with some level 1 by
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Proposition 3.1. q is strongly well posed on the level m — 3, if it exists, since q
is strictly hyperbolic. Theorefore p is also strongly well posed with another level 1
because

p l
 = (q  p )  1  q

We have finished the proof of Theorem 1.3 except for the precise dependence of the
estimate on the coefficients of p, though it is already proved that the constant Cs at
(3.3) is independent of the bound of derivatives of coefficients over fixed order if s
is fixed.

Now we suppose p a partial differential operator and start from holding the
estimate (3.3) for fixed so =s+ / (> m) with the level 1. The constant C, at (3.3)
is uniform on the coefficients a of p bounded as

laly <C

with a Holder norm 1• ly, where y and the level 1 are fixed as far as the principal part
of p and the essential part of the subprincipal part are fixed. (The fact is that they
may vary slightly.)

We operate <D>2 1 (a is an integer) to p from the left hand side and commute
them.

<D>2ap  = p -o>2«

where

= ET=1, +1117,

P;.=

= P.-1 — (2 0- 1 {<0 2 ", Pm} <0- 2 s ,
P7 = — E7:=I; COT k(<0 2 s , p -k)<0 -

2 "

for l' =1 —m- 1<j <m, and r is the remainder terms.

(ak(a, 1 ) = E icc+pi=k(
- 1 ) 1Pi cliAl;bm.)

r  is also strongly well posed with the same level 1 as p because they have the same
principal and same essential subprincipal p a rt . Therefore for the solution u of
pu =f, we get the estimate

11 <D>2 "tillœof i+ liru11 )

with a fixed constant Cs  as far as 
l a 1 2 m - i + y  has a fixed bound, which may depend

on a. On the other hand, ru has a bilinear relation with the derivatives of the coef-
ficients a of p and the derivatives of the solution u . The order of the derivatives of
a is 2a or less, the order of the derivatives of u is 2a+ m + l' or less, and the total
order of each term is 2a+ m or less. Therefore,
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where the right hand side is summed up for all (j, k ) such that

0<j<2ad-ot 0 —1,

0<k<2x+ot 0 -1

and

j+k<2a+oc0+m—/.

By the interpolation theory, it holds for any small positive e that

IlrullŒo -, 8 11142.-FOE.+Ce( 1 +012.+20 -i)11/4 11.0

With another small positive 8, we get

8 1114 112.4-.° +CE(Ilf112.+OE0 -1+(l+lal2Œ+. 0 -1)ilfL0-1).

Moreover, we can yield the estimate for 01,a+Œou by taking the derivatives in xo  of the
equation and by applying the interpolation theory as

11a4"± "u II 0 61106Œ+ Œ0u II + cE( II <D>21u11.0 + 11f112.+Œo-„,+( 1 +la12.±.0-.)11u11.0)•

Therefore we conclude

lu lI 2 + Œ O ^  c(Ilf 112.+.0 -/+( 1 + la12.+..-011f 11,-/)•
q. e. d.

§ 5 .  Non Linear Equations

Proving Theorem 1.4 is nothing but stating the Nash-Moser implicit function
theorem. We quote it from L. Hiirmander [2]. (We also refered to S. Klainerman
[7] and R. S. Hamilton [1 ] . )  We consider it on the Holder class. Let the domain S2
be a lens domain

{(xo, x): 0<x o  8(1- — 1x12 )}

with a small positive e. We define that the Milder class H6(52) (s > 0) stands for the
subspaces of the Wilder class Hs(S2) on

Q- -1(x0 , x): x0 _8(1-1x12)}

consisting of the functions whose supports are included in the closure of Q.

( 1/ (Q)= 1 '\ s o l -16(0 ).)

It is clear that the Banach scales H6(0) have the following smoothing operator.

Lemma 5 . 1 .  T here ex ists th e  sm oothing operators S o hav ing  the following
properties f o r 0>1  an d  u  belonging to Hg(Q ) i f  a  an d  b are  non-negative and
bounded numbers.
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D IS OU1 b C lU I  a , if  b. a.
ii) 1So ulb _COb- alula , if
iii) lu - S o ul bi f  b < a.
iv) l(a10 0 )Soulb C0 b - a - l luia.

P ro o f . Find a function iii(t) belonging to S ' such that the support of tif lies on
the negative axis,

( .) : 0  Vidt= 1

and
o

)_ . tkikdt=0

for all integer k >1. q. e. d.

Therefore holds the Nash-Moser implicit function theorem, that is stated as
follows.

Proposition 5.1 (The Nash-Moser Implicit Function Theorem).
Let 0  be a m ap on 11 (C2) and be defined on a lig(C2) neighborhood V of an

element uc, of  H (Q ) , (p >1 ) , which has a second dif f erential and  satisfies (5.3)
f or u belonging to Y n H (52).

1) (Ex istence) A ssum e th at  the f irst d if f eren tial has a  righ t inv erse  W
satisfying (5.4)for u belonging to 1/n H-V°(57). I f max (p, p') and a> max (m +
n+.1, 2(p -  1)) and if  a is not integer, then there ex ists a  neighborhood W of  0  in
Hg+A(52) such that the equation

(5.1) o ( u )= 0 (u 0 )+ f

has a solution u(f ) belonging to lit,(C2) f o r each f  belonging to W . Moreover, it
holds the following i) and ii).

lu(D - u0l. --' 0  if If 1Œ+ A -a
ii) If  f  belongs to Hg+A(52) for ,6 being not integer> a, then u (f )  belongs to

lig(S2) and satisfies

iu (f)lp  g if lp-FA + 1),

so that u(f ) belongs to 1 4 (Q )  if f  does so.
2) (Uniqueness) A ssum e th at the f irst d if f erential has a  le f t  inverse W

satisfying (5.4) f or u belonging to V n Incc(57) and that

a>m ax(p+). -Fm, A +m +2, p+p '-1 ).

Let W be a bounded set of lig(S2). Then there exists a positive constant (5 such that

(5.2)

if u and v are two different solutions of (5.1) belonging to T7 n W, where the constant
6 depends only  on the constants a, p, p', m , Ca 's  in the estimates (5.3- 4), the
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bounded set W and the spaces 1/.6(52).

(5.3) I0(14)10 Ca(luimi-a+

W(u: v)la Ca(1/4 1.+.+Ilvi g -i+Ivla+ni)

and

0 " (14 : V, Ca(1141a+nt+21V1p— 1 I Wig — 1 + ilda+m+11Wig--1± IViii-11W1a+m+ 1)

f o r som e m , ti-1>0, f o r all a>0 and f or all y, w belonging to Hir(Q).

(5.4) IP(Ogia - Ca(igia+A+191,11141a )

f or som e if  >0 , f or all a>0  and  f or all g  belonging to 11 (52).

Proof of  Theorem 1.4. We may assume that plu=0 =g is supported in {x 0 >0},
and find a solution in H ( Q ) ,  because p  is  Kovalevskian so that an asymptotic
solution at x0 =0 is constructed. By the assumption, p is effectively hyperbolic for
sufficiently small u .  By virtue of the Sobolev's lemma, Theorem 1.3 shows that the
linearized equations are solvable and satisfies the estimate (5.4) with respect to the
Holder class H 6 (0 ) . On the other hand, p  satisfies (5.3) because p is a non-linear
partial differential operator. By Proposition 5.1, for each f  belonging to a neighbor-
hood W of uo =0 in H (Q ), there exists a solution u of the equation

p(x o , x, alu)=pu =g +f

such that u belongs to 1-4,x(S2) if f  does so. Since g belongs to H (Q ) ,  so we can
choose f  belonging to W as f  coincides with — g  at {x o < el for a sufficiently small
positive c. Then solution u for f  satisfies

pu =0

at {x o < e}. W e denote by  H (Q ) the spaces of functions f  such that f (x o — t, x)
belongs to 116(Q). If we take c  defining S2 small, then the linearized equations
are solved on 11(Q) for itl < to > e and the inverses satisfy the common estimates
(5.4). Therefore two different solutions u and y for pu=0  has the difference

(5.5) ju—vio>6>0

with a common positive constant S. On the other hand, the norm of u — y in 14(Q)
tends to zero if t > — 8 tends to  — e. This implies that holding the inequality (5.5)
is  impossible, so  that u should coincide with y  near the origin (x o , x)=(0, 0).
Sweeping away from t = — c to t = 0, we conclude the solution u in 1-4- '(52) unique.

q. e. d.
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