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Introduction

Let us recall the classical Sobolev spaces in a finite-dimensional case . Consider
1--P(R d) for example. Usually it is defined by means of the Schwartz distribution,
that is,

(A ) Hl(Rd) - {fe L 2 (R d );  For each i =1,..., d, the distribution derivative fax i

belongs to L 2 (Rd)}.

  

d
Hl(Rd) is a Hilbert space with norm II f  II = (IIIf 112L2+ E

i=1

 

2

a X i  f )L2

of distribution, we may

 

However, if we have to define it without the notion
adopt the following definition.

(B) 1-P(Rd) ---- the completion of the space Cl(Rd) with respect to II II H i .

Or, due to Nikodym, we can take the next one.

(C) 1/1(Ra) f f  e  v (R d ); For each i =1,..., d , there exists a version f i of f  such
that A is absolutely continuous along almost all lines parallel to the

0xi-axis, and its Radon-Nikodym derivative  a x i A belongs to L 2 (Rd).}

Now, talking about the Sobolev spaces over an abstract Wiener space, two typical
definitions are known; one is due to Shigekawa [3] (cf. [5]), and the other is due to
Kusuoka-Stroock [2]. In short words, we can say that the former definition is an
infinite-dimensional analogue of type (B), and the latter one is that of type (C ) .  In
this paper, we first present a theorem in which Shigekawa's Sobolev spaces are charac-
terized, in an analogous way to (A), by means of so-called generalized Wiener func-
tionals. Then, as its application, we will prove that those two definitions of
Shigekawa and Kusuoka-Stroock in fact determine the same spaces.
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1. Shigekawa's Soholev spaces and Kusuoka-Stroock's Soholev spaces

First we shall introduce several notions and notations.
(W, H, p) is an abstract Wiener space, whose Borel structure is given by a (W)',

i.e., the completion of the topological a-field .1(W ) with respect to  y . E is a separable
Hilbert space and its inner product and norm are denoted by < , >, and IIE
respectively. We consider it a s  a  measurable space with the topological a-field
.4 (E ) . F o r  1  p< + oo, we define E-valued LP-spaces a s  follows; LP(E)= LP( W;
E) - { f  : W –E; . (W)#I (E)m easurable a n d  

w  
1 f (w)IPEY(dw)< +c 0}. A s  usual,

if f , g e LP(E) coincide p-a.e., we identify them in L P(E ). Hence,

If  11 p;E (w)I 1(dw))11P, f E LP(E)

is a norm of LP(E), and LP(E) is a Banach space with this norm.
We set .ye(E)=.r(H; E) - -  {V :H–>E; V is a  linear operator of Hilbert-Schmidt

type.} . ,Y e(E) is a Hilbert space whose norm is the Hilbert-Schmidt norm. In-
ductively we set a l

°
 n (E) ( d r  n -  1 (E )), n=2 , 3,..., where .Y1"(E) -_,Y e(E).

(1) Shigekawa's Sobolev spaces.

Definition 1.1. (i) A mapping f : W -4 0  is said to be a  polynomial, if 3n e N,
3! e W*, and 2 f : R -+ R 1 , polynomial in n variables such that

(1.1) f (0 =f  ((I 1 ,  w),..., (l a , w)), w  E W.

The totality of polynomials is denoted by P.
(ii) A mapping f  : W --E is said to be an E-valued poly nom ial, if 3m e N, fm E
P, and 3e1 ,..., en , e E such that

(1.2) f(w )=T=1 f (w )e1, w

The totality of E-valued polynomials is denoted by P(E).
It should be noted that P(E) is a dense subspace of LP(E) for every 1 p< + oo.

Let S  be a linear operator mapping P into itslef. Then it naturally induces a linear
operator mapping P(E) into itself in the following way; for fe P(E) with an expression
(1.2), we define an operator S : P(E)–>P(E), by putting Sf -- IT , 1 (Sfi )e, (this defi-
nition doesn't depend on the expression off). We will denote S by the same notaion
S.

Definition 1.2. A linear mapping D: P(E)-0P(dr(E)) is defined by

(1.3) Df(w)[h]a-lim— ,1 ( f (w +th )– f (w )), w  e  W , h e  H , f e P(E).
t --zo

D is known as the Fréchet deriv ativ e operator. The n-th iteration 1) 11 is a linear
operator mapping P(E) into P( .rn (E ) ) . Shigekawa's Sobolev spaces are defined
in terms of D, that is;
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Definition 1.3. Let 1<p< +co and n e N .  We endow P(E) with a norm

(1.4) Ilf Ilf II„,E+ f  E P(E),

and define the Sobolev space D p ,(E )  as the completion of P(E) with respace to
this norm.

(2) Kusuoka-Stroock's Sobolev spaces.

Now, we will introduce Kusuoka-Stroock's Sobolev spaces. The difference
from those of Shigekawa's stands, of course, in the differential operation.

Definition 1.4. (K u su o k a  [1 ]) . ( i)  A  m ea su rab le  ( i.e ., .1(W )PIR(E)-
measurable) mapping f: W—>E is said to be ray absolutely  continuous (abbr. RAC),
if for every h EH, there exists a measurable mapping J: W—>E such that

f(w)=A (w), e W

and for any w e W,

f h (w+ th), t  E R ,  is absolutely continuous in t.

(ii) A  measurable mapping f : W --E  is said  to  be stochastically  Gateaux  dif -
ferentiable (abbr. SOD), if  there exists a  measurable mapping F: W -+.°(E)  such
that for any h e H,

+(f  (w  th)—  f (w )) converges to F(w )[h] in probability with respect

to ft as t-4).

Such F, if it exists, is unique in fi-a.e. sense, and is denoted by 15f. If f  is SGD
again, we define B2 r= /3(r)f), and inductively, if 13n- 1  f  is SGD, D f  is defined by
15n f-_=.13(fin-1f) .

Definition 1.5. (Kusuoka-Stroock [2]). Let 1<p<  + 0 0 .  First we define the
space ñ, 1(E) by

(1.5) {f e LP(E); f is RA C and SGD, I3f E LP(Ye(E))} ,

and endow it with a norm

(1.6) Ilf IlfIlp;E+ II f II p;,r(E) , f  E bp, 1(E) .

Then for n =2 , 3,..., we define the spaces b p ,(E) inductively by

(1.7) {fe 1(E); Pfe b„,,-1(Ye(E))1

and endow them with the following norms respectively.

(1.8) If II„,E+ fe b„,„(E).

It is known that the normed spaces (b „(E ) , 11; E), n =1 , 2,..., are complete,
i.e., they are Banach spaces. For the proof, see Lemma 1.1 in Kusuoka [1].



720 Hiroshi Sugita

2 .  A characterization theorem of Shigekawa's Soholev spaces by means of
generalized Wiener functionals.

In order to prove the theorem at the title of this section, let us summarize some
results obtained by Sugita [5].

Let L be the Ornstein-Uhlenbeck o p e rato r. It is known that for f E P with its
Wiener-Itô decomposition f = E f„ (finite sum), L f= E(—n)f„ holds. Then we can
define an operator (I — 4 1 2  on  P, where I  denotes the identity mapping and r is an
arbitrary real number, by putting (I — L) r / 2 f  E (1+n)r/2 fn . As mentioned before,
we regard it as an operator mapping P(E) into itself, and finally we define a system
of norms

If  ll p ,r ;E  11( 1 /  2  f p;E, 1<p< + c o ,  r e  R

o n  P(E), and denote the completion o f P(E) with respect t o  IIb y  D „r (E).
Since for n e N, the  tw o norm s 11.1Ip;E+ IID '  • 11 p;A'n(E) a n d  11(1— L )/ 2 . II.1 1 ;E  induce
the same topology on  P(E), the above definition is consistent with Definition 1.3
(see Sugita [5]).

Once the Sobolev spaces D „,(E) are defined for all real numbers r (especially
for negative r), more profound arguments are possible. For instance, the following
theorem holds.

Theorem 2.1. (Sugita [5]). (i) I f  1< p q <  +  c o  an d  r_ s ,  then D, s (E)5
D , r (E) holds. H ere "5 "  stands for the continuous imbedding. Consequently , we
have the follow ing diagram ; for 1<p_q< + oo and 0_r_s< + oo,

Dp ,s (E)5D p ,,,(E)5D p ,o ( E )  LP(E)5D p , ,(E )5 D p ,_ s (E)
UT UT UT UT UT

D q ,s(E)5D,, r (E)5D q ,o (E)= 
L ( E )

5 D,_ r(E )5D „,(E )

(ii) Under the standard identification of L2 (E)* =L 2 (E), we have

Dp ,r(E )*  =D „,(E ), where 1<p, + CO, = 1 an d  re R .

(iii) T h e  linear operators D  an d  L  uniquely  ex tend to bounded operators
respectively as follows; for 1<p< + oo and re  R,

D: D „r (E) D „,_ i (e (E ))

L: Dp ,r (E) — )  D  2 (E)

Therefore the dual operator D* of D is bounded as a linear operator,

D* : D „,,(*(E)) D ,r _ 1 (E),

and it satisfies the condition D*D = L.
+co

L et R  b e  a  linear operator o n  P(E) defined by R
o  

( e L t _ J o )dt, where
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Jof -= f ( w ) / 1(dw ), f e P(E). Then following lemma can be easily proved in the

same way as Theorem 3.2 in Sugita [5].

Lemma 2 .1 .  R and J o uniquely  ex tend to bounded linear operators as

R: D ,,,,.(E) --, D p,r+ 2(4  1 < p < + Œ, r  E R
and

.10: Dp ,,.(E ) - - , D ,,,(E ), 1<p, q< + oo, r, se  R

respectiv ely . S ince .16=J 0  o n  P(E), Jo f  is  an  E-valued constant functional f or
every f e D p o .(E).

Definition 2 .1 .  By Theorem 2.1(i), the following definitions make sense.

D + (E) -  ri {Dp ,,.(E ); 1<p< +oo , r E It}

D _ ço (E) u { D,,,.(E); 1 < p< + oo, r E RI

D + .(E)is a complete countably normed space and called the space of test functionals.
By Theorem 2.1(ii), we see that D + o e (E)* = D ,(E) so that D _ œ (E) is called the
space of generalized Wiener functionals.

Since the extensions of the operator D mentioned in Theorem 2.1(iii) are con-
sistent, i.e., the diagram

D,,,(E) 5 DI,,,(E)
ID ID

Dq ,,_ i (re9(E))5D p ,,._ 1(01E))

is commutative for any 1< p... q < + co and r  s ,  D  is in fact well-defined on the
whole D _ (E )  taking value in D _ (.re(E)). Similarly, the operators L , R ; D_(E)

D , ( E )  and D * :  D _oe ( r (E)), D _ co(E) are well-defined.
Now, we proceed to the main theorem of the section, whose original form is

seen in Shigekawa [ 4 ] .  After these preparations, its proof is quite easy.

Theorem 2.2. L e t  fE D _,„(E), 1<p< + co, r e R  a n d  k e N .  I f  Dk fe
Dp ,,.(Yek(E)), then Je  D,,,,. + k (E).

P ro o f . It is sufficient to prove the theorem for the case k = 1 .  Let us note
that —RD*Df=(I—Jo )f. By Theorem 2.1(iii) and Lemma 2.1, the compound map-
p ing — R D * carries Dp ,k re(E)) into Dp ,,.+ 1 ( E ) .  Therefore, if Dfe D p o .(.r(E)),
(I — Jo ) f  belongs to Dp ,,.4. i ( E ) .  But since Jo f  is a constant vector, f  itself belongs
to Dp,r + 1 (E). Q. E. D.

It is useful to regard the opertor D  on D_ co (E) as the differentiation in the
distribution sense. Namely, for f  E D ,(E ) , if there exists Fe  D_ co (dr(E)) such that

(2.1) D__(E)(f, D * 9)D.,—(E)=D--(-%°(E))(F, 9)D+.(x(E»

for each g e D + (.r(E)), it clealy holds that F =D f . In this context, we obtain the
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following corollary to Theorem 2.2.

Corollary 2 . 1 .  L e t a> 0, 1 < p < + co , an d  n e N .  Suppose f e Li+E(E) and
that there exists F e LP(..ren(E)) such that

(2.2) .ç
w  

(f, (D*)n(g0h 1 ®•••Oh n )>E dp= ha], g>,clp

f or every g e P(E) and h1 ,..., h e  14/* H* =H), where we set

(2.3) (g0h1®•••Ohn)[•, ••, •>H X  • • •  X  <h„, •>H .

Then, it holds that f e  D (E )  and F(w)=Dnf(w) p-a.e.w e W.

Proo f . It is  enough to note that LI±'(E)c D  co (E) and that the totality of the
finite sums of functionals of type (2.3) is dense in D + .(.Yen(E)). Q. E. D.

Remark 1. D *(g0h ) can be calculated as follows. Here ( , ) stands for the
pairing of W* and W, and {hi } , is a complete orthonormal system of H.

D*(g(w)® h)= —trace D(g(w)Ph)+ g(w)(h, w)

— Dg(w)[h i ]x <h, hi> H  + g(w)(h, w)
1=1

The last term of the equality does not depend on the choice of fh i lT11 .

3 .  The proof of D p ,„ (E ) =  p  (E).
Finally, as an application of Theorem 2.2 and Corollary 2.1, we prove that

Kusuoka-Stroock's Sobolev spaces coincide with Shigekawa's. Namely, the
following theorem holds.

Theorem 3 . 1 .  Fo r 1< p <  +o  an d  ne N , w e have D (E )= further-
more, if f  is its element, then Df(w)=Bf(w) p-a.e.w e W.

P ro o f . It is easy to show that D p ,„(E)c Indeed, for fE P(E), it clearly
holds that 13n f(w)= Df(w) p-a.e.w. Hence, by the completeness of b (E ) ,  we have

D p , n (E)=p (E)II II,,n;.= p(E)I1 11;,;.

= i j p , n (E) .

Now, let us prove the inverse inclusion p  , ( E )  D First, we prove it for
n=1, in three steps. Take an arbitrary fe  b p ,i (E ) .  Then, there is a version f h of
f  mentioned in Definition 1.4(i), for every h e  H .  Hereafter we take an arbitrary
h e W*(c H* = H) and fix it.
Step 1 ;  It holds that

d (w +th)=I3f (w +th)[h]dt

f o r almost every (w, t) e W xR  with respect to the product m easure p(dw)dt.
Proof; Since l b  is absolutely continuous in t for all we W, we have
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f f  ( + th+ sh)—  fh(w+th)}h w
d  
d t J (w+ th), a s  s 0,
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for a.e. t  and a ll w E W . O n the other hand, A . — th )  is absolutely continuous
relative to i t (  ), and f  is SGD, so we have

(w + th+ sh) — f(w  + th)} 13 f (w +th)[h], a s  s 0,

in probability with respect to ,u, for each t e R .  The assertion follows from these
facts. Q .  E .  D .

Step 2 ; Fo r each g E P(E), w <f(w +th), g(w )>E p(dw ) is dif ferentiable in t e R,

and we have

d
 w <f(w+ th), g(w)>E/1(dw)= <f(w+ th), D*(g(w)Oh)>E ll(dw).dt

Proof; B y  the Cameron - Martin formula,

÷{1 w  <f (w+ th + sh), g(w)>EIL(dw) — w  <f (w + th), g(w)>Ett(dw)}

<f(w + th ) , s
i [g(w — sh)exp is(h, w)— 1

2 —  g(w)1>E kt(dw).

Here, we easily calculate the following limit,

Ern 1 [g (w  — sh)ex p is(h, —9(w)1s
d1= g(w —sh) exp i s ( h ,  w ) - -

2
s2I hi= D * ( g ( w ) ( 3 ) h )ds s=o

d  On the other hand, since 
d s  

g(w — sh)exp is(h, w) —  

1
— s2 11111,1 is uniformly it-2

integrable for any l< g < + cc, o n  a  bounded interval —(5<s <6(5 >0), which is
shown by the Cameron-Martin formula again, we are allowed to commute the
integration and the limit, i.e., the assertion holds. Q .  E .  D .

Remark 2 . According to the above proof, we see that Step 2 holds if  only
f  e L ' (E) for some v >0. T h e  condition f  E b p , i(E) is not necessary.

Step 3 ; Let g E P ( E ) .  Then we have that for all t e R,

(3.1) ddt  1w  <jaw+ th), g(w)>E p(dw )= w  <  d
d

t  k w + th), g(w)>E p(dw).

Proof; B y S tep  1, the condition !YE LP(.re(E)) and the Cameron-Martin formula,

ddt JAW+ th )1  is uniformly ii-integrable on an arbitrary bounded interval a <t < b.
dConsequently, < 

 d t  
f h(w  th), g(w )> E i s  tt(dw)dt-integrable o n  Wx (a, b). This
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enables us to apply Fubini's theorem, in integrating the both sides of the next equality
in  w , <kw+ ch), g(w)>E —  < (w+ a h), g(w)>E =Y <  d

d
t  f h(w+th), g(w)>dt, where

a b. That is, we have the following.

<fh(w + ch), g(w)>E11(dw) —
 w  <law + ah), g(w)>EtKdw) 

5:1 W < 
 ut= t  jaw+ th), g(w)>Ep(dw)dt

This implies (3.1) for almost all t e R. B u t ,  since the both sides of (3.1) are con-
tinuous in t (even more, Step 2 claims that they are differentiable), (3.1) holds for
all t e R Q. E. D.

Now that these steps are shown, the claim f eD ,, i (E) is an easy consequence of
Corollary 2.1. Indeed, from them, it follows that

w( w  +  th)[h], g ( w ) > E 1 1 ( d w ) = S w < f ( w +  th), D*(g(w)0h)>Ep(dw),

for any g e P(E) and t E R . In order to see feD„, i (E), we have only to set t = 0,
and apply Corollary 2.1 (for n=1).

Finally we will prove the theorem for n = 2, 3,.... In these cases, since
c b p ,,(E) holds by definition, we have 13f (w)=Df(w)p-a.e.w for f E b ( E ) c  D p ,l (E).
H ence, ii(E )c D p ,„(E) is clear by applying Theorem 2.2 (for k-=1) repeatedly.

Q. E. D.

Remark 3. The above proof tells us that some condition for definition of
li p ,„(E) can be loosened. Namely, we may define 13p ,1(E) as follows.

b p 1(E) f e L l E (E )  for 36 > 0 ; f  is RAC, SGD, and 13f e LP(,r(E))).

Then its element automatically belongs to L P(E). Similarly, we may set b p (E)
{ fe L I(E ) for 38 >0; f  is RAC, SGD, and —Rf E b p , n -  i(.re (E))}

Remark 4. Of course, both Shigekawa's and Kusuoka-Stroock's Sobolev
spaces can be defined for p = 1. However, we cannot apply our method to examine
whether D  , (E )=  1 „(E) holds or not.
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