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It is known that if R' is a generalized ring of quotients of a ring R contained in
the total quotient ring T(R) of R, then for any ring R" with R g R"g R', R' is a gene-
ralized ring of quotients of R " .  In other words, if R ' is R-flat, then R ' is R"-flat,
for R ', R " such that R g R" g R' E  T (R ).  (Corollary 1  to Theorem 1  in  [ 1 ]  and
Lemma 2  in [11]).

In this paper, we shall show that the converse, in a sence, to the above is valid if
R' is a domain. Precisely speaking, let R gR ' be rings such that R' is R -f la t . Con-
sider the following condition (F):

( F )  For any ring R" with R R" g R ', R ' is R"-flat.

It is clear that if R' is a field, then R' satisfies (F) for any subring R of R '.  We
shall show the following:

Assume that R' is a dom ain. If R' satisfies (F) and if R' T(R), then R' is a
field. (Theorem 2.7 in §2)

In this paper, first we shall give some results on flatness of rings in § 1 .  In §2,
we shall prove the main result of this paper and in §3 we shall give some results in
the general case. Notation is the same as in [1 ], [2 ] and [3]. A pair (R, R') means
that R' is a ring and R is a subring of R'.
§ 1. We shall begin with some results on flatness and on the condition (F).

Lemma 1 . 1 .  L et (R, R ') be a pair and le t a ' be an  ideal of  R ' containing a
non-zero-div isor. Let R"=R+ a', which is a subring of R' containing R such that
T (R " )= T (R ').  A ssume that R ' is R"-flat. Then we have R' =R" if  R ' is integral
over R or if R =k  is a field.

Pro o f . If R ' is integral over R, then R ' is also integral over R" and we have
R '=R " by Corollary 2 to Theorem 1 in [ 1 ] .  Assume that R=k is a field. Suppose
that R' z  R " .  Then there is an r' e R' such that r' R " .  S in ce  r' a', it is easily seen
that (R": r')= a ' and a'R' = a' = R ' which contradicts Theorem 1 in  [ 1 ] .  Thus we
have R' =R".

Lemma 1 .2 .  A ssume that a pair (R, R') satisfies ( F ) .  Then: (1) For any ring
R, such that Rg R i g R', the pair (R 1 , R') also satisfies (F).
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(2) For any multiplicatively closed subset S of R the pair (R s , R's ) also satisfies (F).
(3) If  R ' is integral over R, then for any  ring R'1 such that R gR 'i  R ' ,  the pair
(R, R'1) satisfies (F).

P ro o f . (1) is clear from the definition. (2) follows from the facts that any
ring between R s  and R's  is of the form R where R" is a ring such that R g R" g R'
and that if R' is R"-flat then RS is 1 ? - f la t . For (3), let R'; be a ring such that R
R'; R .  Since R' is Ri -fiat and integral over R, R ' is faithfully flat over R .  Since
R' is R';-flat, R', is R-';flat, as is easily seen. Thus the pair (R , R ) satisfies (F).

§ 2 .  In this section, we assume that R' is a domain.

Lemma 2 . 1 .  Let (k, R') be a pair of  dom ains such that k is a field. I f  R '=
k+ a' f or any  non-zero ideal a' of R', then R' is a field.

P ro o f . Let a ' be a non-zero element of R ' .  By our assumption, we have
k+a' 2 R '= R '.  Hence there are I E k and b' e R' such that a' =t+ar 2 L, ', that is,
a'(1 — a' b ')=  t . If t= 0, then a' is a unit since a' 4 O. If t# O, it is clear that a' is
a unit since k is a field.

Remark 2 .2 .  It is known that there is a pair (R, R') of domains such that for
any non-zero ideal a' of R', R' = R+ a' and R' is not a field (see [12]).

Proposition 2 .3 .  A ssume that a pair (k, R') of domains satisfies (F), where k is
a field. T h e n  R' is a field.

P ro o f . Since for any non-zero ideal a' of R ', R ' is flat over k+ a', we have
R' = k+ a' by Lemma 1.1. Then Lemma 2.1 implies that R' is a field.

Corollary 2 .4 .  L et (R , R ') be a pair o f  dom ains satisfy ing (F). Then RS=
T(R'), where S=R— {0}.

Proposition 2 .5 .  A ssum e that a p air (R, R') of  domains satisfies ( F ) .  I f  R'
is integral over R and if  R' 4 R, then R' is a field.

P ro o f . If R ' T (R ),  then we have R' = R by Corollary 2 to Theorem 1 in [1].
Therefore R' is not contained in T (R ) .  Suppose that R' is not a field. Then R is
not a field since R' is integral over R .  Let a be an element of R' not contained in
T (R ) .  Replacing a with aa for a suitable a e R, if necessary, we assume that R[a]
is  a free R-module of a basis {1, a, a2 ,..., an - '}  with n 2. B y  L em m a 1.2. we
see that the pair (R, R[Œ]) also satisfies ( F ) .  Let b be a non-zero, non-unit element of
R .  Since R[a] is integral over R, R[a]= R+ bR [a] by virtue of Lemma 1.1. Then
we have a = r o +br i a+••• +br n _ i an- i with r i e R .  Since {1, a"--'} are linearly
independent over R, we have br 1 =1, hence, b is a unit which is a contradiction.
Thus R' is a field.

Corollary 2 .6 .  A ssume that a p air (R, R') of  domains satisf ies (F ) and R'%
T (R ).  I f  T(R ') is algebraic over T(R), then R' is a field.
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P ro o f . I f  T (R )gR ', applying Proposition 2.3 to the pair (T (R ), R '), we see
that R ' is a field. O n  the other hand, if R ' is integral over R , then Proposition 2.5
implies that R ' is a field. Therefore we assume that T(R) R ' and R ' is not integral
over R .  Suppose that R ' is not a  f ie ld . Then there is a prime ideal p of R such
that pR'p *R '1) . Since the pair (R,„ R;,) also satisfies (F) by Lemma 1.2, replacing
(R , R ') with (R 1„ R;), we assume that R  is a quasi-local domain with maximal ideal
p such that p R ' R '.  Let k be the integral closure of R  in R '.  Then R ' T (R )
by our assumption that T(R') is algebraic over T (R ) . Let p be a non-zero element of
p and let R "= R + pR  which is a subdomain of k such that T(R ")= T(R)= T(R').
Since R is quasi-local with the maximal ideal p, it is easily seen that R" is a quasi-local
domain with the maximal ideal p" =p + p R . Then, since p"R ' =pR ' *R ', we have
R "=R ', as is easily seen, hence R ' =k  which is a contradiction.

Now we shall prove the main result of this paper.

Theorem 2 .7 .  A ssume that a pair (R , R ') o f  dom ains satisf ies ( F ) .  I f  K g
T(R), then R ' is a f ield.

Pro o f . It is clear that there is a proper subfield K  of T(R ') such that T(R) g K
and T (R ') is algebraic over K .  Let R, =R' n K .  Then the pair (R 1 , R ') satisfies
(F) and T(R ') is algebraic over T(R i ) since T (R 1 )=K  by Corollary 2.4. Therefore,
applying Corollary 2.6 to the pair (R 1 , R '), we see that R ' is a field.

§ 3 .  In this section, we assume that rings are reduced.

Proposition 3 . 1 .  L et (R , R ') be a pair of  rings such that R ' is integral ov er
R . If  R ' (or R ) is a regular ring (in von Neumann's sense throughout this section),
then (R, R') satisfies (F).

P ro o f . Since every ring R" between R and R ' is regular, the assertion is obvious.

Proposition 3 .2 .  L et (R , R ') be a pair of  rings such  that R ' is regular. If  R
is integrally  closed in R', or, more generally , if  every idempotent of R ' is contained
in R , (R , R ') satisfies (F).

Pro o f . This follows from [7] (see Footnote 4 in [4]).

Lemma 3 .3 .  L et k be a f ield, R ' a (reduced) ring containing k. If  the pair
(k, R ') satisfies (F), R ' is regular.

P ro o f . First we show that R ' =T (R ') . Let a be an element of R ' which is not
a  zero-divisor. Then by Lemma 1.1, R' =k+oc 2 R '.  Hence there are fi e R ' and
u e k such that c=u  + a2 ,6, that is, oz(1 — 43) = u, which implies that oc is a  u n it . Thus
we see that R ' =T (R ') . Since k is a field, for any y in R ', T(k[y]) is semi-simple and
contained in R '.  Then it is easily seen that R ' is regular.

Proposition 3 .4 .  A ssume that a pair (R , R ') satisfies ( F ) .  I f  T(R) is regular
and is contained in R ', then R ' is also regular (recall that w e assum e that R ' is
reduced).



690 Tomoharu Akiba

P ro o f . By Lemma 1.2, we may assume that R is regular. Let in' be a maximal
ideal of R' and m=m' n R .  Then, again, by Lemma 1.2, the pair (R„„ R'„,) satisfies
( F ) .  Since R n, is a field, R'„, is regular by virtue of Lemma 3 .3 .  Then it is clear
that R' is regular.

Remark 3 .5 .  From Nagata's theorem in [8 ], we see that there is a pair (R, R')
of rings not satisfying (F) even though R is a field and R' is regular (see Remark in
[ 3 ]).

Theorem 3 .6 .  Let (R, R') be a pair such that T(R) is regular and is contained
in R ' .  Then the following are equivalent.
(1) The pair (R, R') satisfies (F).
(2) R ' is regular and f or ev ery  e R ', T (R [a]) is regular and is contained in R'.
( 3 )  R ' is regular and for any  zero-div isor a e R ', T (R [a]) is regular and is con-
tained in R'.

P ro o f . (1) ( 2 ) :  By Proposition 3.4, R ' is regu lar. Let a be an element of
R ' .  Since T(R).g. T(R[a]), we may assume that R is regular. Then it is easily seen
that R [a] is locally a domain, that is, for every maximal ideal m" of R[Œ], R[a]„,,,
is an integral dom ain . Since R' is regular and is flat over R [a], the set of minimal
prime ideals of R [a] is compact with respect to Zariski-topology by [ 9 ] .  Then we
see that T(R[a]) is regular by [ 1 0 ] .  Since R' is R[Œ]-flat, T (R [a]) is contained in R'.
(2 )  .(3 )  : Trivial.
(3) ( 1 ) :  Let R" be an arbitrary ring between R and R ' .  To prove that R' is flat
over R", it is sufficient to show that T(R") is regular and is contained in R ' .  First
we show that T (R " ) g R ' .  Let a" be an element of R" which is not a zero-divisor
in R " .  If cc" is a  zero-divisor in R', a" is also a  zero-divisor in R [ e ] R" by our
assumption which is a contradiction. Hence a" is a  non-zero-divisor in  R ' which
implies that T (R " ) g R ' .  To see that T(R") is regular, it is sufficient to show
that every element of R" is expressed as a product of an idempotent and a non-zero-
divisor in  R" which is clear from our assumption. (Recall that a ring is regular
if and only if every element is expressed as a product of an idempotent and a unit
by [6].)

Corollary 3 .7 .  L et (R , R ') be a pair of  rings such that R ' is regular and f lat
ov er R . If  R is an  integral dom ain or noetherian , (R , R ') satisfies (F) if  and only
if  for any zero-divisor a in R', T (R [a]) is contained in R'.

P ro o f . Since, in these cases, T(R [a]) is regular for any a E R ', the assertion
follows from the theorem.

Examples 3 .8 . Let R[x] be a polynomial ring of a variable x over a regular ring
R  and let I  be an ideal of R [x ] such that I n R =(0) and R[x]II= R[a] is reduced.
We denote by C(/) the content ideal of I ,  that is, the ideal of R  generated by
coefficients of polynomials in I. Then the following are easily shown (see [5]).
( 1 )  If C (I)= R , R [a] is regular and integral over R .  Therefore the pair (R, R[a])
satisfies (F).
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( 2 )  If I is a principal ideal generated by ex — a with e2  = e and ea = a, then T(R[a]) is
regular and the pair (R, T (K aj)) satisfies (F).
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