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On some limit theorems for occupation times
of one dimensional Brownian motion and
its continuous additive functionals
locally of zero energy

By

Toshio YAMADA

Introduction.

Let B, be a one dimensional Brownian motion and f be a continuous
function with compact support. Then the following limit theorems are well
known (see e.g. (4), (8), (12) or (14)).

Theorem I (First order limit theorem). If S:f(x)dxqbo the family of
stochastic processes t»—»\—/ITSjt f(Bs)ds, 2>0 converges in the sense of law on the
space of continuous functions to the process tH(Swa(x)dx)L?, as A—oo where
LY is the local time of B, at 0 defined by Tanaka formula ?L‘;:(Bt)“—(Bo)*—

S:H(Bs)st, where

1 x=0
H(x)=
0, x<0
Theorem II (Second order limit theorem). If Sw f(x)dx=0 but f is not
2
identically zero, the family of stochastic process tH—Z—}/TS:f(Bs)ds, A>0, con-

verges in the sens of law on the space of continuous functions to the process
t— S, f>1§(L‘£) as A—co, where 1§(t) is another Brownian wmotion independent
of B, with §(0)=0 and LY is the local time of B, at 0, and {f, f)=

ZS:(Slf(u)du)zdx.

In the last ten years, many studies have been produced by Kasahara, Kotani
and other authors to generalize these limit theorems for more general processes
than one dimensional Brownian motion. (see e. g. (6), (7), (8), (9) and (10)).

In the present paper, we are interested in the problem of finding some
new limit theorems concerning one dimensional Brownian motion in the case
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where f does not belong to L*R!), or in the case where Sw f(x)dx=0 but

{f, f> diverges. In our study some examples in the class of continuous additive
functionals locally of zero energy will play important roles.

1. Continuous additive functionals locally of zero energy.

In this section we shall introduce some continuous additive functionals
locally of zero energy and will explain quickly their properties. Some of them
has been proved elsewhere. For more precise informations of the class of
these additive functionals, one can get them consulting (1) and (11) on the
general theory or consulting (16), (17) and (18) for concrete examples.

Let (2, &, P; 4,) be a complete probability space with right continuous
increasing family (4,),> of o-field F. Let B, be a continuous &,-martingale
such that

(i) E[(B;—B;)*/F]=t—s for t=s=0,
(ii) B,=0.
That is to say, B, is a one dimensional Brownian motion.
Let L? be local times of the Brownian motion B,, characterized by Tanaka
formula

(L.1) %L?=(Bt—a)+—(Bo—a)*—S:H(Bs—a)st.
Hereafter we mean by (¢, a)— L¢ a jointly continuous version of Brownian

local times.

A. First, we shall introduce continuous additive functionals which cor-
respond to Cauchy’s principal value.

Consider the function F.(x)=(x—a)log|x—a|—(x—a), a€R'. Then the
derivative of the function

dF(x) ., . _
dx =Fy(x)=log|x—al
belongs to L% (RY).
The second derivative of Fu(x) in the sense of Schwartz’s distribution is

d*Fa(x)

T =Fix=v.p.

(x—a)
where v. p. stands for Cauchy’s principal value.

Definition 1.1 (Continuous additive functionals corresponding to Cauchy’s
principal value). Put

1 t
5 Ci=Fu(B)—Fu(B)—| Fi(BJdB,,

(L.2) 5
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where the stochastic integral is understood in the sense of Ito integral.
The right hand side of (1.2) is well defined, because F,(x) belongs to
L% .(RY). We call C¢ continuous additive functional of B, defined by Cauchy’s

principal value v. p. (cf. (5), (16) and (18)).

(x—a)

The following lemma is proved in (16) and (18).

Lemma 1.1. One can choose a version of (¢, a)—C¢ such that the following
(i), (i) and (iii) hold.

(i) Let g belong to LXR").
Then

¢ 1
(13) [LgBads=—] craonarde,

where 4 stands for Hilbert transform; A(f=%v. p.%*f and 9L~ means its
inverse transform 4 -*=—4 (cf. (15)).

(ii)

(1.4 Ci=mng~'(L;)a).

(iii) For any T>0, M>0 and ee(O, %), there exist finite-valued variables
Hr y, (0), Kr i, (®) such that

(L.5)  sup|Ciw)—C¥w)| =Hr,x, (@) a—b|"*"%, Va, be[—M, M], a.s.,
tsT

and

(1.6) [SlllngC?(w)—C?(w)léKr,M,;(w)lf—Sl”z‘sy vt, s€[0, T], as.

Remark 1.1. It is known that the following formula holds. (cf. (16) and
(18)).
ds
B;—a’

t

(L7) Co=tim| I e, a-0(B+Lave, (B} as.

B. Second, we shall introduce continuous additive functionals which cor-
respond to Hadamard’s finite part.

Consider the function

(x—ayi-a 0 x<a
—_\x7ad)x @ a
Gu(x)— (—a)(l—a) (x—a)l

(—al—a) *

a

where O<a<%, Then the derivative of the function G.(x)

dGau(x) ., . (x—a)i®
dx =Go(x)= (—a)
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belongs to L& (R?).
The second derivative of the function G.(x) in the sense of Distribution is

d*G(x)

—_—n — A\ 1l-a
dc =Ga(x)=p.f.(x—a)y

where p. f. stands for Hadamard’s finite part.

Definition 1.2 (Continuous additive functionals corresponding to p.f.(x —a)z'~%).

Let 0<a<%. Put

1 L B 1-a, 9=GuBO—GuBI [ GuBIB,

where the stochastic integral is understood in the sense of Ito integral.

Since G,(x) belongs to L%.(R'), the right hand side of (1.8) is well defined.
We call H*(—1—a, t) continuous additive functional defined by Hadamard’s
finite part p.f.(x—a);!"* (cf. (16) and (17)).

To state some properties of the continuous additive functionals H%(—1—a, ?)
as R, we need to introduce following definition.

Definition 1.3 (fractional derivative) (cf. (2) and (13)). Let g be a locally
integrable function with a left compact support; i.e. there exists a number L
such that g vanishes on (—oo, L).

We put

1
Dﬁgzmp.f.(x;“ﬁ)*g, ‘BERI

where I stands for the Gamma function and * means the convolution operator
in the sense of Schwartz’s distribution. We call Dfg the fractional derivative
of order 8 of the function g.

The following lemma is due to Hardy and Littlewood ((3)).

Lemma 1.2. Suppose that 0<a<B=1.

Let g be a continuous function with compact support and satisfy Holder’s
condition of order B; i.e. there exists a constant K,>0 such that | g(x+h)—g(x)|
=K;|hl, Vx, heR".

Then,

(1) (D*g)x)e LXRYNLYR") holds,

and

(ii) there exists a constant K,>0 such that |Dg(x+h)—D%g(x)| <K, h|#-,
i.e. D*g satisfies Hilder’s condition of order B—a.

We now come back to the additive functionals H*(—1—a, t), a€R.
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Lemma 1.3. Let 0<a<% and a<B=<1.

One can choose a version of (t, a)— H*(—1—a, t) such that the following (i),
(ii) and (iii) hold.

(i) If the function g satisfies the same condition as in Lemma 1.2, then
1.9 “(D*g)Byds= -\ He(—1 da,  hold
(1.9 (D BIds= pos | He(—1~a Dgl@)da,  holds.

(ii) The formula
(L10)  H*(—1—a, t)y=—cos(z(1+a))(D“L;)(a)—sin(z(1+a))H((D* Ls)(-))a),
holds.

(iii) For any T>0, M>0 and sE(O, %—a) there exist finite-valued variables
Dy iy (w) and Er y (@) such that

(1.11) sup| H*(—1—a, t)—H*(—1—a, t)| =Dy i (0)|a—b|/2-2-¢
tsT
VYa, be[—M, M], a.s.,
and
(1.12) suspM|H“(—l—a, H—HY—1—a, s)|SEr y (0)|t—s|/2-a¢
ral
Vs, te[0, T1, a.s.,
hold.

Proof. (i) and (ii) are proved in (17), so we will give only the proof of
(iii).
The proof of the inequality (1.11) will be devided in several steps. (1°)

First we shall show that for any 7 >0 and eE(O, %-—s) there exists a finite-

valued variable D{¥.(w) such that

(1.13) sup|(D*L;)(a)—(D*L)(b)| EDP (w)|a—b| *-*-¢ Va, beR', a.s.
tsT

We owe the proof of (1.13) much to the method employed in the proof of
theorem 20 in (3). It is well known that there exists a finite-valued variable
Hr .(w) such that

(1.14) sup|L§—L?|=Hr (w)|a—b|"** Ya, beR', a.s.,
tsT

holds (cf. e.g. (5) and (18)).

Since a— L§¢ satisfies the Holder’s condition of order %——e and a<%—s,

we have
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I'(—a){(D*LX(x)—(D*L)(x—h)}
_(= Li—L¢ (= L§*—L§
_S-w (x—a)t*e d S-m (x—h—a)t+e

A

da
du

:——S:{L?-h_Lf—u} {(u—h)- O+ —y-a+ar} 4y

U

=I,+1,+1; say.

nLi—L§

u1+a

du

0

Here by (1.14),
|11 l §S:HT, s(u_h)IIZ-s{(u_h)— (1+a)_u—(1+a) } du
:HT, Ehl/z—s-aszo(s_l)llz-s {(s_l)—l-a_s—l-a}ds X

Since 1+a—%+s<1 and a+2—%+e>1 hold, we can see that

0<ST(S-—I)”Z“{(S——1)'1“"-—3‘1'“}ds<—|—oo ,

For I,, we observe that

hl/Z-s HT

[12|§ShHT,g o du= T e
Also,
_{" ulee — HT»S 1/2-:-a
|13I_SoHT’$ ulra du= 1/2—e—a
put
Hr () (> 1 1
1 — ' __1)1/2-¢ —1\=l-a__ o-1-a -
ho)=rt {{Ts—1peergis—nyrmes Mst o+l

Then the inequality (1.13) holds.
(2°) For any T>0, M>0 and ae(O, %—e) there exists a finite-valued variable
Dy (w) such that
(1.15) fgglélf((D“LZ)(-))(a)—ﬂf((DaLi)(-))(b)|éD%z.’M.s(w)la—bl”z“'“
Va, be[—M, M], a.s.

As we know the inequality (1.13), we can show (1.15) by the same argu-
ment employed by Yor in the proof of Theorem 2.1 in (18).
(3°) Put
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Dy, y, (@)= |cos(z(1+a))| Dy, (w)+ |sin(z(1+a)) | Dy, (w) .

Note that the inequalities (1.13) and (1.15) hold. Then by the formula (1.10),
we can prove the inequality (1.11).

Finally we shall give the proof of the inequality (1.12).
It is known that for any T>0 there exists a finite-valued variable K .(o)
such that

(1.16) sup|L¢—L¢|=Kyp, |t—s|'2¢ Vs, te[0, T], a.s.,

holds (cf. e.g. (18)).
Note that
I'(—a){D*(L)a)—D=*(L;)a)}
Sw L¢—L¢ @ du—Sw Le—Lg-*

0 ul+a ul+a

du

0

B it d o 420 % e WY

0 ul+a

« (Li—Lo—(Lg— L
+Slt-sl ulte du

=K,+K,, say.
Here by (1.14) we have

1t 2Hp ul/e-e 1

|K1|§S M du:2HT,s 1/2—

[t—s |12
0 E—a

Also by (1.16),

o 2Kp  |t—s|VE-¢
| = _—
[K_I_SM_“ ulte

du=2KT,,llt—s [1omsma,
a

Thus we have

+

(L17)  sup|(D°Li)a)—(D*Ly)(a)| < : { s

ZKM}
I'—a)l1/2—e—a

|t—8 [ 1/2-c-a

Vt, se[0, T], a.s.
Then by the same argument employed in the proof of Theorem 2.1 in (18),
the inequality (1.17) implies that for any T>0, M >0 and ee(O, %—a) there
exists a finite-valued variable Ef’y .(w) such that
(1.18) |E}I&I«’/f((DaLE)('))((1)--‘%((DC«L;)('))(a)|éli“r‘.’zu.s(cv)lt—sl”2"“'

Vt, se[0, T], a.s.
Put

¢ 2Kr, .

+ Isin(z(1+a) [ Ef)y, (o).

3
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Then by the formula (1.10), the inequalities (1.17) and (1.18) imply the
desired result (1.12). Q.E.D.

Remark 1.2. It is known that the following formula holds ((16)).

(119 HY(—1—a, t)—llm{ L“—|—S Tcare o(Bs)(Byi—a)-i- “ds} a.s.

(—a)

C. At the end of this section we shall treat continuous additive functionals
which correspond to the function (x—a)f~!, a€ R where 0<A<1.

Definition 1.4 (Continuous additive functional corresponding to the functions
(x—a)f-', ae R}, 0<B<L1). Put

. B A \1+8 — \B
(1.20) —;—H“(—l-{-ﬂ, )= (B,—a)tf B (By—a)k _S: (Bs‘Ba)+ dB,.

B(B+1) B(B+1)

Since the function (x—a)f belongs to L% (RY), the right hand side of (1.20)
is well defined. We call H*(—148, t) continuous additive functional defined by
the function (x—a)g-1.

By the similar way as in Theorem 1 in (17), we have the following.

Lemma 1.4. Suppose that 0<B<1. Let g be a continuous function with

compact support. Let (Iﬁg)(x):(T,(lﬁxé-l*g)(x) be the [-th integral of the
Sfunction g. (cf. (2) and (13)).
Then
(1.21) [{urexBIds= F(,B)S H(—1+p, Dgla)da
holds.

Concerning the problem of continuity of additive functionals H*(—14p, )
we can obtain similar results as in Lemma 1.3 for functionals H%(—1—a, 1),
but here we only note that we can choose a version of H%(—14-f, t), such that
(¢, a)—H*(—1+B, t) is jointly continuous, a.s.

Remark 1.3. Since the function (x—a)f-! belongs to LL(R'), we get

(1.22) He(—148, t)=S:(Bs—a)£"ds .

Remark 1.4. The continuous additive functionals introduced in this section,
¢, H*(—1—a, t) and H%(—148, t) belong to the class of continuous additive
functionals of B, locally of zero energy. (cf. (1) and (11)).
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2. Limit theorems.

The first topic of this section is the limit theorem where the additive
functional C? and Hilbert transform play a role.

Theorem 2.1. Let f be a function which belongs to L¥R'). Suppose that
the Hilbert transform of the function f, (ﬂf)(x)=%(v.p.%*f)(x) vanishes out-

side a compact set in R’.
Then the family of continuous stochastic processes

@.1) - ZS f(Byds, i>0,

converges in the sense of law on the space of continuous functions to the continuous
process

1 -
2.2) to—({ o nmdx)-c:
as A—oo where 4! means the inverse transform of 4 ;4 'f=—4f.

Proof. Let
functions.

{, mean the equivalence in law on the space of continuous

By the scaling property of Brownian motion {B(t)} r>{ VTB(lt)} for each
2>0, it is known that {L,}(I){\/'2 LY+ } for each A>0 (cf. (4)). Then we

have

@.3) \/ZS F(Bds= ‘/ZS S@Lideg| L8 farda.
On the other hand we will show that

(2.4 [ Lo r@da=2{ ceviaparda

holds.

Indeed, by Lemma 1.1
S L;‘/"Tf(a)da=x/75 L’i(x/Tb)db=\/TStf(«/TBs)ds
Rl R1 0

v

=YA[ e s (VT db=YA] s i/ T b

=L e it fxade

Combine (2.3) and (2.4). Then we have
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(2.5) to =L B ot o ([ Co (o adda)

for each 1>0.

Note that 4~'f belongs to L* R') and vanishes outside of a compact set.
Then 4-'f belongs to LYR'). On the other hand we know by Lemma 1.1
that (¢, a)—C¢ is jointly continuous (a.s.).

Then SRlC?’*’T(ﬂ["f)(a)da converges to (SRl(ﬁ[“f)(a)da)C‘z as A1—oo, uni-
formly in ¢ on each bounded interval (a.s.). Thus the Theorem 2.1 is proved.

Q.E.D.

Remark 2.1. If there exists a function f which satisfies both the following
conditions ;

(i) feLl*RYNL'(R') and Sle(x)dxqeO,

(ii) The Hilbert transform of the function f vanishes outside of a compact set,
then the family of processes — v XS f(Bs)ds, 2>0 converges as A—oo to the
process tv—»(S f(x)dx)L“ (by Theorem I in the introduction) and on the other
hand converges to the process t-—»—(g (! f)(x)dx) -C} as A—oo (by Theorem

2.1). But there exists no such a function.

Here we give a direct proof of non-existence of such a function.

Let f satisfy both the conditions (i) and (ii). Since the Hilbert transform
4t maps an L*-function to an L*-function, the function 4 -'f=—4f belongs to
L*R"Y). Moreover the function 4 -'f vanishes outside an interval [—M, M].
Then 4 -'f belongs to L:R“)NLRY).

Note that H(J;—n, (- ))(x)= 71r

Then we have

[ f O en = | (a7 10g | 22| dx

=%S (4f)x) Iog‘ ldx

Note that the family of functions Iog’ Z;z ‘ n=M-+1 is uniformly bounded

and converges to zero on the interval [—M, M] as n—oco.
Then

| fde=tim{_ el wxdz

=lim S (ﬂf)(x)logl————ldx 0.

Thus we obtain a contradiction. Q.E.D.
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The second limit theorem is related to the continuous additive functional
H%—1—a, t) and the fractional derivative of order a.

Theorem 2.2. Suppose that 0<a<%, a<B=1.

Let g be a function with compact support satisfying the following condition
(H, B). (Holder's condition of order B).
(H, B) there exists a constant K>0 such that

lg(x)—gI=K|x—yl?, Vx, yeR'.

Put (D*g)(x)=f(x)
Then the family of continuous stochastic processes

1 at
2.6) f o —So F(Byds, >0

21/2—(1/2

converges in the sense of law on the space of continuous functions to the continuous
process

@) tos (Sng(x)dx)H%—l—a, ) as A—oco.

Proof. As in the proof of Theorem 2.1, we note that

(LevT) o {2 L)

for any A2>0.
Then we have

1 at 1 at .
(2.8) WSo f(B“)dSZWSo (D*g)By)ds
_ 1 D« Led NZ“NS (D*g)( )La/«fx‘d
'WSRI( gla)Lydaa*) (Dg)a)l; a

=] (Deg) VT u)Lidu

=prvee( (Deg)v T Bds.

By the definition of the fractional derivative, we have
L[l Il
N—a))--« {Vix—al}i*

1 (m gWAR)—gW AW} 5 aye
—F(—a)g-m (x—u)*e At du

=D *2g(V 2 ))(x).

(2.9) (D2g)V A x)=

a

Combine (2.8) and (2.9). Then we get
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1

2.10 *f(Bods g Daararg(v T ;
@10) ), S(Bodsga | De-erg(v T @) Ltda

=12 Do/ T N@Ltda=2" D(g(v T )(Bds .

On the other hand by Lemma 1.3, we have
@.11) Z"ZS:D“(g(«/T-))(Bs)ds=2"ZSR1H“(—1—a, Ne(WTa)da
=| JH Y (~1-a, Dg)du

The relations (2.10) and (2.11) imply that

1

A —
@2.12) t e, S(BIdst = | H*YF(—1—a, Hg(u)du holds.

By Lemmal 1.3 it is known that (¢, a)—» H%(—1—a, t) is jointly continuous,
a.s. Note that the function g is continuous with compact support. Then

[ e (—1a, gt

converges as A—oo to the process g(a)da)HY—1—a, t) uniformly in ¢ on
Rl

each bounded interval a.s. Thus the Theorem 2.2 is proved. Q.E.D.

Remark 2.2. Let f and g satisfy the same condition as in Theorem 2.2.
Then,

(A) Llf(x)dx%mwag)(x)dx=o holds,
(B) 1t | g(xidx+0, then <f,f)=(D%g, D"g>=+co holds

Proof of (A). Let M be a positive number such that the function g

vanishes outside of the interval [—M, M]. Let [ﬂg(x)=<%‘8)x§-l*g)(x) be

the fractional integral of order S of the function g(x). It is well known that

'(Deg)(x)=1"""g(x) (cf. e.g. (2)).
Here

Pregom 7 E@ g,

I'l—a))-- (x—a)*
Note that [*-*g(x)=0 for x<—M, and
N | ¥ gla) O
I "80)= ). gy da ~ 07,

Then, we get
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| f@dx={_(Dg)dx=0. Q.E.D.

Proof of (B). Let gi(x)=g(x)Vv0 and g-(x)=(—g(x))VO0.
We consider the case where

| g0dr={_g.dx—| g-(xdx>0.
Choose a number M such that the function g vanishes outside of the interval

[—M, M].
Note that, for x>M

[ egpdu==g)m)—(r-mg)—co)=(I2g)x)

_ 1 = g(a) 1 x ga)
- F(l—a)S-M (x—a)* da= F(l—a)S-M (x—a)® d

1 (S” g+(a) da_s” g-(a) da)

TTA—a)\)ow (x—a)® o (x—a)"

> 1 ( 1
=Tl—a)\ (x+M)=

1

Si{g}(a)da _(x_—M—)“S:g(a)da)-

These inequalities imply

[" gdu~ o6 0<a<y.

Thus we get

g, D°gy=(|" (|" (D=gyw)du)dx)=+oo.

In the case where Sng(x)dx<0, we can also see by the similar way that

{(D*g, D*g>=+co holds. Q.E.D.

The third limit theorem is related to the continuous additive functional
H(—1—a, t), 0<B8<1 and the fractional integral of order S.

The proof of the theorem can be done following a similar way as in the
proof of preceding theorems, so we will omit it.

Theorem 2.3. Suppose that 0<B<1. Let g be a continuous function with

compact support.
Put f(x)=Iﬂg(x)=(T(1Ex§“*g)(x); the fractional integral of order B of
the function g.

Then the family of continuous stochastic processes

1 at
2.13) s ), J(Bads, 230,
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converges in the sense of law on the space of continuous functions to the continuous
process

(2.14) to (| gdx)-H=148,0 a5 200,

Remark 2.3. Let g be a continuous function with compact support.

If Sklg(x)dxqﬁo holds, then f(x)=Ifg(x) does not belong to L(RY).
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