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On Whittaker vectors for generalized Gelfand-Graev
representations of semisimple Lie groups

By

Hiroshi YAMASHITA

§ 0. Introduction

0 .1 .  Historical b a c k g ro u n d . Early in  th e  1 9 6 0 's , I. M. Gelf and and M. I.
G raev  [3 ]  attempted to construct a n d  classify irreducible representations of
Chevalley groups over a  finite field through irreducible decompositions o f th e
representations induced from characters of a maximal unipotent subgroup. Such
an induced representation is called a Gelfand-Graev representation if  the  character
is non-degenerate. They showed that this representation is multiplicity free.

The Gelfand-Graev representations for real semisimple Lie groups are defined
in  the  same w a y .  J. A . Shalika [12] extended th e  above multiplicity one theo-
rem to quasi-split linear semisimple Lie groups (m ore  generally, to such groups
over a local field). For C hevalley groups, H. Jacquet [6] constructed intertwin-
ing operators from th e  principal series representations to the Gelfand-Graev re-
presentations through analytic c o n tin u a tio n  o f  a n  integral operator, so called
Whittaker integral. G. Schiffm ann [13] treated t h e  problem o f  analytic con-
tinuation o f  Whittaker integral f o r  linear semisimple Lie groups o f real rank
o n e .  Using his results, M . Hashizum e [4] dealt with it fo r  reductive algebraic
groups over R  o f higher rank fo r the  spherical principal series representations.

Recently, N . K aw anaka [8] introduced, generalizing t h e  idea of Gelfand-
G raev , th e  generalized Gelfand-Graev representations of Chevalley groups over
a  finite field, and proved Ennola duality using their characters. A s  was sug-
gested in  [ 8 ] ,  these representations seem to give us m ore precise informations
on irreducible representations than those given only by Gelfand-Graev repre-
sentations.

0 .2 .  A s  a  first step o f our study o f  t h e  generalized Gelfand-Graev repre-
sentations o f  rea l semisimple Lie groups, we extend in  this artic le  the  above
results for Gelfand-Graev representations to th e  generalized ones. Standing at
the  same point of view as [4], we treat intertwining operators from the principal
series representations to th e  c o n tra g re d ie n t representations o f  generalized
Gelfand-Graev representations.

This article  consists o f two p a r ts . In  th e  first part §§ we deal with
a  uniqueness property o f  intertwining operators. T he m ain  result o f P a rt I is
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Theorem 3.7, which gives a  multiplicity theorem f o r  t h e  generalized Gelf and-
Graev representations. In the second part §§  we construct explicitly some
intertwining operators. F o r  this purpose, we treat Whittaker integral an d  its
analytic con tinua tion . In  the  following subsections 0.3 and  0 .4 , we explain, in
details, our results in  P a rt I and  P art II respectively.

0 .3 .  Uniqueness o f  intertwining operators. F o r  a  precise description of
our results, we first explain some notations and definitions on semisimple Lie
groups and their representations. L e t  G  be a  connected real semisimple Lie
group with finite center. Denote by g  its Lie a lgeb ra . L et G=KAN be an
Iwasawa decomposition o f  G , a n d  g = l e a n  t h e  corresponding decomposition
o f  g .  We denote by W  the W eyl group o f  (g , a ) . Choose a positive system A+
in  th e  se t A  of roots o f g  with respect to  a  so that u=E 2E A 42, where 02 de-
notes th e  root space o f  a  root 2. L et U be the maximal unipotent subgroup of
G  opposite to N.

For a non-zero nilpotent element A g ,  there exists an ?,12-triplet IA, H , BI
g g containing A .  Using the  adjoint representation o f RAEBRHel)RB-1.(2, R)
on g , we can associate to A  a  connected unipotent subgroup U(1.5) A  and its uni-
tary character A  such that

27,i(exP X)=exp Q(X, B) for XEii(1.5) A

where u(1.5)A  is  the  L ie  algebra of U(1.5) A  a n d  Q is the Killing form o f  g .  We
call the  smooth representation 7c,A  o f  G induced from nA  a  generalized Gelfand-
Graev representation associated to A  (for the  precise definition, see 3.1).

Take a  subset F o f th e  se t 11 of sim ple  roots in  A +. Let PF =M F AF NF  be
a Langlands decomposition of the standard parabolic subgroup P F  corresponding
to F .  T h is  correspondence is given so that th e  root system generated by F  is
t h e  restricted root system o f  M F .  L et PF=InFea F ENF  b e  th e  corresponding
decomposition of the  L ie  algebra pF  of P F , and  le t U F (resp. "I ') be the opposite
o f  N F  (resp. rtF ). F o r  a  smooth representation (a, E,r) of M F  and 1) (aF )c * , we
denote by th e  smooth representation of G induced from crOe'00-N F ).
F o r  a  character 7)  o f  a  closed subgroup U ' o f U, let 7r -,  denote t h e  contra-
gredient representation of 7r,,=Ind,G , (7)) (smoothly).

T h e  space HomG ( r ,, , ,  7 r ; )  o f  intertwining operators from 7 r,,, t o  7r—,, is
isomorphic to t h e  space g „(G) (see 2.1) o f intertwining E,,-distributions o n  G,
a n d  to  t h e  space W h ,( H ; )  (see Definition 1.1) o f  W hittak er v ectors of type

v).
In § 2, we treat th e  space 9" -(G) when yi is a  character o f  U F , f o r  some

F' 17. In case that th e  number of double cosets in UF, \G/PF is at most coun-
table, one can apply a  powerful formula by F . B ruhat which gives a n  estimate
o f  dim Y,T (G). Unfortunately, this is fa r  from to be countable in  general, so
his formula can not be applied directly. We modify his theory a s  follows. One
has an  estimate o f dim Y,r (G) in Proposition 2.3 by B ruha t decomposition o f  G.
Suggested by this proposition, we treat fo r every seW  th e  space of inter-
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twining distributions on an open subset S21( UsPF ) of G with supports contained
in  UsPF . U s P F  is divided into continuously many double cosets o f  UF A G/PF  in
general, which differs from the case of Bruhat. On the supports of distributions
in Er, we obtain Theorem 2.11, the  m ain  result o f  § 2, under th e  assumption
that ci is finite dimensional.

In  § 3, we apply Theorem 2.11 to th e  generalized Gelfand-Graev representa-
tions. Then we obtain o n e  o f  our m a in  results which asserts a  uniqueness
property of intertwining operators.

Theorem 1 (see Theorem 3.7 ). L e t  G  be a connected real semisimple Lie
group of  m atrices. L et A  be a non-zero nilpotent element o f  g and {A , H, B q
b e  a n  2 -triplet. A ssume that there ex ists a subset F " 1 1  such that U(1.5) A  can
be taken as  U F . .  Consider the generalized Gelfand-Graev representation 7, A asso-
ciated to A . L e t  FL TI. F o r  a  finite dimensional representation (a, E ,) o f MF
and vE(aF )c * , one has

(1) HomG (r„, 7r ) -= {0} i f  Ad (G)B nnF= 0.

{
c:lim E,

(2) dim Homo ( ,,, 7','A ) = 0

i f  F=F",

i f  F F " .

T he assumption "U(1.5) A =U F , for some F"g 11 " o f this theorem is essentially
satisfied fo r even nilpotent elements A , and for all nilpotent elements if  g  is a
complex semisimple Lie algebra of type  (A 1).

Theorem 1 is an extension in  a  certa in  sense o f Theorem 2.2 of M . Hashi-
zume [4] to th e  generalized Gelfand-Graev representations. W e em phasize the
next point for an original value of our theorem. L et A E g be a  non-zero  nil-
potent element in  Theorem 1. For an  FLu , # 0 ,  let ci be a finite dimensional
representation o f  M F  a n d  2, E (aF )c *. Then there are no non-zero intertwining
operators from r o,,„ to 7L,T i f  72 i s  a  non-degenerate character o f  U. So  the
representation 7C,, never can be caught within th e  limit of original Gelfand-
Graev representations. However, thanks to Theorem 1 (2), we can expect that
irreducible 7r,„ w ith  F = F "  actually occurs i n  r —  with finite multiplicity.
Therefore it seems to be quite natural to associate with such th e  nilpotent
Ad (G)-orbit o f  A.

0.4 . C o n s tru c tio n  o f  intertw ining operators. I n  §§ we construct
intertwining operators through analytic con tinua tion  o f Whittaker integrals.
T his realizes our expectation in the last part of 0.3. Suggested by Casselman's
subrepresentation theorem, we consider the representations r,,, induced from
the minimal parabolic subgroup P =M A N . Let ci be a n  irreducible finite dimen-
sional representation o f M  and  v  a c *. F o r  a n  s E W , p u t Us =-.U n s - iN s .  For
a  unitary character 72 o f  U „ we introduce a  W hittaker integral after [41:

(0.1) W e-(a, v , 2 2 ) f ( g ) = < e ,  f (gu)>7)(u) - 1 du (f  EH„,,„ gGG)
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for e- EE c
—\(0), w h e r e  E  is  the dual space of E .  T h i s  integral is absolutely

convergent if  u  lies in an open convex domain Ds g ac * given as

D 3 = {vE ac *; <Rev, 2>>0 for all 2 A  su ch  th a t s2 —A+}.

And the m ap f--*We- (6, I), 77)f gives a non-zero intertwining operator from
to  7r -. M oreover it is holomorphic w ith  respect to  IJE D s .

I n  § 5, w e  examine h o w  fa r  th e  W hittaker integrals can be extended as
meromorphic functions of v. For this purpose, w e restrict G  to complex semi-
simple Lie g ro u p s . H . Jacquet [6] sh o w e d  th a t th e re  e x is ts  a  subgroup W's,
of W such that the  integral (0.1) can be extended to a  holomorphic function on
the convex hull [W .  , D 3]  o f  ( s e e(see Theorem 5 .2 ). Com bining this w ith
meromorphic continuation of intertwining operators between the principal series
representations, we find out th a t the integral (0.1) extends meromorphically to  a
larger dom ain than [ V Ds ]  in general (see 5 .1 ). W e ap p ly  th is  m e th o d  to
W hittaker integrals We- (o-, u, 724 ) f (g )  fo r the  generalized Gelfand-Graev repre-
sentations r r

A
 in  case  th a t  U(1.5)A = U , for some S E W .

In Proposition 5.11, w e give a sufficient condition for meromorphic continua-
tion  of We - (6, u, 7A)f (g ) to  the whole (I C * w hen A is a certain nilpotent element
such  that the Ad (G)-orbit through A intersects EAEllg-- a, the  sum  of root spaces
g _  for simple ro o ts  A . If the above A  is  an even nilpotent elem ent, the func-
tion  2.)—>We—(0', u )? 4 )f (g) extends to a  meromorphic function o n  ac *  (Corollary
5.12). W e  a p p ly  Proposition 5.11 to complex simple Lie groups in the subsec-
tions 5.4—, 5.7. The complex simple Lie algebra of type (A 1) is  sp ec ia l in  the
point tha t every  n ilpo ten t A d  (G)-orbit in tersects E 2 e l l g -  2 .  W e establish, in
Theorem 5.13, meromorphic continuation of W hittaker integral We—(o, u , 72A )f (g )
to  the whole a c *  for every nilpotent element A ,  w h e n  g  i s  of type (A 1). We
regard these Corollary 5.12 and Theorem 5.13, especially the latter, as the results
o f  g r e a t  im portance in th is  article. W e sum m arize  them  in  th e  following
theorem.

Let g = e i e , , , p g " )  b e  the direct sum decomposition o f a  complex semisimple
Lie algebra g into simple i d e a l s  g .  For X  g, w rite  X = E i , i „,X " ) w i th  X " )

çl(') for

Theorem 2 (see Corollary 5.12 and  Theorem 5.13). L e t  G  be  a  connected
complex semisimple L ie  group. Let A o b e  a nilpotent element in  E2 E gg_,z such
that each g" ,  component A o m  of A o is ev en unless g " )  i s  o f  type (A1). Then
there ex ists an Ad (G)-conjugate A of A o satisfy ing the following conditions (1)
and (2).

(1) T here ex ists a  subset F (A ) o f  H  such that U(1.5)A  can be chosen as
UF(A)•

(2) The function u —W>"(o u ,  v A ) f (g )  extends to a meromorphic function on
the whole ac *, fo r a e la , f E (H ,)K  a n d  geG .

Here l'121. denotes the set of characters of the torus M , and (11..,)K the space of
K-finite vectors in
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For general g , i t  i s  no longer true that every nilpotent Ad (G)-orbit inter-
sects E2 E gg— a. Here is a  technical limit of Proposition 5.11. Moreover, there
exist nilpotent Ad (G)-orbits such that the corresponding Whittaker integrals
never can be extended meromorphically to ac* within the  lim it o f  our present
method. W e give i n  5.5 such an  example for the  complex simple Lie groups
of type (G O . In this case, the Whittaker integral can be extended meromor-
phically to a  half space by our method. But we do not know whether it can
be extended to a  meromorphic function on a  larger domain or not.

Our method is fairly successful in  order to show  that Whittaker integral
We - (6r, 1, n A.) f (g) extends meromorphically to the whole ac *. However, it would
be necessary to consider not only our present method but also other ones for
the general treatment of analytic continuation of Whittaker integrals.

In the last part of § 5, we list up, for complex simple Lie groups of rank 2,
our results of analytic continuation of Whittaker integrals We- (a., 724 )f(g ).

The author expresses his hearty thanks to Professor T. Hirai for his valua-
ble advices and constant encouragements.

§ 1. Notations and preliminaries

We explain the notations used throughout this paper.

1.1. Smooth representations of L ie  groups. L et G  be a Lie group count-
ab le at infin ity (i. e., G  may be written a s  a  countable union of compact sub-
sets). We denote by g the Lie algebra of G .  We identify g with the space of
right G-invariant vector fields on G  as follows :

d 
Xf(g)— f  (exp (—tX)g)1 t =o  ( g  E G)

dt

fo r  XE g and a  differentiable function f  on G .  Let U (g )  be the  universal en-
veloping algebra o f  th e  complexification g c  o f  g .  Then U (k ) is naturally
identified with the algebra of all right G-invariant differential operators through
(1.1).

Let us recall the notion of smooth representations of G  after [4 ] and [16].
In this subsection, we denote by E  a  locally convex, complete, Hausdorff, topo-
logical vector space. L et C- (G , E ) be the space of a ll E-valued smooth func-
tions on G .  We shall equip C- (G, E) with the topology of uniform convergence
on com pact subsets o f  a  function and its derivatives. This topology is called
the Schwartz topology for C- (G , E ).  Let EI(G, E) be the space of all E-valued
smooth functions on G  with compact supports. For a compact subset Q of G,
.0f 2(G, E) denotes the  space of all functions in  .0(G, E) with supports contained
in  Q . W e define a  topology o f  20(G , E ) by the topology inherited from the
Schwartz topology for C- (G , E ).  Then the space Z (G , E ) is topologized as the
strict inductive limit of the spaces 20(G, E), where Q  ranges a l l  compact sub-
sets of G .  This topology is called the Schwartz topology for .0 (G , E ). In case
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E=C , we drop the symbol E  in the above notations.
Let 7r be a  continuous representation o f G  on E .  A  vector v  E  is called

a  sm ooth vector f o r  7r i f  E-valued function V : g-47r(g)v on G  is in C- (G, E).
We denote by E -  th e  space of all smooth vectors in  E .  Then E -  is  a r (G )-
stable dense subspace of E .  The map P ° B v - 4 DEC - (G , E ) is a  linear injection
an d  th e  im ag e  o f  E -  is  a  closed subspace of C"'(G , E). We identify E - with
this closed subspace of C- (G, E) through this mapping. T h is  induced topology
on E - is , in  general, finer than that inherited from E .  Henceforth, unless
specifically stated to th e  contrary, we shall consider E -  a s  equipped with the
finer topology. We call (7r, E) a smooth representation if E = E -  with coincidence
of topologies.

F o r  a  continuous representation (7r, E) o f  G , th e  operators r(x) ( x  G )
restricted to E -  define a  smooth representation 7 r . o f  G  o n  E - . T h is  repre-
sentation (7r., Ec°) is called the smooth representation associated to 7r.

We explain the notion of smoothy induced representations. For a Lie group
G , we denote by dGx  (or simply dx) a  left Haar measure on G  and by 3G (or
simply 3 )  th e  modular function on G  with respect to dG x: 30(Y)=d0(xy)Id0x
(y  G ). L e t  H  be a  closed subgroup of G .  For a  smooth representation a o f
H  on a  Fréchet space F, we consider the space 2,(G , F ) of all F-valued smooth
functions f  on G  satisfying the  following conditions (1) and (2).

(1) f  ( x  h ) =

3 H ( h )

 a ( h - 1 ) f  ( x ) (xEG, hEH),3G(h)
(2) f  has a compact support mod H, in other words, the canonical image

in  GIH of the support of f  is compact.

We define a  topology of .0,(G, F) in the following w ay. For a  com pact subset
Q  of G , denote by 2,„Q(G, F) the space of all functions in  0 ,(G , F ) with sup-
ports contained in  S2H. We place on 0,, 0(G, F) the relative topology inherited
from C"(G , F ). Equip 2,(G , F ) with the strict inductive limit of the topologies
of 2 0 ,0(G, F), where Q  ranges all compact subsets o f G .  Then 2,(G , F ) is an
LF-space, that is, a strict inductive limit of a  sequence of Fréchet spaces. The
left translation defines a  smooth representation 7 r ,  o f G  on 2,(G , F ), which is
called the smooth representation induced from a.

Let i t  b e  a  continuous representation o f G  on E .  We denote by E -  the
the space of all continuous linear functionals on E  with strong dual topology.
W e consider the contragredient representation (in  algebraic sense) n--  on
defined byby <r(x)T, v>-=<T, r(x 1)v> (x E G, vEE, TEE - ). If the representation
(7r, E ) is smooth and E -  is complete with respect to th e  strong dual topology,
(7r- , E - ) defines a  smooth representation.

1.2. Notations for semisimple Lie groups. We prepare some notations
fo r  rea l semisimple L ie  groups and Lie algebras. Let G  be a  connected real
semisimple Lie group with finite center. Denote by g  i t s  L ie algebra. Let
be a Cartan involution of g, and g = fe c r  th e  corresponding C artan decomposi-
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t io n . Here f (resp . ci) i s  th e  space of all X6 ç1 such that 0.X=X (resp. OX=
— X ). L et a  be a maximal abelian subspace of q. By A  we denote the set of
all roots o f  g  w ith respect to a and by A + a set of positive roots in  A .  Put
n=E 2 E A +g2 a n d  it= On, where g2 is th e  root space corresponding to a  root 2.
Let K, A , N  and U  be the  analytic subgroup of G  corresponding to f, a, n and
n respectively. Then G=-KAN (resp . g= feaert) i s  a n  Iwasawa decomposition
o f G  (resp. g). F o r  a  L ie  subgroup H  of G  and Lie subalgebras I) and g  of g ,
we denote by Z i l (g) (resP. 3b(X)) and NH(g) (resp. nr,(X)) th e  centralizer of g in
H  (resp. b) and the normalizer of g  in  H  (resp. I)) respectively. P ut M=Z K (a)
(resp. m-=3,(a)). Then P=M A N  (resp. p=m ecten) is  a minimal parabolic sub-
group o f  G  (resp. a minimal parabolic subalgebra o f  g ) .  We denote by W the
Weyl group of (g , a ). Then W =N K (a)/M. F o r  a n  s E W , we denote a  fixed
representative of s in  N K (a) again by s.

L e t H  be th e  se t o f  s im p le  roots in  A t  F or a  subset F of H , le t <F>
denote the set of positive roots written as linear combinations o f  th e  elements
in F, and put <FY=A+\<F>.

For a subset b of g , we denote by Ty' the orthogonal complement o f  b in g
with respect to the Killing form Q o f g . F o r  v E a*, the  dual space of a , define
H a by v(H )=Q(H, H„) for all He a. We introduce some subalgebras of g as
follows

a(F )=E2 e F RI/a aF=ana(F)i,

n(F)=E2E<F>a2 r t F = E 2 E < F a a  ,

it(F)--Ort(F), aF=OnF •
Moreover

IllF=11(F)ect(F)emen(F), I F = 1 1 1F8aF,

PF
=

 in FE BaFEDUF •

Then pF  is self-normalizing and is called the standard parabolic subalgebra of g
corresponding to F .  The subalgebra mF  is 0-stable, hence reductive in  g .  By
A(F), A F , N(F), N F , U(F) and U  F we denote the analytic subgroup of G  cor-
responding to a(F), aF , n(F), 11F, n (F ) and 11F  respectively. T hen one  has de-
compositions A A (F )  X AF, N=N(F) r< N F  and U=U(F) x  U F .

Denote by W  F th e  subgroup of W generated by reflections corresponding
to the elements of F, and put PF -=PWF P .  Then PF is self-normalizing and  is
th e  normalizer o f  nF  in  G , which is called the standard parabolic subgroup of
G  corresponding to F. P u t  LF=ZG(aF), then L F = M F AF  w ith  MF= Z K(aF)
(MF)0, where (MF ) o is  the  analytic subgroup o f  G  w ith  L ie  algebra ni l ,. An
Iwasawa decomposition o f  MF  is  g iv en  b y  M F — K(F)A(F)N(F) with K(F)=
KnmF .  The group P F  admits a  Langlands decomposition PF=MFAFNF.

For a  smooth representation a  of M F  on a Fréchet space E , and v E(aF ),*,
we denote by (7r0.,,„ H )  the smooth representation o f G  induced from th e  re-
presentation acge'01N, of PF=-MFAFNF. The space H„,„ consists of E,-valued
smooth functions f  on G  such that f (xman)= a - ' -  P c(m) - ' f (x) for xE G , M E M
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aEA F  an d  nENF . Here p=2 - 'nEA-F(dim g2)2 and w e p u t  afl=exp<p, H> for
pE ac * and a=exp HE A .  Each element p ' in  a(F)c* (resP. (aF)c* ) is regarded
as an  element in  ac * w ith <p', aF>={ 0 } (resP. <p', a(F)>={0}).

1 .3 .  Definition o f Whittaker vectors. Let U ' be a  closed subgroup o f  U.
For a  character (i. e., one dimensional representation) 71 of U ', w e put

C(G)= { f EC - (G); f (gu)-= 72(u) f (g) for g EG and u EU'l,

and equip it with the topology inherited from the Schwartz topology for C- (G).
G  a c ts  on C (G )  b y  th e  le f t  translation which defines a  smooth representa-
tion 7 7 ) .

We introduce the notion of Whittaker vector a s  a  generalization o f  tha t of
Kostant in  DO].

Definition 1 . 1 .  F or a  smooth representation n of G  on  a  Fréchet space E,
put

Wh,2(E- )= {T G E - ; 7r- (u )T = (u )T for uEU'I.

Each element in  the space Wh,2(E- ) is called a  W hittaker vector of type (U', 72).

Let (r i , E„) (i=1, 2) be continuous representations o f  G  o n  locally convex,
complete, Hausdorff, topological vector spaces E i . We denote by Hom 0 (,r1,G\71, 72)
the space of continuous intertwining operators from E , to  E 2 .

The next lemma makes clear the relation between W hittaker vectors and
intertwining operators.

Lemma 1.2 ([4, § 1]). Under the notations o f Definition 1.1, one has isomor-
phisms o f vector spaces

Wh v (E- )=HomG (n, if,) )=HomG (7 , 7 ).

The correspondence is given as follows:

(1) W h(E - ) 3T ---> A T  1-113 In G (7 r f  )1

A r (v)(g)=<e(g)T, v> fo r  vE E and g EG .

(2) Hom0 (7r, Ft ) BA  ---> A- EHom0 (7, 7r,;),

<A- v, P,20>= G (Av)(x)0(x)cl0x fo r  vE E  and 0E2(G).

H e re  P  is  an open continuous linear surjection f rom  2(G) to 2,2 (G) given
by

(P,20 )(x )= 17,0(xu')72(u')du' (0E2(G), xEG),

and du' denotes a Haar measure on U'.
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Part I. On uniqueness o f Whittaker vectors for generalized
Gelfand-Graev representations

§ 2. Distributions corresponding to Whittaker vectors

Let G  be a  connected real semisimple Lie group with finite center. In this
section, we treat Whittaker vectors using Bruhat's method.

Let F ,  F '1 1 .  Let a  be a  smooth representation of M F on  a  Fréchet space
72 a  character o f UF , a n d  7.) E (aF)c*. By the canonical projection 0(G, EŒ)

-711,,,„, each element in  11;-,,, can be viewed a s  a n  E d -distribution on G .  Con-
sider Whittaker vectors o f  ty p e  (UF

, , 72) in  H c . We study the supports of
distributions corresponding to these Whittaker vectors. Our main result of this
section is Theorem 2.11 under the assumption that (7 is finite dimensional.

2 .1 .  Whittaker vectors and intertwining distributions. For y5E g (G , E a ),
put

(13 ,,,0 )(x )= P (m)0(xman)dmdadn ,
MF.AFxN F

where dm , da and dn are  Haar measures on M F , A F  and N F  respectively. Po,,,
gives an open continuous linear surjection from .g)(G , E,) to H,,,,,. Then
induces a  linear injection `P,„,„:11;',„-- 2(G , E cr)-  b y  <T ,,,T o , 0>=<To,
for T o aH ,',:, and ff)(G, E,,). The image t.1) ,„,,H„- ,,, consists of a ll T  2 (G , E ,,) -

such that

<T, R p _i çb>-= <T  , e - Pa(m)0> for p =m an e M F A F N F  and  çbE g (G , E a ),

where R y g5(x )=0(x y ) (x , y E G ). Moreover one easily has

Lemma 2.1. induces a linear bijection from W h,1 (1-1,- , , )  to the space of
all T E2(G , E ,,) -  such that

(2.1) <T, 72(u)e-Pa(m)0>

f O r p =man E M F A F N F , U an d  0 E 0 (G , E a ), where 14(x )=çb(y - 'x )  ( x ,
y EG).

We define an action of the product group UF , X  P. o n  G  by

(u , p)•g=ugp - ' for (u, P)EUF , X PF and gEG  .

Then UF , X  PF  acts on spaces of functions on G , and then o n  spaces of distri-
butions on G  by duality . For example, Ox(g)=0(x - '•g ) (gE G ),

<Tx, 0>=<T , Os- 1 > for x  U F
, x PF , 95E0(G, Te.g)(G,

Define a  smooth representation 7L of U  X  P F  on E ,  b y  r(Y )-=77(u)a - Pa(m) for
Y=( 4 , man) with u  UF

, a n d  m anEM F A F NF . Now put
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g ir(G)=- I T  E .O (G , E ,; T x  =- '7(x)T fo r  x EU F 'x P r I,

w here tr (x )  is  the transpose of the operator r ( x ) .  By Lemma 2.1 , one has

(2.2) W hi,(H,-,)=Er„(G).

N ow  w e give a n  explicit description of o rb its  o f  LI F , X  P F  o n  G .  First w e
have  a  decomposition by Bruhat

U  G ,  (disjoint union) w ith  G8=UsPF •
sew /w F

T h e n  G,=(UnsUFs - ')sPF an d  every element o f  G , is expressed uniquely as a
product o f elements o f  U nsU F s - i  and  sPF . And G , becomes a normal submani-
fold o f  G  diffeomorphic to  th e  product (UnsU F s - ') x P F  i n  t h e  canonical way.
U sing this this formula and the semidirect product decomposition U-=U(F') V UF,'
w e obtain the  following lemma.

Lemma 2 .2 .  For an sEW , G,=(U(F')nsL I F s - 1 )UpsPF , and it has an expres-
sion G s =(U(F')nsU F s')(UF , n sU Fs')sPF  in  such a way that it is dif feom orphic
to the product of  U(P)nsUFs - 1 , UF , nsU F s ' an d  P F  in the canonical way.

Consequently, G  adm its a  decomposition

(2.3) G =  U UF,Y sPF (disjoint union).
sEW  IWF y E U  (F' )nsUFs - ,

In  general, th e  number o f  orbits of U 1 , ' X  P F  in  G  is not countable, w hich
is contrary  to  the  case  of B ru h a t. T h is  prevents u s  from  direct application of
Bruhat's theorem ([16 , Theorem 5 .3 .2 .3 ]) . H ow ever, thanks to  th e  decomposi-
tion  (2.3), h is technique itself is available also in  our situation.

F or s E W , p u t Q8=G8U(Us , GB, ) ,  w here s ' ra n g e s  through th e  elements in
W  such that d im  G, , >dim  G,. E ach  double coset G,„ contained in  the  closure
G , o f  G, has a dimension strictly  sm aller than that of G, unless G„,=G 3 . This
im plies that Q , is  an open subset o f  G  and th a t  G , i s  a  closed submanifold of
Q , ([12, Lemma 1.7]). W e put

g7,,,={ T E2(Q,, E,) - ; T x =tr(x )T fo r  xEU F , X PF ,  spt(T)Ç Gs},

w here spt (T ) denotes the support of a distribution T.
T he  following proposition is w ell-know n. But w e g ive  its proof to  c larify

th e  connection between 2„(G) and  2",,,s•

Proposition 2 .3 .  Let { s i ; be a complete system o f  representa-
tives of the coset space W IW F. Then one has

dim g,r(G) E i,ign dim •

Pro o f . W e m ay assume that dim  G, dim G, J + ,  for — 1. Put

g i={ T E g ,(G ); spt (T)E i ( 1 gn+1={0}.
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For let r i : Z (G , E - -- 0(S23 j , E X  be the map defined by restriction.
Then we have immediately

a n d  Ker (7-,1 9-;)= g i+ 1f o r  1 j.__?2.
Hence

dim ifi dim for

This proves the assertion. Q. E. D.

2 .2 .  Distributions in g" (I), from  T  ( E g )  to  S  (on O 1 g G 3 ). For an
sEW , let T g , , , s \ { 0 }  and z o Espt (T ) .  We shall associate to T  a quasi-invariant
distribution on an open neighbourhood of z o in  G , under the action of UF, X PF
([16 , 5 .2 ]). We begin with the following lemma.

L em m a 2.4 . L e t  s E W  an d  p u t  lo =nnAd (s)up. T h e n  lo  is transversal to
G3. I n  other w ords, g=T o e T ,(G ,z - ')  f o r every z E G , .  Here T e (G 0 z - 1 )  denotes
the tangent space of  G 3z - 1  a t  the unit element e  o f  G.

Pro o f . Let z =u ,sP with u 1 ŒUnsUFs - 1  and p G P F . Then

T e (G s z - 1 )= Ad (it 1) {(itnA d (s)u F )EBAd (S)F},

because G3 z - 1 =u i (U n sU F s - 1 )(sPF s - 1 ) u c i .  Hence it is sufficient to prove

Ad (u1){0InAd (s)u F )e)Ad ( s ) 1 3 F l n i o — }  01.

Since Ad (u i r i lo g A d (s ) i t ,  the left hand side of the above equality is contained
in it. Clearly it is contained also in n, whence in itn n = {0 }. Q. E. D.

Until the end  of 2.3, w e  f ix  a n  element s  in  W . L et X,, ••• , X,. (resp.
yl, ••• , Y7 , )  be a  basis of To (re sp . Te(G3s - 1 )). For z =u ,sp  with ui cU n sU F s- 1

and pG PF, put Y ;-=Ad  (u ,)Y , for Then Y 1
3 , ••• , Y /  forms a  basis

of T e (G3z - 1 ). For a=(cr i , •-• , a r )  with non-negative integers a i  ( l i_.<r) , we
put X "=-X i al ••• X r'rE U (9 c ) . Sim ilarly (Y z

)r

=-- (Y1z )7 ' ••• (Y e ) "  fo r z E G ,  and
• • •  ,  re ) . By Poincaré-Birkhoff-Witt's theorem the set {(Yz)rX"} r ,„ forms

a  basis of U (g )  for every z EG s .
Let k  be a  non-negative integer. For x— (u, p)Eu F , x P ,  and zGG s ,  we

define a  matrix A k (x , z ) of degree /- =
r + k - l C r - 1  as follows. For a=( a i , ••• , a r )

such that la I -=a 1+ ••• -Fa r = k ,  we have an expansion

(2.4) Ad (u )X "= E  a,9„(x, z)X i3 -1- emx, z)(Yx.z)rxR
,„5,=k

w ith  a A „(x , z ), eh r ( x ,  z ) E C . Put

A k (x , z )=(af i a (x , z))1,91-Ial-k •

By the definition of il k , we easily have the following lemma.

Lemma 2 .5 .  T he matrix valued function A k  on (UF , X PF)X G , is smooth and
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satisfies the following conditions (1)—(3).

(1) Ak((e, p), z)-=I ( I  the identity operator) fo r  pOEPF  and zOEGs.
(2) A k (x x ', z )= A k (x , x '•z )A k (x ', z ) fo r  x, x'OEU F

, x P F  and zeG ,.
(3) The m atrix  A k (x ,  z ) i s  unipotent i f  xO E (U F 'X P A , w here (UF , xPF),

denotes the stabilizer o f z in  U F
,
 X PF.

Now let TEgr,3\101 and zo Espt (T ) .  In  a  sufficiently small relatively com-
pact neighbourhood 0  of zo in  S28 , there exist unique E a -distributions T a  o n  01 -=
O nG s such that

(2.5) T10=Ea(-1)'''X 'Ta (finite sum),

where we regard each T a  a s  a n  E„-distribution on 0  by trivial extension ([16,
Proposition A.2.1.2]). L et k  be the largest integer such that k=  1 a 1 fo r  some
a  w ith  T a # 0  a n d  spt (T a ) 3Z0. By replacing 0  w ith a  smaller neighbourhood
of zo i f  necessary, we may assume tha t T a =0 i f  la 1 >k.

Now we define an  (E,00)-distribution S  on 0 , as follows:

S ( f )
=

EI a l = kT a(f

with f a OE.W(0,, E d ).

for f = ( f  01,1=kEg(01, E,OC i )

Lemma 2.6. Let S  be as abov e. T hen S  satisfies

S x ( f )= S ( (r (x )O t Ak(x - i , -)).R .))

fo r  xOEUF
, X P F  and f E cO C ") such that spt (f ) 0 inx •01

Pro o f . T h e  proof is carried  o u t ju s t in  the  same way as in  [16, 5.2.3].
To clarify the arguments succeeding to this lemma, we give the proof.

Let x=(u , P )EUF• XPF and hE.0(0, E a )  such  tha t spt (h )ç O n x • O .  From
the local expression (2.5) o f T , one has

TX(h) a ( _ 1 » ' 1(X 'T )x (h ) T (X a (h x - 1 ))

= E a T a (((Ad(u).7Ca)h)x - i).
Using the expansion (2.4), one has

T a (((Ad (u )X ")h ) x - i ) =Eipi=lai( - 1) 113 'Xi9 (a a (x , • )T a )x(h)

+Elpi<1.1( - 1) I PI (X P T )(h ) ,

w here  r o  i s  a n  E a -distribution o n  01(\x •01 for each 13 such that 1131< 'a l.
Hence

T x (h )= E ip i-k ( - 1) k V(Ecal=kapa(x, •)Ta)s(h)+Elpi<1( - 1) 1N X PT P (h ),

where r h  is an  E a -distribution on O1n x .0 ,  for each /3 such that 1,31< k .  On
the other hand,

Tx(h)=Eip,,k (-1 )'P 'Xs(t2r(x)T13)(h ).

B y the uniqueness of the local expression (2.5) of T ,  one has
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isx=Elal=kaga(x - 1 , • )'7 (x )T . on 0 1 n x -0 1

for each fi such that 1'31 -- = k .  This proves the lemma. Q. E. D.

2 .3 .  Distributions in (II), from  S  (on 0 1 G s )  t o  r  (o n  .gt. u (F )n
s u ,s - i ) .  We shall associate to S an  (E 0 0 C 1)-distribution r  on an open subset
92. of U(F')nsUps - '  satisfying a certain condition with respect to  an "action"
of UF

, nsP F s- i  (Proposition 2.10).
We proceed in more general situation. Let A  and B  be Lie groups so that

B  acts on  A  as a  group o f  automorphisms of A : B xA B (y ,  x ) -4x 2  ŒA. F o r  a
closed subgroup H of A , put M 2 = B x (A IH ) .  Define an action of A  on M , by

x•(y, xY-1x1H) (x, x i c A , y E B ).

For a  Fréchet space E , le t 0  be a  differentiable E-multiplier on M 2 relative to
A, i. e ., 0  is  a  map from A x M , to ..C(E), the space of continuous linear opera-
tors on E , such that

(1) 0 (e , z )= I (I  the  identity operator) for zEM2.
(2) 0 (xx ', z )= 0 (x ', z)0(x , x'•z) (x, x'Œ  A, zEM2).
(3) For every $E E , A x M ,B (x ,  z ) -4 (x ,  z )E E  is
(4) The image of a compact subset of A x  M 2  by any fixed derivative of 0

is equicontinuous in  .S(E).

We consider a quasi-invariant E-distribution S  o n  a  neighbourhood 0, of a
point z0 EM 2 w ith  multiplier 0 :

(2.6) Ss(f)=S (0 (x -1 , -)f(• )) for xEA , f E2 (0 ,, E )

such that spt ( f )_ O i nx•O i . Here Sx is defined as Sz(f)-=S(fx - 1 ) with f 1 (z)
= f (x • z). Suppose ZoEspt (S).

R em a rk  2 .7 . (1 ) P u t  A = U F •XPF, B=U(F')nsUps - 1 ,  H={(u, s- 'us);
UF , nSPFS - 1 }, xv=-(yuy - ',  p )  f o r  x — (u, p)EA , y E B .  Then 1112  is identified
with Gs in  th e  canonical w ay. T he action  of A  on M 2 conincides with that of
UF , X P F  on G,.

( 2 )  Set E=E,®C I , 0(x, z)=7c(x - ') O 2 A k (x, z) fo r x E A , z E M 2 .
Then S in Lemma 2.6 satisfies the above condition (2.6).

Put M i = B x A .  Define an action of A  on M , by

27•(37, x1 )-- (37, xxi) for x G A , (y, x,)G M ,.

Let j :  M1 —>M2 b e  a subm ersion such that / (y , x i)= (y , x i l i )  for (y, xi)EMI.
For aE.0(M 1 , E ), put

.f«(Y, a(y, x,h)dh ((Y,

where dh denotes a  left Haar measure on H .  A s is well known, a—>f„ gives
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a n  o p e n  continuous linear surjection from 2 (j - 1 (0 1 ), E ) to  2 (0 „  E ).  Moreover
spt ( f “)  j(spt a )  fo r  all a E 2 (P (0 1 ), E).

P u t 2 1 =  {(y , x )e M i; (Y , x u - 1 ) E i - 1 (01)}. I n  order to associate with S  an
A-invariant distribution on w e put

a'(y, x)=-0((xu) - ', (y , xH))a(y, xv) fo r a e 2 (2 1 , E ).

T h e n  t h e  linear map gives a  topological isomorphism from 2 (2 ,, E ) to
0 (j - '(0,), E ) .  There exists a unique E-distribution S* on  2 , such that

S*(a)=S(g a ) with g ,= f ,f o r  a e 2 (2 1 , E ).

We proceed a s  follows : S  (on 01)—>S* (on 2 1 )—Yr (on gt) (see infra).

Lemma 2.8. The distribution S* on 2 1 is invariant under A: S * '(a )= S *(a )
f o r x 'E A  and a 2 (2 1 , E ) with spt (a)E2inV•21.

Proof. L et x ' and  a  be a s  above . F or p=ax — I ,  one has

g is(Y, xill) A 1 0(((xiii) Y r i , (y, xiH))a(Y, (x' v - l xih) u )dh.

On the  other hand,

(g — '(y , x i l l )= g a (y,

= .ç  0 (((x ' Y - i xih) v ) - 1 , (y , x ' - i xill))a (Y, (x / Y - i xih) Y )dh

= 0 (x ' - ', x '•(y, x i H)) 1 1 0(((x i h)r) - - 1 , (y , x i H))a(y, (x/Y - 'x i h)Y)dh.

Therefore one has g is=0 (x ', • )(g a )x— i . Consequently,

S '"'(a)=S (4)(x ', .)(g a )2 - 1 )=S s - 1 ((g a )x - 1 )=-S(g a )--- - S*(a).
Q. E. D.

Write zo=i(Y o, x0") w ith  y o EB, x 0 G A .  T hen (yo, x0)E9) 1 a n d  (yo, xo)E
E spt (S * ) .  By replacing w i t h  a  smaller neighbourhood o f (y o , x 0 )  if  neces-
sary, we may assume tha t 2 1 = R X Q  w ith an  open  neighbourhood R. (resp. Q)
o f yo  (resp. x o )  in  B  (resp. A ) .  By Lemma 2.8 combined with th e  usual "past-
ing" arguments, S * can be extended to a distribution on gtx A  invariant under
A .  We denote it again by S*.

For a E O (R x A , E ), w e put

P,,(Y)=La(y, x)dx (Y E R ),

where dx is a  left Haar measure on  A .  Then a—>49a  g iv e s  a  surjec tive  linear
map from 2(.92><A, E) to  2 (g , E ),  and  there exists a  u n iq u e  E-distribution r
o n  .9. such that

r(lia)=S*(a) fo r aE2(..RX A, E ).
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Obviously yo espt (r). Then r  satisfies the condition in the following proposition.

Proposition 2.9. There exists an open neighbourhood n of the un it o f H
such that 7(jS)=r(h13) for hEn and 13E0(g2, E ). Here we put

(h iS)(Y)=3A(h - 1 )6A( 0 ) 0 (h Y , (Y 11 )) (Y) ( y  gZ),

with 3A  the modular function of A.

P ro o f. L et a E g (M „  E ). F o r  h' H , w e  p u t  a h '* (y , x )= a (y , x h '). Let
.51 be a  symmetric open neighbourhood of the unit of H , and Q ' an open neigh-
bourhood o f  x o i n  A  satisfying QTR, .51] - 1 g Q  a n d  Q 'n g Q .  Here we put

12]=Vh - '  fo r  hEH , yEB .
Now le t  «E.0(gt x Qi, E) an d  hi e n ,  then  an '*E2 (2 i ,  E ) .  Obviously one

has Sa h, *=(3A(h/ - 1 )13a. O n the  other hand,

g a h ,* (y , xH )= .ÇH 0(((xh )u) - ', (y, xH))a(y, (xhh')Y[y, h' - '])dh

=5A(h / - 1 )5  0 (((xh ) Y ) - 1 , (y, x11))0(h'Y , (y, H))
H

-ce(y, (xh)Y[y, h' --1 ])dh

Therefore, if  we define a h ' E ) by

a h ,(y , x)=0(h 'Y , (y, H ))a(y, x[y, h ' - i ] ) ,

we thus obtain g a h
,

* =3,4(h ' ' ) g a h ,. Note that spt (a h
, ) gg ", by the definition of

n .  Clearly one has pa h ,---h' (P. ) ,  and  consequently

r(13.)=3A(h')r(13 *)=S(g a h ,) = r ( h ' (I3  a ) )  •

Since t h e  m ap  2(g)XQ', E)Ba— >iLE2(g2, E) i s  surjec tive , we complete the
proof. Q. E. D.

W e return to our original situation in 2.2 . By Remark 2.7 and Proposition
2.9, we conclude

Proposition 2.10. Let S  be as in Lemma 2.6. Then there exists an (E,OC 1)-
distribution r  on  an open neighbourhood RgU(F')(1.sU F s- 1  o f y o satisfying the
following conditions.

(1) spt (r)Byo.
(2) There exists a neighbourhood ,92 of the  un it o f U F

, nsP F s- ' such that
r(p )= - 1-(7' p) fo r  m e n  and Pe2(.42., E G OC 1 ). Here we put

(7' p)(y)={7r(ymy - ', s 'm s) - 1 0tA k (ymy - ', s - lms)} i3(y).

2.4 . Supports of distributions in g 7c.a . Now we state th e  m a in  result of
this section which is crucial in  the next section.

F o r  a n  s EW , put
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D,s2={ y E U (T nnS U F S- 1  ; V I U F ,n y s P F (y s )
- 1 = 1 } .

Then D;UF
, sP F  is  a  closed subset of Gs --U sP F , in general, of lower dimension.

Theorem 2 .1 1 . L et the notations b e  as  abov e. A ssum e th at a  is  a finite
dimensional representation o f  M F. For every sOETY, a d istribu tion  in  9 " ,, ,  has
always the support contained in  DWI- sPv.

Pro o f . Let TE g s., s a n d  e = y o(x o -s)Gspt (T )  w ith y o EU(F')nst/ F s - '  and
x o EUF , xP F . We use the notations in 2.3 in this situation. Assume that YoEE
D . T hen  there ex ists a n  mŒSYL (Proposition 2.10) such that 12(y0my 0 - i) *1 .
By Proposition 2.10, we see

r y (II - 7)(Yln - i y - 1 ) ( a 0 e - P®1)(s - i nc i s)O t Ak((ymy - 1 , s - ims), Y s)IP(Y ))=0

for all ISE O ( R , E ,O C ') , where r y  means that y is applied on the function in
y . O n  th e  other hand, the operator (cO e' - . P01)(s - ')n - l s )  i s  unipotent b y the
highest weight theory o f  irreducible finite dimensional representations of
(CmF, niF1c. By Lemma 2.5 (3), the matrices t i l k ((ymy - i , s - lins), y s) are  uni-
potent for all y E .R .  This implies that the operators

I — 72(Ym- 1 37 - 1 )(6r0 e " 0 1 )(s - 1 772- 1  s)O t A k((YlnY - 1 , s - im s), ys)

a r e  invertible when y  r a n g e s  a  sufficiently small neighbourhood of y o i n  R.
Hence y o EEspt (7). This is a contradiction. Q. E. D'

We apply our result to the case F=F'= 0 .  A  character y) of U  is called
non-degenerate if the restriction of y) to U n s - lA ls i s  non-trivial for every S E

147\ f e l .  T h e  following well-known theorem (e. g ., [4 ]) is  a direct consequence
of Theorem 2.11.

Corollary 2 .1 2 . L e t  )2 b e  a  non-degenerate character o f  U .  For a finite
dimensional representation (a, E ,)  of  M  and v Ea c * , one has

dim Wh i,(H )_ d im  E a .

Pro o f . T h is  corollary follows from Lemma 2.1, Proposition 2.3, Theorem
2.11 and the fact that 1) = 0  if s e.Q .  E .  D .

Note. After I had proved Theorem 2.11, I learned the following. For re-
ductive groups over a  non-archimedean local field, M. L. Karel treated in  [7]
Whittaker vectors in  the similar situation as ours in 2.1 except that a  is sup-
posed to be one dimensional in  his case. A nd he obtained a uniqueness property
([7 , Theorem 3.2]) of such Whittaker vectors when the character y2 is "generic".
His method is based o n  th e  vanishing of certain integrals over compact sub-
groups o f a  unipotent subgroup. So it can not be extended immediately to
archimedean c a se s . Nevertheless, our result (Theorem 2.11) shows, as its direct
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consequence, that a  fact parallel to non-archimedean cases holds also in archi-
medean cases.

§ 3. Multiplicity theorem fo r  generalized Gelfand-Graev representations

In this section, we define the genepalized Gelfand-Graev representations of
semisimple L ie  groups just a s  i n  [8]. Using the  results in  § 2, we prove a
multiplicity theorem (Theorem 3.7) for some of such representations.

3.1. L e t  G  be a  connected real semisimple Lie group with finite center.
Retain the notations in 1.2.

Let A  be a non-zero nilpotent element o f  g .  B y  Jacobson-Morozov, there
exists a n  12-triplet {A, H, BI containing A :

[H, A]=2A , [H, B ]=- 2 B ,[ A ,  B ] = H  .
We put

g(i)A={XEg; EH, XJ=iX},

11(i)A=E k i(i(k) A 11(0 A
=

ED 10) A

for each integer i. For i>.1, denote by U(i) A  (resp. N(i) A )  the analytic subgroup
o f  G  corresponding to u(i) A  (resp. n(i) A ). By the representation theory o f  .12,
one has g = a e zg(i)A. If one notices that the spaces g(i)A  and Ç(j) A are mutually
orthogonal with respect to Q (Killing form) unless i + j= 0 , the  dual space u(1)A*

of u(1)A  is identified with n(1)A by u(1)A9 Y.-07 *G u(1)A*, <Y* , X>=Q(X, Y ) for
X E u(1)A.

By taking a  suitable Ad (G)-conjugate of A  instead o f  A , w e m ay assume
that H a and 01, 1/>-0 for all 2G Put FA '= {2 EH ; <2, H>=0}, then fF" A
=(0)A 

a n d  uF,
A =u(1)A.

Let u(1.5)A  be a  subalgebra of u(1)A  satisfying the  following conditions.

(1) 1t(2)Aç_. u(1. 5)A u(1)A,
(2) u(1.5)A  is a subalgebra of u(1)A  subordinate to B* Eu(1) A * , e., B*([u(1.5) A ,

u(1.5)Ai)=(0), and of maximal dimension among such subalgebras.

Such a  subalgebra u(1.5) A  actually exists, because u(2)A  is subordinate to B*.
S ince t h e  alternating bilinear form  o n  g(1)A X a(1)A defined b y  (X1, X2) — >
B *(EX , X 0) is non-degenerate, u(1.5)A  can be written as u(1.5)A =u(2)A ett' with
a  vector subspace n' of g(1)A such that 2 dim u'=dim (1) A  a n d  B*(EW, u'])= {0}.
Let U(1.5)A  be the analytic subgroup o f G corresponding to u(1.5)A . We define
a  unitary character 7) A  o f U(1.5) A  by

nii(exp X)=exp {A/-1<B*, JO} for XGu(1.5)A •

Definition 3.1. L e t A e g  b e  a non-zero nilpotent elem ent. The smooth
representation (7r, A ,  ) , A (G )) induced from the character 72 A  o f U(1.5) A  is called
a  generalized Gelfand-Graev representation associated to A.
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In general, U(1.5)A  is not uniquely determined by A. Nevertheless, we call
every representation defined as above a generalized Gelfand-Graev representation
associated to A .  W e n o te  th e  following : Let (eA, E A ) be the  smooth repre-
sentation of U(1)A associated to th e  unitary representation o f  U(1)A  unitarily
induced from 72A. By Kirillov's theory on representations of nilpotent Lie groups,
(eA, EA ) is irreducible and independent (up to equivalence) of a choice of U(1.5)A.
Moreover .0,,A (G) is embedded continuously into Z eA (G, E A )  as a G-module.

In case that A  is a  regular nilpotent element o f g , U(1)A =U(2) A = U . And
)2A gives a  non-degenerate character of U  if  g  is , a t least, quasi-split. In this
case , th e  representation 7r,,A  has been called the Gelfand-Graev  representation.
This is the reason why 7r,A  is called a generalized Gelfand-Graev representation
for each nilpotent element A.

When G  is  a  connected complex semisimple Lie group, we regard G as a
real group in  the following way : Let f) be a  C a r ta n  subalgebra o f  g , a n d  a
the real form of f) consisting of elements on which every root with respect to
f) takes a  real va lue . L e t f be a compact real form of g  which contains -V-1 a
as a maximal abelian subalgebra. Denote by O the conjugation of p  w ith  re-
spect to f. These notations f, a and 0 are compatible with those defined in  1.2.
So we use the notations in 1.2.

3.2. We introduce some additional notations and make some preparations
for the main result (Theorem 3.7) of this section.

F o r  a  real vector space 11, nc  denotes the complexification of n. Let 1)-  be
a maximal abelian subalgebra o f  m . Then fi=b - e a  i s  a C artan subalgebra of
g. Denote by the set of roots of gc, with respect to bc . Choose a positive
system  A  of A such that )1+1,, A + .  For F H , le t  A F be the set of non-zero
(ad aF )-weights in  g .  In  general, the set A F  is not a root system for OF * , never-
theless, it is often called th e  se t o f  aF -roots by abuse of the lauguage. Put
AF+ — AFn(A + a F ), F = F n ( 1 1  a F ) •  Let r :  j—>AFU 101 b e th e  map defined
b y  th e  re s tr ic tio n . P u t P=rF - 1 ({0})(1/7, where t i  denotes the set of simple
roots in  j + .  Regarding g:=g c  a s  a  real Lie algebra, we use the notations in 1.2
with the symbol "-" on the head . F or example, C1=-V-1 baa,Ft(P)= b-
Ga(F),

Lemma 3 .2 .  Let F 'g 1 1 .  T hen the nilpotent subalgebrau r  of g has a struc-
ture given as ltF , ==EÂEHF ,g-leCitF , , Br , "  w h e r e  g , (p A l -) denotes the ap-root
space corresponding to p.

P ro o f .  It is sufficient to show that the complex Lie algebra (nF
, )c  is gener-

ated by (E2E HF ,0_2)c . We see easily

(11F0c=-EaE<P>'14- . (E2Ellp,(1 -2)c=-EPO -A

where the last sum E p  runs through i3E <P'>' such that /31„  EH F -. Let n' be
th e  complex L ie  subalgebra generated by E g il- p. Note that E /30_p is  (11”)c-
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stable, whence so is u'. Put {ai, • • • , cql. Assume that (u p )c . Then
there exists 7 = E ,,,,,n ,a ,E < Ê T  with it, s u c h  t h a t  V ,  u'. Take a  such 2,

so that the sum En, is m inim al. A s is well known, 7. =7/±7.  f o r  some riEJ+
and a ft. N ecessarily r/Œ<P>/. By the assumption for r, one has (1_,, g u'.
I n  c a s e  a,E<P>, V .,]_ZElt/ , I n  c a s e  ct,E<PY,
[u', u ']g  u '.  This is a contradiction. Q. E. D.

Let 22 be a  unitary character of U IT" . By the above lemma, there exists a
unique element B r j F , g A  such that r2(exp X)=exp { -V-1 Q(13,, X )}  for all
X c  .  The map 72-43,2 g ives a bijective correspondence between the  se t o f
unitary characters of Up , a n d  E 2E11 ,„g 2.

Lemma 3 .3 .  L e t F1 1 . Fo r sE W  an d  y eU (F')n sU F s - ', the restriction of
n to  Ur ny sPF (ys) - 1  i s  triv ial if  and only  i f  Ad (ys) - 1 .13,7 En F .

P ro o f .  We see easily that 72 restricted to LTF • n y sP F (ys) - 1  i s  trivial if and
only if  Ad (y) - 1 .8,2 E  Ad (s)PFi ,  since Ad (y) - 1 - B ,,en c

, and  itF, =1)F, 1 . T h i s  means
that Ad (ys) - 1 13,2 E =11F. Q. E. D.

Until the end of this section, we assume that G  is  a  connected real semi-
simple L ie  group o f  m a tr ic e s . Then G  is contained in  the  complexified con-
nected matrix group d having b ( .----gc) as Lie algebra. A lso for 6, we use the
notations in 1.2 with the  symbol "-"  on the h ead . For a L ie subgroup L  of G
w ith  L ie  algebra I, denote by L c  t h e  analytic subgroup o f  "d' corresponding
to Tc .

Proposition 3 .4 .  L et B  be an elem ent in  n r  s u c h  t h a t  [13, lip, ]=n F , and
Z -6(B)_Z(1 31-)c. T hen one has G ; Ad (g)B E 11F , } =pF ,.

P ro o f .  F irst w e no te  th at ag(B) pF
, . In fact, Q(X , np)=Q(X , [B, p F '] )

=
Q ([X , 13], pF') for X e sa . Hence X E n F , I = p ,  if X G 3 ,(B ). Since [ B ,  F, ]=Hp,

o=IY - E(tF , )c ; CY, (iip)c1=( -tF, ) c }  i s  an  open , dense  and  connectedfsubseti- in
(nA c containing B .  Moreover 0  is a single Ad ((PE- )c)-orbit in  (nc, )c.

Let g  G  such that X=Ad (g)B uF
, . Then

dim [X , pF ,] =dim pF , —dim 31,F , (X )  dim pp, —dim 3,(X)

=dim pF , —dim 3,(B)= dim pp, —dim ip,„(B)

=dim CB, PF•1 = d im  .

T h is  means that X E O .  Hence there exists P E(PF , ) c  such that Ad (g)B =
Ad (p)B. Thus p - ig E Z a ( B ) ( P F ,),,, g E ( P F

, )c r 1 G .  Since (PI- )c=AT-c((nF•)c),
one has (PF, )cnG---, NG((nF, )c)=NG(nF , )=P F • .  This completes the  proof. Q.E.D.

In the next lemma, we give an  example which satisfies the assumption in
Proposition 3.4.
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Lemma 3.5. K eep  to  the notations in 3.1. L e t A  be a non-zero nilpotent
element o f g such that u(1.5) A  can be chosen as uF .  f o r  so m e  F"g ll. T h e n  one
has

(1) Z a(B )(PF' A )c_.(PF.)c, (2) CB, PA =up-.

P ro o f . (1 )  Let g e Z a ( B ) .  We have two K 2-triplets {A, H, BI and {Ad (g)A,
Ad (g)H, B I in g" containing B .  By Kostant ([9, Theorem 3.6]), there exists an
element x  in  the unipotent radical of Z -6(B) such that Ad (g)H=Ad (x )H . Then
x - i gEZ a(H) N -6((nF,

A )c)-=(PF- A )c. Since the unipotent radical of Z ( B )  is con-
tained in (PF' A )c by the representation theory o f K2,  one has g ( P p ) C .

(2) Note that 11F
, =13F

,
A eu " with a  subspace u"__.g(1)A  su c h  th a t 2 dim u"=

dim g(1)A . Then one has

[B, 13F-]=11(2)AED[B, u"] .

Since 3,(B)g gF, , ,  one has 2 dim [B , e]=dim g(1) A . Hence dim nF.=dim [B, PF-] ,
riF .= [B, p F .] . Q. E. D.

Remark 3.6. U(1.5) A  can be chosen a s  UF. for some F " g l l  if and only if
there exists an  abelian subspace it" of g(l) A  such that

(1) D M A ,  u "jç.u" a n d  (2) 2 dim u" =dim (1)A •
T h is  i s  a  sufficient condition for the existence of a weak polarization of the
nilpotent element B  ([11, Proposition 5.2]). In  c a s e  G=S L (n, C ), such  a  u"
always exists (see 3.4).

3.3. A multiplicity theorem. W e state the main theorem of this section.

Theorem 3.7. Let G  be a connected real semisiniple Lie group of matrices.
Let A  be a non-zero nilpotent element of g such that U(1.5) A  can be chosen as UF.
f o r  som e F"gil. W e consider a generaliz ed G elfand-G raev  representation
(7r

2
A , 0

2A (G)) associated to A . L e t F g 1 1 .  For a finite dimensional representation
(a, E ,) Of M F and v e(aF )c *, one has

(1) Hom0 (7c,,,, r A )=  {0 } i f  Ad (ys) - 1 B En F  f o r  all sE W  and y U(F")r)
sUps - 1 .

{  
dim E ,

(2) dim Homc( , 7 —vA)
 = 0

if  F=F" ,

if  F F ".

Pro o f . We adapt the results in § 2 putting F'=F" and r)= V A . BY Theorem
2.11 combined with Lemma 3.3, the assertion (1) is c le a r . Now we assume that
F Q F " .  Let s e W .  By Lemma 3.3, w e have

Dk4 = { y U(F")nsU F s - 1  ; Ad (ys) - 1 B En F I

{ yEU(F")nsU F s - ' ; Ad (ys) - 1 1 3  nF.I.

B y  Proposition 3.4 a n d  Lemma 3.5, w e  have
 D A = Ø

 un less sEWF .. Hence
Horn0(7r,,,, 7r.;;A )= {O} if In case F=F" , w e have DL= { e l  f o r  s EWF.
If one notices tha t S2,-- -G 2 =UFPF for sE WF  an d  tha t UFPF  i s  diffeomorphic to
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the product U F X.PE• in  the  canonical way, one has
dim HomG (r , , , 9-„,e=dim E, . Q. E. D.

Remark 3.8 . The cases (1) and (2) in  th e  above theorem d o  not exhaust
all the cases for F" and F .  For example, dim Hom0 (7c,,, 7 ;2 A )  can be equal to
infinity in case F F "  (see § 4).

3 .4 . C ase of G=S L (n, C ) .  As an example, we give (U(1.5)A, )2A) explicitly
in case G=S L (n, C ) .  Put {h=diag (h i , , h.); E iis .h i-=0 , h i E C } .  Then
I) i s  a  C a r ta n  subalgebra o f  g .  T h e  real form  a  of I) is given by a=112.=
diag (h 1 , • • • 12)E1); h i e R I .  As a compact real form of g we take f=it(n), the Lie
algebra of skew-Hermitian matrices of degree n .  If  we define e,G a* by <et , h>
=h i  f o r  h-=diag (h„ ••• , h n )E a, the root system A  of (g , a ) is  g iv en  b y  A =
ie i —ei  ; 1 i , j n ,i# 3 . 1. Choose a set of positive roots a s  A +={e i — e,; i>j} .
Then //=- 12i =ei + 1  —e i ; 1 n-11 is the set of simple roots in A .  The Weyl
group W is identified with the  symmetric group S T,  of degree n which acts on
a by permutation of diagonal entries.

We introduce a set of partitions of n,

P =  7= (n13 n 2 ,  • . .  1.12) 
n l > n 2 > - 1 2 s > 1  ( n ' E Z )P  •
Ei6izsni—n

Associating its Jordan type to each nilpotent element of g , we can parametrize
by P .  the nilpotent Ad (G)-orbits in g.

For a positive integer m, we define three matrices of degree m as follows :

0 1

0 0 1

o

b, 0

b2

o

1

0 1

 

o bm-1 0

o

HT.=

3—m

o

with
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Let , ns )E P . .  A rranging  num bers i n  r, w e obtain r i =- (mi, m2,
M r  ;  kly k 2 ,  • • •  k2 )  such that

••• w ith  mi  e v e n  for ,

w ith  k i  o d d  for ,

and k +m =n , m = E i , i „m i ,  k = E i , ; ,,k i . A s  a  representative of the nilpotent
Ad (G)-orbit corresponding to r, take

••• eAm r eAk 1e9Ak2ED...EBAkg .

1-1?„ - H „ 1 e x . 2 03, " Hm r Hk i Hk z e , • e H k g ,

•-• EDB . r e B k , e B k 2 e  • • • e B „ , ,

LA?, 11'), B P  i s  a n  I 2-triplet containing A . F o r  a  p o s i t iv e  in teg e r i, we
denote by t i  th e  multiplicity of i  in  r. For an integer j ,  let l ,  b e  th e  number
o f diagonal en tries in  11;', equal to j. T hen one has 1 i =1_ i =- t i , 1H-t, + 2 +  for

Put l i = /,± / i ,  f o r  i 1. W e  d e f in e  Hr E a by

117 =((n 1 -1 )X J. 1 -1)ED El)(ixPED EB((-ni+1)XJ-.,+i)

where J .,=/ / i denotes the identity matrix of degree I,. T hen  117 i s  in the closure
o f  th e  negative  W eyl cham ber o f  a .  T h e re  e x is ts  a unique w 1 W w hich
satisfies the following conditions (1) and (2).

(1) wr i-IP=H r .
(2) L et H =diag (h 1 , , h a ), th e n  w 1(i) >w 7( j )  fo r  e a c h  p a ir  ( i ,  j)  such

th a t i > j  and h ,=h
T a k in g  a  representative o f  w , in  NK (a), w e deno te  it aga in  by  w ,„  Put

117:=-Ad (w 7)A ; and B r =Ad (w 7)B?. W e consider the ?,1 2-trip le t {.47 , H,, B r }
conjugate to {A19, II?, /33?}. T h en  it is  e a sy  to  see  th a t U(1.5) A  c a n  b e  c h o se n
a s  U(1.5)A =-Ur  w ith

  

• L* *

0 L,

0 0 L 2

 

• L i=Irj

   

If  w e put
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The group U r is  the  unipotent radical of a parabolic subgroup o f G.

Remark 3.9 . The elements A l and w , above play an im portant role when
we consider analytic continuation of Whittaker integrals later in  § 5.

Now we shall write down the  condition in  Theorem 3.7 (1) fo r  th e  non-
existence of intertwining operators explicitly in  case G =S L (n , C).

Let P '„ P , ,  be as

Pn =. 1,8=- (li, 13, lt ) n,

For j3=-(l, , l t )E P . ,  we put F(P)=- 11\12 11 , 2 1 ,+ 1 2 , ••• , 2 1 3 + 1 2 + ...+ 1 3 _3 I. The map
13—>F(9) gives a bijective correspondence between Pn  an d  th e  se t o f  all subset
of H.

Let r = ( 12, n 2 , ••• , n s ) e P , ,  and 13=(/,, 12 , lt) E P ,  For a positive integer
j ,  denote by y i  t h e  multiplicity o f  j  i n  /3, and put ki=yrEyi+1 - 1-  ••• (3> 1),

ns+1=n8+2= =0.

Proposition 3 . 1 0 .  Let r and  13  be as abov e. T hen the condition Ad (ys) - 'I3 1

e n F ( p) fo r  some s W  and some y e U (F(n )n sU F(, )s - 1  is equivalent to

n 1 + ••• +k ; fo r all .i> 1 .

Here we Put i'=(•••, l ,  71, 72, 14, •••)ŒP n•

P ro o f . Let s E W and y L I(P(i'))(1sUF1A )s'. First we show that Ad (s) 1 B 1

e tt r ( p) i f  Ad (ys) - i B r E nF (p ). Indeed, a s  in  t h e  proof of Lemma 3.3, one has
Ad (ys) - 1 B r EnF(p) if and only i f  B r E {Ad (Y)(11F(i')nAd (s)l)F(A))1 i . Now we as-
sum e that B1 EE(uF(55nAd (s)PF(p)) i . L e t p  be a positive root such that g_p g
uF ddlAd (s)pp ( p) a n d  B r EE(g_p )i. Let X  be a non-zero element in  g_/,  and  y=
exp Y  with YE ii(F(?))(1Ad (5)11F ( g ) . Then one has

1
Q(13 1 , Ad ( y ) X ) =Q ( B ,,  X ) + E Q(B r , (ad Y )X ) .

!

The condition Q(13,, g_p ) 101  implies that Q(B r ,  g_p _,1)=101 fo r  all 2E A+, be-
cause Ad (w r) - 1 B r = B?.e E l E fig2. Noting that (ad Y)iXE E 2ŒA+g_p _ fo r  j_1 ,
we have Q(B r , Ad (y )X )*  O. This means that Ad (ys) - ' Br Eitp ( p) .

B y  th e  above, we showed that the former condition in the statement of
proposition is equivalent to "Ad (s)B?EnF ( p) f o r  some s e W " .  In  tu rn , this
condition is equivalent to the latter one in the statement of proposition. Q.E.D.

Remark 3 . 1 1 .  B y  [5 , Lemma 3.2], the condition in Proposition 3.10 is
equivalent to Ad (G)B r n n F (p )#  0 . T h is  i s  the condition th a t th e  nilpotent
Ad (G)-orbit corresponding to r  is  in  the  closure of that corresponding to the
dual partition  1 j3=(k 1 , k 2 , •-•) of 13.
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Part II. Construction of Whittaker vectors

§  4 . Whittaker integrals and intertwining operators

Let G  be a  connected real semisimple Lie group with finite center. In this
section, we introduce integral operators, so called Whittaker integrals, which
give Whittaker vectors of the principal series representations.

4 . 1 .  In this subsection, we consider the principal series representations of
G  induced from the m inim al parabolic subgroup P .  For an  s E W, denote by
((s)) the set of positive roots 2 such that 2- '2ErA+ a n d  s2e — A + .  Put u8=
unAd (s) - 'n  and Us =exp It,. T h e n  us=E2E<s›(g- a@g-22). The set U 3 ; s aW l
includes the  se t {U p ; F'g H 1.

Let SEW  and  b e a  unitary character of Us . Let (c o , E„o) be a  finite
dimensional irreducible representation of M , and vo E ac*. For e- e . E ,  we put

(4.1) (W e - (co, vo, 77)f)(x) -A . s <e- , f(xu)>72(u) - 1 du ( f  E H 3 0 , 0 ,  x EG )

where du denotes a  Haar measure on Us . This integral is called the  W hittaker
integral of f  e H 0,„0 o f type  (U,, 72). Define for S EW  an open convex tubular
domain D. i n  (lc * by

D,.= { ye ac * ; <Re v, 2>>0 for all 2E ((s))},

where < , > denotes the inner product on a* defined through th e  Killing form.
For g E G , write g=k (g)a(g)n(g) with k (g)E K , a(g)EA , n(g)EN .  T h e  follow-
ing lemma is well known.

Lemma 4 . 1  ([15 , Theorem 8.10.16]). F o r  e v e ry  s e W ,  th e  integral

u s
a(u) - ' - Pdu is absolutely  convergent for veD„.

The following proposition is a slight generalization of Proposition 2.4 in  [4].
O ne can  prove it just in  the  same way as there with the aid of Lemma 4.1.
So we omit the proof.

Proposition 4 .2 .  Let v o e D ,. T h e  integral (4.1) is absolutely  convergent for
a l l  f e l l o ,, a an d  e - e .E 4 .  Moreover We- (co, vo, 72)f(x) is a sm ooth function of
xeG and holom orphic w ith respect to  vo E  D , .  The map f-÷We - (ao , v o , n)f gives
a non-zero interwining operator f rom  IL, 0 ,00 t o  C,7(G) f or e - =0.

Consider the case U8 =U F
, fo r some non-empty subset F' of H .  Let voeDs.

For y E U(F'), the operator R 3 •We- (0.
0 , v o , 72Y - 1 ) with nv - 1 (u)--- n(yuy - 1 ) also gives

a n  intertwining operator from H 3 0 ,o0 to  C ( G ) ,  where R y denotes the  right
translation by y  of functions on G .  Let T y E g 7,(G) be the E 3-distribution cor-
responding to R r •W '(cr a, va, 72Y- 1 ) by Lemmas 1.2 and 2.2. Then T ,  is given by
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(4.2) <7' u , 0>-=1e +P<es', c o (m )0(uym anD(u) - idudindadn
UF' >0.1.A xN

e(çb D(G, E, 0)),

where dm , d a  a n d  d n  denotes a  Haar measure on M , A  and N  respectively.
(4.2) implies that th e  re s tr ic tio n  o f  T ,  to  U P i s  non-zero  fo r e- # 0 ,  and
spt (T„l u p ) U p y P .  Hence { T ;  y U(F')}  is a  linearly independent subset of

, ( G ) .  This means that

dim Hom0 (7r, 0 ,, 0 , 27)=-Foo for vo e Ds •

4 .2 .  Now we consider the principal series representations induced from the
parabolic subgroup P F .  Let s  and 7) be a s  i n  4.1. L e t a  be a n  irreducible
admissible smooth representation of M F on a  Fréchet space E .  A  representa-
tion (a, E „)  o f  M F is  ca lled  admissible if  every irreducible finite dimensional
representation of K (F) occurs in  E„ with finite multiplicity. We are  very inter-
ested in  constructing Whittaker vectors i n  W h (I -1 )  m ainly in  c a s e s  that
dim Wh,2(H )< + 0 0 , for instance in the case of Theorem 3.7 (2). By Caselman's
subrepresentation theorem (e. g., [1]), some of Whittaker vectors will be obtained
by the composition of Whittaker integrals in  4.1 a n d  th e  embeddings, o f  1-1,„,
into the principal series representations induced from P.

We explain this in  m ore details. P u t  (E„- )N ( F) =Ie - EE„-  ; o - - (n)e - =e -  fo r
a ll n E N ( F ) } .  Then (E 0

- )N ( 2' '  is a  finite dimensional MA(F)N(F)-module in the
natural a c tio n . Indeed, it is clear that (Esa')N ( F )  i s  M A(F)N (F)-stable. By re-
striction o f  elements o f  (E0- )N ( F )  t o  th e  ((mF)c, K(F))-module (Eo)K(F) of all
K(F)-finite vectors in  E ,,, one has an  (mea(F)en(F))-module embedding

(4.3) ( E c̀) ' l (F) ( ( •  E  a)K  (F)I a ( n ( P ) C ) ( E  ( F ) ) ‘ '  •

Since (E ,),, ( F )  is finitely generated a s  U(n(F) c )-module, cr(n(F)c)(E,)K(F) is codi-
mension finite in  ( E a ) K ( F ) •  H en ce  (EDN ( F )  is finite dimensional and (4.3) gives
a n  MA(F)N(F)-module embedding. By Casselman, (E0K(F)*(701(F)c)(E.)K(F)•
T h is  m eans that there exists a non-zero vector e '  in  th e  algebraic dual of
(E c )K ( F )  such that <e', u(n(F)c)(E0K (F)>={ 0} . Suggested by this fact, we as-
sume here that ( E ) N #  {0}.

Let V  be a  finite dimensional irreducible MA(F)N(F)-submodule of (E,- )N ( F) .
As an MA(F)N(F)-module, (1 0 ®  exp  { v o -1--(pl a ( F ) )10 1  for some irreducible finite
dimensional representation c o o f  M  and po E a(F)c*. Let HaF0,,0)  be the
representation o f  A lp induced smoothly from the  representation c 0(8)e001 of
M A (F)N (F). Then the map e: E„-->C - (M F ,  V ) defined by

<(e)(x), v - >=Xv - , a(x -- ')$> ( $ e E , ,  x e G ,  v ' V )

gives a  continuous embedding of MF -module E ,  into H1:) ,, o . Here we identify
V  with (17- )-  in  th e  canonical way.

Remark 4.3. If a  is fin ite  d im ensional, (E„- )N ( F )  i s  a n  irreducible



288 Hiroshi Y amashita

MA(F)N(F)-module, and  naturally non-trivial by th e  highest weight theory of
irreducible finite dimensional representations o f  (1/1F)c ([ 1 5, Lemma 8.5.3]).

L et v ( a F )c *. T h e  above c induces a  continuous embedding 3 of G-module
into by (6F)(x )=e(F(x ))(e) (x EG) f o r  F E I- -/ „ .  H ere we regard

(aF )c
,*__ ac * (resp. a(F)c * ac* )  by  <(aF)c* , a(F)>= (resP. Ka(F)c*, aF>={0}).
For vs'E V- , we define Whittaker integral just a s  in  (4.1)

(4.4) (W v-(a, v, 77)F)(x) -F ( x u ) > 7 2 ( n ) - 1 d u ( F E H „ x E G ) .

Then we have the  following proposition.

Proposition 4.4. Let the notations and assumptions be as abov e. A ssume that
UF U , .  Then one has

(1) the set (I) a —v o)n (a F )c *  { v  E  (aF )C
*

 ;  V + V o  E  Ds } is a  non-empty open con-
vex domain in  (aF)c*.

(2) The integral (4.4) is absolutely convergent f or v E(D, —  On(aF)c* . More-
over Wv- (a, V, 12) gives a non-zero intertw ing operator from  H a , ,  to c°(G )
i f  v- #0.

(3) For FEH„,,, and x E G , the function v—*Wv- (a, v , )7)F(x ) is a holomorphic
function o f  v  in  (Ds — vo)(1(aF)c*.

Pro o f . W e easily have that Wv- (a, v, 72)=Wv - (a 0 , v+v o, )7) . 5 .  Then this
proposition follows from Proposition 4.2. Q. E. D.

§ 5. Analytic con tinua tion  o f Whittaker integrals

I n  th is sec tio n , le t G  be a  connected complex semisimple L ie  g ro u p . We
deal w ith  t h e  analytic co n tin ua tio n  o f Whittaker integrals f o r  generalized
Gelfand-Graev representations.

5.1. A  method o f  analytic c o n tin u a tio n . First we present a  method that
gives a  domain o f  ac *  to which Whittaker integral (4.1) can be extended mero-
morphically.

We regard  G  a s  a  real group a s  in  3.1. F o r a n  s ETV, le t  77 be a  unitary
character o f  U , .  Consider th e  Whittaker integral

W(a, v, 72)f(g)=-1 u s f(gu)n(u) - 1 du vE ac*, f g E G ),

where M  denotes the set of equivalence classes of irreducible unitary representa-
tions o f  M . Note that AI is a  torus. So every irreducible unitary representa-
tion o f M is a character. W e put 113(a, v )f (g)=W (a-, v , l u s )f (gs) fo r s ET47, tak-
ing a  representative (denoted again by s )  i n  N K (a). Then A ,(a , v ) gives an
intertwining operator from H,, to H 8 , 3  b y  meromorphic continuation.

L et II = {2 1, 22, • • • , Denote by s ,  (1. i_ 71) the sim ple reflection corre-
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sponding to  2i . For an  s  W, let /(s) be the length o f  s  w ith  respect to
A s is well-known, for s , t, w E W  such that s=tw  and /(s)=/(t)+/(w ), one has

(s))=-((td)w - 1 ((t» (disjoint union)

D 8 =- D n w - 1 D t , us=n,,e)A d (w) - lit, .

Lemma 5.1. L et s , t, w  W  be as abov e. L e t 77 be a  unitary  character of
U , which is triv ial on U„,. Then one has

W (a, v, 77)f(g)={W (wa, wv, 721v)A to (a, v )f } (gur l )

f o r f  G H ,,,, g E G  and v E D „ where 77r is a  unitary  character o f  U , defined as
72r,(u)=72(w - luw ) (uEU t ).

Pro o f . Since us =1.1 Ad (w - ')ut , one has

W(a, y , 72)f(g)= .Ç f (gw -lutw u)77(w -lutw )-1dutdu,,uo uu,

=1.

u t
A ,„(a, v )f (gw - i nt)72NutY l dut

={ W (w a, w v , )2r)A (a, v )f } (gw - 1 ),

where du, (resp. d u )  denotes a  Haar measure on U ,  (resp. Uto )  normalized so
that the first equality holds. The above calculation is valid for v D,. Q .E .D .

For a  unitary character 72 o f  U „ let be the  subgroup of W generated
by the reflections corresponding to the elements 2E11 such that (i) g- 2 çu, and
(ii) the restriction of 72 to  exp g_2 is  non-trivial.

The following theorem is due to  H . Jacquet.

Theorem 5.2 ([6, Theorem 3.4]). L et the notations be as abov e. For f
(11,,,)x , the function D s Bv— >W (a, v, 72)f(g) extends to a holomorphic function on
[W 's,,,D t], where [co] denotes the convex hull o f  a subset w  o f  ac *. Here (1- -L ,JK
denotes the space o f  K -finite vectors in

By Lemma 5.1 and Theorem 5.2, we can give a  domain to which Whittaker
integral can be extended meromorphically in the following w a y . L e t f E(116, )K•
First apply Lem m a 5.1. T h en  th e  analytic continuation of W (a, y, 7 ) f (g )  is
reduced to that o f  W (a, i , 72")f(g) in  the  no ta tions in  Lemma 5.1. Secondly,
apply Theorem 5.2 to  the latter.

Before we apply this method in  5.3--5.7, we give another proof of the key
theorem (Theorem 5.2) in  the  following subsection 5.2.

5.2. On another proof of Theorem 5.2. Using the results of G. Schiffmann,
M . Hashizume proved i n  [4] the result corresponding to Theorem 5.2 for the
spherical principal series representations of reductive algebraic groups over R.
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T h e  proof is quite general, which works for non-spherical principal series re-
presentations if  o n e  overcomes some check points for real rank one groups.
These point would be overcome if  o n e  succeeds in  calculating explicitly the
intertwining operators between principal series representations and the Fourier
transform of its kernel.

Here we make these calculations for G =S L (2, C ). A s its consequence, one
finds out that Hashizume's method works for non-spherical principal series repre-
sentations of connected complex semisimple Lie groups. So one can give another
proof of Theorem 5.2.

Let G=SL(2, C ) .  Keep to the notations in 3 .4 .  F or a  non-negative integer
1, le t (n, 13 ')  be an  (1+1)-dimensional representation of K=SU(2) defined as fol-
lo w s. L e t 13 '  b e th e  space of all complex polynomials in  t (wly WOEC 2 homo-
geneous of degree 1. The natural action of K  on C ' induces a  representation
r  o f  K  on P ' :  (71(k) f)(w)= f (k - 1  w ) fo r  f e l 3 t, k E K  a n d  w= t (w i , w 2)E C 2 .
Then the representations n are irreducible and  fn; is a  complete system
of representatives in  i t  the set of all equivalence classes of irreducible unitary
representations o f  K .  T h e  group M = Im(0)=diag e,/- 9 ); O E R I is  a
maximal torus of K .  For an integer p, define a  weight a p  o f  M  by a p (m(0))
=e'r=1 7, 0  ( 0 E R ) .  Then la= {a p ; p z } .  F o r  0. 3•_</, put f ," ) =w,Jw,' - JE P'.
Then one has Pt= q),, i , i Cf j

( "  and C f ," ' is  th e  M-weight space corresponding
to

 i z i .
 L e t  2  be the positive root of g with respect to a. We identify a c *

1 2with C so that 2 = 2 . For 72E C , u ,=[ 0  1 ]— ex p  {\/-1  Re (77z)} (z EC ) defines

a  unitary character of U= {u, ; z E CI Denote this character by the same letter

n . Put s-= 1 O li•  Then s  is a  representative of the non-trivial element of

W .  B y  Bruhat's decomposition, s 1 u, i s  i n  UMA N for all zE C \ {0}. Write
s - lu ,=u /m ,h ,n , with u g 'EU, m ,EM , h,E A  and n ,E N .  Then we have

2
1z1

0

0
h ,=

           

F o r  a„E11-1  a n d  v E ac*, p u t  0,,,, p ,„(z)= crp(m z )h z ' .  If Re v the function
on C. R 2 is locally integrable, hence defines a distribution. Moreover,

if this distribution is tempered, and its Fourier transform

, 29 ,,(72) = .ÇR 2 C, , p , , ( z)72(u 1 ) - i d xdy (z =x + ,s,/ —1 y)

is a  function. The following proposition is a  special c a se  o f  th e  result o f  G.
Schiffmann [13].

Proposition 5 .3 .  L et 72 C \{ 0 } . Then one has
(1) & ,,,,,,,(72) extends to a  meromorphic function o f  v  on the whole ac*.
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(2) For f  E(1-10.p ,,,)K , the  W hittaker integral W(cr p , u, 7 ))f (g) (gE G ) extends
to  an  entire function of u  on ac *. Moreover, ond has the equality, by
analytic continuation,

(5.1) W (a-p, — u, 77)A3(a p, v )f p, u, 72)f

Until the end of 5.2, we assume that ri#0 , and calculate the intertwining
operator A 8 (o-p, v )  and the Fourier transform 63 (77) of its kernel. These
calculations show that 6,, cp ,,,(72) -.1 A s(ap, v) is holomorphic in Re v < 0 .  This is
the most important fact when we apply the argument in [4].

Lemma 5.4. T he Fourier transform is expressed as

r( 1
2
) + 1P2 1)2  )7 — '7 ) P

\ 1721 \ 11) i  I
r a  21) ± 1P2 1)

I n  particular, &s,, p ,.(77) 0  i f  Re v<0 , and C , , , ( n )  has a simple pole at
— (pH-2r), f o r every non-negative integer r.

Pro o f . For O<Re v<1, one has

6 8, , p , ,,(7 7 ) =  um z 1z 1-2e -../ i.aeop)d x dy

1z1
(z=x+-V -1  y )

-irRe(1201 - 1 8 )d e= lirn e e
0 27:

On the other hand,

e,„!= ipee - , ./=-frRecnev-10
)d0 =2 ( -7 2 ) - P

.Ç cos( (P I )0 IrcosOdo
13,519 27r 1721 o 2r

=22r(A/ - 1)' P '( - 7 2 ) - P flpi(r1721),
1 1

where J ,  denotes the Bessel function of order p .  Hence one has

8 (7) ) =27r(A/-1)1P1(  7 27 P  771- e - ' r r — l J t p l ( r ) d r .(17.<

By the well-known formula

2'--1r(2)+2P )
lim e - 'rJ,( r)e - id r=
E-H-0 5 0 r <- Foo r(-v 2+71+1)

we complete the proof of the lemma. Q. E. D.

Now we calculate the intertwining operator N a p , v). For (7., -171) G1 - and
(ra f t ,  the multiplicity o f  M-weight a in y  is at most one: dim Homm(r1m,
:<_1. Suppose Homm(r1m, a)#{0}. Let va be an element in  V? su ch  th a t 11v,11
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-=1 a n d  r(m )v ,=a(m )v , fo r  711 E M .  Here MO =-V(v v) for vE17,, and (•1•)
denotes a K-invariant inner product in  y r . P u t  T,v=--(vIv Q)  for vG -17,. Then
T c EHomm (r1 m , (7). The isotypic K-submodule (11,,„), of type r in  1 1 ,  is iden-
tified with 17, by

V r Ev  — >[g— >a(g) - ' - PT,(7.(k (g) -1 )v )1E(H „,,),.

Similarly we identify (H ,,,,„) , with
Now we put

7./(r, u) =11a(u) - ' - Pr(k(u))du

It is  easy  to  see  tha t T '(r , O E H om m (r m, T IM). Since dim Homm(rlm, a)=1,
there exists a constant C„(r, v) such  tha t T'(r, v)v =- Cc (r, 2.,)v,. T h e n  th e  re-
striction of N o . , v ) to  (H,„,,),=V, is given by

A 8(0, Ol v T =C ( r, T.))Id .

A s is well-known, C,r(r, u) is a meromorphic function of vE cf c *.

Lemma 5.5. F or integers 1 , j such that on e has

1
C , 2;-1(71 , u )=- E q !(_2)Q( . 1 X  1- 1 )1—;) —  q q oL ,6qv+ 1 - 2 r

In particular, C, 2 i _1(r 1 , v ) is holom orphic in u  ex cep t v = — (1-2r) f o r  some 0 - r
min (j, 1— j).

Pro o f . We may assume that f," ) v GV, I = P ' .  For z E C, the Iwasawa
decomposition o f  u , gives

1
11 z)=-k (uz )= V 1± Iz 12(

z ) a(u
—.2 1

1/1+121 2

0 1/1+ IZ12

By direct calculations, one has

(a ( 11 ,) - ' - P r l ( h ( l t z ) ) f i ( I )  J" )> = (- 1 ) g ( ) ( 1 - 1 )(1+1z! 2 ) -  ( v + / )  /  2  - l i z r q
•

O q5.rn ia (i. 1-i)—  q q

Therefore,
— j (,+t)12_12q+i1)) =

<15.m
E
in(d , 1-2 )

( - 1 ) (

q

) ( 1  
q  )

27.c
.o r<+co

(i± r2)_ 7,
d r

By [15, Lemma 8.10.1511,

( 1 + r 2 ) -  0, 1- 0 / 2-1r 211-hidr_

21T-12-1+00

1
=2q - 'q! H  , .

0 -rt5 r 5 q  v —Lr

( q +1 ) F  ( "2
- 1 —q)
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This completes the proof. Q. E. D.

Proposition 5.6. L e t  a ll a n d  v a c ' .  F o r  f ( 1 1 ) ,  the function v—>
&s,a,,07) - 1 (A .s(a, v)f)(g) is holomorphic in  Re v<0 fo r  every gEG.

P ro o f .  Let 1 , j be as in  Lemma 5.5. By Lemmas 5.4 and 5.5, the  function
v) of v E ac * is  holomorphic in  Re v < 0 . T h is  proves the

proposition. Q. E. D.

Thanks to Proposition 5.6, we can prove Theorem 5.2 ju s t  a s  in  th e  same
way as in  [4, §§ 3-4 ]. H o w ev e r the proof is so long, so w e omit it here.

5.3. Analytic continuation of intertwining operators W(a, y, 72A ). Let 72
be a  unitary character o f  Us ,  where s  is  a  fixed element in  W . T h e  following
lem m a gives a  sufficient condition for [W's,72D,]=a c * , which implies that the
function W(a, z , ,a ( g )  extends to an  entire function on the whole rte.

Lemma 5.7. I f  there exists w' ETC.,/ su ch  th a t ((sw ''))(1((s))=0, then
[ W's,,,Ds]=- ac*  holds.

P ro o f. Put J s =lw EW  ; w - 1 .13g.D 1 l, where D=D s o  with the longest element
so E W . T h e n  w e  no te  th a t  Jo =lw EW; ((w))n((s))= 0 1 .  In  fa c t , fo r  w EW ,
,08 w -- '1) holds if and only i f  <Re x , wil>>0 fo r  a l l  x E D  a n d  E ((s». This
means that w2E A+ for all AE ((s)), or ((w))n((s)) .=

P u t  wi =s o s  a n d  w o =sw ' - ',  then wi , wo EJ, by the above. H ence W's,,i ps
contains w2

- 1 .13 and wfw i 'D= — w s ' D .  Therefore, [M, i i .1),]=et c *. Q. E. D.

We shall consider the analytic continuation of Whittaker integrals for gener-
alized Gelfand-Graev representations in accordance with the method given in 5.1.

L et {A, H, B} g g be an  M2-triplet:

(5.2) [H, A]=2A , [H, 13]= —2B , [A , B ]=- H

such that H  is in  the  closure of negative W eyl chamber o f a. T h e n  w e  have
the following proposition.

Proposition 5.8. Assume that U(1.5)A =U s  fo r  some S G  W . Then the Whit-
taker integral W(a, y , yLA) f (g )  extends to a meromorphic function o f v  on the
whole etc* fo r  every a E /12/, f  E ( 11

, , , , ) ic  and g E G , if  there exists w EW  satisfying
the following conditions (1) , —(3).

(1) ((w)) ((s)),
(2) Ad (w)B En.
(3) Put t=sw - 1 . Then [M , A D J=a c *, where WL A  is  the subgroup o f  W

generated by simple reflections s (ASH) such that Q(Ad (w)B, ( 2 )# {0}
and (3_ 2 11t.
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Pro o f . One has s=tw , /(s)=/(t)+/(w ) by (1). A nd r)A  is  triv ial on  Ut„ by
(2). By Lemma 5.1, meromorphic continuation of the Whittaker integral in
question is reduced to that o f  W (a,v , (n A )in f (g ) . On th e  other hand, M.A.=

with 72/ =(77A )r. By Theorem 5 .2 , W (a, v , )7')f (g) extends to a n  entire
function of v on ac * . Q. E. D.

Let A , be a non-zero nilpotent element of g. Assume that A, is in  E 2e11Q -2 .

Then there exists a  subset F of H  such that A , is a  regular nilpotent element
o f al l , . L et {A ° , Ho, Bo} .InF be the t 2 -triplet: [Ho, A01=2A0, [Ho, B0]= - 2130,
[A o , B o]=H o ,  such that Ho Ga(F).

We note the following well-known fact.

Lemma 5.9 ([15 , Lemma 8 .9 .1 1 ]) . For a subset T .  o f  A t  '= ( ( s ) some
sE W  if and only i f  T . satisfies following conditions (1) and (2).

(1) I f  lE g f  and 2=p1-F-pz, pi, p 2 G A +, then p i o r  p , is  in ?V.
(2) I f  A , /JEW  and 2+ pa A +, then 2+11GT.

The set {AE A ;;  <A, H0>>0} satisfies th e  above (1 ) and ( 2 ) .  So, let w  be
th e  element in  W  such that ((w - 1 ))-={2G A+ ; <2, Ho > > 0 } . P ut A=Ad
H=-Ad (w) - 4 11, and B=Ad (w) - i B o . Then one has

Lem m a 5.10. (1) {A, H, B}Eg is an M2-triplet such that His in the closure
of the negative Weyl chamber o f a.

(2) u„,. a(1)4.
(3) The subalgebra (awng(1)A)ED11(2)A o f  11(1)A is subordinate to the linear

form  B *: B ) on u(1)A.

Pro o f . ( 1 )  One has wA+=(w.A+nA - )l../(wA+nA÷)=(—((w - ')))u(A +\((w - '))).
By the definition o f w, <2, H>=<w2, Ho >- 0 for all 2E A+. Hence H  i s  in  the
closure of the negative Weyl chamber of a.

(2) N ote  th a t  —((w))=w - 1 ((w - ')). F o r  2=w -1 2 'c  —((w)) w ith  ,VG((w - ')),
<2, H>=-<2', wH>=<2', H 0>>0 . Since u =E2E-<10,412, a(1)A.

(3) Q(aw, B)=Q(A d(w)it„„ B o )gQ(n, B 0)={ 0 } . This proves the assertion.
Q. E. D.

Let us consider the  next condition (*).

(*) There exists s W  such that u s (u.,ng(1)A)(131u(2)A and u(1.5) A can be taken
as us .

In  th e  following proposition, we give a  sufficient condition for the mero-
morphic continuation of Whittaker integrals W(cr, v, , )f (g) to the whole ac * .

Proposition 5 .1 1 . Let the notations be as abov e. Assume th at the condition
(*) holds. T hen the function D,Bv--W (a, v, 72 A )f (g) ex tends to  a  meromorphic
.function o f v  on ac *, fo r  aErI21, fE(11,,,,,)K and gEG.
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Pro o f . Let w be as above. For this w , w e  check the conditions (1) , (3)
of Proposition 5.8. The conditions (1) and (2) are satisfied by the definition of
s  and  w . W e check (3). P ut t =sw - 1 ,  then 14q A =W F . Let ti4,E WF  be the
element such that u4F--=— P. Then wW o -= — Ho ,  because Ho is  the unique ele-
ment in  a(F) such that <2, Ho >-= —2 fo r a l l  2 E F .  L et 2E((tw -1 ». Since
((twô- 1 ))- - wW ))nA + ,  one has u4, --1 2E((t)), whence <u4 - 1 2 , H0)' <O, o r  <2, H0>>0.
This shows that 2E(Kt)). Therefore, ((on((tu4 - 1))= 0 .  By Lemma 5.7, we have
rl'iq A pt] = ac* . Q. E. D.

A  nilpotent element A E g is called even, if  g(1)A = . {0}. In case that A  is
even, the condition (*) is clearly satisfied. Therefore we have

Corollary 5.12. L e t  A o G E 2 E n g -  b e  a non-zero even nilpotent element.
Under the above notations, the function D,Dv-->W(o, u, , ) f ( g )  extends to a mero-
morphic function on the whole ac *, fo r  every ce/a, f E ( H ) K  and gEG.

5.4. N ow we apply Proposition 5.11 to complex simple Lie groups. For
this purpose, we examine if the condition (*) in 5.3 is satisfied.

Case of type (A 1). Let G be a connected complex simple Lie group of type
(A n ..1). Then g=g(n, C ), so we identify g w ith  t(n, C) and keep to the nota-
tions in  3.4. For re 13

7„  put A 0 =--A, 1-10 =1/ 1q, /30 = -M . Then w=w r
- ' and

H=H T, B=13 1 . Moreover we see easily

(ii,,,, ng(1)A>eit(2)A -= u 1 ,

where ur is  the Lie algebra of U . T herefo re , the condition (* ) is satisfied by
putting itr =u s . Consequently, we have the following theorem.

Theorem 5 .1 3 .  Let G be a connected complex simple Lie group of type (A n-i).
Let

 r P n .
 T h e n  the function W (o, u, 72A »f(g) extends to a meromorPhic func-

tion on the whole CO , fo r  every aEla , fE(Ho.,,)K  and gEG.

By the above theorem, Whittaker integrals W(u, u, 72 4 ) f (g )  can be extended
meromorphically to ac * for a ll nolpotent elements A E g when g is of type (A1).
This is a  complete result in case of type (441).

We proceed to the cases of simple groups of other typ es . We should treat
the cases of rank 2 in the first place.

5.5. Case of type (B 2)=(C2). Suppose that g is  of type (G2). Then every
nilpotent Ad (G)-orbit of g intersects E A c H g _ .  M oreover, the condition (* ) is
essentially satisfied fo r all nilpotent elements. Therefore, the corresponding
Whittaker integrals extend meromorphically to the whole ac * (see Table 5.14).

5 .6 .  Case of type (G2). We consider the case of type (G2). The Whittaker
integrals W(a, u ,  72A ) f (g )  extend meromorphically to the whole ac *  except only
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a  u n iq u e  c a se . In  this exceptional c a se , th e  best we can obtain within our
present method is to extend the Whittaker integral meromorphically to  a  half
space. W e do not know whether it extends meromorphically to a  larger domain
o r n o t. In  th e  following, we explain these in more details.

Beforehand, we need to make some comments on the classification of nil-
potent Ad (G)-orbits in  g  ( [1 4 ]) . Let G  be a  connected complex semisimple Lie
group with Lie algebra g. F o r a  non -ze ro  nilpotent element A E g, consider an

12 -triplet {A, H , B }  g  a s  in  (5.2). By taking a  suitable Ad (G)-conjugate of
A  instead of A, we may assume that H  is in  the closure of the negative Weyl
chamber o f  a .  P u t  d(A )-=(-21(11), ••• , — 2.(1-1)). Note that —21(H )= 0  o r 1 or
2  for Then the  nilpotent Ad (G)-orbits in  g , except fo r 101, a re  para-
metrized by the set H(g)-= { d(A ); A l of "weighted Dynkin diagrams".

Suppose that g is of type (Gs ). T h e n  A+ is given as

/1÷={21, 22, 21+22, 221+ 22, 321+ 22, 3 2 1+ 2 22}

with Hr= a n d  th e  Dynkin diagram A, o<== 0  2,. By [2 , Table 161,  one
has H(g)={ (1, 0), (0, 1), (0, 2), (2, 2)1.

Let A, be a non-zero element in  g_ Ai eg_2 2 . Let w  and {A, H, /3} be as in
Lemma 5.10.

Case 1 .  A 0 -=X_I 1 +X _2 2 w ith  X_ À 0 eg_ 2 0 \{ 0 }  ( i= 1 , 2 ) . In  this case, A 0 is
a  regular nilpotent element o f  g  w ith  d(A0)=(2, 2), so  the condition (* )  is
satisfied. Corollary 5.12 assures that the corresponding Whittaker integral ex-
tends to a  meromorphic function on (lc *. M oreover, it is a n  entire function on
(le* by Theorem 5.2.

Case 2. A 0 = XA 1 . T h e n  w = s ,s , and d(A )=(1, 0). Hence one has

q(1)Anuw=0-2„ u(2) A-=-22,(TO-32,-2,ENT-32,-22 2 •

The subalgebra 1t(1.5) A  can be taken as

u(1•5)A —(G(1)Anu.)en(2)A-= usw i t h  s=s2sis2si •

Therefore, the condition (*) is satisfied.

Case 3. A 0 =X_2 2 . Then w= s i so a n d  d(A )=(0, 1). Hence g(1) A n i t a, =
,

(3-2 2e g - 2 1-2 2, 11(2)A = V 32,-21 2. We can take i t ( 1 . 5 ) A = O t w ( g ( 1 ) A ) E D i t ( 2 ) A = i t s  with
s---s 2 s 1 s 2 . Therefore the condition ( * )  is satisfied.

Case 4. The nilpotent Ad (G)-orbit corresponding to (0, 2) does not intersect
g_ Ai eg_2 2 . This case is beyond application of Proposition 5 .1 1 . So we return
to our original method in  5.1. Let A  be an  element of this o rb it . Consider an

ls -triplet {A, H, /3} with H  in the closure of the negative Weyl chamber of a.
Within th e  lim it o f  our present method, we know only that th e  function
W(a, 7 1 4 ) f ( g )  extends to a  meromorphic function o n  th e  half space { E ac * ;
<Re I.), 32,-1-222 > >  0 } . It is left open whether or not it extends meromorphically
to a  larger domain.
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5.7 . In  c a se  t h a t  g  i s  o f  ty p e  (B .) , (C a) , (D .)  (n -3 ) ,  (E . )  or (F ,), we
have only one result, Corollary 5.12. T h e  phenomenon o f  th e  sam e  k in d  as
Case 4 of type (G 2 )  occurs already w hen p is of type (Co).

A t la s t ,  w e  l i s t  up, for complex simple Lie groups of rank  2, our results
of analytic continuation of W hittaker integrals W(o-, 724 )f (g ).

Table 5.14.

type
of g

Dynkin
diagram

weighted Dynkin
diagram  d(A)

a  representative
A

v ., '  5 ,
' `  • j A

analytic continuation
of W(a, y, 72A )f(g)

A ,
o

(2, 2) X_Ài+X._,I, U entire  on ac*

2°  i2 2
(1,1) X -21 -2 2 U „ „ meromorphic on ac*

B2 -  C2
c,. .

(2, 2) X 1 + X 2 U entire  on ac*

(0, 2) X-21-22 U 3
2
3

1 32
meromorphic on ac*

2,2 2

(1, 0) X-2,11- 22 U3231 meromorphic on ac *

G2

(2, 2) X_21+X2 U entire  on  ac*

(0, 1) X-2,z1-222 U32 3132 meromorphic on ac *
0. 0

2, 22
(1, 0) X 2 1 1 2 U 8 2 3 1 2 2 3 1 meromorphic on ac*

(0, 2) X_21_)2+X_321_22 Us i s o

meromorphic on
a  half space
H(321+222)

X 2 :  a non-zero element of the root space ga  o f  a  root 2.
si  ( i= 1 , 2 ): the simple reflection corresponding to 2.
so : the  longest element in W.
H(322 +22 2 )= ac* ; <Re i , 32 i +22 2> > 01.
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