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On Whittaker vectors for generalized Gelfand-Graev
representations of semisimple Lie groups
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§0. Introduction

0.1. Historical background. Early in the 1960’s, I. M. Gelfand and M.
Graev [3] attempted to construct and classify irreducible representations of
Chevalley groups over a finite field through irreducible decompositions of the
representations induced from characters of a maximal unipotent subgroup. Such
an induced representation is called a Gelfand-Graev representation if the character
is non-degenerate. They showed that this representation is multiplicity free.

The Gelfand-Graev representations for real semisimple Lie groups are defined
in the same way. J. A. Shalika [12] extended the above multiplicity one theo-
rem to quasi-split linear semisimple Lie groups (more generally, to such groups
over a local field). For Chevalley groups, H. Jacquet [6] constructed intertwin-
ing operators from the principal series representations to the Gelfand-Graev re-
presentations through analytic continuation of an integral operatbr, so called
Whittaker integral. G. Schiffmann [13] treated the problem of analytic con-
tinuation of Whittaker integral for linear semisimple Lie groups of real rank
one. Using his results, M. Hashizume [4] dealt with it for reductive algebraic
groups over R of higher rank for the spherical principal series representations.

Recently, N. Kawanaka [8] introduced, generalizing the idea of Gelfand-
Graev, the generalized Gelfand-Graev representations of Chevalley groups over
a finite field, and proved Ennola duality using their characters. As was sug-
gested in [8], these representations seem to give us more precise informations
on irreducible representations than those given only by Gelfand-Graev repre-
sentations.

0.2. As a first step of our study of the generalized Gelfand-Graev repre-
sentations of real semisimple Lie groups, we extend in this article the above
results for Gelfand-Graev representations to the generalized ones. Standing at
the same point of view as [4], we treat intertwining operators from the principal
series representations to the contragredient representations of generalized
Gelfand-Graev representations.

This article consists of two parts. In the first part §§2~3, we deal with
a uniqueness property of intertwining operators. The main result of Part I is
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Theorem 3.7, which gives a multiplicity theorem for the generalized Gelfand-
Graev representations. In the second part §§ 4~5, we construct explicitly some
intertwining operators. For this purpose, we treat Whittaker integral and its
analytic continuation. In the following subsections 0.3 and 0.4, we explain, in
details, our results in Part I and Part II respectively.

0.3. Uniqueness of intertwining operators. For a precise description of
our results, we first explain some notations and definitions on semisimple Lie
groups and their representations. Let G be a connected real semisimple Lie
group with finite center. Denote by g¢ its Lie algebra. Let G=KAN be an
Iwasawa decomposition of G, and g=iPaPu the corresponding decomposition
of g. We denote by W the Weyl group of (g, a). Choose a positive system A*
in the set A4 of roots of g with respect to a so that n=>);c4+3:, Where g, de-
notes the root space of a root 4. Let U be the maximal unipotent subgroup of
G opposite to N.

For a non-zero nilpotent element A=g, there exists an &l,-triplet {A, H, B}
Cg containing A. Using the adjoint representation of RAQRHPRB~31(2, R)
on g, we can associate to A a connected unipotent subgroup U(1.5), and its uni-
tary character 5, such that

nalexp X)=expv—1Q(X, B)  for Xeu(l.5),,

where u(1.5), is the Lie algebra of U(1.5), and Q is the Killing form of g. We
call the smooth representation =, of G induced from %, a generalized Gelfand-
Graev representation associated to A (for the precise definition, see 3.1).

Take a subset F of the set IT of simple roots in A*. Let Pr=MpArNz be
a Langlands decomposition of the standard parabolic subgroup Pr corresponding
to F. This correspondence is given so that the root system generated by F is
the restricted root system of Mp. Let pp=mzParPur be the corresponding
decomposition of the Lie algebra pr of Pr, and let Ur (resp. uz) be the opposite
of Np (resp. up). For a smooth representation (g, E,) of Mz and ve(ap)c*, we
denote by (m,,,, H,,.) the smooth representation of G induced from 6®e @1y ).
For a character 7 of a closed subgroup U’ of U, let x, denote the contra-
gredient representation of 77:,7=Indg:(1)) (smoothly).

The space Homg(z,,,, 7;) of intertwining operators from =, to =, is
isomorphic to the space 9.(G) (see 2.1) of intertwining FE,-distributions on G,
and to the space Wh,(H,,.) (see Definition 1.1) of Whittaker vectors of type
w’, 9.

In §2, we treat the space 7.(G) when % is a character of Up for some
F'CII. In case that the number of double cosets in U \G/Pr is at most coun-
table, one can apply a powerful formula by F. Bruhat which gives an estimate
of dim 9,.(G). Unfortunately, this is far from to be countable in general, so
his formula can not be applied directly. We modify his theory as follows. One
has an estimate of dim 9.(G) in Proposition 2.3 by Bruhat decomposition of G.
Suggested by this proposition, we treat for every s€W the space T, of inter-
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twining distributions on an open subset £2,(2 UsPy) of G with supports contained
in UsPr. UsPr is divided into continuously many double cosets of Uy \G/Prin
general, which differs from the case of Bruhat. On the supports of distributions
in 9., we obtain Theorem 2.11, the main result of §2, under the assumption
that ¢ is finite dimensional.

In §3, we apply Theorem 2.11 to the generalized Gelfand-Graev representa-
tions. Then we obtain one of our main results which asserts a uniqueness
property of intertwining operators.

Theorem 1 (see Theorem 3.7). Let G be a connected real semisimple Lie
group of matrices. Let A be a non-zero nilpotent element of ¢ and {A, H, B}Sg
be an 8ly-triplet. Assume that there exists a subset F” S II such that U(1.5), can
be taken as Upg.. Consider the generalized Gelfand-Graev representation Ty, ss0-
ciated to A. Let FSII. For a finite dimensional representation (¢, E,) of Mg
and vE(ap)c*, one has

(1) Homg(m,,,, n',,VA)z{O} if Ad(G)BNnp=g.
<dim E, if F=F",

(2) dim Homg(m,,,, n';A){
=0 if F2F".

The assumption “U(1.5),=Ug. for some F”SII” of this theorem is essentially
satisfied for even nilpotent elements A, and for all nilpotent elements if g is a
complex semisimple Lie algebra of type (A4,).

Theorem 1 is an extension in a certain sense of Theorem 2.2 of M. Hashi-
zume [4] to the generalized Gelfand-Graev representations. We emphasize the
next point for an original value of our theorem. Let A=g be a non-zero nil-
potent element in Theorem 1. For an FSII, # @, let ¢ be a finite dimensional
representation of Myp and ve(ap)c*. Then there are no non-zero intertwining
operators from =, , to x, if » is a non-degenerate character of U. So the
representation x,, never can be caught within the limit of original Gelfand-
Graev representations. However, thanks to Theorem 1 (2), we can expect that
irreducible =, , with F=F” actually occurs in n:,,VA with finite multiplicity.
Therefore it seems to be quite natural to associate with such =z, , the nilpotent
Ad (G)-orbit of A.

0.4. Construction of intertwining operators. In 8§4~5, we construct
intertwining operators through analytic continuation of Whittaker integrals.
This realizes our expectation in the last part of 0.3. Suggested by Casselman’s
subrepresentation theorem, we consider the representations z, , induced from
the minimal parabolic subgroup P=MAN. Let ¢ be an irreducible finite dimen-
sional representation of M and veac*. For an s€W, put U;=UNs"'Ns. For
a unitary character » of U,, we introduce a Whittaker integral after [4]:
O W, v Df@=], & fquinedu (fEH,., g2C)

Us
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for ¢"€ E;\(0), where E; is the dual space of E,. This integral is absolutely
convergent if v lies in an open convex domain D;Sac* given as

D,={veac*; Rey, 1)>0 for all 2 A* such that sie—A+}.

And the map f—-W¢® (g, v, 9)f gives a non-zero intertwining operator from =, ,
to m,. Moreover it is holomorphic with respect to ve D,.

In §5 we examine how far the Whittaker integrals can be extended as
meromorphic functions of v. For this purpose, we restrict G to complex semi-
simple Lie groups. H. Jacquet [6] showed that there exists a subgroup Wi,
of W such that the integral (0.1) can be extended to a holomorphic function on
the convex hull [W; ,D,] of W¢ ,D, (see Theorem 5.2). Combining this with
meromorphic continuation of intertwining operators between the principal series
representations, we find out that the integral (0.1) extends meromorphically to a
larger domain than [W; ,D,] in general (see 5.1). We apply this method to
Whittaker integrals W¢ (g, v, 94)f(g) for the generalized Gelfand-Graev repre-
sentations «,  in case that U(1.5),=U, for some seW.

In Proposition 5.11, we give a sufficient condition for meromorphic continua-
tion of W¢ (g, v, n4)f(g) to the whole ac* when A is a certain nilpotent element
such that the Ad (G)-orbit through A intersects 3 ;eng-21, the sum of root spaces
g-; for simple roots A. If the above A is an even nilpotent element, the func-
tion =W (g, v, 74 f(g) extends to a meromorphic function on ac* (Corollary
5.12). We apply Proposition 5.11 to complex simple Lie groups in the subsec-
tions 5.4~5.7. The complex simple Lie algebra of type (A4,) is special in the
point that every nilpotent Ad (G)-orbit intersects X ;eng-:. We establish, in
Theorem 5.13, meromorphic continuation of Whittaker integral W¢ (g, v, 94)f(g)
to the whole ac* for every nilpotent element A, when g is of type (4,). We
regard these Corollary 5.12 and Theorem 5.13, especially the latter, as the results
of great importance in this article. We summarize them in the following
theorem.

Let g=@P1:i500® be the direct sum decomposition of a complex semisimple
Lie algebra g into simple ideals ¢‘°. For Xeg, write X=X,.,,X? with X®
eq® for 1=:<p.

Theorem 2 (see Corollary 5.12 and Theorem 5.13). Let G be a connected
complex semisimple Lie group. Let A, be a nilpotent element in X ,eng-2 Such
that each ¢ component Ay® of A, is even unless §‘° is of type (A,). Then
there exists an Ad(G)-conjugate A of A, satisfying the following conditions (1)
and (2).

(1) There exists a subset F(A) of II such that U(1.5)4 can be chosen as

UF(A)'
(2) The function v—W (a, v, 74)f(g) extends to a meromorphic function on
the whole ac*, for e€M, fe(H, )k and g<G.
Here M denotes the set of characters of the torus M, and (H, )k the space of
K-finite vectors in H,,,.



Generalized Gelfand-Graev representations 267

For general g, it is no longer true that every nilpotent Ad (G)-orbit inter-
sects Xiepg-2. Here is a technical limit of Proposition 5.11. Moreover, there
exist nilpotent Ad (G)-orbits such that the corresponding Whittaker integrals
never can be extended meromorphically to ac* within the limit of our present
method. We give in 5.5 such an example for the complex simple Lie groups
of type (G,). In this case, the Whittaker integral can be extended meromor-
phically to a half space by our method. But we do not know whether it can
be extended to a meromorphic function on a larger domain or not.

Our method is fairly successful in order to show that Whittaker integral
W¢ (o, v, 94)f(g) extends meromorphically to the whole ac*. However, it would
be necessary to consider not only our present method but also other ones for
the general treatment of analytic continuation of Whittaker integrals.

In the last part of §5, we list up, for complex simple Lie groups of rank 2,
our results of analytic continuation of Whittaker integrals W (a, v, 74)f(g).

The author expresses his hearty thanks to Professor T. Hirai for his valua-
ble advices and constant encouragements.

§1. Notations and preliminaries

We explain the notations used throughout this paper.

1.1. Smooth representations of Lie groups. Let G be a Lie group count-
able at infinity (i.e., G may be written as a countable union of compact sub-
sets). We denote by g the Lie algebra of G. We identify g with the space of
right G-invariant vector fields on G as follows:

L. Xf(@)="3; flexp (—1X))ls  (8E6)

for Xeg and a differentiable function f on G. Let U(g¢) be the universal en-
veloping algebra of the complexification g¢ of g. Then U(ge) is naturally
identified with the algebra of all right G-invariant differential operators through
(1.1).

Let us recall the notion of smooth representations of G after [4] and [16].
In this subsection, we denote by E a locally convex, complete, Hausdorff, topo-
logical vector space. Let C=(G, E) be the space of all E-valued smooth func-
tions on G. We shall equip ¢*(G, E) with the topology of uniform convergence
on compact subsets of a function and its derivatives. This topology is called
the Schwartz topology for €=(G, E). Let 9(G, E) be the space of all E-valued
smooth functions on G with compact supports. For a compact subset 2 of G,
Do(G, E) denotes the space of all functions in 9(G, E) with supports contained
in 2. We define a topology of 9Dy(G, E) by the topology inherited from the
Schwartz topology for €=(G, E). Then the space 9(G, E) is topologized as the
strict inductive limit of the spaces Dy(G, E), where £ ranges all compact sub-
sets of G. This topology is called the Schwartz topology for 9(G, E). In case
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E=C, we drop the symbol E in the above notations.

Let = be a continuous representation of G on E. A vector veE is called
a smooth vector for = if E-valued function #: g—n(g)v on G is in €*(G, E).
We denote by E= the space of all smooth vectors in E. Then E= is a #(G)-
stable dense subspace of E. The map E*sv—9eC>(G, E) is a linear injection
and the image of E= is a closed subspace of (G, E). We identify E~ with
this closed subspace of ¢*(G, E) through this mapping. This induced topology
on E= is, in general, finer than that inherited from E. Henceforth, unless
specifically stated to the contrary, we shall consider E* as equipped with the
finer topology. We call (z, E) a smooth representation if E=E> with coincidence
of topologies.

For a continuous representation (zx, E) of G, the operators n(x) (x&G)
restricted to E~ define a smooth representation n.. of G on E*. This repre-
sentation (7., E) is called the smooth representation associated to .

We explain the notion of smoothy induced representations. For a Lie group
G, we denote by dgx (or simply dx) a left Haar measure on G and by Js (or
simply 0) the modular function on G with respect to dgx: 86(y)=de(xy)/dex
(y€G). Let H be a closed subgroup of G. For a smooth representation ¢ of
H on a Fréchet space F, we consider the space 9,(G, F) of all F-valued smooth
functions f on G satisfying the following conditions (1) and (2).

W fix=\JEo0r0) e, he,

(2) f has a compact support mod H, in other words, the canonical image
in G/H of the support of f is compact.

We define a topology of 9,(G, F) in the following way. For a compact subset
2 of G, denote by 9, o(G, F) the space of all functions in 9,(G, F) with sup-
ports contained in QH. We place on 9, o(G, F) the relative topology inherited
from C*(G, F). Equip 9,(G, F) with the strict inductive limit of the topologies
of 9, o(G, F), where £ ranges all compact subsets of G. Then 9,(G, F) is an
LF-space, that is, a strict inductive limit of a sequence of Fréchet spaces. The
left translation defines a smooth representation =, of G on 9,(G, F), which is
called the smooth representation induced from a.

Let = be a continuous representation of G on E. We denote by E the
the space of all continuous linear functionals on E with strong dual topology.
We consider the contragredient representation (in algebraic sense) #°° on E~
defined by <z~ (x)T, v>=(T, n(x"W) (x=G, veE, TEE™). If the representation
(z, E) is smooth and E~ is complete with respect to the strong dual topology,
(z”, EY) defines a smooth representation.

1.2. Notations for semisimple Lie groups. We prepare some notations
for real semisimple Lie groups and Lie algebras. Let G be a connected real
semisimple Lie group with finite center. Denote by g its Lie algebra. Let 6
be a Cartan involution of g, and g=tPq the corresponding Cartan decomposi-
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tion. Here t (resp. q) is the space of all Xeg such that 0 X=X (resp. 6 X=
—X). Let a be a maximal abelian subspace of q. By A we denote the set of
all roots of g with respect to a and by A* a set of positive roots in 4. Put
n=>:e4+8: and u=~0u, where g; is the root space corresponding to a root A.
Let K, A, N and U be the analytic subgroup of G corresponding to ¥, a, n and
u respectively. Then G=KAN (resp. g=tPaPn) is an Iwasawa decomposition
of G (resp. ¢). For a Lie subgroup H of G and Lie subalgebras § and r of g,
we denote by Zx(x) (resp. 3,(x)) and Ny(r) (resp. ny(x)) the centralizer of yp in
H (resp. §) and the normalizer of ¢ in H (resp. ) respectively. Put M=Zx(a)
(resp. m=3/(a)). Then P=MAN (resp. p=mPaPn) is a minimal parabolic sub-
group of G (resp. a minimal parabolic subalgebra of g). We denote by W the
Weyl group of (g, a). Then W=Nk(a)/M. For an s=W, we denote a fixed
representative of s in Ng(a) again by s.

Let Il be the set of simple roots in A*. For a subset F of II, let <(F)
denote the set of positive roots written as linear combinations of the elements
in F, and put <F)'=AY\{(F>.

For a subset §) of g, we denote by %)* the orthogonal complement of % in g
with respect to the Killing form Q of g. For vea* the dual space of a, define
H,ea by v(H)=Q(H, H,) for all H=ea. We introduce some subalgebras of g as
follows :

a(F)=21erRH,, ar=aNa(F)*,

wW(F)=21ewm81, Nr=21eFy 82 »

wF)=60n(F), ur=0up.
Moreover
mp=u(F)Pa(F)SmDn(F), lr=msDar,

pr=mpDarDur.

Then pr is self-normalizing and is called the standard parabolic subalgebra of g
corresponding to F. The subalgebra mp is #-stable, hence reductive in g. By
A(F), Ap, N(F), Np, U(F) and Ur we denote the analytic subgroup of G cor-
responding to a(F), ar, u(F), ng, u(F) and up respectively. Then one has de-
compositions A=A(F)X Ar, N=N(F)X Ny and U=U(F)x Up.

Denote by Wy the subgroup of W generated by reflections corresponding
to the elements of F, and put P~=PWgP. Then P is self-normalizing and is
the normalizer of np in G, which is called the standard parabolic subgroup of
G corresponding to F. Put Lp=Zs(ap), then Lp=MpAr with My=Z(ap)
(Mpg),, where (Mz), is the analytic subgroup of G with Lie algebra mpz. An
Iwasawa decomposition of My is given by Mp=K(F)A(F)N(F) with K(F)=
KN Mg. The group Pr admits a Langlands decomposition Pr=MgApNg.

For a smooth representation ¢ of My on a Fréchet space E, and v&(ap)c*,
we denote by (z,,,, H,,,) the smooth representation of G induced from the re-
presentation ¢®e* @1y, of Pr.=MrArNp. The space H, , consists of F,-valued
smooth functions f on G such that f(xman)=a*"fa(m)=*f(x) for x€G, me M,
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acAp and neNp. Here p=2-13;c4+(dim g;)2 and we put a“=exp {y, H) for
r<ac* and a=exp He A. Each element p’ in a(F)c* (resp. (ap)c*) is regarded
as an element in ac* with <{g’, ap>={0} (resp. <{g’, a(F)>={0}).

1.3. Definition of Whittaker vectors. Let U’ be a closed subgroup of U.
For a character (i.e., one dimensional representation) 7 of U’, we put

Cc(G)={fec=(G); flgu)=n(u)f(g) for geG and ucl’},

and equip it with the topology inherited from the Schwartz topology for C=(G).
G acts on Cy(G) by the left translation which defines a smooth representa-
tion %,.

We introduce the notion of Whittaker vector as a generalization of that of
Kostant in [10].

Definition 1.1. For a smooth representation = of G on a Fréchet space E,
put
Wh(E")={TeE"; =" (u)T=nu)T for ueU’}.

Each element in the space Wh,(E™) is called a Whittaker vector of type (U’, ).

Let (x;, E;) (=1, 2) be continuous representations of G on locally convex,
complete, Hausdorff, topological vector spaces E;. We denote by Homg(x,, ;)
the space of continuous intertwining operators from E, to E,.

The next lemma makes clear the relation between Whittaker vectors and
intertwining operators.

Lemma 1.2 ([4, §1]). Under the notations of Definition 1.1, one has isomor-
phisms of vector spaces

Wh,(E)~Hom¢(x, #,)~Home(x, 7).
The correspondence is given as follows :
(1) Why(E")2T —> AreHomg(x, #,),
Ar(w)(g)=<Kx"(g)T, v>  for v€E and geG.
(2) Homg(w, #,)2A —> A”€Homg(x, ),

KA, P,,¢>=SG(AU)<x)¢(x>de for veE and $=2(G).

Here P, is an open continuous linear surjection from D(G) to D,(G) given
by

(Py)(x) =SU,¢(xu’)ﬂ(u’)du’ (peD(G), xeG),

and du’ denotes a Haar measure on U’.
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Part I. On uniqueness of Whittaker vectors for generalized
Gelfand-Graev representations

§2. Distributions corresponding to Whittaker vectors

Let G be a connected real semisimple Lie group with finite center. In this
section, we treat Whittaker vectors using Bruhat’s method.

Let F, F'cIl. Let ¢ be a smooth representation of Mz on a Fréchet space
E,, 5 a character of Uy and ve(ap)c*. By the canonical projection 9(G, E,)
—H,,,, each element in H;, can be viewed as an FE,-distribution on G. Con-
sider Whittaker vectors of type (Ug, %) in H,,,. We study the supports of
distributions corresponding to these Whittaker vectors. Our main result of this
section is Theorem 2.11 under the assumption that ¢ is finite dimensional.

2.1. Whittaker vectors and intertwining distributions. For ¢ 9(G, E,),
put

(Po,>¢)(JC)=S a***o(m)gp(xman)dmdadn ,

MpxApxNp

where din, da and dn are Haar measures on My, Ar and Ny respectively. P,,,
gives an open continuous linear surjection from 9(G, E,) to H,,. Then P,
induces a linear injection ‘P, ,: H,,—9(G, E,)” by (P, T, ¢>=<T,, P, .$>
for ToeH,’, and ¢ D(G, E,). The image ‘P,  H,, consists of all Te D(G, E,)”
such that

T, Rp_1¢>=<T, a”=Pg(m)p> for p=mane MrArNr and ¢ D(G, E,),

where R, ¢(x)=¢(xy) (x, y=G). Moreover one easily has

Lemma 2.1. ‘P, , induces a linear bijection from Wh,(H,.) to the space of
all TeD(G, E,)” such that

2.1) KT, LR 19>=<T, n(u)a*-*a(m)¢>
for p=mane MpApNr, uc€Up and ¢€D(G, E,), where L, dp(x)=¢(y'x) (x,
yeG).

We define an action of the product group Uz X Pr on G by
(u, p)-g=ugp* for (u, p)eUp XPp and g€G.

Then U F.XPF acts on spaces of functions on G, and then on spaces of distri-
butions on G by duality. For example, ¢*(g)=¢(x"'-g) (g€G),

KT?, ¢>=<T, ¢**>  for x&€Up X Pr, $c (G, E,), T€DG, E,)".

Define a smooth representation = of Up XPp on E, by n(y)=xn(u)a*-*a(m) for
y=(u, man) with u€Up and mane MpArNp. Now put
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T.(G)={TeDG, E,); T*='z(x)T  for x€Up X Pr},
where ‘z(x) is the transpose of the operator m(x). By Lemma 2.1, one has
(2.2) Wh,(Hy) = (G).

Now we give an explicit description of orbits of Uz XPr on G. First we
have a decomposition by Bruhat

G= \U G, (disjoint union) with G,=UsPp.

SEW /W

Then G,=(UNsUps~')sPr and every element of G, is expressed uniquely as a
product of elements of UNsUps~! and sPr. And G, becomes a normal submani-
fold of G diffeomorphic to the product (UNsUps~!)X Pr in the canonical way.

Using this this formula and the semidirect product decomposition U=U(F’)X Ug-,
we obtain the following lemma.

Lemma 2.2. For an s€W, G,=(UWF")N\sUps U sPr, and it has an expres-
sion Gy=(U(F)NsUps Y Up NsUps~")sPp in such a way that it is diffeomorphic
to the product of UF)N\sUps™', UpNsUps™' and Pr in the canonical way.

Consequently, G admits a decomposition

(2.3) G= U U Up ysPr (disjoint union).

SEW W yeU(F' )nsUps~1

In general, the number of orbits of Uz XPr in G is not countable, which
is contrary to the case of Bruhat. This prevents us from direct application of
Bruhat’s theorem ([16, Theorem 5.3.2.3]). However, thanks to the decomposi-
tion (2.3), his technique itself is available also in our situation.

For seW, put 2,=G,J(JsyG,), where s’ ranges through the elements in
W such that dim G, >dim G,. Each double coset G, contained in the closure
G, of G, has a dimension strictly smaller than that of G, unless G,=G,. This
implies that £, is an open subset of G and that G, is a closed submanifold of
2, ([12, Lemma 1.7]). We put

T :={T€D8,, E,)"; T*='n(x)T  for x€Up XPp, spt(T)SG,},

where spt (T) denotes the support of a distribution 7.

The following proposition is well-known. But we give its proof to clarify
the connection between 9 .(G) and I, ;.

Proposition 2.3. Let {s;; 1=7<n}SW be a complete system of representa-
tives of the coset space W/Wgp. Then one has

dim T (G) S Sigjen dim Ty -

Proof. We may assume that dim G;,=2dim G;;.

9’={T69:(G>;spt(T)gjsgncsk} (1<j<n), g*+'={0}.

for 1=<;=n—1. Put
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For 1=j=<n, let r;: 9(G, E,,)"—»ﬂ)([}sj, E;)” be the map defined by restriction.
Then we have immediately

er_T’gfr,,,sj and Ker (rj|qg5)=g'* for 1=<7<n.
Hence

dim g/<dim T . ,,+dim g7+ for 1=7=<n.

This proves the assertion. Q.E.D.

2.2. Distributions in 9. (I), from T (€9 ) to S (on 0,SG,). For an
seW, let Teq,,\{0} and z,espt (T). We shall associate to T a quasi-invariant
distribution on an open neighbourhood of z, in G, under the action of U XPp
([16, 5.2]). We begin with the following lemma.

Lemma 2.4. Let s€W and put ly=uNAd(s)ug. Then 1, is transversal to
Gs. In other words, g=1PBT(Gsz™") for every z€G,. Here T G,z?) denotes
the tangent space of Gsz™' at the unit element e of G.

Proof. Let z=u,sp with u,€UNsUps™? and p=Pr. Then
TGz )=Ad (1) {(uNAd (s)uz)DAd (s)pr},
because Gz '=u (UNsUps ) (sPps~")u,~'. Hence it is sufficient to prove
Ad (u){(NAd (s)up)PAd (s)pr} Nl,=1}0}.

Since Ad (u,)""1,S Ad (s)up, the left hand side of the above equality is contained
in 1. Clearly it is contained also in n, whence in uN\n={0}. Q.E.D.

Until the end of 2.3, we fix an element s in W. Let X, -+, X, (resp.
Y, -, Y,.) be a basis of I, (resp. Te(G;s7%)). For z=u,sp with u,eUNsUps?
and pePp, put Y;=Ad (u,)Y; for 1=;=<#’. Then Y, :--,Y,.* forms a basis
of T,(Gsz™Y). For a=(a,, -+, @;) with non-negative integers a; (1=/<r), we
put X*=X,%1 ... X,*reU(gc). Similarly (Y*)'={ .- (Y.*)" for zeG, and
7=, =+, 7). By Poincaré-Birkhoff-Witt’s theorem the set {(Y*7X?}, , forms
a basis of U(g¢) for every zeGs,.

Let £ be a non-negative integer. For x=(u, p)€Ux XPr and zeG,, we
define a matrix A,(x, z) of degree /|=,,,-,C,-, as follows. For a=(a,, -, a,)
such that |a|=a,+ --- +a@,=Fk, we have an expansion

(2.4) AdX'= B apalx, DX+ B chilx, )V

I1BI<k, IBI+ITISk
with agq(x, 2), ¢§,(x, 2)€C. Put
Awlx, Z)——‘((l,ga(x, Z))lﬁ|=|a|=k .

By the definition of A,, we easily have the following lemma.

Lemma 2.5. The matrix valued function Ay on (Up X Pp)X G is smooth and
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satisfies the following conditions (1)~(3).

(1) Axle, p), 2)=I (I the identity operator) for p€Pr and z€G,.

(2) Aplxx’, 2)=Au(x, x"-2)A(x’, 2) for x, x’€Up XPr and z€G,.

(38) The matrix Ax(x, z) is unipotent if x&(Up'XPp),, where (Up X Pp),
denotes the stabilizer of z in Up X Pr.

Now let Te . \{0} and z,espt(T). In a sufficiently small relatively com-
pact neighbourhood © of z, in £, there exist unique E,-distributions T, on O0,=
ONG, such that

(2.5) Te=2Z.(—D'"""X"T, (finite sum),

where we regard each T, as an E,-distribution on © by trivial extension ([16,
Proposition A.2.1.2]). Let %k be the largest integer such that 2=|a| for some
a with T,#0 and spt(T.)>z,. By replacing © with a smaller neighbourhood
of z, if necessary, we may assume that 7,=0 if |a|>k.

Now we define an (E,QC"-distribution S on @, as follows:

S(f):'zlaI:kTa(fa) for f:(ftz)mI:kE@(Olr E0®Cl)

with f,ED(0,, E,).

Lemma 2.6. Let S be as above. Then S satisfies
SHA=S((w(x)Q Aw(x ™, Nf(+)
for x€Up X Pr and fED(0,, E,QC") such that spt (f)SONx-0,

Proof. The proof is carried out just in the same way as in [16, 5.2.3].
To clarify the arguments succeeding to this lemma, we give the proof.

Let x=(u, p)€Up XPr and he DO, E,) such that spt(h)SONx-0. From
the local expression (2.5) of T, one has

To(h) =2 a(—1)' (X T o)*(h)=ZaT o X*(h*7"))
=3 To((Ad (W) X*)h)=").
Using the expansion (2.4), one has
To(Ad () X*)h)* )= ig1=1ai(—1)'F' XB(aga(x, )T a)*(h)
+3ipi<ial(=D'BUXETE)(h),

where T} is an E,-distribution on O,Nx-0, for each B such that |B|<|al.
Hence

T*(h)=21p1=s(—D)* X (S iai=e@ga(x, )T () +Zp1<a(—1)'F(XPTH(),

where T} is an E,-distribution on ©,N\x-0, for each B such that [B|<k. On

the other hand,
T*(W)=3p1s:(—1)'" P XECa(x)Tp)(H) .

By the uniqueness of the local expression (2.5) of T, one has
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Tp"=2ai=18pa(x7", )m(x)T. on O;Nx-0,
for each B such that |B|=Fk. This proves the lemma. Q.E.D.

2.3. Distributions in 7. ; (I), from S (on 0,SG;) to 7 (on RSUF)N
sUps™*). We shall associate to S an (E,QC")-distribution 7 on an open subset
R of UF)NsUps! satisfying a certain condition with respect to an “action”
of UpNsPps~t (Proposition 2.10).

We proceed in more general situation. Let A and B be Lie groups so that
B acts on A as a group of automorphisms of A: BXA>(y, x)—x¥=A. For a
closed subgroup H of A, put M,=BX(A/H). Define an action of A on M, by

x-(y, x,H)=(y, x¥"'x,H) (x, x,€A4, yEB).

For a Fréchet space E, let @ be a differentiable E-multiplier on M, relative to
A, i.e., @ is a map from AXM, to L(E), the space of continuous linear opera-
tors on E, such that

(1) @(e, z)=I (I the identity operator) for z€M,.

2) O(xx’, 2)=0(x’, 2)P(x, x'-2) (x, x’'€A, zEM,).

(3) For every é€E, AXM,=>(x, 2)-»P(x, 2)6€E is C>.

(4) The image of a compact subset of AX M, by any fixed derivative of @
is equicontinuous in L(E).

We consider a quasi-invariant E-distribution S on a neighbourhood ©, of a
point z,€ M, with multiplier @ :

(2.6) ST()=S@(x-2, )f () for x€A, f€e9(0,, E)
such that spt (f/)S0,Nx-0,. Here S® is defined as S*(f)=S(f*") with f=(2)
=f(x-z). Suppose z,Espt (S).

Remark 2.7. (1) Put A=Up XPp, B=UEF)N\sUps™t, H={(u, s~ 'us); uc
UpN\sPps~'}, xV=(yuy~!, p) for x=(u, p)€ A, yeB. Then M, is identified
with G; in the canonical way. The action of A on M, conincides with that of
Up X Py on Gs.

(2) Set E=E,QC!, O(x, 2)=n(x")R'Ax(x, z) for x€ A, z&€M,.

Then S in Lemma 2.6 satisfies the above condition (2.6).

Put M;=BXA. Define an action of A on M, by

(v, x1)=(y, xx,) for x€ A, (y, x,)eM,.

Let j: M,—M, be a submersion such that j(y, x;)=(y, x,H) for (y, x,)eM,.
For ac9(M,, E), put

faly, 1l)={ aly, x)dh (@, My,

where dh denotes a left Haar measure on H. As is well known, a—f, gives
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an open continuous linear surjection from D(;j-Y(©,), E) to 9(0,, E). Moreover
spt (f.)E j(spt a) for all acD(7-Y0O,), E).

Put @,={(y, x)eM.; (y, x¥ ;2 ©)}. In order to associate with S an
A-invariant distribution on £,, we put

a’(y, x)=0((x¥)}, (3, xH))a(y, x?) for ac 9(2,, E).

Then the linear map a—a’ gives a topological isomorphism from 9(®,, E) to
D(j-0,), E). There exists a unique E-distribution S* on @, such that

S*a)=S(ga) with g.=fa for ac9(@,, E).
We proceed as follows: S (on ©,)—S* (on @,)—7 (on R) (see infra).

Lemma 2.8. The distribution S* on @, is invariant under A: S** (a)=S*(a)
for x’€A and ac D(P,, E) with spt (a)SP,NE’-P,.

Proof. Let x’ and a be as above. For 8=a® ', one has
g5y, u)={ (), (3, HYaly, (7 x W)
On the other hand,
(8" (9, x;H)=ga(y, x' V" x,H)

=SH¢(((x’”'1x1h)”)", (3, 2"V 2 H)a(y, (x'V " x,h)¥)dh

=0(x'7, x'+(y, le))SHfP(((x;h)”)“, (9, x:H)a(y, (x"*"*x,:h)")d h.

Therefore one has gg=®(x’, Nga)*'. Consequently,

S*=(@)=S(@(x’, )g)* N=5""((ga)*" ")=S(ga)=5%a).
Q. E.D.

Write z,=j(y,, x,¥%) with y,€B, x,€A. Then (y,, x,)€P;, and (y,, x0)E
espt (5*). By replacing 2, with a smaller neighbourhood of (y,, x,) if neces-
sary, we may assume that @,=Q® XQ with an open neighbourhood R (resp. Q)
of y, (resp. x,) in B (resp. A). By Lemma 2.8 combined with the usual “past-
ing” arguments, S* can be extended to a distribution on ® X A invariant under
A. We denote it again by S*.

For ac 9(R X A, E), we put

Bo0)=| aty, Dz (ye®),

where dx is a left Haar measure on A. Then a—pj, gives a surjective linear
map from D(RXA, E) to DR, E), and there exists a unique E-distribution 7
on R such that

7(Ba)=S*(a) for ac P(RXA, E).
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Obviously yoespt(r). Then z satisfies the condition in the following proposition.

Proposition 2.9. There exists an open neighbourhood M of the unit of H
such that ©(B)=t(*B) for he M and BED(R, E). Here we put

("B 3)=04(h=")04(R")D(h?, (3, H)B(Y) (yeRr),

with 6,4 the modular function of A.

Proof. Let ac9(M,, E). For h'eH, we put a"*(y, x)=a(y, xh’). Let
M be a symmetric open neighbourhood of the unit of H, and Q’ an open neigh-
bourhood of x, in A satisfying Q'[R, #] SO and Q' HSQ. Here we put
[y, hK1J=hvh* for heH, y=B.

Now let ac D(RXQ’, E) and h'e M, then a™*=D(@,, E). Obviously one
has B n+=04(h’"")Bas. On the other hand,

8y, xH)ZSHQ)(((xh)”)", (y, xH)a(y, (xhh")'[y, h'*])dh

=5A(h"’)SH‘D(((Xh)”)“, (v, xH)D(h'Y, (3, H))
a(y, (xh)*[y, k"' Ddh.
Therefore, if we define ay € D(M,, E) by
an(y, ©)=0'Y, (y, H)a(y, xLy, h'7']),

we thus obtain g n +=04(h'"")ga,.. Note that spt(a,)SP, by the definition of
M. Clearly one has B,,,="(B.), and consequently

T(Ba)=04(h")T(B 1 5)=S5(gap )=7(" (Ba)) -

Since the map D(PXQ’, E)Sa—B.€D(R, E) is surjective, we complete the
proof. Q.E.D.

We return to our original situation in 2.2. By Remark 2.7 and Proposition
2.9, we conclude

Proposition 2.10. Let S be asin Lemma 2.6. Then there exists an (E ,QC")-
distribution T on an open neighbourhood R SU(F)NsUps™ of y, satisfying the
following conditions.

(1) spt ()2 ..
(2) There exists a neighbourhood M of the unit of Up NsPrs™' such that
(B)=1("B) for me M and BE DR, E,QC"). Here we put

(mBY)={n(ymy~', s7'ms)"'Q Ap(ymy~*, s 'ms)} B(¥) .

2.4. Supports of distributions in 7. ,. Now we state the main result of
this section which is crucial in the next section.
For an s€W, put
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D;={yeUWF)NsUrs™"; Nlvpnysppaysn-1=1}.

Then DjUp sPr is a closed subset of G,=UsPp, in general, of lower dimension.

Theorem 2.11. Let the notations be as above. Assume that ¢ is a finite
dimensional representation of Mp. For every se€W, a distribution in . has
always the support contained in DU SPp.

Proof. Let T€g,  and 2°=y,(x,-s)espt(T) with y,eUF)N\sUgrs™* and
xo€Um X Pp. We use the notations in 2.3 in this situation. Assume that y,&
D;. Then there exists an me M (Proposition 2.10) such that p(yymy, =1
By Proposition 2.10, we see

T,({I—n(ym =ty No@e* P Qs 'm 1s)RQ Ar((ymy?, s~ms), ¥8)}B(¥)=0

for all feD(R, E,RQRC"), where 7, means that = is applied on the function in
y. On the other hand, the operator (¢@e*~*@1)(s~“m~'s) is unipotent by the
highest weight theory of irreducible finite dimensional representations of
([mp, mpl)e. By Lemma 2.5 (3), the matrices *A,((ymy~*, s~'ms), ys) are uni-
potent for all ye ®. This implies that the operators

I—n(ym™y "N e®e P QL)(s'm )R  Ar((ymy, s7'ms), ys)

are invertible when y ranges a sufficiently small neighbourhood of y, in R.
Hence y,espt(r). This is a contradiction. Q.E.D

We apply our result to the case F=F'=@. A character 5 of U is called
non-degenerate if the restriction of » to UNs~'Ns is non-trivial for every se
W\{e}. The following well-known theorem (e.g., [4]) is a direct consequence
of Theorem 2.11.

Corollary 2.12. Let n be a non-degenerate character of U. For a finite
dimensional representation (¢, E;) of M and veac*, one has

dim Wh,(H;,)<dim E, .

Proof. This corollary follows from Lemma 2.1, Proposition 2.3, Theorem
2.11 and the fact that Dj=@ if s+e. Q.E.D.

Note. After I had proved Theorem 2.11, I learned the following. For re-
ductive groups over a non-archimedean local field, M. L. Karel treated in [7]
Whittaker vectors in the similar situation as ours in 2.1 except that ¢ is sup-
posed to be one dimensional in his case. And he obtained a uniqueness property
([7, Theorem 3.2]) of such Whittaker vectors when the character 7 is “generic”.
His method is based on the vanishing of certain integrals over compact sub-
groups of a unipotent subgroup. So it can not be extended immediately to
archimedean cases. Nevertheless, our result (Theorem 2.11) shows, as its direct
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consequence, that a fact parallel to non-archimedean cases holds also in archi-
medean cases.

§3. Multiplicity theorem for generalized Gelfand-Graev representations

In this section, we define the genepalized Gelfand-Graev representations of
semisimple Lie groups just as in [8]. Using the results in § 2, we prove a
multiplicity theorem (Theorem 3.7) for some of such representations.

3.1. Let G be a connected real semisimple Lie group with finite center.
Retain the notations in 1.2.

Let A be a non-zero nilpotent element of g. By Jacobson-Morozov, there
exists an 8l,-triplet {A, H, B} Sg containing A:

[H, A]=2A4, [H, B]=—2B, [A, B]l=H.
We put
a0 ={Xeg; [H, X]=iX},

(@) 4 =Drz:8(R)4 , W@ a=Dr2:8(— k)4

for each integer 7. For /=1, denote by U(7), (resp. N(Z),) the analytic subgroup
of G corresponding to u(), (resp. n(z),). By the representation theory of &l,,
one has g=@;z0(7)4. If one notices that the spaces g(:), and g(;), are mutually
orthogonal with respect to @ (Killing form) unless 7+ 7=0, the dual space u(l)*
of u(l), is identified with n(l), by n(1),2Y-Y*cu(l)* <¥* X>=Q(X,Y) for
Xeu(l),.

By taking a suitable Ad (G)-conjugate of A instead of A, we may assume
that Hea and <4, H>=0 for all AeA*. Put F,/={A€Il; <2, H>=0}, then Iz,
=g(0)4 and up ,=u(l),.

Let u(1.5)4 be a subalgebra of u(l), satisfying the following conditions.

1) w(2),Eu(1.5),Su(l),,
(2) u(1.5)4 is a subalgebra of u(l), subordinate to B*cu(l),*, i.e., B¥([u(1.5)4,
u(1.5),1)=(0), and of maximal dimension among such subalgebras.

Such a subalgebra u(l.5), actually exists, because u(2), is subordinate to B*.
Since the alternating bilinear form on ¢(1),Xg(l), defined by (X;, X,)—
B*([X,, X,]) is non-degenerate, u(l.5), can be written as u(1.5),=u(2),Pw’ with
a vector subspace u’ of g(1), such that 2 dim uw'=dim g(1), and B*([w/, u'])={0}.
Let U(1.5), be the analytic subgroup of G corresponding to u(1.5),. We define
a unitary character 5, of U(1.5), by

nalexp X)=exp {v/—IKB*, X>} for Xeu(l.5),.
Definition 3.1. Let Aeg be a non-zero nilpotent element. The smooth

representation (n-“, Q“(G)) induced from the character %, of U(1.5), is called
a generalized Gelfand-Graev representation associated to A.
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In general, U(1.5), is not uniquely determined by A. Nevertheless, we call
every representation defined as above a generalized Gelfand-Graev representation
associated to A. We note the following: Let (§,, E,) be the smooth repre-
sentation of U(1), associated to the unitary representation of U(l), unitarily
induced from %4 By Kirillov’s theory on representations of nilpotent Lie groups,
(&4, E,) is irreducible and independent (up to equivalence) of a choice of U(1.5),.
Moreover Q,]A(G) is embedded continuously into 9.,(G, E,) as a G-module.

In case that A is a regular nilpotent element of ¢, U(1),=U2),=U. And
74 gives a non-degenerate character of U if g is, at least, quasi-split. In this
case, the representation =, has been called the Gelfand-Graev representation.
This is the reason why Ty, is called a generalized Gelfand-Graev representation
for each nilpotent element A.

When G is a connected complex semisimple Lie group, we regard G as a
real group in the following way: Let §) be a Cartan subalgebra of g, and a
the real form of § consisting of elements on which every root with respect to
H takes a real value. Let f be a compact real form of g which contains v/ —1a
as a maximal abelian subalgebra. Denote by 6 the conjugation of ¢ with re-
spect to . These notations f, a and # are compatible with those defined in 1.2.
So we use the notations in 1.2.

3.2. We introduce some additional notations and make some preparations
for the main result (Theorem 3.7) of this section.

For a real vector space v, bc denotes the complexification of . Let )~ be
a maximal abelian subalgebra of m. Then )=0)-Pa is a Cartan subalgebra of
g. Denote by A the set of roots of gc with respect to §c. Choose a positive
system A* of A such that A+|,24*. For FSII, let Ar be the set of non-zero
(ad ap)-weights in g. In general, the set Az is not a root system for ag*, never-
theless, it is often called the set of ap-roots by abuse of the lauguage. Put
Aet=AeN\A*|op), Hp=ApN\I |.y). Let rp: A->ApJ{0} be the map defined
by the restriction. Put ﬁ‘——:rF"({O})ﬂﬁ, where IT denotes the set of simple
roots in A+. Regarding §=g¢ as a real Lie algebra, we use the notations in 1.2
with the symbol “~” on the head. For example, =+/—1§-Pa, d(F=+—=1Y"
Da(F), 1= acli+fa-

Lemma 3.2. Let F'SII. Then the nilpotent subalgebra ug of g has a struc-
ture given as Wp=21e/, 8- 2D[p, up], where g, (us Ap) denotes the ap-root

space corresponding to p.
Proof. 1t is sufficient to show that the complex Lie algebra (up)¢ is gener-
ated by (Zienp8-2c- We see easily
(p)e=Dac#y8-a, (Zaenp8-1c=253-5,

where the last sum 35 runs through ,Be(ﬁ”)’ such that B|.,, €ll. Let u be
the complex Lie subalgebra generated by 3;i-;. Note that 22p08-p is (Ip)e-
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stable, whence so is u’. Put ﬁ:{a,, <o, agb. Assume that w#(up)c. Then
there exists T=Elsi§qniaie<ﬁ">’ with 7,20 such that §_,&uv’. Take a such 7
so that the sum Xn; is minimal. As is well known, y=y’+7; for some y’eff’f
and a,eﬁ. Necessarily r’e(ﬁ")’. By the assumption for y, one has §-, Su'.
In case a,»e(ﬁ"), §-r=[8-y, §-a, ][0, Ip)c]Sw’.  In case a,e<ﬁ">’, i-, &
[w, wJ<uw. This is a contradiction. Q.E.D.

Let » be a unitary character of Up. By the above lemma, there exists a
unique element B,E3X e, 82 such that n(exp X)=exp{+~/—1 Q(B,, X)} for all
Xeup. The map n—B, gives a bijective correspondence between the set of
unitary characters of Up and ey, 8-

Lemma 3.3. Let FSII. For s€W and yeU(F')N\sUps™, the restriction of
N to UpNysPp(ys)™ is trivial if and only if Ad(ys)"'B,Enup.

Proof. We see easily that » restricted to Up NysPr(ys)~! is trivial if and
only if Ad(y)-'B,eAd (s)pr*, since Ad (y)'B,Enp and np=pp*. This means
that Ad (ys)~'B,€pst=up. Q.E.D.

Until the end of this section, we assume that G is a connected real semi-
simple Lie group of matrices. Then G is contained in the complexified con-
nected matrix group G having § (=gc) as Lie algebra. Also for G, we use the
notations in 1.2 with the symbol “~” on the head. For a Lie subgroup L of G
with Lie algebra [, denote by L. the analytic subgroup of G corresponding
to Ic.

Proposition 3.4. Let B be an element in np such that [B, pm]=nm and
ZH B)S(Pg)e. Then one has {geG; Ad(g)Beup } =Pp.

Proof. First we note that 3,(B)Sypr. In fact, Q(X, np)=Q(X, [B, dr])
=Q([X, B], pr) for Xeg. Hence Xeup*=pp if Xs3,(B). Since [B, pr]=np,
o={YeWp)c; [V, ®r)c]=@p)c} is an open, dense and connectedfsubsetTin
(np)c containing B. Moreover O is a single Ad ((Ps)¢)-orbit in (ng)c.

Let g G such that X=Ad (g)B€u. Then

dim [X, pp]=dim pp —dim 3,,,(X)=dim pp —dim 3,(X)
=dim pp —dim 3,(B)=dim pp —dim 3,,(B)
=dim [B, pF']:dlm Npr.

This means that X=0©. Hence there exists p=(Pp)¢ such that Ad(g)B=
Ad(p)B. Thus p'geZFB)S(Pr)c, gE(Pr)cNG. Since (Pp)e=Nz(np)c),
one has (Pp)eNG=Ng((tp:)c)=Ngnp)=Pp. This completes the proof. Q.E.D.

In the next lemma, we give an example which satisfies the assumption in
Proposition 3.4.
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Lemma 3.5. Keep to the notations in 3.1. Let A be a non-zero nilpotent
element of g such that w(1.5)4 can be chosen as ug. for some F"SII. Then one

has

(1) Z#B)S(Pr )cS(Prc, 2) [B, pr-l=np-

Proof. (1) Let geZy(B). We have two 8l,-triplets {4, H, B} and {Ad (g)A,
Ad (g)H, B} in § containing B. By Kostant ([9, Theorem 3.6]), there exists an
element x in the unipotent radical of Z3(B) such that Ad (g)H=Ad (x)H. Then
x'ge ZE(H)S Ng((npr )e)=(Pr c. Since the unipotent radical of Zg(B) is con-
tained in (Pp,)c by the representation theory of &l,, one has ge(Pp ,)c.

(2) Note that pr.=pp ,Dn” with a subspace 1”Sg(l), such that 2dimu’=
dim g(1),. Then one has

np-2[B, pr]=(2) BB, n"].

Since 3,(B)Sgs ,, one has 2dim [B, u”]=dim g(1),. Hence dim np.=dim [B, pp.],
np-=[B, pr]. Q.E.D.

Remark 3.6. U(1.5), can be chosen as Ug. for some F”< ]I if and only if
there exists an abelian subspace u” of g(1), such that

(1) [a0)4, v”]Su” and (2) 2dimu”=dimg(1),.
This is a sufficient condition for the existence of a weak polarization of the
nilpotent element B ([11, Proposition 5.2]). In case G=SL(n, C), such a u”
always exists (see 3.4).

3.3. A multiplicity theorem. We state the main theorem of this section.

Theorem 3.7. Let G be a connected real semisimple Lie group of matrices.
Let A be a non-zero nilpotent element of g such that U(1.5), can be chosen as Ug.
for some F"SII. We consider a generalized Gelfand-Graev representation
(7, ® ﬂ),,A(G)) associated to A. Let FSII. For a finite dimensional representation

(¢, E;) of Mp and vE(ap)c*, one has
(1) Homg(x,,,, n‘,;A)={0} if Ad(ys)'Bé&ur for all s€W and yeUF")N
SUFS_I.

<dim E, if F=F",
(2) dim Homg(x,,,, rrI,’A)

=0 if F2F".

Proof. We adapt the results in § 2 putting F'=F” and =75, By Theorem
2.11 combined with Lemma 3.3, the assertion (1) is clear. Now we assume that
F2F”. Let s€W. By Lemma 3.3, we have

D; ={ye UF")NsUps™*; Ad (ys)*Beng}
S{yeUWF")NsUprs™*; Ad (ys)"'Beng.}.

By Proposition 3.4 and Lemma 3.5, we have D,‘,A=(Zj unless s€Wy.. Hence
Homg(z,,,, n;A)={0} if F2F”. In case F=F”, we have D;A={e} for seWg.
If one notices that 2,=G,=UgrPr for s€Wj and that UpPr is diffeomorphic to
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the product UzXPr in the canonical way, one has

dim Homg(x, ., n;A)édim T, .=dimE,. Q.E.D.

Remark 3.8. The cases (1) and (2) in the above theorem do not exhaust
all the cases for F” and F. For example, dim Homg(z,.,, n‘,,’A) can be equal to
infinity in case FCF” (see §4).

3.4. Case of G=SL(n, C). As an example, we give (U(1.5)4, 5,) explicitly
in case G=SL(n, C). Put h={h=diag (h,, -, hy); Zicicah:i=0, h;€C}. Then
h is a Cartan subalgebra of g. The real form a of §) is given by a={h=
diag (hy, -+, hp)€h; h;eR}. As a compact real form of g we take ¥=u(n), the Lie
algebra of skew-Hermitian matrices of degree n. If we define e;=a* by <e;, A
=h; for h=diag (h,, ---, hp)=aq, the root system A of (g, a) is given by A=
{ei—e;; 1=i, j=n,i#j}. Choose a set of positive roots as A+={e;—e;; i>J}.
Then II={2;=e;+;—e;; 1=i<n—1} is the set of simple roots in A*. The Weyl
group W is identified with the symmetric group &, of degree n which acts on
a by permutation of diagonal entries.

We introduce a set of partitions of =,

MZNe= - 2,21

(n;eZ)
Pn={r=(n1, Ny, ==, Ng); }

Disissi=n

Associating its Jordan type to each nilpotent element of g, we can parametrize
by P, the nilpotent Ad (G)-orbits in g.
For a positive integer m, we define three matrices of degree m as follows:

N

-

(0 1 0 m—1 0 T
0 0 1 i m—3
An 1 Hy=
0 1 3—m
LO 0 0/ \ 0 l—ml ’
(0 o 0)
b, 0
Ba b with b;=i(m—i).
haee 00
0 bm-1 0
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Let y=(n,, ---, ny)eP,. Arranging numbers in y, we obtain y,=0n,, m,,
e, m,; Ry, Ry, -+, kg) such that

MM o 2,22 with m; even for 1</<r,
1Sk Sh,< - Zhy with k; odd for 1=;<g¢,

and k+m=n, m= 55, Mi, R=215jsok;. As a representative of the nilpotent
Ad (G)-orbit corresponding to 7, take

}=An,BAn,D - DAn DAL DALD - DAy,
H}=Hyp DHn,®D - OHn DHi DH:,D -+ Hy .
Bi=Bun,®Bn,D - OBn DB:DBs,D - DB,

{AS, HS, BY} is an 8l,-triplet containing Aj. For a positive integer 7, we
denote by ¢; the multiplicity of 7 in 7. For an integer 7, let /; be the number
of diagonal entries in HY equal to j. Then one has [;=/_;=t;s,+1;45+ -+ for
i=0. Put [;=l;+l;-, for i=1. We define H,=a by

Hy=((n:—=1)XJa,-0)D - BGXIND - D(=1m+1)XJ-ny41),

where J;=I,, denotes the identity matrix of degree /;,, Then H, is in the closure
of the negative Weyl chamber of a. There exists a unique w,€W which
satisfies the following conditions (1) and (2).

1) w,H}=H,.

(2) Let H!=diag(hy, -+, hy), then w,@)>w,(j) for each pair (7, j) such

that />7 and h;=h,;.

Taking a representative of w, in Ng(a), we denote it again by w,. Put
A,=Ad (wp)A} and B,=Ad(w,)B). We consider the §l,-triplet {4, H,, B,}
conjugate to {A$, H}, B?}. Then it is easy to see that U(l.5), can .be chosen
as U(1.5)4,=U, with

If we put

L, = * *
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The group U, is the unipotent radical of a parabolic subgroup of G.

Remark 3.9. The elements A} and w, above play an important role when
we consider analytic continuation of Whittaker integrals later in §5.

Now we shall write down the condition in Theorem 3.7 (1) for the non-
existence of intertwining operators explicitly in case G=SL(n, C).
Let }N’,,QP,. be as

ﬁnz{ﬁ:(lh Ly, =+, 1) 2Zhisisdi=n, l;eN}.

For B=(ly, -, l)€ B, we put F(B)=IT\{Ai,, A+t ***» Aiysigenti,_,}. The map
B—F(B) gives a bijective correspondence between P, and the set of all subset
of II.

Let y=(ny, ny, =+, n)€Py and =y, {5, -, l;)eﬁn. For a positive integer
j» denote by y, the multiplicity of ; in B8, and put k;=y;+y;s+ - (=1),

Ner1=MNgag= -+ =0.

Proposition 3.10. Let v and B be as above. Then the condition Ad(ys)'B,
Enppy for some sEW and some yeUWF[F)NNsUrpp s~ is equivalent to

At e Skt ok for all j=1.

Here we put F=(--, Iy, L, I, I, )€ P,.

Proof. Let seW and yeU(F(F)NsUpps~. First we show that Ad(s)™'B,
Enpep if Ad(ys)'B;Enpp,. Indeed, as in the proof of Lemma 3.3, one has
Ad (ys)"'B,Enr, if and only if B,€{Ad (»)urs;NAd(S)Prp)}t. Now we as-
sume that B,&(urs»NAd(S)prep)*. Let p be a positive root such that g-,S
upi, NAd (S)prepy and B,e(g-,)*. Let X be a non-zero element in g-, and y=
expY with Yeu(F(7))NAd (s)upg,. Then one has

QB,, Ad(X)=Q(B, X0+ 3 +Q(By, @dV)X).

The condition Q(B;, g-,)# {0} implies that Q(B,, g-,-1)={0} for all 2 A*, be-
cause Ad(w,)'B,=B}e3,cng;. Noting that (ad V) XeX;e4+6-,-2 for j=1,
we have Q(B,, Ad (y)X)#0. This means that Ad (ys)='B,&nps.

By the above, we showed that the former condition in the statement of
proposition is equivalent to “Ad(s)B{€ng, for some s€W”. In turn, this
condition is equivalent to the latter one in the statement of proposition. Q.E.D.

Remark 3.11. By [5, Lemma 3.2], the condition in Proposition 3.10 is
equivalent to Ad(G)B,Nnpp#@. This is the condition that the nilpotent
Ad (G)-orbit corresponding to 7y is in the closure of that corresponding to the
dual partition ‘S=(k,, k,, --:) of B.
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Part II. Construction of Whittaker vectors

§4. Whittaker integrals and intertwining operators

Let G be a connected real semisimple Lie group with finite center. In this
section, we introduce integral operators, so called Whittaker integrals, which
give Whittaker vectors of the principal series representations.

4.1. In this subsection, we consider the principal series representations of
G induced from the minimal parabolic subgroup P. For an s€W, denote by
{s) the set of positive roots A such that 2-'A¢A* and sie—A*. Put u=
uNAd (s)~'n and U,=expu,. Then 1= 1ccs>(g-2Da-22). The set {U,; seW}
includes the set {Um ; F/'SII}.

Let se€W and » be a unitary character of U,. Let (0o, E;;) be a finite
dimensional irreducible representation of M, and y,ac*. For ¢”€E;, we put

4.1y  (W(oo, v, ﬂ)f)(x)=gvs<e”, fxudnu)'du  (f€H,., x€G),

where du denotes a Haar measure on U,. This integral is called the Whittaker
integral of f€H,,,, of type (U, n). Define for s€W an open convex tubular
domain D; in ac* by

D,={veac*; {Rey, D>0 for all 2€{s)},

where ¢, denotes the inner product on a* defined through the Killing form.
For geG, write g=k(g)a(g)n(g) with k(g)eK, a(g)e A, n(g)eN. The follow-
ing lemma is well known.

Lemma 4.1 ([15, Theorem 8.10.16]). For every s€W, the integral

SU a(u)™"*du is absolutely convergent for veD,.
S

The following proposition is a slight generalization of Proposition 2.4 in [4].
One can prove it just in the same way as there with the aid of Lemma 4.1.
So we omit the proof.

Proposition 4.2. Let voD,. The integral (4.1) is absolutely convergent for
all feH,,., and e"€E;,. Moreover W (ay, vo, 7)f(x) is a smooth function of
x€G and holomorphic with respect to vo€D,. The map f—-W¢ (s, vo, )f gives
a non-zero interwining operator from H,,,, to C;(G) for e 0.

Consider the case U,=Uj for some non-empty subset F’ of II. Let y,€D,.
For yeU(F’), the operator R,-W¢ (a,, v,, n¥”") with ¥ (u)=7(yuy~?) also gives
an intertwining operator from H,,,, to Cy(G), where R, denotes the right
translation by y of functions on G. Let T, T ,(G) be the E, -distribution cor-
responding to R,-W¢ (g,, vo, 1)”") by Lemmas 1.2 and 2.2. Then T, is given by
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(4.2) T, ¢>=S a**#<e”, ay(m)¢(uyman)>n(u)-*dudmdadn

Up' xM*AxN

(¢€D(G, E,; ),

where dm, da and dn denotes a Haar measure on M, A and N respectively.
(4.2) implies that the restriction of T, to UP is non-zero for e”+0, and
spt (Tylyp)EUpyP. Hence {T,; yeU(F’)} is a linearly independent subset of
9.(G). This means that

dim Homg(7 4,0, 77)=-+00 for v, D;,.

4.2. Now we consider the principal series representations induced from the
parabolic subgroup Pr. Let s and n be as in 4.1. Let ¢ be an irreducible
admissible smooth representation of My on a Fréchet space E,. A representa-
tion (o, E,) of Mp is called admissible if every irreducible finite dimensional
representation of K(F) occurs in E, with finite multiplicity. We are very inter-
ested in constructing Whittaker vectors in Wh,(H,/,) mainly in cases that
dim Wh,(H,,,)<-+oo, for instance in the case of Theorem 3.7 (2). By Caselman’s
subrepresentation theorem (e. g., [1]), some of Whittaker vectors will be obtained
by the composition of Whittaker integrals in 4.1 and the embeddings, of H,,,
into the principal series representations induced from P.

We explain this in more details. Put (EJ)Y®={¢"€E;; ¢ (n)e"=¢e" for
all neN(F)}. Then (E;)YY is a finite dimensional MA(F)N(F)-module in the
natural action. Indeed, it is clear that (E;)Y® is MA(F)N(F)-stable. By re-
striction of elements of (E;)¥ to the ((mp)e, K(F))-module (E,)gxm of all
K(F)-finite vectors in E,, one has an (m@a(F)Pn(F))-module embedding

(4.3) (END s (Ed) ke /0PI NE Dk ) -

Since (E,)x is finitely generated as Un(F)¢)-module, o(M(F)¢)E o)k is codi-
mension finite in (F,)km. Hence (E;)¥Y is finite dimensional and (4.3) gives
an MA(F)N(F)-module embedding. By Casselman, (E,)xum#0cM(F)eNE )k m-
This means that there exists a non-zero vector ¢’ in the algebraic dual of
(Es)xw such that <e’, c(F)¢)XEs)km>=1{0}. Suggested by this fact, we as-
sume here that (E;)¥ =+ {0}.

Let V be a finite dimensional irreducible MA(F)N(F)-submodule of (E;)¥ %,
As an MA(F)N(F)-module, V=g, exp {v,+(plam)} @1 for some irreducible finite
dimensional representation ¢, of M and v,€a(F)c*. Let (xf,., Hf,.,) be the
representation of My induced smoothly from the representation ¢,Xe*@1 of
MA(F)N(F). Then the map ¢: E,—~C*(Mp, V) defined by

e&)x), vH=7, a(x™ME)  (§€E,, x€G,v'eV)

gives a continuous embedding of Mp-module E, into Hf ,. Here we identify
V with (VY)Y in the canonical way.

Remark 4.3. If ¢ is finite dimensional, (E;)Y“ 1is an irreducible
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MA(F)N(F)-module, and naturally non-trivial by the highest weight theory of
irreducible finite dimensional representations of (mz)¢ ([15, Lemma 8.5.3).

Let ve(ap)c*. The above ¢ induces a continuous embedding & of G-module
H,,, into H, 4., by (0F)(x)=¢(F(x))e) (x€G) for FeH,,. Here we regard
(ap)c*Sac* (resp. a(F)c*Sac*) by <(ar)c*, a(F)>={0} (resp. <a(F)c*, ar>={0}).

For v“eV™, we define Whittaker integral just as in (4.1)

(4.4) W (o, v, 77)F)(x)=SU 7, Flxu)yp(n)'du (FeH,,,, x€G).

Then we have the following proposition.

Proposition 4.4. Let the notations and assumptions be as above. Assume that
Ur2U,. Then one has

(1) the set (Ds—vo)N\(ap)c*={vE(ar)c*; v+v,=D;} is a non-empty open con-
vex domain in (ap)c*.

(2) The integral (4.4) is absolutely convergent for ve(D;—vo)N\(ar)c*. More-
over W (g, v, 1) gives a non-zero intertwing operator from H, , to cF(G)
if v7+0.

(3) For FEH,,, and x€G, the function v—W" (a, v, )F(x) is a holomorphic
function of v in (Ds—vo)N\(ap)c*.

Proof. We easily have that W*(g, v, 7)=W""(0,, v+v,, 3)°6. Then this
proposition follows from Proposition 4.2. Q.E.D.

§5. Analytic continuation of Whittaker integrals

In this section, let G be a connected complex semisimple Lie group. We
deal with the analytic continuation of Whittaker integrals for generalized
Gelfand-Graev representations.

5.1. A method of analytic continuation. First we present a method that
gives a domain of ac* to which Whittaker integral (4.1) can be extended mero-
morphically.

We regard G as a real group as in 3.1. For an s€W, let 7 be a unitary
character of U,. Consider the Whittaker integral

W(e, v, v)f(g)=SU flgu)p(w)*du  (eeM, veac*, feH,,, g=0),

where M denotes the set of equivalence classes of irreducible unitary representa-
tions of M. Note that M is a torus. So every irreducible unitary representa-
tion of M is a character. We put Ao, v)f(g)=W(s. v, 1y, f(gs) for seW, tak-
ing a representative (denoted again by s) in Ng(a). Then Ayle, v) gives an
intertwining operator from H, , to H,, ,, by meromorphic continuation.

Let IT={4,, A5, -, 2,}. Denote by s; (1</<n) the simple reflection corre-
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sponding to A;. For an s€W, let /(s) be the length of s with respect to {s;}.
As is well-known, for s, t, weW such that s=tw and [(s)=I()+{(w), one has

{sy=CwHhUw={t) (disjoint union),
D,=D,Nw™D,, =1, PAd (w)'u,.

Lemma 5.1. Let s, t, weW be as above. Let n be a unitary character of
Us which is trivial on U,. Then one has

W(a, v, Pf(@)={W(we, wy, 9¥)Au(c, v)f}Hgw™)

for feH,,., g€G and veD;, where 9¥ is a unitary character of U, defined as
pEw)=n(w uw) (uelU,).

Proof. Since u;=u,,PAd (w*)u,, one has

Wi(a, v, 9)f(2) =SUM flgw wawuy)p(wu,w) 'dudu,

ZSU‘A'”(G’ v)f(gwu)nP(uy) *du,

={W(we, wy, 7¥)A.(g, v)f}Hgw™),

where du, (resp. du,) denotes a Haar measure on U, (resp. U,) normalized so
that the first equality holds. The above calculation is valid for veD,. Q.E.D.

For a unitary character 5 of Us, let Wy , be the subgroup of W generated
by the reflections corresponding to the elements A< /] such that (i) g-;Su, and
(ii) the restriction of % to expg-; is non-trivial.

The following theorem is due to H. Jacquet.

Theorem 5.2 ([6, Theorem 3.4]). Let the notations be as above. For fe&
(H;, )k, the function D;2v—W(a, v, 1) f(g) extends to a holomorphic function on
[Ws, 3 Ds], where [w] denotes the convex hull of a subset w of ac*. Here (H;.)x
denotes the space of K-finite vectors in H,,,.

By Lemma 5.1 and Theorem 5.2, we can give a domain to which Whittaker
integral can be extended meromorphically in the following way. Let fe(H,, ,)k-
First apply Lemma 5.1. Then the analytic continuation of W(a, v, 7)f(g) is
reduced to that of W(g, v, 7¥)f(g) in the notations in Lemma 5.1. Secondly,
apply Theorem 5.2 to the latter.

Before we apply this method in 5.3~5.7, we give another proof of the key
theorem (Theorem 5.2) in the following subsection 5.2.

5.2. On another proof of Theorem 5.2. Using the results of G. Schiffmann,
M. Hashizume proved in [4] the result corresponding to Theorem 5.2 for the
spherical principal series representations of reductive algebraic groups over R.
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The proof is quite general, which works for non-spherical principal series re-
presentations if one overcomes some check points for real rank one groups.
These point would be overcome if one succeeds in calculating explicitly the
intertwining operators between principal series representations and the Fourier
transform of its kernel.

Here we make these calculations for G=SL(2, C). As its consequence, one
finds out that Hashizume’s method works for non-spherical principal series repre-
sentations of connected complex semisimple Lie groups. So one can give another
proof of Theorem 5.2.

Let G=SL(2, C). Keep to the notations in 3.4. For a non-negative integer
[, let (y,, P') be an (/+1)-dimensional representation of K=SU(2) defined as fol-
lows. Let P! be the space of all complex polynomials in ‘(w;, w,)€C? homo-
geneous of degree /. The natural action of K on C*? induces a representation
. of K on P': (ruR)fYw)=f(k'w) for feP!, keK and w=%w,, w,C
Then the representations y, are irreducible and {y,; {=0} is a complete system
of representatives in K, the set of all equivalence classes of irreducible unitary
representations of K. The group M={m(f)=diag (ev-1, ¢v=10); =R} is a
maximal torus of K. For an integer p, define a weight ¢, of M by a,(m(8))
=¢v=1r¢ (JcR). Then M={o,; peZ}. For 0=;<I, put f,¥=wiw,'-'eP.
Then one has P'=;<;Cf; and Cf;» is the M-weight space corresponding
to ¢,-;. Let 2 be the positive root of g with respect to a. We identify ac*

with C so that =2. For nC, u,=[(l) ﬂ — exp {v'—1 Re (5z)} (zeC) defines
a unitary character of U={u,; z€C}. Denote this character by the same letter

0 1
7. Put s—[#l 0
W. By Bruhat’s decomposition, s'u, is in UMAN for all zeC\{0}. Write

sTu,=u,m,h,n, with u,’eU, m,eM, h,c A and n,€N. Then we have

]. Then s is a representative of the non-trivial element of

z 1
m,= Izl s h,= 12l
z

For ¢,eM and veac*, put @,,,.(2)=0,(n)h, " If Rev=0, the function
(Ds,,,p,y on C=R? is locally integrable, hence defines a distribution. Moreover,
if 0=Rev=1, this distribution is tempered, and its Fourier transform

Brropul=|  Docop @) Mdxdy  (2=x+v/=Ty)

is a function. The following proposition is a special case of the result of G.
Schiffmann [13].

Proposition 5.3. Let = C\{0}. Then one has
[€)) (Ds,an,y(r;) extends to a meromorphic function of v on the whole ac*.
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(2) For fe(H,,p,y)K, the Whittaker integral W(a,, v, 7)f(g) (g€ G) extends
to an entire function of v on ac*. Moreover, ond has the equality, by
analytic continuation,

(G.1) W(0-p, =¥, PDALGp, V) =Dy 0, (W (a,, v, 1) .

Until the end of 5.2, we assume that »+0, and calculate the intertwining
operator Ag(g,, v) and the Fourier transform <Ds op () of its kernel. These
calculations show that @, (M) As(ap, v) s holomorphlc in Rev<0. This is
the most important fact when we apply the argument in [4].

Lemma 5.4. The Fourier transform is expressed as
v Pl
r(z+45)
v 11N
r(i-5+5)

In particular, (135,,,2,,”(77);&0 if Rev<0, and @s,ap,v(n) has a simple pole at y=
—(|p|+2r), for every non-negative integer v.

By, =a(v=1)7( T;T )v<|—77_?>-p

Proof. For 0<Rev<1, one has

;.0 u(m—hms et Z) 1zl e TR dxdy  (z=xty/ 7T y)

e=+0

= lim S ry_le_;rd’,{s es/—_lpae—x/—_ere(ve‘/‘_w)do} .
e—+0 JOST<S +00 0sfs2rm

On the other hand,

V=1pf,=v=TrRe( /=10, -p o ireoss
SOS?SMre ! do= 2( |ﬂl ) SOS&S;:COS(IpIa)e 71 do

=2a(v=D" (1) Tatrin,

where J, denotes the Bessel function of order p. Hence one has

ul ) 7] -y5;+u Sosr<+we'5'r”'1][p|(r)dr

Bero ) =22V =D (7,
By the well-known formula
()

lim Sm<+me‘”]y(r)r”"dr= —P( _,,2_|_ +1) ,

e—+0
we complete the proof of the lemma. Q.E.D.
Now we calculate the intertwining operator A,(¢,, v). For (7, V,,)eK and

geM, the multiplicity of M-weight ¢ in v is at most one: dim Homy(y |, o)
<1. Suppose Homy(y|x, 0)#{0}. Let v, be an element in V, such that [v,]
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=1 and y(m)v,=a(m)v, for meM. Here |[v|=+@[v) for veV,, and (-|-)
denotes a K-invariant inner product in V,. Put T,v=(v|v,) for veV,. Then
T,€Homy(y |y, o). The isotypic K-submodule (H,,.), of type 7 in H,,, is iden-
tified with V, by

Viev —> [g—alg) T (r(k(g) " We(H,,.), .

Similarly we identify (H,, ), with V..
Now we put

T, v):SUa(u)‘”"’r(k(u))du .

It is easy to see that T’(y, v)eHomu(yr|s, vlx). Since dim Homy(y|y, o)=1,
there exists a constant C,(y, v) such that T'(y, v)v,=C,(7, v)v,. Then the re-
striction of A,(ag, v) to (H,,.),=V, is given by

Ao, )1y, =Ci(7, 9)ld .

As is well-known, C,(y, v) is a meromorphic function of veac*.

Lemma 5.5. For integers [, j such that 0=<j=l, one has

= 1(—92) ] l—] ;

Ca”_l(rl’ y) osqsmizn:(j.l—j)ﬂq ( 2) (j—q)( q )0§r§q D-{-l—zr.

In particular, C,,zj_,(n, v) is holomorphic in v except yv=—(—2r) for some 0=r
=min(j, [—)).

Proof. We may assume that fj“>=vgzj_leV,l=P‘. For zeC, the Iwasawa
decomposition of u, gives

1 0
1 1z Mg
k(uZ)—'\T_-l:I-TF(—E ]_) , a(uz)_ '\/ +l2|
0 Vi+|z|?

By direct calculations, one has

(@u)™ rChaf 0= & l_j)(—l)q(jiq)(l;])(l—i- |2]%)- 4021 2|2,
Therefore,

)b

Cﬂgj-[(rl: y): j—q

0sgsmin(j, l-j)
By [15, Lemma 8.10.15],
!

re+or (-9
gy

_ 1
0arsqu+{—2¢r"

(1+r2)—(v+l)/2—1r2q+1d’,:

Sosr<+w

=21-1g 1
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This completes the proof. Q.E.D.

R Proposition 5.6. Let ¢=M and veac*. For fe(H, )k, the function v—
D;, 0.,(0) (Ao, v))(g) is holomorphic in Rev<0 for every geG.

Proof. Let !, j be as in Lemma 5.5. By Lemmas 5.4 and 5.5, the function
Ds,095-1.(0)Cayy (1, ¥) Of vEac* is holomorphic in Rey<0. This proves the
proposition. Q.E.D.

Thanks to Proposition 5.6, we can prove Theorem 5.2 just as in the same
way as in [4, §§3~4]. However the proof is so long, so we omit it here.

5.3. Analytic continuation of intertwining operators W(g, v, 4. Let g
be a unitary character of U;, where s is a fixed element in W. The following
lemma gives a sufficient condition for [Wg ,D;]=ac* which implies that the
function W(a, v, 7)f(g) extends to an entire function on the whole ac*.

Lemma 5.7. If there exists w'€Ws,, such that (sw'~-)N(s)=@, then
[W;.stjzac* holds.

Proof. Put Jy={weW; w'DcD}, where D=D,, with the longest element
se€W. Then we note that J,={weW; {(wiN{s)=@}. In fact, for weW,
D,2w-*D holds if and only if <(Rex, wi>>0 for all x€D and Ae{s). This
means that wie A* for all A€{s), or {wIN{sH)=@.

Put w;=s,s and w,=sw’"', then w,, w.€J, by the above. Hence W; D,
contains w,™*D and w’w,"'D=—w,*D. Therefore, [W; ,D;J=ac*. Q.E.D.

We shall consider the analytic continuation of Whittaker integrals for gener-
alized Gelfand-Graev representations in accordance with the method given in 5.1.
Let {A, H, B}Sg be an 8l,-triplet:

(5.2) [H, A]=2A, [H, B]=—-2B, [A, B]l=H

such that H is in the closure of negative Weyl chamber of a. Then we have
the following proposition.

Proposition 5.8. Assume that U(1.5),=U, for some s€W. Then the Whit-
taker integral W(a, v, n4)f(g) extends to a meromorphic function of v on the
whole ac* for every eeM, f€(H, )k and g€G, if there exists we W satisfying
the following conditions (1)~(3).

(1) (whHs{sh,

2) Ad(w)Ben.

(38) Put t=sw~ . Then [W; 4D, J=0ac*, where Wi 4 is the subgroup of W
generated by simple reflections s, (A€ Il) such that Q(Ad (w)B, g-;)+{0}
and g-Su,.
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Proof. One has s=tw, {(s)=I(t)+I(w) by (1). And 7, is trivial on U, by
(2). By Lemma 5.1, meromorphic continuation of the Whittaker integral in
question is reduced to that of W(g, v, (94)¥)f(g). On the other hand, W; ,=
Wi, with 9’=(90¥. By Theorem 5.2, W(g, v, 7")f(g) extends to an entire
function of v on ac*. Q.E.D.

Let A, be a non-zero nilpotent element of g. Assume that A, is in >;e70-3.
Then there exists a subset F of IT such that A, is a regular nilpotent element
of mp. Let {4, H,, By} Smp be the 8l,-triplet: [H,, Ay]=2A4, [H,, Bol=—2B,,
[A,, Bol=H,, such that H,ea(F).

We note the following well-known fact.

Lemma 5.9 ([15, Lemma 8.9.11]). For a subset ¥ of A*, U'={s) for some
seW if and only if ¥ satisfies following conditions (1) and (2).

) If 2€V and A=p+ps, p1, €A, then p, or py is in V.
2) If 2, p¥ and A+pc A%, then 2+ps¥.

The set {A€ A*; <A, H,»y>0} satisfies the above (1) and (2). So, let w be
the element in W such that (w-)={ie€4+; 4, Hyy>0}. Put A=Ad (w)'A4,,
H=Ad (w)"'H, and B=Ad (w)™'B,. Then one has

Lemma 5.10. (1) {A, H, B}Sg is an 8l,-triplet such that H is in the closure
of the negative Weyl chamber of a.
2) u,su(l),.
(3) The subalgebra (u,Ng(1))Pu2)s of u(l), is subordinate to the linear
form B*: X—Q(X, B) on u(l),.

Proof. (1) One has wA*=wA*NA)J(wA*NA")=(—{w INI(ANw)).
By the definition of w, <1, H)>=<wi, Hy» =<0 for all A= A*. Hence H is in the
closure of the negative Weyl chamber of a.
(2) Note that —(w)=w qw™). For A=w'Ve—(w) with Fe{w™),
Q, H>=Q’, wHY>={’, H»>0. Since 11, =2 1c-cw>31, UpEu(l),.
3) Qu,, B)=Q(Ad (w),, By)EQm, By)={0}. This proves the assertion.
Q.E.D.

Let us consider the next condition ().

(%) There exists seW such that u; 21, Ng(1))Pu(2), and u(1.5), can be taken
as u,.

In the following proposition, we give a sufficient condition for the mero-
morphic continuation of Whittaker integrals W(e, v, 94 f(g) to the whole ac*.

Proposition 5.11. Let the notations be as above. Assume that the condition
(%) holds. Then the function Dyov—W(a, v, n4)f(g) extends to a meromorphic
function of v on ac*, for ceM, fe(H, )x and g€G.
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Proof. Let w be as above. For this w, we check the conditions (1)~(3)
of Proposition 5.8. The conditions (1) and (2) are satisfied by the definition of
s and w. We check (3). Put t=sw™!, then W; ,=Wpgr. Let wicsWy be the
element such that wiF=—F. Then wiH,=—H,, because H, is the unique ele-
ment in a(F) such that <4, Hp=-—2 for all 2eF. Let 2={tw;™'). Since
Cwy =weltY)NA*, one has wy'As(t), whence <{w( !4, H,»p<0, or <A, Hy»>0.
This shows that A€ (t). Therefore, ({YN(tws ' H)=@. By Lemma 5.7, we have
(Wi 4aD:]=ac*. Q.E.D.

A nilpotent element Aeg is called even, if g(1),={0}. In case that A is
even, the condition () is clearly satisfied. Therefore we have

Corollary 5.12. Let A,€Xieng-2 be a non-zero even mnilpotent element.
Under the above notations, the function D;>v—W(a, v, n4)f(g) extends to a mero-
morphic function on the whole ac*, for every oM, fe(H, )x and g€G.

5.4. Now we apply Proposition 5.11 to complex simple Lie groups. For
this purpose, we examine if the condition (x) in 5.3 is satisfied.

Case of type (A;). Let G be a connected complex simple Lie group of type
(An-1). Then g=3l(n, C), so we identify g with 8{(n, C) and keep to the nota-
tions in 3.4. For yeP, put A=A}, H=H}, B,=B). Then w=w,' and
A=A, H=H, B=B, Moreover we see easily

(1, Ng(1) HDu2) 4=y,

where u, is the Lie algebra of U,. Therefore, the condition (x) is satisfied by
putting u,=u,. Consequently, we have the following theorem.

Theorem 5.13. Let G be a connected complex simple Lie group of type (An,-1).
Let yeP,. Then the function W(a, v, N4,) f(g) extends to a meromorphic func-
tion on the whole ac*, for every geM, fe(H, )k and g=G.

By the above theorem, Whittaker integrals W(g, v, 4)f(g) can be extended
meromorphically to ac* for all nolpotent elements A=g when ¢ is of type (A4,).
This is a complete result in case of type (A)).

We proceed to the cases of simple groups of other types. We should treat
the cases of rank 2 in the first place.

5.5. Case of type (B,)=(C,). Suppose that g is of type (C,). Then every
nilpotent Ad (G)-orbit of ¢ intersects X ;eng-:. Moreover, the condition (x) is
essentially satisfied for all nilpotent elements. Therefore, the corresponding
Whittaker integrals extend meromorphically to the whole ac* (see Table 5.14).

5.6. Case of type (G,). We consider the case of type (G,). The Whittaker
integrals W(a, v, 74)f(g) extend meromorphically to the whole ac* except only
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a unique case. In this exceptional case, the best we can obtain within our
present method is to extend the Whittaker integral meromorphically to a half
space. We do not know whether it extends meromorphically to a larger domain
or not. In the following, we explain these in more details.

Beforehand, we need to make some comments on the classification of nil-
potent Ad (G)-orbits in g ([14]). Let G be a connected complex semisimple Lie
group with Lie algebra g. For a non-zero nilpotent element A<g, consider an
3l,-triplet {A, H, B}Sg as in (5.2). By taking a suitable Ad(G)-conjugate of
A instead of A, we may assume that H is in the closure of the negative Weyl
chamber of a. Put d(A)=(—A,(H), -+, —A,(H)). Note that —A,(H)=0 or 1 or
2 for 1=/=n. Then the nilpotent Ad (G)-orbits in g, except for {0}, are para-
metrized by the set H(g)={d(A); A} of “weighted Dynkin diagrams”.

Suppose that ¢ is of type (G,). Then A* is given as

/1+={21, Ay, ARy, 22,25, 34,7+ 4, 3214‘212}

with IT={2;, 2,} and the Dynkin diagram A, oc&=== 1,. By [2, Table 16], one
has H(g)={(1, 0), (0, 1), (0, 2), (2, 2)}.

Let A, be a non-zero element in g-;,Pg-2,. Let w and {A, H, B} be asin
Lemma 5.10.

Case 1. Ay=X_;,+X_;, with X_;,€4-,,\{0} (=1, 2). In this case, A, is
a regular nilpotent element of g with d(A,)=(2, 2), so the condition (x) is
satisfied. Corollary 5.12 assures that the corresponding Whittaker integral ex-
tends to a meromorphic function on ac*. Moreover, it is an entire function on
ac* by Theorem 5.2.

Case 2. Ay=X-;,. Then w=s,s, and d(4)=(1, 0). Hence one has
aDaNuy=g-z,,  W2)4=0-22,D-32,-2,DF-32,-22, -
The subalgebra 1(1.5), can be taken as
1(1.5) ,=(g(1) /N1y, )BU(2) 4 =11 with $=s,5,8,5;.
Therefore, the condition (x) is satisfied.

Case 3. A;=X_;,. Then w=s;s, and d(A)=(0,1). Hence g(1) s Nut,=
8-2,D0-2,-25 W2)4=8-32,-22, We can take u(1.5),= (1, Ng(1) )Pu(2),=1n, with
$=5,8,S.. Therefore the condition () is satisfied.

Case 4. The nilpotent Ad (G)-orbit corresponding to (0, 2) does not intersect
a-2,D8-2,. This case is beyond application of Proposition 5.11. So we return
to our original method in 5.1. Let A be an element of this orbit. Consider an
8l,-triplet {A, H, B} with H in the closure of the negative Weyl chamber of a.
Within the limit of our present method, we know only that the function
W(a, v, n4)f(g) extends to a meromorphic function on the half space {v€ac*;
{Revy, 34,+24,>>0}. It is left open whether or not it extends meromorphically
to a larger domain.
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have only one result, Corollary 5.12.
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In case that ¢ is of type (B,), (Cn), (D.) (n=3), (E,) or (F,), we

Case 4 of type (G,) occurs already when g is of type (Cy).
At last, we list up, for complex simple Lie groups of rank 2, our results
of analytic continuation of Whittaker integrals W(e, v, 74)f(g).

Table 5.14.

The phenomenon of the same kind as

type Dynkin weighted Dynkin‘ a representative‘ U(L.5) analytic continuation
of g diagram diagram d(A) A Al of W(a,v, 94)f(g)
2,2 X, +X-a, U entire on ac*
oO—————0
A 2 '
a1 X225 | Usysy meromorphic on ac*
2, 2) X, +Xa, U entire on ac*
B.=C,| A 0,2 X_3,-2, | Usysys, | meromorphic on ac*
1, 0) Xosag-15| Usys, meromorphic on ac*
2,2 X, +X-a, U entire on ac*
o, 0, 1) X_s1,-22| Usysys, | meromorphic on ac*
G2 21 lz B
1, 0) X-22,-25] Usysyses,] meromorphic on ac*
o meromorphic on
0, 2) X_a-2,t X 52,-2,| Usys, | @ half space
H32:4-22,)
X,;: a non-zero element of the root space g; of a root A.
s; (1=1, 2): the simple reflection corresponding to 4,.
se: the longest element in W,

H32,422,)={veac*; <Rev, 34,+22,>>0}.
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