J. Math. Kyoto Univ. (JMKYAZ)
26-2 (1986) 223-231

A characterization of the finely
harmonic morphism in R”

Dedicated to Professor Yukio Kusunoki on his 60th birthday

By

Hiroaki MASAOKA

Introduction.

B. Fuglede [10] gave a characterization of the harmonic morphism in R"
as follows:

Theorem A (Fuglede). For a continuous mapping ¢ from a domain U
(CR", n=2) into R™ (m=2), the followings are equivalent:

(i) ¢ is a harmonic morphism on U.

(ii) The components ¢@; of @ (1=7=m), @up; (i#j) and ¢}—¢% are harmonic
i U.

(iii) The components ¢; of ¢ (1=j=m) are harmonic in U, and Ve;-Vo;=
0:;1V¢1|? on U.

Recently Fuglede introduced the notion of finely harmonic functions in the
potential theory on harmonic spaces and he studied finely harmonic morphisms
(cf. [71, [8] and [9]).

In this paper we treat a problem of the same type as Theorem A for finely
harmonic morphisms in R*. And we obtain the following theorem which is an
extension of Theorem A.

Theorem 1. For a finely continuous mapping ¢ from a finely open set U
(CR"*, n=2) into R™ (m=2), the followings are equivalent :

(i) ¢ is a finely harmonic morphism on U.

(ii) The components @; of ¢ (1=7=m), ¢ip; (#]) and @i—¢? are finely
harmonic in U.

(iii) The components @; of ¢ (1=j=m) are finely harmonic in U, and

V(pi-Vgoj=5i,~qu>,|2 a.e. on U,
where No; is the gradient defined in Proposition 1 of §1.

This theorem will be proved by a probabilistic method. For that purpose
we give a probabilistic characterization of the finely harmonic morphism in R".
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For n=2, B. Oksendal [15] gave the following characterization.

Theorem B (Oksendal). For a finely continuous mapping ¢ from a finely
open set U (CR?) into R the followings are equivalent:

(1) ¢ is a finely harmonic morphism on U.

(ii) For each x€U and for each Brownian motion B(¢, w) issued from x,
{o(B(t)}ose<- s a conformal martingale, where t is the first exit time of B(t)
from U.

(iii) ¢ preserves the paths of Brownian motion.

Furthermore he remarked that for a finely harmonic morphism in R®, his
characterization in R? will remain valid under an appropriate modification. We
introduce the notion of diagonal martingales and extend Theorem B to the case
of higher dimensions as follows:

Theorem 2. For a finely continuous mapping ¢ from a finely open set U
(CR™) into R™, the followings are equivalent:

(i) ¢ is a finely harmonic morphism on U.

(ii) For each x€U and for each Brownian motion B(t, w) issued from x,
{o(Bt)}osi<- s a diagonal martingale, where v is the first exit time of B(t)
from U.

(iii) ¢ preserves the paths of Brownian motion.

Oksendal proved Theorem B by Dynkin’s formula. We prove Theorem 2
by the martingale method.

In §1 we provide some definitions and results from potential and probability
theories which are used in the next section. In §2 we give the proofs of
Theorems 1 and 2.

The author wishes to express his deepest gratitude to Professors Y. Kusunoki
and T. Fuji’i’e for their valuable suggestions and comments. And the author
also thanks to Doctors N. Kono, S. Kotani and M. Taniguchi for their advices.

§1. Preliminaries.

1. Let R* (n=2) be the n-dimensional Euclidean space. H. Cartan intro-
duced a topology on R"™ which is finer than the Euclidean topology and the
coarsest of all topologies for which all the positive superharmonic functions are
continuous. This topology is called the fine topology in R™ (cf. Cartan [3] and
Brelot [17).

Let V (CR", n=2) be a compact set (in the sense of the Euclidean topology),
and for x€V, ¢, be the Dirac measure. We denote by ¢$V the swept-out of
e, on the complement CV of V, and call ¢$¥ the harmonic measure relative to
the fine interior V’ of V and x.

Definition 1 (Fuglede [7]). Let U be a finely open set in R*. A finely
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continuous function f:U—R is called to be finely harmonic in U if the fine
topology on U has a base consisting of finely open sets V with V (the fine
closure of V)CU such that f is e$”-integrable for every x€V and

f(x)=Sfds§” for every xeV.

Combining Fuglede’s Theorem ([8], Theorem 4.1) which Debiard and Gaveau’s
Theorem ([5], Theorem 2), we have the following proposition.

Proposition 1. Let U be a finely open set in R™, and f be a finely harmonic
function on U. Then there exists an R"™valued measurable function h=(h)i<isn
on U satisfying the following condition:

For every x€U, there exist a compact (in the sense of the Euclidean topology)
fine neighbourhood V(x) of x with V(x)CU and a sequence of harmonic functions
f. (each defined in some open set V, with V,DOV(x)) such that f,—f uniformly on
V(x) and for each i, 0f./0x;—h; in L*dv, V(x)), where dv is the n-dimensional
Lebesgue measure.

This proposition means the generalized differentiability of finely harmonic
functions. We denote such a generalized gradient 2 by Vf=(0f/0x)i<isn. We€
remark that Vf is independent of any selection of a compact fine neighbourhood
V(x) and a sequence {f,};.

Next we state the definition of finely harmonic morphisms.

Definition 2 (Fuglede [9]). A finely continuous mapping ¢ from a finely
open set U (CR") into R™ (m=2) is called a finely harmonic morphism if for
any finely harmonic function 4 defined on a finely open set W (CR™), he¢p is
finely harmonic in ¢=*(W).

We remark that Fuglede [9] called finely harmonic morphisms by finely
harmonic mappings.

2. Let (2, &, P) be a probability space with a right-continuous and
increasing family {F,};»0 of sub o-fields of F. Let B({, w) (=B()) be an
n-dimensional &,-Brownian motion (cf. lkeda and Watanabe [12]). If, for a
point x€R", P(ws R, B(0, w)=x)=1, B(t, w) is called an n-dimensional Brownian
motion defined on (R, &, &,, P), issued from x and we denote P by P,. The
harmonic measure is characterized by a Brownian motion.

Proposition 2 (Debiard and Gaveau [4]). Let U be a compact (in the sense
of the Euclidean topology) set in R", €5V the harmonic measure relative to the
fine interior U’ of U and a point x(€U’), and t the first exit time of B(t) from
U, namely v=inf{t>0; B(t, @) €CU}. Then, de$¥(Q)=P.(B(z)edl).

Remark. For n=2, Debiard and Gaveau proved the above proposition.
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Their proof is valid for all n.

Next we state two probabilistic notions by which the finely harmonic
morphism in R"™ is characterized.

Definition 3 (Bernard, Campbell and Davie [2], and Oksendal [15]). Let U
be a finely open set in R". Let ¢ : U—R™ (m=2) be a finely continuous mapping.
Then we say that ¢ preserves the paths of Brownian motion if, for each x,&U
and for each Brownian motion B(t, ») defined on a probability space (2, &, &, Pz,),
issued from x, the following conditions are fulfiled:

(i) There is a mapping (¢, w) (=a(1)): [0, c0)X 2—-[0, o] such that for
each we R, the function (%, w):[0, 7(@))—[0, o0) is continuous and strictly
increasing, and such that for each ¢{=0, the mapping o(t, *): 2-[0, co] is
measurable with respect to .., where 7 is the first exit time of B(t) from U,
tAr=min{t, t} and F,\.={A€F; AN{ATSs}eF, for all s€[0, c0)}.

(if) ¢*@)=lim,..-,(B(t, w)) exists for almost every we<{w;o(r(w), )
(=lim,..-o0(t, )< +oo}.

(iii) There exists an m-dimensional Brownian motion B(f, ®) defined on a
probability space (2, &, &,, P,), issued from 0 such that the stochastic process
{A{t, ®, ®)}:120, on the product probability space (X2, FXF, Fo-1n-XFo,
P, X P,), defined for =0 and (0, )€ 2x 2 by

¢(B(a~'(t, w), ), if t<o(r(w), w)

Alt, o, (D)={ . .
¢*(w)+B@t)—B(o(t(w), w), @), if t=o(r(w), o)

is an m-dimensional Brownian motion issued from ¢(x,).

Before we introduce another probabilistic notion, we state the following
proposition.

Proposition 3 (Meyer [14]). Let (2, ¢, P) be a probability space with a
right-continuous and increasing family {F.}iz0 of sub o-fields of F. Let
{X(t, @)} 20 and {Y (¢, @)},z0 be veal continuous martingales with respect to {F}izo-
Then there exists the unique process {A(t, )}.zo Satisfying conditions: (i) For
almost every wef, AQ, 0)=0 and A{, w) is of bounded variation. (ii)
{X(t, )Y (¢, 0)—A{, @)} 20 is a real continuous local martingale with respect
to {Fi}izo

We denote A(f, w) in Proposition 3 by <X, Y)({, w). When {X{¢, w)};s0=
(Y, 0} 20 <X, Y)(t, @) is denoted by <{X>(t, w).

Definition 4. Let (2, 4, P) be a probability space with a right-continuous
and increasing family {F,} s, of sub ¢-fields of §. Then an R™-valued stochastic
process {Z(t, 0)=Z(0, w)+ (X, ®))1cism}eiz0 defined on the probability space
(2, 9, P) is called a diagonal martingale with respect to {F,};zo if {Xi(t, @)} 120
(1<i<m) are real continuous local martingales with {F.};, and
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<Xi, X_,>(t, (0):5“<X1>(t, (D) a.e. on [O, OO)XQ ,
where 0;; is Kronecker’s delta.

Remark. This notion can be extended to the case of processes on [0, 7),
where ¢ is a previsible stopping time (cf. Getoor and Sharpe [11], p. 279 and
p. 297). In the next section, such a extended process is considered.

§2. Main Theorem and the proof.

We summarize Theorems 1 and 2 as follows.

Main Theorem. Let U be a fine domain (finely open and finely connected
set) in R*. Then, for a non-constant finely continuous mapping ¢ : U—R™ (n=2),
the followings are equivalent:

(i) For each x<U and for each Brownian motion B(t, w) defined on a
probability space (2, F, F., P;), issued from x, {@(B(t)}osi<- s a diagonal
martingale with respect 10 {Finc}izo, Where T is the first exit time of B(t) from
U, tAt=min{t, t} and Fp.={A€F, AN{IATSs}EF,, for all s€[0, o0)}.

(ii) ¢ preserves the paths of Brownian motion.

(iii) ¢ is a finely harmonic morphism on U.

(iv) The components ¢; (1=i=m) of ¢, @up; (i+#)) and ¢i—¢% are finely
harmonic in U.

(v) The components ¢; (1=i=m) of ¢ are finely harmonic in U and, for
almost every x €U with respect to the n-dimensional Lebesgue measure dv,

VSDz'Vng:atj | V$01 |2,
where 8;; is Kronecker’s delta.

Proof. (i)=(iv): For each zeU, let B(¢, w) be a Brownian motion issued
from z and z be the first exit time of B(f) from U. Suppose that the statement
of (i) holds. From Proposition 3, we see that {p(B()}isice (1=7=<m),
{@(B)@i{( Bt togice (E#7) and {@i(BE)—@3B(t)}osic are continuous local
martingales with respect to {%;ac}:20- Consider the stochastic process
{@i(B(t)}ose<r. Since it is a continuous local martingale with respect to { Fiac}izo,
there exists a sequence of stopping times 7, (<7) such that for almost every o< £,
7,(w)—t(w) increasingly and {¢(B(tA7,)}:20 is a continuous martingale with
respect to {Fia- }izo. Since ¢; is finite and finely continuous, for each xeU,
there exists a compact fine neighbourhood U(x) of x such that ¢; is bounded
on U(x). Now we restrict z to a point containing in the fine interior U(x)’ of
U(x). Let 7’ be the first exit time of B(t) from U(x). Then, for each v,
{@u(B(t AT, AT))} 20 is a continuous martingale with respect to {Fia-ncbiz0. By
Lebesgue’s bounded convergence theorem and Proposition 2, we have
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¢i(z)=lim ltim E.(pi(BEAT,AT)))
=E.(p(B()))

=S¢i(c)desvm(c), for all zeU(x).

This means that ¢; (1=/=m) are finely harmonic in U. Using the same
argument as above, we see that ¢;p; (i#;) and ¢j—¢3% are finely harmonic in
U, since {pi BBt} osicr (i%5) and {g¥BE)— g Bt)}osicr are continuous
local martingales with respect to {F;a:}:20. Thus (iv) is established.

(iv)=(i): Assume the statement of (iv). Since each component ¢; of ¢
is a finely harmonic in U, by Proposition 1, for any xe&U, there exists a
compact fine neighbourhood V(x) of x such that, for each zeV(x)’ and for
each Brownian motion B(f, w) issued from z, {p;(BEAT’))}:20 is a continuous
martingale with respect to {F;ar}:z0, and moreover Debiard and Gaveau’s
Theorem ([5], Theorem 2) states that

o BUATN=p1+ | VU BENAB(s) (izm),

where 7’ is the first exit time of B(¢) from V(x) and the above integral is a
stochastic integral (cf. lkeda and Watanabe [12], and Mckean [13]). From the
representation of ¢;(B(tAt’)) and Doob’s quasi-Lindeléf principle [6], we see
that there exists a sequence of stopping times z, (<z) with respect to {%,},s, such
that for almost every we 2, r.(w)—t(w) increasingly and {@(B{EAT))}iz0e is a
continuous martingale with respect to {Fac,}:z0. This means that {¢,(B))}oge<:
(1=i/=m) are continuous local martingales with respect to {F,s:}:20. Using the
same argument as above, we see that {p(B(®)e;(B()}sice G#7) and {@¥B(t))
—@%B(t)}ostsc are continuous local martingales with respect to {Fa.}.zo Since
oip; ((#7) and ¢j—¢j are finely harmonic in U. Hence by Proposition 3, we
have

P B(), o (Bx)DNM)=0;<p:(B(x)>(¢)  a.e. on [0, 7)x2. (1)

Thus (i) is established.

(i)e(v): From the well-known results of stochastic integrals (Ikeda and
Watanabe [12], Chap. II Example 2.1 and Proposition 2.3), we see that (i) is equi-
valent to the following :

(i) For each x€U and for each Brownian motion B(f, w) issued from x,
{i(B(t)}osic- (1=i=m) are continuous local martingale with respect to { Fin:}izo
and

Vo (B)Ne(B(t)=0:;|Np(B())|? a.e. on [0, 7)xX%2,
where 7 is the first exit time of B(¢) from U, { Ar=min{¢, 7} and
Fine={A€TF; AN{tAT<s}e F, for all s€[0, )}.

Hence we prove that (i)’ and (v) are equivalent.
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(v)=(1): Using the same argument as in the proof of implication: (iv)=(i),
we see that the former part of (i)’ holds. We need to prove the latter part of (i)’.

For any point xU, let B(f, w) be a Brownian motion issued from x. We
take a compact fine neighbourhood V(x) of x as in Proposition 1. Let ¢’ be
the first exit time of B(¢) from V(x). Then it is easily seen that P,(B(t)€dz,
t<t’) is absolutely continuous with respect to the n-dimensional Lebesgue
measure dv(z). We denote by p(t, x, z) the density of P,(B(t)edz, t<t’) with
respect to dv(z). For 7, j=1,2, -+, m, we set

EY={(t, w)€[0, t/(@))X2; Yo (B1)-Ve,(B(t)>d:;|Ve,(Bt) %},
EY={(t, w)€[0, v/(w)) X 2; Vp:(B1) -V, (B(t)<d:;| V(BN |*},
EV={zeV(x); Vou2)- Vo 2)>0:;|Vp:(2) 1%},

and
EV={zeV(x); Vpi2)-Vo,(2)<dy|Vpi(2)|%} .

Then we have, for k=1, 2,

(— D[ (Tpu BW) T (B~ 045 Tpu (B U EL)dtd P, (2)
=(= 1| |V BE) T, BN~ Tou BO) UL P dt

=(—D*|(Vpu2) Vo s2)—04 | Vgu@ MED (e, 2, Ddtdr@,  (3)

where X(E) generally stands for the defining function of a set E. If, for some
i, jand &, S:gx(Ezf)szdwo, (2) is positive, while (3) is zero from the latter
part of (v). This is a contradiction. Thus (i) is established.

(i)=(v): Using the same argument as in the proof of implication:
(i)=(iv), we see from Proposition 2 that the former part of (v) holds. Using
the equation (2)=(3) in the proof of implication: (v)=(i)’, we can prove the

latter part of (v), since Smp(t, x, 2)dt>0, for all z which is contained in the
0

finely connected component of V(x)’ containing x, and the n-dimensional Lebesgue
measure of a finely open set in R™ is positive. Thus (v) is established.
(ii)=(iii): Let u be a finely harmonic function on a finely open set W in
R*. By Proposition 1, for any x¢ (W), there exist a compact fine neigh-
bourhood V of ¢(x) with VCW and a sequence of harmonic functions u, (each
defined in some open set V, with V,DV) such that uw,—u uniformly on V.
Since ¢ is finely continuous in U, ue-¢ is finite finely continuous in o {(W).
Hence there exists a compact fine neighbourhood U(x) of x with U(x)Ce (V)
such that uep is bounded on U(x). For any point zeU(x)’, let B(, w) be a
Brownian motion issued from z and 7’ be the first exit time of B(f) from U(x).
Then we see from (ii) that {(u,°)(B(e (1) At’))}¢z0 is a martingale with respect
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to {Fo-1uyne }iz0» Where a(f, ) is the same function as that of Definition 3.
Hence {(u-¢)(B(a '#)AT')}iz0 is a martingale with respect to {F,~1uync}izo-
By Lebesgue’s bounded convergence theorem and Proposition 2, we have,

(uep)z)=lim E.((u-p)(B(a (D) AT"))
= E.(u=g)BE))
= p@der @, forall zevry.

This means that u-¢ is finely harmonic in ¢~'(W). Hence ¢ is a finely harmonic
morphism on U.

(iii)=(@v): This is obvious from the definition of finely harmonic morphisms.

(iv)=(ii): Assume the statement of (iv). For each xeU, let B(t, w) be a
Brownian motion issued from x and z be the first exit time B(t) from U. Since
(i) and (iv) are equivalent, {¢,(B(f))}osi<- is @ continuous local martingale with
respect to {Fiactezo. We denote <o (B(*)>(AT, w) by ¢(t, w). In the proof of
implication : (iv)=(i), we obtained the equation (1). Hence from the well-known
results of stochastic integrals (cf. Ikeda and Watanabe [12], Chap. I Example

2.1 and Proposition 2.3), we see that a(t)= MTIV (B(s))|%ds. On the other hand,
. ¢

using the same argument as in the proof of implication: (ii)=(iii), we see from
Itd’s formula (cf. lkeda and Watanabe [12], Chap. I Theorem 5.1) that (iv)
means (iii), since (i) and (iv) are equivalent. Therefore, from Fuglede’s Theorem
([9], Theorem 6), we see that |V¢,(2)| is positive except an finely nowhere
dense set, since (iv) and (v) equivalent. This means that for almost every w2,
o(t, ) is strictly increasing. Thus, from the well-known fact (cf. Getoor and
Sharpe [11], Theorem 6.7 or lkeda and Watanabe [12], Theorem 7.3"), we see
that ¢(¢, o) satisfies the conditions of Definition 3, since (i) and (iv) are equi-
valent. q.e.d.
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