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§1. Introduction.

Let R™ be the n-dimensional Euclidean space, and for each point x=
(X1, =, x4) We write |x|=(xi+ - +x2)"% If a=(ay, -, a,) is an n-tuple of
nonnegative integers a;, we call @ a multi-index and denote by x% the monomial
xf1--- x%n, which has degree |a|=37%,a; Similarly, if D;=d/ox; for 1=<j=n,
then

D*=Dg1 ... Dan

denotes a differential operator of order |a|. We also denote a!=a;! - a,!.
Throughout this paper, let 1<p<oco, (1/p)+(1/p")=1 and [r] denotes the
integral part of a real number ». As usual we denote by L? the class of all
measurable functions for which

11,=({ 1 7G)17dx) P <eo.

Moreover, for a nonnegative number a, |-|, . denotes the following norm:

115 0=((1 7000 170+ 1x1)-2dx) ™.

Weighted norm inequalities for various integral operators on R™ have been
investigated by several authors [1], [2], [4], [5]. In this paper we are con-
cerned with a weighted norm inequality for the operators of potential type.
Let m be a positive number, and let K,(x) be a homogeneous function of
degree m—n which is infinitely differentiable in R*—{0}. For an integer 2 <m,
we put

Kn(x—y)— (x*/a)D*Kn(—y), 0=k<m,

Kn, #(x, y)={ sk
Kn(x—y), k<—1.

For a locally integrable function f, K% .(x) is defined by
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K4 o0)= [ Kn, 45, F(0y

if it exists. We call K/, . a potential of order (m, k) of f. The potentials of
order (m, k) play an important role in the study of the space of Beppo Levi
type [3]. In the paper [3], we proved the integral estimate for K} ;.

Theorem A. Let m—(n/p)#0, 1, -, m—1 and k=[m—(n/p)]. Then
1/q
(Slx | _q‘"‘-("/l’”-"[K{n,k(JC)lqu> =Clflyp

for each q satisfying p=<qg<oo in case of m—(n/p)>0 and p=<q=pn in case of
m—(n/p)<0, where (1/pn)=(1/p)—(m/n).

The purpose of this paper is to establish the following weighted norm
inequality for K%, ..

Theorem B. Let m—(n/p)#0, 1, -, m—1 and k=[m—(n/p)]. Then
1/p
({a+1xn-mo-e 1 wo017dx) " <CIfl .0

for each a satisfying 0=(a/p)<k+1—m-+(n/p) in case of m—(n/p)>0 and
0=(a/p)<(n/p)—m in case of m—(n/p)<0.

The proof of Theorem B is given in Section 3. Section 2 is devoted to
several lemmas which we need to prove Theorem B.

Throughout this paper, we use the symbol C for generic positive constant
whose value may be different at each occurrence, even on the same line.

§2. Lemmas.

We put [,={tx;0=t=<1} and denote by d(y, {,) the distance between ¥
and [,.
We begin with

Lemma 2.1. If k=0, then for d(y, .)=|x|/2 we have

[ K, o(x, ) SClx|*+ ] y|m-k-ton,
Proof. By Taylor’s formula, for ye/, we have
Kpalt, =(e+1) 5 [ ((1x1=0*/aDx) D" Knltx' = y)dt
where x’=x/|x|. From the homogeneity of K, it follows that

| K o, DISC 7 (1x =08 tx/ =y mon=rid,



A weighted norm inequality 205

for yel,. Since d(y, [,)=|x|/2 implies |y|/3=Z|tx'—y|<3|y| for 0<t< x|,
we obtain

Izl
| K 1, DISC] T (=08 |y menerera
:C|x|k+1|y|m—n—k-1’

for d(y, {;)=|x|/2 and so the lemma is proved.

To each function fe L? the maximal function M(f) is defined by

M) =supon(B(x, ) | F()ldy,

where B(x, r) is the open ball of radius », centered at x, and m(B(x, r)) denotes
its Lebesgue measure. By the Hardy-Littlewood theorem the following inequality
holds: For any feL?

@.1) IMOI=CIf5.

As consequences of the above maximal inequality we establish two lemmas.

Lemma 2.2. If m—(n/p)>0, then

(f1x1-n

Proof. From m—(n/p)>0, we can choose a and g such that a>0, 1<¢g<p
and m—(n/q)—(a/p)>0. We note that d(y, [,)<|x|/2 implies |x—y|<(3/2)|x].
Using Holder’s inequality we have

Slxl"’”’

x—31m=f(dy| dx) T =Clf1,.

Sd(y.l$)<lz|/2

| x—y1m-"f()dy|"dx

Sd(v.l,)<|z|/2

S x|-mpta Ixl'(a/p)|x—y|m_nf(y)dylpdx

I

Sd(y.l;)<|z|/2

clixi-moe(( |x—y|m-eD=n| £(3)]dy)  dx
1z-y1<(8/2) 1 z|

Il/\

/\

, plq’
= S|xl mp+a gw_yl«m)mlx—qu (m~(a/p)_mdy>

x (Slr—yl<(3/2)|r| lf(y)lqdy)p/qu ’

where (1/¢9)+(1/¢)=1. From ¢'(m—(a/p)—n)>—n, it follows that

IéCS l x l -mp+a+p(m—(a/p)—n)+(p/q')n<g |f(y) lqdy)plqu

lz-yi1</2) 1zl

I

CS(I x | —nSI-’C—Ul<(3/2)III |f(y) lqdy)p/qu

=cfmq £1oe)rids
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Hence from (2.1) we obtain
1=cl(1 s mendx =i f)17dx
This concludes the proof of Lemma 2.2.
Lemma 2.3 can be proved in the same way as the proof of Lemma 2.2.

Lamma 2.3. If m—(n/p)>0, then

(fixi-me

The following lemma is due to G.O. Okikiolu [6], which is useful for
estimates of integral operators.

Swm ly l"‘-"f(y)dyl”dx)”"gcnfu,, :

Lemma 2.4. Let (X, my) and (Y, my) be measure spaces, let p, q, t1, ¢tz be
positive numbers such that

1<p=q, (/) +(u:/p)=1,

and let K(x, y) be a measurable function on XXY. Suppose that there are

positive measurable functions ¢, on X, @, on Y and positive constants My, M,
such that

2.2) Sysbz(y)”' [ K(x, y)|#2dmy()= MP ¢:(x)7",

2.3 [ Bitom Kz, ) mdma(r)S MIgoY.
If the operator K is defined by

Kftx)=| K(x, 3)f(3)d3,

then
[KSfllg= MM, fll5 .

As applications of Lemma 2.4 we shall show two lemmas.

Lemma 2.5. If m—n/p)>0, k=[m—(n/p)] and 0=a/p<k+1—m+(n/p),
then

(fat1xpmomepzjema||  yimerenpy)dy|dx) P CI Sl

lyizizl

Proof. [t suffices to show

(e me-epgiaems| [ jypmeronat iy hergidy| dx) " =clel,

lylzizl

In order to apply Lemma 2.4, we put
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(L4 fx [)y-m-t@r | g [ B4t y | mok-t=n(1 4| y|)2/?, lylzlxl,

K(x, y)=
0, lyI<lxl.

For ¢.(x)=¢:(x)=(1+|x])- PP p=g and p,=p,=1, we shall show (2.2) and
(2.3). From (a/p)—(n/p)<0 and m—Ek—1—(n/p)+(a/p)<0, it follows that
1,=(g:5)7 K(x, »)dy

:(1+|x ])-m—(a./p) Ix | k+1§ Iylm-k—l—n(1+ ]y|)(a/p)-<n/p)dy

lylzizl

< -m-(a/p) k+1 m-k-1-n+(a/p)-(n/p)
S|z meem x|y presensem-oim gy
ZC(1+lx])-m-(alp)|x|m—(n/p)+(alp)'
Because of m—(n/p)+(a/p)>0, we have
L=ECA+1x])- P =Cd,y(x)?".

Thus we obtain (2.2). Next, in order to show (2.3), we put

1= g.(0?K(x, )dx

=@ 1yherelymoiee] e meem e gy,

lzIsiyl

From —m—(a/p)—(n/p’)+k+1>—n, it follows that
S (1_|_ I xl)-m—(alp)-(nlp') Ix ] k+ldx§C(1+ |y |)—m—(alp)—(n/p') l ¥ | k+n+1-
1zIs1yl

Therefore
L<C+y])e/?| y|m-k-1-n(1+4 | y|)-m-(@I)= (12 | 5|kt
=C(ly|/A+ 1y )™+ y[)- /2"
SC(A+ |y wrem
=C¢y(¥)?.

Thus we obtain (2.3), and so the lemma is proved.

Lemma 2.6. If m—(n/p)<0 and 0=Za/p<(n/p)—m, then

(asixnme=e|§  1s1mnsGidy| dx)""<Cifl.a.

Proof. We shall show

(S(l—!— |x|)-mp-a S”“z,x, |y|m-n(1+|y[)alpg(y)dy’pdx)”pécug”p-

We apply Lemma 2.4 again. To do so we put



208 Takahide Kurokawa

A+ [x])-m-te | y|m-n(14] y])e/?, lyl=]x],
K(x, y)=
0, [yl <lxl,

For ¢,(x)=¢,(x)=|x|-™??" p=¢g and p,=p,=1, we shall verify (2.2) and (2.3).
We set

L=g.)7 Ktx, »dy

:(1+|x|)-m-(a/mg Iy["“("/p”'"(l-}—Iyl)a“’dy.

lylzizl

From m—(n/p)+(a/p)<0, it follows that
Slylz:zllyl’"""”’""(l—l-lyl)““’dyéclxl"‘""””(l-l-lxl)“"’-

Therefore
JISCAA+|x)™=@im | | meiv(14| g |)o/?

=C(lx|/A+1x )™ x| -/
<C|x|-®/»

:C¢1(x)p'-
Thus we get (2.2). Next, to show (2.3), we put
=gk, 3)dx

=y Imr Iy DeR| ()

1zisiyl

On account of —m—(n/p’)—(a/p)>—n, we have
SI . l|xl—(n/1?')(l_.|_le)-m—(alp)dx§C|ylnlp(l+]y|)—m-(a/p)‘
z Yy

Hence
LECIy ™ML+ 1y NPy M1+ y|)-m- (/2

=C(U31/A+ 1y D)™ (3]0
<Cly|-®

=C¢2(y)"-

Thus we obtain (2.3), and so the lemma is proved.
The final lemma is due to E. M. Stein and G. Weiss [7].

Lemma 2.7. If m—(n/p)<0, then

(N1x1me|§ix—yim=epindy|"ax) =cifi,.
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§3. Proof of Theorem B.

First let m—(n/p)>0, #1,2, .-, m—1, k=[m—(n/p)] and 0=a/p<k+1
—m~+(n/p). From the definition of K, , and the homogeneity of K,, we have

I

([ 1w n-mo-e K, ax) 17dx) oo

=C(fustznme(| =y "1 ()1 dy) dx) "

ay, lp<izi/e

E¥ol> (S(H—|xI)""”"‘(dezmwlxI"“lyl’"““'""lf(y)ldy)pdx)"p

laisk

1/p

+(Jas1xnme-e(§
=CI,+CI,+1s.

| K (%, 9)f ()] dy) dx)

dy,lp)zizi/2

For I,, we have

m _ymen( LY I\e/?
llé(glxl p(de,tsz/zlx Y (l-l-IXI

X FOIA+1y )P dy) dx)

1/p

Since d(y, I;)<|x|/2 implies (14+|y)/(1+|x|)=C, we get

(15[ g 5N Ly 05) 05)”

On account of Lemma 2.2, we have
L=Clflpa-

For I,, we have

1+ 1yl \er»
< -(m-lal)p m-lal-n
]2=mlzsk<slx| (de.m«m/zlyl (1+Ix|

X fO) A+ 1y e»dy) dx) ",
Since d(y, I-)<|x|/2 implies |y|<(3/2)|x|, we get

—(m-\a m-lal-n . -(a P e
n=c 5 (Jlxi-mmeon(( - yimes SN Ay D@ dy) dx)

From m—(n/p)>0, #1, 2, ---, m—1 it follows that m—|a|—(n/p)>0 for |a|<k.
Hence from Lemma 2.3 we see that

LEC 2 1f15.0=Clflp.a-

To estimate [;,, we apply Lemma 2.1. Then we get
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]3éc(S(1+|x |)-’m13—a|x](k+1)17(5 Iy|m_k_n_1|f(y)|dy>pdx>”p

dy,lp)zlzi/2
Since d(y, [;)=|x|/2 implies |y|=|x|/2, by Lemma 2.5 we have
L=Clflpa-

Thus we obtain
I=Clflpa-
Next, let m—(n/p)<0, k=[m—(n/p)] and 0<a/p<(n/p)—m. From the
definition of K, , and the homogeneity of K,, it follows that

J=(Ja+1xnmo-e g sl 7dx)

1/p

=c(Jariximo-e(( | 1x=yimrif)1dy) d)

1/p

+c(faxnmo-e(|
=CJ,+CJ,.

lx=31m "1 f(3)]dy) dx)

lylz2izl

For J,, we see

1/p

Re(erme ([ e (2D A D dy) dx)

It follows from |y|<2|x]| that 14|y|=C(l1+]|x|). Hence by Lemma 2.7,
J=Clflpa-

Since |y|=2|x| implies |x—y|=|y]/2, we have

rc(fatiznmee(( o 1simniody) dx) "

iyla2ix
Hence by Lemma 2.6, we obtain

L=Clfllp.q-
Thus we have
J=Clflipa-
We complete the proof of Theorem B.
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