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On the conjugacy of nilpotent elements
in the classical Lie algebras

in relation to their representations

By

T6ru UMEDA

Introduction.

Let G be an algebraic group over an algebraically closed field K , and g the
Lie algebra of G .  The subject of the present paper is on the conjugacy of nilpotent
elements in  g  in relation to  representations o f G .  L e t u s  explain our problems.
Let (a, V ) be a  finite dimensional rational representation of G .  We use the same
notation for the corresponding representation o f  g .  F o r  nilpotent elements X , X '
in g, we consider the following two types of conjugacy:

(C) under Ad(G) ,

(Ca) a(X )— a(r) un der GL(V) .

It is easy to see that (C ) implies (CO. Then there arise naturally the converse
problems:

Problem I (G; a). Does it hold that (C o.) implies (C)?

And m ore generally,

Problem Î (G ; a) . Find all the conjugacy classes in the sense (C ) which are
glued up in (C o).

In the present paper, we are mainly interested in a special case where a  is  the
adjoint representation a,. We call these problems Problem I,(G), Problem 11(G),
for this special case.

For the case where g is the simple Lie algebra of exceptional type E6 , E 7 , E 8 ,
T. Hirai announced in [3, Th. 6] the affirmative answer to Problem I,(G) when the
characteristic of K  is good fo r  g . T h is  result is the first m otive for our study,
and we are concerned with the classical cases.

Let us specify our object and state the main resu lts. In this paper K is always
assumed to be of characteristic z e r o . To Problem I,(G) with G=GL(n, K), Sp(n, K),
0(n, K), we obtain the following answers both in the affirmative and the negative.

Theorem A  (Corollary  to Theorem  1). L et G  be one of the groups GL(n, K),
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Sp(n,K), 0(n, K). If  G is not 0(2 4 + 1 ,K) (r=1, 2, •••), then (C o .i )  implies (C ) .  Here
a, is the adjoint representation of G.

Theorem B (Theorem 4 (ii)). For except for r =2, 4, there exist nilpotent
elements X , X ' E 0 ( 2 2 r - I - 1 ,  K ) such that X '" \ -X ' under 0(22

1, K ) but ad(X )— ad(r)
under GL(o(22 r± l , K)).

Thus among the  classical groups, a  particular series of groups 0(2 2 r+1 , K ) of
type De  behaves exceptionally for Problem P r o b le m  I, fo r these groups turns
o u t to be difficult a n d  o f  much interest. I n  this paper, we reduced Problem

K)) to looking for certain polynomials (§ 4 ) .  And by giving explicit examples
of such polynomials, we approached Problem -1- 1 (0 (n , K )). To establish Theorem B,
our examples are sufficient. But they are not complete and fall short of Problem I,
for the two cases r =2, 4 excluded in Theorem B.

Now we explain the contents of this paper in more d e ta il. In §1, we develop
preliminary reductions for Problem J1(G) with G=GL(n, K), Sp(n, K), 0(n, K) as
follows. In the first place, we settle Problem I(G; ad affirmatively with a, the natural
identical representation. Therefore we can replace (C ) by its equivalent (C o.o )  in
Problem I,(G) for these groups. In the second place, using the Jacobson-Morozov
theorem, we rewrite Problem I,(G) into the following problems of equivalence be-
tween representations o f  1(2, K).

Problem II.
Then

Let 7r1 a n d  rc, be finite dimensional representations o f  g(2, K).

( i ) Does 0 27C1 ' s •  0 2Z
2

imply
(ii) Does S27z- 1--.S2 r 2 imply 9

(iii) Does A 27C1 .̂., A 27r
2

imply 7r1̂ - 7 r2?

Here (i), (ii), (iii) correspond to G=GL(n, K), Sp(n, K), 0(n, K), respectively.
(To be more precise, certain restrictions should be put on (ii) and (iii) for the exact
correspondence between Problems I, and II.) Thus our major concern is transferred
to the problems on representations of g(2, K ) .  Then we can utilize their charac-
ters. In §2, along this line we prove Theorem 1, which asserts the affirmative an-
swers to Problem II, hence to Problem 11 (G) with G=GL(n, K), Sp(n, K), 0(n, K).

In §3, we study some generalizations of Problem II, which treat representations
on tensor spaces of higher degrees instead of 2nd degrees. Let 1' be a group, and
n a  representation of F. We can decompose the N-th tensor representation ®Nr
under the action of the symmetric group and denote by Sir its component cor-
responding to the irreducible representation of

 N
 labelled by a partition A  o f N.

For representations 7r1 and 7r2 of F, we consider

Problem III (F ;  A). Does it hold that Sx 2V1--, S2V2 implies 2V1
, - 7 0

The main result in  §3  is the following theorem, which gives some affirmative
answers to Problem 111(1'; A).
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Theorem 2 .  L et r be a  connected algebraic group, and 7ri (i= 1 , 2) be com-
pletely reducible rational representations of  r, of  f inite dim ensions. A ssum e that a
partition A  of  N  is a hook, and

( 4 )  the dimensions of 7C , (i =  1, 2) do not divide ( N - 1 ) !  N k  for any  k .

Then S x 7r,--, S x 7r2 implies 7t,--, 772 . Moreover, in case A =( N ) ,  i.e ., S = S "  th e  N -th
symmetric tensor product, the conclusion holds tv ithout the assumption (u).

From Theorem 2, we can also deduce Theorem 3 asserting affirmative results
for Problem I(G; a).

In §4, we return to Problem II (iii) and Problem I1(0(n , K )), and investigate the
counterexamples to these problems. We reduce the problem o f  such counterex-
amples to that o f  finding certain polynomials with integral coefficients, which we
call distinguished (Theorem 5). Briefly speaking, these polynomials P(T ) come
from the differences of the characters of representations, and are characterized by
two properties: (a ) P(T ) divides P ( r) ; (b) certain unimodality conditions (see
Definition 4.2 for the precise meaning). Theorem B follows from the  following
explicit examples of distinguished polynomials: P(T)=(T— l) 2 k  (1c- .1), and P(T )—
( T 2 _ 1 ) 2(7 -, 1 )12+21, (k >  0 ) .

In § 5 , we proceed to discuss distinguished polynomials. By virtue of the
property (a), we can obtain a  scope for their explicit form, and some fundamental
properties as w ell. Here our problems come across an elementary theory of cyclo-
tomic fields. To exhaust the distinguished polynomials is, however, rather com-
plicated because of the property (b), and we have not yet attained to a general rule.

In §6, we prove the following

Theorem 6 .  L et r be a group, and 7r a finite dimensional representation of
P .  Put

=  ED A r , a n d  7r2 =  e  A ir .
: even i :  odd

Assume that 7c1 and 7r2 are completely reducible. Then A A 27,2.

Theorem 6  provides us with counterexamples to Problem III (P ; (1 2))  fo r  r
of fairly broad classes of groups. Especially, applying Theorem 6 to r=SL (2 ,K )
and  r the  2 1-dimensional irreducible representation, we see that th e  polynomial
P (T )= - 1 - 1 ) 2  is distinguished. For this fact, we give another calculative
proof in connection with a q-analogue of the binomial theorem and  the  Gaussian
polynomials.

In §7, we study more closely a  special case of Theorem 2, and obtain the pre-
cise result as follows.

Theorem 7. Fo r r-SL(2, K ) ,  Problem  H U ; (2, 1)) is solved affirmatively
without the assumption ( ).

To prove this, we make use of some facts on cyclotomic polynomials over
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ZVI* where co is a cubic root of unity.
Our method is elementary, and is naturally connected with other branches of

mathematics. For example, with cyclotomic field (§§ 5 & 7), and with a q-analogue
of the binomial theorem ( § 6 ) .  We think this worth observing.

The author wishes to express his gratitude to Professor T. Hirai fo r valuable
advices and comments in this presentation. The author also expresses his thanks
to D r. S. Matsumoto and Mr. H. Yamashita for fruitful discussions.

Notations.

We denote by Q and C the field of rational numbers and of complex numbers,
respectively. Moreover Z  denotes the  ring of integers, and Z ,  the  set of non-
negative integers. Throughout this paper, K  denotes an  algebraically closed field
o f characteristic zero, and a vector space is assumed to be finite dimensional over
K .  Also a representation is assumed to be finite dimensional.

Let R  be a  ring  with unit, and T  an  indeterminate. We denote by R x  the
group of invertible elements in R . And R[T], R[T, T - ], or Ran denotes the ring
of polynomials, of Laurent polynomials, o r  o f  formal pow er series with coeffi-
cients in R, respectively.

B y  GL (n, K ), SL (n, K ), Sp(n, K ), a n d  0(n, K ), we denote respectively the
general linear g ro u p , th e  special linear group, the sym plectic group, and the
orthogonal group o f  size n x n .  Their L ie  algebras a r e  denoted by gr(n, K),

K ), 0(n, K ), and o(n, K), respectively. The total matric algebra of rank n  is
denoted by M (K ).

For a set M , the cardinality of M  is denoted by

§ 1 .  Problems and preliminary observation.

1 . 1 .  Throughout this paper K  denotes an algebraically closed field of charac-
teristic zero . L e t G be an algebraic group over K, and g its Lie algebra. Let (a, V)
be a finite dimensional rational representation of G . We use the same notation a
for the  corresponding representation of g. For nilpotent elements X , X ' in g, we
consider the following two types fo conjugacy:

(C) X  X' under Ad(G) ,
(C„) a(X ) , —, a ( r )  un der GL(V) .

It is easy to see that (C) implies (C „) . So we ask for the converse implication,
Problem I for (G; a):

Problem I ( G ; a ) .  Does it hold that (C,r) implies (C)?

In this paper we study this problem mainly for the classical groups and their
adjoint representations. Especially by Problem I1(G) we denote Problem I(G; a)
with a the adjoint representation.
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1.2. N ow  w e take the groups G=GL (n, K ), S p(n,K ), 0(n, K ), and remark
some preliminary results for o =a, the natural identical representation o f G .  In
general, the following fact is known.

Proposition 1.1 (due to lw ahori). Let R  be a K-algebra of  f inite degree, and r
an involutive anti-automorphism of R .  Pu t G =R x , a r =-(a G; aT = a l - ,  and g ,=
{ aGR ; .  Then for x , x 'E  ( re sp . x , x ' E g.r), x  and x ' are conjugate under
G, if and only if  they are conjugate under G.

We apply this proposition to  the case with R =M n (K ) and d  =S taS - 1 , where
GL(n, K) is an alternating or a symmetric matrix, and ta denotes the transposed

of a. Then for G=Sp(n. K ) or 0(n, K ), the conjugacies (C) and (C,0) are mutually
equivalent. In  other words, Problem I(G; ao)  i s  affirmative for these groups.
From this, we see that Problem I(G; a )  for G = GL (n, K ), S p(n, K ), 0(n, K ) is
reduced to the comparison of the conjugacies (Co.o) and (C.).

Remark 1 . ( 1 )  For a simple algebraic group G of type A i  (resp. B i ,  CI ), the
adjoint group is identical to that o f  GL (1+1, K ) (resp. 0(21+1, K), Sp(21, K)).
So, for G of these types, the study of Problem I,(G) is equivalent to that for the
latter groups.

( 2 )  On the other hand, for G of type D i , the circumstances are slightly com-
plicated . In fact, there are nilpotent classes in o(2/, K ) under 0(21, K), each of
which splits into two classes under S 0(21, K ). More precisely we have the follow-
ing.

For X E gl(n, K ), we call X  is of Jordan type (Pi, •••, p s )  if X  is conjugate to
A p i )ED • •• ED J(p 3) under GL(n, K), where J(p) is the Jordan matrix of size p x p :

0  l
0 1 0

J(p )  =

 

. •

. 1

  

o

  

o .
Proposition 1.2 (c.f. [10, pp. 263-264]). L et X  Eo(21, K ) be  o f  Jordan type

(p„ • , p s ). Then 0(21, K)-class o f  X  splits into two S0(21, K)-classes if  and only
if  p i 's are all even.

By virtue of this proposition, for the groups of type D i , it is sufficient to con-
sider 0(21, K) instead of S0(21, K).

1.3. For convenience of the readers, we give here a proof of Proposition 1.1,
from which we see that the proposition is valid for K  of any characteristic other
than 2.

Proof  of  Proposition 1.1. Take a g e G  such  tha t x '= g x g '.  O perate r on
both sides o f this, and one gets x ' .  Therefore e g  commutes with x.
If there exists an he G such that grg=hTh and hx =x h, then we obtain x ' =gx g-l=
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(gh - 1 )x(gh - 1 ) - 1  an d  gh - l e G i ., so the assertion. For such an h, we can take a
square root of e g  which is written in the form of a polynomial in e g  with
coefficients in K .  The existence of such a square root is assured by the following

Lemma 1 .3 .  L et a E R  be invertible, and  in  a positive integer. T hen there
exists an m-th root of  a  which is written in the form  of a polynomial in a with coef-
ficients in K.

Pro o f . This is known for R =M „(K ) (see Wedderburn [11, 8.05]), and we can
easily reduce our case to matrix case by way of the regular representation of R.
The following discussion is pararell to the case of M (K ).

Let f (T )  K [T ] be the monic minimal polynomial of a, and factorize it into

f (T ) H (T—a i )m , ( a , * a ;  i f  i *  j ) .

Put f ,(T )=f(T )I(T — a,) m , , and take g,(T )e K [T ] such that

1 =  E f ( T ) g , ( T ) .

Put p i (T )=f i (T)g i ( T ) .  Then we have 1 = E i M T ); p i (a)p i (a) = 0  for i *  j; p i (a)2 =
p i (a); and (a- a i )m p i (a) = 0 .  Thus putting b  = E i a i p i (a) and c =  E i (a — a i )p i (a),
we get a=c +b  (Jordan decomposition). Note that b  is invertible, and that b"—
E i aT i p i (a) is also a polynomial in a. Now put

h (  E alimp i (a ))• ( E (11m)

Since b 'c  is nilpotent, h  is written in a form of polynomial in a. And we have
clearly hm  =a by the binomial theorem. This completes the proof of Lemma 1.3,
hence of Proposition 1.1.

Remark 2 .  The denominator of the binomial coefficient ( l i.m )  i s  divisible

only by the primes dividing m .  So that Proposition 1.1 is valid for K  of charac-
teristic other than 2.

1 .4 .  Taking G=GL (n, K ), S p(n, K ), 0(n, K ), we reformulate Problem 1 1(G)
in terms of representations of K(2, K ) .  We apply the Jacobson-Morozov theorem
(see Bourbaki [1]. Jacobson [4]).

Let g be a linear reductive Lie algebra over K acting on the n-dimensional vector
space V =K f l . For a non-zero nilpotent element xeg, there exists an K2-triplet

{X , H, Y )- : [H, X ]=2X , [H, Y ]= —2 Y, [X , Y ]=H . The existence of K2-triplet
is assured by the Jacobson-Morozov theorem, and such a triplet is unique up to
conjugation leaving X  invariant. Thus for any non-zero nilpotent element X,
we get an n-dimensional representation 71-,  of K(2, K ) on V  through For X=0,
we define nx  as the trivial representation of K(2, K ) on V .  Note that 7r, is unique
up to equivalence, not depending on the choice of O n  t h e  other hand, for
nilpotent elements X, X ' egi(n, K), we see easily that X  is conjugate to X ' under
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GL(n, K) if and only if 7 r ,  is equivalent to r
For example, if  X  is the Jordan matrix J(n), then x x  i s  the n-dimensional

irreducible representation r ( n)  of K(2, K ) .  In general, for X  of Jordan type (p 1, • •• ,
A ), we have r  n ( Pi )  ED• • • ED 7C(P  ' )  (equivalent).

1.5. Let X  be a nilpotent element in gi(n, K ) .  We give here a  criterion, by
means of r x ,  whether X  belongs to 4 (n , K ) or o(n, K ) up to conjugation under
GL(n, K).

L et r  b e  a  representation o f  K(2, K )  with irreducible decomposition
7r--ED imi •ro ) , where mi is the multiplicity of ro )  in r .  We consider the following
conditions on multiplicities:

(M1) The multiplicity m i is even for any odd integer i.
(M2) The multiplicity mi is even for any even integer i.

Then we have

Lemma 1.4. Let X  e gI(n, K ) be nilpotent. Then
(i) There ex ists a  geG L (n , K ) such that (A d g )X  4 (n , K ) if  and only  if

7C x satisfies (M1).
(ii) There exists a gGGL (n, K ) such that (A dg)X  Go(n, K ) if  and only  if  r x

satisfies (M2).

This is  an  immediate translation of the theorem on nilpotent elements in
O(n, K ) and o(n, K) (see e.g. Hirai [2, Th. 5.2]).

1.6. As we have transferred the conjugacy between X 's  to  the equivalence
between 7r1 's ,  it remains for Problem I,(G) to find the relation between r ,  and
r ad

Let g=gi(n, K ), p(n, K ), or o(n, K), and let a, be the identical representation
of g on the n-dimensional vector space V. Then we see

Lemma 1.5. (i) The adjoint representation of gi(n, K) is equivalent to a o ® ct.
Here at is the contragredient representation of a,.

(ii) The adjoint representation o f  p(n, K ) is equivalent to S'a o . H ere S'a, is
the symmetric tensor product representation of a, of  degree 2.

(iii) The adjoint representation of  o(n, K ) is equivalent to A 2 c0 .0 . H e re  A 2 a 0

is the alternating tensor product representation of  e0 of  degree 2.

P ro o f  The assertion (i) is clear from the fact End V  = V  O V *. For (ii) and
(iii), see the exercises 13.8 and 13.18 of Bourbaki [1, Ch. VIII].

From the lemma above, restricting the representation a() to  the K2 -triplet
we get

Lemma 1.6. For a nilpotent element X  e g,

rad 0 2  xxi f  g  = K)



520 Tôru Umeda

(ii) rad S'zx i f  g =  4 (n , K) ,

(iii) A 2 irxi f g 0 (n, K)

Here 0 2 7rx  denotes the tensor product representation of  ir,, of degree 2.

Pro o f . Note the fact that r---, r *  fo r a  representation of g(2, K ) .  Then
the assertions are obvious from Lemma 1.5.

1 .7 .  Now we are led to

Problem II. L e t  r i ,  r ,  be finite dimensional representations of g(2, K ) .  Then

( i ) Does 0 2 7 ri - - -' 0 2 7 1'2 imply
(ii) Does S2 x1

, --S 2 r
2

imply 7ri.'"'" 7 2?

(iii) Does A 2 r i „ ,  A 2 7r2 imply 97r2 •

Moreover let us call (ii') (resp. (iii')) the problem (ii) (resp. (iii)) considered
for r i , 7r2 both satisfying (M1) (resp. (M2)).

Our deduction in this section shows that Problem I i (G) for G=GL(n, K) (resp.
Sp(n, K), or 0(n , K )) is equivalent to Problem II(i) (resp. II(ii'), or H(iW)).

§ 2 .  Affirmative results.

2 .1 .  In this section we show that Problems II(i) and II(fi) are affirmative.
As for Problem II(iii), we prove it affirmative when the dimensions of the represen-
tations r i  and 7r2 are not equal to odd times power of 2. Thus Problem I i (G)
turns out to be affirmative if G is a simple algebraic group of type A1, B 1, C 1 (any
1), and if G=0(21, K) (I not power of 4). More precisely, we get the following.

Theorem 1. L e t r i and  r ,  be f inite dim ensional rational representations of
S L (2 , K ). Then

(  i)  0 20 2 7r2i m p l i e s  7V1 -'7V2 .

(ii) S2 x i  S 2 7r2i m p l i e s  ri."--"z2 •

(iii) A2 2V2i m p l i e s 2, if  th e  dimensions of 7c1 and r ,  are not
equal to odd times power of 2.

Corollary. Let G  be one of the groups GL(n, K), Sp(n, K), 0(n, K), and g the
Lie algebra of G .  Assume that G is not of type D i w ith  1=4r (r=1, 2, ••.). Then
for nilpotent elements X , X ' in g, the following three are equivalent.

(C) X ' under G,
(C,) X X ' under GL(n, K) ,
(CO ad(X)— ad(X) under GL(g) .

This corollary follows from Theorem 1 and the reduction in § 1 .  In fact, we
know that the linear representations of SL(2, K) correspond canonically to those of
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1(2, K ) (see Bourbaki [1, Ch. VIII, 1, n ° V]).

Proof of Theorem 1. Recall that every finite dimensional rational representa-
tion r  of SL (2, K ) is completely reducible and is determined by its trace Tr r  up
to equivalence. Moreover, Tr 7 r  is determined by the values on the Cartan sub-
group

( t 0

f)
A  = { h (t)  = ; t  IC }  .

t -

Let u denote the one dimensional representation of A  defined by h(t)'—t. T hen  an
irreducible rational representation of A  is of the form u1 : h(t)i—*ti for some j  Z.
Therefore r I A  is written in the form e , a ; •ui, where aj E Z +  is the multiplicity of
u1  in 7r A. Now associate r  with a Laurent polynomial c ,(T )=E ;  ai T i, where T
is an indeterminate. Then c,(t)=(T r7r)(h(t)) for t E K x . Since K  is an infinite
field (in fact K  is assumed to be algebraically closed), the function c ,( t)  on 10
determines uniquely the Laurent polynomial c ,( T ) .  The fact that h(t) and h(t - 1 )
are conjugate in SL (2, K ) shows c,(t) =  c,(t - 1 ). So that c ,(T ) has the symmetry
c„(T )=c,(T - 1 ).

We recall here the fundamental relations:

(2.1) (Tr 0 2 7r)(g) = (Tr r)(g) 2

(2.2) (Tr 52 7r)(g) = ((Tr 7r)(g)2 + (Tr n) (g2))/2

(2.3) (Tr A' 2v) (g) =  ((Tr 7r)(g)2 —(Tr 7r) (g2))/2 .

(C.f. Serre [9, Prop. 3] for (2.2) and (2.3).)

Proof of (i). By (2.1), it suffices to show that c, 1 (T) 2 =c 4 T ) 2 implies c, i (T )=
c.,,,(T ) .  From c, 1 (T) 2 =c 4 T ) 2 ,  we get (c, 1 (T )d-c4T ))(c,

1
(T)—c.,,

2
( T ) ) =0 .  Since

c, 1 (T )H-c4T )=c,, 1 s , 2 (T ) is not zero as a Laurent polynomial, c., (T )— c,4T ) must
be zero.

Proof of (ii). By (2.2), it suffices to show that

c„,,1(T)2 c , ( r )  =  c , 2 (T) 2 c 4 r )  implies c , , 1(T ) = c, 2 (T) .
Put

(2.4) p(T ) = c , 1(T )— c4T ) , q (T ) = c„ 1 (T )± c 4 T ) .

Then our assumption amounts to p (T )q (T )= — p (r) . Let us prove p(T )=0 by con-
tradiction. Assume that p ( T )  0 , and factorize p(T) = const xT - L x H„ (T — ay  ,
where L E Z ,  and a's are the roots in C of p(T ) with multiplicity r c,. Then we see

q(1) = —  lim p(T 2)/p(T) 
T + 1

But q(1) = c i t 1(1 )±  c 4 1 )  represents the dimension of the representation r ,  7 r 2 ,
which is clearly positive. This give a contradiction. Hence p(T )=0.
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Proof of (iii). Let p(T ) and q(T) be as in (2.4). Then by (2.3), the assumption
A 2 r i^ -. A 2 r 2 amounts to

(*) p(T )q(T ) = p(r) .

Assume p (T )# O, and write p(T ) =constx  T - L x (T— a) r a  as above. Then
q(1) =lim„,p(T 2)/p(T) =2 r '.

Let n , and n2 b e  the dimensions of r ,  and 7c2 respectively, so that ni
,----c,1(1)

(i=1, 2), n1 —n2 =p(1), and n1 +n 2 =q (1 ) . Putting T =1  in  (*), we obtain (n1 —n2)
X(n1 +n 2 - - 1 ) =0 .  Since n1 +n 2 _ 2 ,  we see n1 =n 2 ,  and so n1 =n 2 =2r1 - i . Thus it
remains to prove that r, is even.

Now from the symmetry p (T )=p (T ') , we see

ff (T— a)e' II (1 —a nr

so that

(a) (-a)r° 1; ( b )  r  =  r i -1 .

Then from (a), we have ILA-1( -- cr)r 6  x  (-1) r 1 X l r - 1 = 1 .  Applying (b) to this, we
obtain (_1)r1= 1• Therefore r , is even, as desired. Q.E.D.

2 .2 .  Let p(T ) be as in the proof of Theorem 1 (iii). Then we observe the
following two properties of p(T).

Proposition 2 .1 .  (i) p (1 )  =O.
(ii) W rite p(T )= E  bi Ti with b i ,*  0. Then b i ,= +1.

P ro o f  As (i) is already seen, we have only to prove (ii). Write

= d in  T i w ith  ci(4 * 0 ( i = 1, 2) .

W e may assume L2. Moreover we write q (T )=. b ;T i  with b'y  #0._ v 

Then we see clearly L i = L '  L .  Comparing the terms of the highest degrees in (*),
we get L '=L  and bL •I/L =b i ,, whence b'L - 1 .  On the other hand, b - - a (2 ) +(4 2, ) 2
in case L 1 =L 2 . Therefore we have L 1>1. 2 . Then we see b i ,=a2 ) =M, = 1 .  Q.E.D.

From the above proposition, we can deduce a modification of Theorem 1 (iii).

Proposition 2 .2 .  L et r, and r, be finite dimensional rational representations of
S L (2 ,K ). L et m > 1  be an in teger. T hen A  2 on A  2 (m implies,
where m•7c —7r ED • • • e r  the m-times multiple of

Corollary. For nilpotent elements X , X ' in o(n, K ), the following two conju-
gacies are equivalent.

(C) X  X ' under 0(n, K ) ,

(C.) ad ([m]X) —'ad ([m]X') under G L(o(mn, K)) .
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Here m> 1, and [m ]X = X  ED • • • ED X e 0(m n, K ) is  the m-multiple of X.

Pro o f . Define p (T )  similarly as in the proof of Theorem 1 (iii) for the pair of
representations m • r ,  and m•7r2 . Then the coefficients of p (T )  are divisible by m.
But by Proposition 2.1 (ii) above, the coefficient of the highest degree in p (T )  is
+1  in case p (T ) *  0. Consequently our assumption m >  1 shows p ( T ) = 0 .  Namely
m •7r,---m • 7c2, whence z1--7r2. Q.E.D.

§ 3 .  Representations on tensor spaces.

In this section we given some generalizations of Theorem 1. More precisely,
we generalize Problem i l  in  two directions and study them . On one hand, we
treat not only S L (2 ,  K ) but also connected algebraic groups or connected Lie
groups. On the other hand, the functors 0 2,  s z, •  2A  are generalized to those of
tensors of higher degrees. The latter direction is again related to Problem I
through 4 2 -triplet.

3 .1 . First of all, we give an immediate generalization of Theorem 1 (i).

Proposition 3 .1 .  Let r be a connected algebraic group over K . L e t  7r1 and x,

be completely reducible rational representations o f I ' ,  of finite dimension, and N  a
positive integer. T h e n  0 N  7r i " ,  ON  7r2 im plies 7r,---7r2 . Here ON it denotes the N -

times tensor product of 7r.

Proposition 3 .1 ' .  Let r be a connected Lie group. Let 7r, and r 2 be completely
reducible finite dimensional continuous representations of F, and N  a positive integer.
Then ON 7r,— ON 7r, implies 7r1 ---7r2 .

P ro o f  Let R  be the ring of regular rational functions on r (for Proposition
3.1), or the ring of real analytic complex-valued functions on r (for Proposition
3.1), respectively. Sinec 1' is connected, R  is an integral dom ain . So an alge-
braic equation xN —aN =0 has just N  solutions in R  as x =a, aC, • • • , aCN - 1 ,  where C
is  a primitive N-th root of unity. We apply this fact to the case a— T y r,. Then
from ON 7C1 ^ s ' O N  7r2 w e  have (Tr 7r1) (g )= C iC . (Tr 72 ) ( g )  for some j  ( g  r). Putting
g = 1 , we see C' =1, because (Tr r,)(1) and (Tr x 2 ) (1 ) are positive integers. Therefore
we have Tr 7Ci =  Tr r 2, whence 7r1 --7r 2 . Q.E.D.

3 .2 . In order to formulate a  generalization of Theorem 1 (ii) and (iii), we
recall some definitions and notations on partition (c.f. Macdonald [8]).

A partition 2 of an integer N  is a set of positive integers 2 = (2 „  2 , )  with N ---
2,+••• +2 1 . We denote 12 1 =2,-F ••• +2, and call 1=1(2) the length of 2.

For a pr partition 2=(2,,••• ,2,), we use as well the notation 2 --(1 ' 127"2 •••rm ) ,
where m i =i$ {j; 2i = i } is the multiplicity of i in 2. Note then 1(2)=m,+••• +m,..

The conjugate of a partition 2 is by definition the partition 2' —(2f, A , •••) with
21-= f j ; For a partition 2—(2,,••• , 2 1)  with ••• 2 , ,  the diagram (2)
is defined as
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(2) = DE Z 2 ; 1 .

For each x = (i,j)G (2 ), the content of x  is defined to be c(x )= j— i, and the hook
length of 2 at x is

h(x) f +(Ai -  .i)+1

A partition 2 is called a  hook  when it is of the form 2 =(1 m irm•-) with m1 O and
for some r.

3 .3 .  Now we proceed to a  generalization of Theorem 1 (ii) and (iii).
Let P be a group, and it a  representation of F  on  a vector space V .  For a

positive integer N, consider the representation ON 7  on ON V .  Then the symmetric
group e, of degree N acts on ON V  by v,0 •• • 0 vN I—> v,-1( ,) 0 •• • 0 vs 1 ( , ) for s G
and vi e v(i= 1, 2, • ••, N ) .  This action of e N  commutes with ON r(g) (g r).
So the representation ØN  i t  decomposes according to irreducible representations of
eN • I t  is well known that irreducible representations of

 N
 a r e  parametrized

by partitions of N (see e.g. Macdonald [8, Ch. 1.7] or Weyl [12, Ch. IV ] ) .  For a
partition 2 of N, we denote by So the component of O N  r  corresponding to 2.

For example, in case N=2, we have S(o r =S 27r and Sa 2) ir= A 2 r .  In  general,
S( N ) r =SArr is the N-th symmetric tensor product representation, and S (1N) 7r =ANrc
is the N-th alternating tensor product presentation of r.

As a generalization of Problem II (ii) and (iii), we consider

Problem III ; 2). Let r, and r, be representations of F, and 2 a partition of
N .  Then does it hold that Sx r 1

,---•S„r2 implies

As we shall see in 0 4 . & 6, there are some cases where Problem III is nega-
tive. But we have affirmative results as follows.

Theorem 2 .  L et r  be a  connected algebraic group, and it  (1=1, 2) be com-
pletely reducible rational representations o f  r , of finite dimension. A ssume that a
partition 2 of N is a hook, and that

G O  the dimensions of  it  (i=1, 2) do not divide (N -1 ) ! AI' f or any k.

Then S o ,  S„r, implies
Moreover, if  2 = (N ), i.e., S),  is  the N-th symmetric tensor product, then the

conclusion holds without the assumption (0).

Remark 3 .  One can obtain a  similar result to Theorem 2  in  parallel with
Proposition 3.1 to Proposition 3.1, replacing i t  in  Theorem 2 by a connected Lie
group and z i (i= 1, 2) by completely reducible continuous representations of finite
dimensions.

3 .4 .  Let it  b e  an  n-dimensional representation of F . W e presen t here a
formula expressing Tr (So) in  terms of Tr r ,  which is a  generalization of (2.2)
and (2.3) in the proof of Theorem I. I n  c a s e  —GL(n, K) and it  is  the identical
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representation, such a formula is obtained from the properties of the Schur func-
tion . The general case is immediately deduced from it.

First of all, we note that for g E r ,

(3.1) Tr (S o)(g) = dx •sx (x i , •••, x .)

with x1 , •••, x „, the eigenvalues of v ( g ) .  Here sx (x i , •••, x n)  is  the Schur function
(see Macdonald [8, p. 24 (3.1)]) defined as

det (x10 -1-n
S À (X i, • • • x n ' d e t(x ri) is i, i g n

and a', is the dimenison of the irreducible representation of e, corresponding to
2. The formula (3 .1) is seen to hold from the fact that the Schur function
sx (x ,, •••, x„) gives the trace of the irreducible representation of GL (n, K ), cor-
responding to 2 , at diag(x l , •••, x n)  (see Weyl [12, Ch. V II  § q  and Macdonald [8,
Appendix to Ch. I]).

In order to state an equality on the Schur function, we introduce some notations
Let p— (p,, ••-, p i )— (1' 12 ' 2 •• • r m r) be a partition of N .  Put

(3.2) zr, H  (m i ! e 7 1) ,

which is the cardinality of the centralizer of an element in the conjugacy class of
N  corresponding to p .  Moreover we put

(3.3) Pp(xi• x.) H (4' i+ ...-I-x: ) •

Let x x  be the irreducible character of e, corresponding to 2 , and x  the value of
x x  a t  the conjugacy class in eN  of type p .  The Schur function s , is rewritten in
terms of pp's:

(3.4) -1s, E z,
ipi=N

(see [8, p. 63 (7.10)], or [12, p. 215 (7.19)]).
Let us put 0(g)=T rn(g) for g ,  and 0 „(g)=11 i i 0(gPi) for a partition p =

(P1 ,••• ,4 0 1). Then combining (3.1) and (3.4), we get

(3.5) Tr (S o)(g) = EN z 149 ,(g ).
Ip

It should be noted that (2.2) and (2.3) are obtained from (3.5) by putting N =2.

3 .5 .  To establish Theorem 2, it is sufficient to prove that for a given function
e(g), the solution 0(g) of the functional equation

(3.6) e(g) ( g  r)
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is unique under a suitable condition.
From now on r is assumed to be a connected algebraic group o r a  connected

Lie group. Then 0(g)=Tr 71-(g) is a rational or real analytic function on r accord-
ing as r is algebraic or Lie group, where TE is a rational or continuous representation,
respectively. We note that since F  is connected, 0(g) is determined uniquely by its
derivatives of all orders at g =1 .

Let L ie ( r )  be the Lie algebra of F , which is naturally identified with the Lie
algebra of right invariant vector fields on P . For a E Lie (r), fixed once for all,
we denote by f (k ) the k-th derivative of a function f (g ) by 8 at g = 1 :

f (k) (ô kf ) ( 1)

For k = 0 , we put f  ( ° ) —f(1).
Our aim is to look for a sufficient condition that for any fixed E Lie (r), Om's

(k =0, 1, 2, •••) are recovered uniquely from 9 (
1

) '5 (k  =0 , 1, 2, •••), where (g) and
9(g) are related by the equation (3.6).

For the first stage, we note that 0 ) = 0 (1 )= /7 , the dimension of the repre-
sentation 7C , is uniquely determined by 0 (e

)  under the condition n _ 1 ( 2 ) - 1 .  This
follows from the formula (Weyl's dimnesion formula)

sx(1 ,  • • • ,  1) =  H  (n+ c(x))1h(x)
xE(X)

(see Macdonald [8, Ch. 1.3, Ex. 4]). Because the polynomial I][ x) ( n ± c (x ) )  is
monotone increasing in n for n 1(2)-1.

For the second stage, we compute the derivatives of 0 p (g)=11 (f l (g P ,), for p =
(p1, P 2 ,  • - ) .  By Leibniz rule we get

N! 1(p)
(3.7) 6(k) — E  H (p  i • O ( i P ) .

... + i i(P ) s k i 2 1 . • • i l( P)

Collecting together the terms containing the highest derivative 19( h ) in (3.7), we see

0(
p o —  0 ( 0 , ( 4 )  ±  terms of lower derivatives.

i =1

From this, taking the k-th derivative of (3.6), we obtain

(3.8)
e ( k ) 6 1 (k )

i f r k (/ 1 )  ±  (terms of 0 ( i ) 's with

where *,(n) is the polynomial in n of degree N -1 defined by

(3.9) lk an) =  E  zp— l zpx (E liTI Pli)n l ( P ) - 1

IP I=N

Lemma 3.2. Let 7-c be an n-dimensional completely reducible representation of F.
Suppose n _ .1(2)-1  and * k (n)* 0 fo r  all T h e n  7r is recovered uniquely from
Sir.
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P ro o f  As we have seen in the first stage, n =0 (°) is determined uniquely from
(9(°) under the  assumption n 1 (2 )-1 . For 1, 0( k ) is determined inductively by
(3.8) from 9(k). Q.E.D.

3 .6 .  Proof of Theorem 2. It remains to show that Lemma 3.2 is applicable
to Theorem 2.

For the case 2=(N), i.e., the case of N -th symmetric tensor product, we see
easily * k (n )*0  fo r all I. I n  fact, since Z ( N )  i s  the trivial character, we see
4,N )  =1 for all p, so that all the coefficients of * k (n) in  (3 .9) are positive. Thus
*.k (n)> 0 for any n> 0. Note that 1((N))=1, so the condition n 1(2)-1 is automatic
for 2 = (N ).  Thus we have proved the latter half of Theorem 2.

Now we proceed to general c a s e . It is well known that the values of characters
4 of eN  are all integers. Therefore from the definition (3.2) of zp , we see that the
polynomial N !* k (n) in  n has integral coefficients. N o te  that the constant term of
Nkfrk (n) is N1-1IN • Nk  • xtiv) , because l(p)=1 if and only if p = (N ) .  We know that

or 0 and that xtN ) * 0 if and only if 2 is a h o o k . (This is seen from Weyl
[12, pp. 213-214]. See also Kostant [6].) It follows from these facts that the poly-
nomial N !* k (n) has integral coefficients and has the constant term ±(N — l)! N k  i f

2 is a hook. Consequently, when A is a hook, we have 11tk (n )*0  for n not dividing
(N -1 )!N k . W e note that 11 _ -_1(2)-1 is implied in the assumption (0). Thus by
Lemma 3.2, Theorem 2 is proved. Q . E . D .

3 .7 .  Remark 4 .  Here we present the polynomials f r k (n) for two simple A.
(1) Let N =2 and 2=(1 2). We treated this case in Theorem 1 (iii) for r =

SL(2, K). Now from the definition (3.9), we have

0.1,(7) = n — 2k- 1 .

(2) Let N=3 and 2 —(1 121) — (2,1). Then we have

(3.10) Tr S(2,1)7 (g )  =  3
2  (0(g)3 — 0 (0 )

and
=  n2

 
_ 3 k - 1

Note that in this case the condition (0) can be weakened into the condition that n
does not divide 3k - 1  instead of 2.3'.

In  th e  proof of Theorem 2, we did not utilize in full detail the fact that 0(g)
is a trace of representation, but used only the fact that 0(1) is  a positive integer.
So Theorem 2 is a general but rough result in some sense, and may be sharpened in
each special case . F o r example, we shall see in  §7 that fo r r=SL(2, K ) and 2—
(2,1) the condition (0) in Theorem 2 can be dropped.

3 .8 .  L et us return to Problem I. A s seen in  §1 .3 , by Jacobson-Morozov
theorem, the problem of conjugacy of nilpotent elements is translated to that of
equivalence of representations of 01(2, K), whence of SL(2, K). Then we see from
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Proposition 3.1 and Theorem 2 for I' =SL(2, K) the following

Theorem 3 . (i) L et G  be  an algebraic group w ith the  L ie  algebra g. Let
(a, V ) be an n-dimensional rational representation of G. Then for nilpotent elem ents
X , X ' e g, the following statements are mutually equivalent.

(Ce ) a(X') under GL(V);

(Co if a.) a(X)--- cr(X') under GL(ON V);

(Cs Ne ) SNa(X)--SNa(X) under GL(SN  V);

(Cs , Œ) Sx,c(X)—Sxc(X') under GL(Sx V)

where a partition 2 of N is a hook, and n does not divide (N -1 )! N I' f or any k.
(ii) Further, for G=GL(n, K), Sp(n, K), or 0(n, K), and for a =a, the identical

representation, each of  the above statements (C,r)—(C s „ )  with a = a , is equivalent to
the following one:

(C) X— X' under G .

§4. Negative results.

In  this section, we return to Problem 11 (iii) and Problem 11(0(n, K)), and in-
vestigate the counterexamples for these problems.

4.1. For a rational representation 7 of SL(2, K), we defined a Laurent poly-
nomial c„(T) in §2:

=  f t 0
c ,(t) --- Tr 7(h(t)) f o r  h(t)

)

The following lemma characterizes c„(T) by its coefficients.

Lemma 4.1. L et f (T ) =  E a V  G  Z [T , T - 1 ]. Then f (T )= c „ (T )  f o r some
f E Z

rational representation 7 of SL(2, K) if and only if  .f(T ) satisfies the following (RO)—
(R2):

(RO) f o r all  j E Z ;

(R1) f (T )  =  f (T ' )  ,  i.e., a ; = a_ 1f o r  a l l  j E Z ;

(R2) f o r  j .

Moreover, 7  satisfies the condition (M2) in § 1.3 if  and only  if

(M 2 ' )  ai  is even for any odd j.

P ro o f  W e know  for the i-dim ensional irreducible representation 7c( i )  o f
SL(2, K),
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c,(i)(T) = (T i T1-i+Ti-3+••• .

So that if e i M i •  r ( i )  and c , (T )= Z i ai Ti , then we have

mi.

The assertions can be easily deduced from these.

4.2. Let r i , r, be rational representations of SL(2 , K ). We put

529

Q.E.D.

p (T ) = = c, i (T )— c4 T ),
(4.0)

q (T ) = = c, i (T )-Pc,,(T ).

Then as seen in §2, A 2  
r i ^ s -  

A  2  2 7 2  isequivalent to

(*) p(T)q(T) p ( r )  ,

and r i -"rr2 is equivalent to p (T )*  O.

Conversely, let p (T )G Z [T , T - 1 be a non-zero Laurent polynomial satisfy-
ing

(*1) p (T ) divides p ( r )  in  Z[T,

Put

(*4.1) q(T) p(T 2)1p(T) ,

(*4.2)
f,(T) = (q(T)d-p(T))12 ,

1 f,(T) = (q(T)—p(T))12 .

Suppose moreover

(*2) both f , (T ) and f 2 (T ) have integral coefficients and satisfy (R0)—(R2) .

Then by Lemma 4.1, we can find representations 7c1 ,  7 -c2 o f  SL(2 ,K ) such that
f 2 (T )= c , 1 (T ) ,  f , (T )= c 4 T ) .  For these representations r i , r2 , we see n ? \ -' 7,72 and

A 27,1,,, A 2r 2 .

Thus to find a counterexample for Problem II (iii) is reduced to looking for a
non-zero Laurent polynomial p (T ) satisfying (*1) and (*2). Moreovre such a p(T)
gives a  counterexample for Problem 1,(0(n, K)) if both fo f i (T ),  J (T ) in (*4.2)
satisfy (M 2 '). In this case we have n=f,(1 )= f2 (1)—q(1)12.

The following examples demonstrate the existence of p(T) Z [T ,  T 1  satisfy-
ing (*1) and (*2 ). The detailed discussion for those examples will be given in §4.6.

Example 1. For k .1 , p (T )— (T -1 ) 2/7 '  satisfies (*I) and (*2 ).  Moreover if
k is even, then both of f i (T ) and f,(T ) satisfy (M2').

Example 2. For k 0, p (T )= (T 2 —1)2 (T —1)1 2 + 2 k  T' h  satisfies (*1) and (*2).
Moreover if k is even, then both of f i (T ) and f 2 (T ) satisfy (M2').
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Note f,(1)=f,(I)=2 2 k - 1  in Example 1, and f,(1 ) = f2(1) =  2 1 3 + 2 k  in  Example 2.
Thus we see from these examples the following

Theorem 4 .  (i) For k _ 1 , there exists a pair 7ri, 7r2 of  rational representations
of SL(2, K) of dimension 22 k - 1  such that 7 2  and A 2 2r1 A 2 71-2°

(ii) For r 1  e x c e p t for . r= 2, 4, Problem 1,(0(2 2 r+ 1 , K ))  is negative. Nam ely ,
for such an r, there exist nilpotent elements X , X ' 

E  0 ( 2 2 )  + 1 ,  
K ) such that X '' X ' under

0(2 2 '.+ 1 , K ) but ad (X)— ad (X ') under GL(o(22 r± 1 , K)).

4 .3 .  In the above subsection, we saw that for a counterexample of Problem
Il (iii) (resp. of Problem I1(0(n, K))), there corresponds a Laurent polynomial satisfy-
ing (*I) and (*2) (resp. and besides, the condition (M 2') on f , (T )  and f 2 ( T ) ) .  In
the following, we translate these correspondences from Laurent polynomials to
usual polynomials, which are easier to treat in some cases.

Let us begin with definitions.

Definition 4 . 1 .  Let s  b e  a positive integer and y  e  Z .  A Laurent poly-
nomial f ( T ) = E ; „  ai r  is called symmetric and unimodal in step s  with the peak
a t y if it satisfies

(1) (symmetric) a ; — a2v _i f o r  a l l  j C Z ,

(2) (unimodal) for all j v .

It should be noted that from (2) and a i = 0  for sufficiently large j ,  one sees
for all ].

For a polynomial f(T ) , we say simply symmetric and unimodal, when we take
the s tep  s= 1  and the peak y d e g f ( T ) .  ( C .f .  K a c  [ 5 ,  Ex. 10.12], Macdonald
[8, p. 28], and White [13].)

Definition 4 .2 .  (i) A polynomial P (T )G Z [T ] is ca lled  distinguished i f  it
satisfies the following (D0)—(D4):

(DO) deg P (T ) is even.

(D I ) P(T ) divides P ( r ) .

(D2) Both F 1 (T ) and F2 (T )  have integral coefficients and are symmetric
and unimodal in step 2 with the peak at ,1

2 deg P(T ), where

(4.1) Q (T ) =  P (r)IP (T ) ,

F1 (T) = (Q(T)+P(T))12 ,
(4.2)

F2(T) (Q(T)—P(T))12

(D3) P(1) = O.

(D4) P (T ) is monic, i.e., the coefficient of the highest degree is 1.

(ii) A distinguished polynomial P(T ) is called strongly distinguished if both of
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F,(T), F2(T) in (4.2) satisfy the following condition (M2"):

(M2") the coefficient of T i is even, for any j  with j + 1 1 -- deg P(T) mod 2.

Remark 5. ( 1 )  In (D2), the part of condition that F i (T) and F 2(T) have
integral coefficients is in fact redundant, and is deduced from (D1) and (D4) (see
§5, Remark 9).

(2) From the definition (4.2), we see

P(T) = F i (T)—FAT) ,
(4.3)

Q(T) = F 1(T)+ F2(T) .

Then it follows from the condition (D2) that P(T) is symmetric and that Q(T) is
symmetric and unimodal in step 2.

4 .4 .  Let p (T )= E .;'____L, bi T i  with b ,* 0  be a Laurent polynomial satisfying
(*I) and (*2). We define a polynomial

(4.4) P(T) = Vp(T) .

Then deg P(T)= 2L, and P (T )  satisfies (DI) and (D 2) according as  p(T)

satisfies (*I) and (*2), respectively. Indeed, we see the correspondence between
Laurent polynomials q(T), f1(T),.f2(T) in (*4.1)-(*4.2) and polynomials Q(T), F,(T),

F A T )  in  (4.1)-(4.2) as

(4.5) Q(T) T L q ( T )  ,  F 1(T) = T L  M T )  , F 2(T) =  TLf2(T) .

We now recall Proposition 2.1, which states (i)p(l)=O  and (ii) b L = ± 1 .  Nor-
malizing as bL = 1  (multiply by —1 if necessary), we see that P(T ) satisfies (D3)
and (D 4 ) . Note that p,,1 ,,,2(T )=  —13,r2of1(T), so  that the normalization b L  = 1
means only a permutation of 7r1 , 7 r ,  associated with p (T ) .  Moreover, the condi-
tion (M 2') on A(T), f 2 (T )  corresponds to (M2") on FAT), F 2( T ) .  Thus for p(T)

satisfying (*1) and (*2), the polynomial P(T)= T L  p(T) is distinguished. And if
f i (T) a n d f2(T) satisfy (M2') in addition, then P(T) is strongly distinguished.

Conversely, for a distinguished polynomial P(T) of degree 2L, we put p(T)=

T - LP (T ). Then clearly p(T) satisfies (*1) and  (*2). Thus from the argument
in §4.2, we see

Theorem 5. (i) There is a one-to-one correspondence between the set of distin-

guished polynomials and the set of pairs rci , 7r 2 (up to equivalence) of rational re-

presentations of SL(2, K) such that 7,-'‘-'72 and A 2 71-1 's ' A 2  7 2.

(10  There is a one-to-one correspondence between the set of strongly distinguished

polynomials P(T) with n=Q(1)/2 and the set of pairs X , X ' (up to conjugation under

0(n, K)) o f nilpotent elements in  o(n, K) such  that X  X ' under 0(n, K) and that
ad (X)—' ad (X') under GL(0(n, K)). Here Q(T) is defined as Q (T)=P(T 2)/P(T).

4 .5 .  We observe here a  fundamental property of distinguished polynomials.
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For further properties, we study in the next section.
Let P (T ) be a polynomial satisfying (DI) of degree 2 L .  Define FA T), F2 (T )

by (4.2), and f i (T ) ,  f2 (T ) by (4.5). Then for P (T ), we define two 2x2  matrices as
follows.

F i(T )  F 2 ( T ) )

F2 ( T )  F 1( T ) )

f,(T ) .f 2 ( T ) )

f2( 7 ') f i ( T )  )

An easy calculation shows the following.

Lemma 4 .2 .  L et P (T )  and P '(T ) be two polynomials satisfying the condition
(D I ) . Then we have

(4.8) Up(T)p'(T) = UNT)Up , (T) •

(4.9) tip(T)p,(T) — ue(T)up'(r) •

From this lemma, we see the property that the set of distinguished polynomials
is stable under multiplication as follows.

Proposition 4 .3 .  L et P (T )  and P '(T ) be distinguished polynomials. Then the
product P (T )P '(T ) is also distinguished.

Pro o f . Let, 7c1 7E2 and 7r , 71" be the pairs of representations associated with
P (T ) and P '(T ), respectively. Then from (4.9), we see the pair (ir, Ø r1) ED er207r0,
eri O7cD(1)(7t-2 07r0 is associated with P(T )P '(T ).  Q.E.D.

4 .6 .  Here we verify the assertions in Examples 1 and 2 in § 4 .2 .  First, it is
clear that the polynomial (T -1 ) 2 is distinguished, so that (T —1)2 k  is distinguished
for k. - 1 by Proposition 4 .3 .  We see also P (T )= (T 2 —1)2 (T -1 )'2 is distinguished.
In fact, it is clear that P (T ) satisfies the conditions in Definition 4.2 (i) except (D2).
Let F,(T ), F2 (T ) be in (4.2). Then (D2) is seen from the following explicit calcula-
tion of F 1(T ) and F2 (T ):

FA T) =  (1+ 66T 2 + 4 9 6 r+ 9 9 0 r+ 9 9 0 r  + 9 9 0 7 ' ) + 4 9 6 r 2 +66T 3 `4 -7 ')+
4-(24r+440T 5 +15847 1 -1-1584T9 -1-440TH +24T 1 3 ) ,

F2 (T ) (2T2 + 132 T4 +990 T 6 + 1848T8 + 990 T'd-132r 2 -1-27'4 )+(12 TH-
+ 2 2 0 r+ 8 0 4 P + 1 0 1 2 V + 1 0 1 2 T 9 +8047 - 1 1 +220T 1 3 + 1 2 r 5) .

Now, by Proposition 4.3, (T 2 - 1 ) 2 (T -1 ) 1 2 '  is distinguished for k _ 0 .
Next, for the condition (M2"), we note the following congruences in case k

is even.

(4.6)

(4.7)

Up( T)

11P (T )

(T+1)2k =(T 4 + 2T 2 +1) k /2 m o d  4 ,
(T 2±  020-±  2 2 m 0 4 + 0  mod 4.
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This shows that the coefficients of odd degrees of P (T ) and Q (T) in Examples 1
&2 are all divided by 4. So that the coefficients of odd degrees of F1 (T ) and FAT)
are all divided by 2 in this case . Thus for even k, (T - 1)2 k  and (T 2_  ) 2(T  )1 2 -1 -2 k

are strongly distinguished.

§ 5 .  Properties of distinguished polynomials.

We hope to determine explicitly all the distinguished polynomials, which we
have not yet succeeded in. In this section, we observe some properties of distinguished
and strongly distinguished polynomials.

5 .1 .  It is convenient to determine the polynomials P(T ) of integral coefficients
which satisfy the condition (D 1 ). For this purpose we recall some elementary
properties of cyclotomic polynomials.

The m-th cyclotomic polynomial 0„,(T) is by definition

0„,(T) 11(T— C),

where C  runs over the primitive m-th roots of unity. Then the following are
known. (See e.g. Lang [7, Ch. VIII, §3].)

(C P  1) (1)„,(T) has integral coefficients and irreducible over Z ,  and its degree
is ço(m), where ço(m)---$$(Z1mZ)x the Euler function.

(CP 2)

and conversely

(CP 3)

Trn —1 d (T ),
dim

0 .(T ) (Td —1)g ( mid )  ,
dim

where A t(-) is  the Möbius function: ,u(a) ( - 1)r  i f  a  i s  square-free and the
product of r  primes, and i4 a )= 0  otherwise.

Moreover from the definition of the cyclotomic polynomial, we see easily

Lemma 5.1. Let m  and m ' be mutually relative prime integers. T h en

(5.1) 0„,( T '') dj j , Od „(T) .

Especially, for a prime number p  not dividing in, and r

(5.2) 0 m (T ) o II O p t„,(T) ,

and

(5.3) 01,,+1.(T) 0„,(Tg + 1 )/0„,(TP r )  .

5 .2 .  Let us now consider a polynomial P(T ) with integral coefficients satisfy-
ing, for fixed h Z ,  the condition
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(**h) P ( T )  div ides P(T h ) .

Then we have

Lemma 5 .2 .  L et P(T ) be a monic polynomial with integral coefficients. Assume
P(0)* 0 and P(T ) satisfies (" h ) .  Then P(T) is written as a product of cyclotomic
polynom ials. A nd also P(T) is written in the form

(5.4) P(T ) = ( r  _ ly sDe sw i t h  e s E Z  .

Pro o f . For the first assertion, it is sufficient to prove that every root o f  P(T)
is  a  roo t o f  u n ity . Let C be a root of P ( T ) .  Then by ("h), C h is a lso  a  root of
P ( T ) .  So that C, C h , Ch 2 , Ch 3 ,••• are also roots of P ( T ) .  Since the number of roots
is finite, we see Ch ' =C h '" for some r * r ' .  Then from our assumption that 0 is not
a root of P(T ), we conclude that C is a root of unity.

The second assertion follows from the first one and (CP 3). Q.E.D.

Remark 6 .  In the expression (5.4), the exponents es E Z  are  uniquely deter-
mined by P ( T ) .  In fact, from the first assertion of Lemma 5.2, P(T ) is written as

(5.4') P(T ) = ,][1, 0„,(T)f- w ith  f „E Z ,  .

Here f„, is uniquely determined, because  ø m (T) is irreducible over Z .  Apply (CP 2)
to  (5.4), and compare the exponent o f  0,s (T )  in  (5.4') and  (5.4). Then we see

—Emis es. F rom  th is , e s 's are uniquely determined, because the  matrix express-
ing such a  system o f linear equations is of an upper triangular form with diagonal
components 1.

Explicitly, es 's are written by L 's  as

e , = E mOn/sy„, .
$ lm

Later we need only results for h =2  and 3, so that for brevity we restrict our-
selves to the case where h =p  is a prime num ber. Here we determ ine more pre-
cisely the polynomials satisfying (" p ) .  The following result may be well-known.

Proposition 5 .3 .  L et p be a prim e number, and P(T) a monic polynomial with
integral coefficients. We assume P (0 )* 0 .  T hen P(T ) satisf ies ("p) if  and only if
P(T ) is of the form

(5.5) P(T ) = H 0„ ,(T P )fm .i with f ,„, i G  Z ,
i

where m runs over positive integers not divided by p, and i G Z+ .

P ro o f  It is clear from (5.3) that a polynomial P(T ) of the form (5.5) satisfies
(" p ) .  Conversely, let P(T ) satisfy (" p ) .  We prove by induction on deg P(T ) that
P(T ) is of the form (5.5).
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As is seen in Lemma 5.2, every root of P (T ) is a root of u n ity . Let C be a root
of P(T ) with maximum multiplicative order, and express the order of C as pr ni with
in not divided by p and r O. F ro m  ("p ),  we see that all of C, CP, CP2 , ••-, CPr are
roots of P (T ) .  We note that CP: is a primitive pr - t - th  root of unity for O t  r .
Then by the irreducibility of the cyclotomic polynomials, P(T ) is divided by P o (T )=
i l o s t s r  O p tm ( T ) .  Note that P0 (T )= 0 ,,(T P ') by (5.2), which is of the form (5.5).
Let P 1(T )  be the quotient P(T)119

0( T ) .  Assume that we have proved that P 1(T )
satisfies ( " p ) .  Then by the induction assumption, P 1( T )  i s  of the form (5.5),
therefore so is P (T )= P o (T )P , (T ) .  This concludes the proof.

By ( " p ) ,  there exists a polynomial S(T ) such that P (T P )= P (T )S (T ). So we
have P o (TP)P,(TP)=P o (T )P , (T )S (T ) .  On the other hand, we have P o (TP )=P o (T )
X 0 p r i„,(T) by (5.3). Then from these two equalities, we obtain P i (TP)(1) p r+i„,(T)=
P i (T )S (T ).  Note that Op ri-in,(T )  is irreducible, and that it does not divide P,(T),
because we have taken C a s  a  root of P (T ) with maximum order pr m . Thus
Op H-1„,(T) divides S(T), so that P 1(T ) divides P (T ) ,  that is, P 1(T ) satisfies ("p ),  as
desired. Q . E . D .

We note that in the expression (5.5), the exponents f,„, i a r e  uniquely deter-
mined by P (T ) .  This can be shown by a similar argument as in Remark 6.

5.3. As a corollary to Proposition 5.3 for p = 2 , we have

Proposition 5.4. If  a polynomial P (T ) is distinguished, then it is of the form

(5.6) P (T ) =  IT 0 . ( r i ) f ..i with _I'm  i G Z ±  ,

where m runs over odd integers, and

It should be noted that a polynomial of the form (5.6) is not necessarily dis-
tinguished. (C.f. Proposition 5.6 below.)

Let us introduce some words.

Definition 5.1. (i) A monic polynomial P (T ) with integral coefficients is said
to be admissible if it satisfies ( " p )  for p = 2  and P ( 0 ) * O . (By Proposition 5.3 for
p=2, P (T ) is admissible if and only if it can be expressed as (5.6).)

(ii) An admissible polynomial is said to be pure if f„,, i = 0  for i > 0  in the ex-
pression (5.6).

(iii) An admissible polynomial is said to be properly impure if f„,,0 = 0  for all
odd m.

(iv) For an admissible polynomial P (T ), there exists a unique decomposition
P (T ) =  P '(T )P "(T ) such that P '(T ) is pure and PA T ) is properly im pure. We
call P '(T ) or PA T ) the pure part or the im pure part of P (T ), respectively. We
have explicitly, for P (T ) in the form (5.6),

(5.7) P '(T ) =  I I  0 . (T ). ,0
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(5.8) PA T ) = .

Remark 7 .  By Lemma 5.1, an admissible polynomial P(T ) has also an expres-
sion as (5.4). Then P(T ) is pure if and only if e, = 0 for any even s  in such an ex-
pression. And P(T ) is properly impure if and only if e5 = 0  for any odd s.

Remark 8 .  Let P(T ) be adimssible, and express it in the form (5.4). Then
P(T ) is symmetric if and only if E s,, es is even. From this, we see that Q(1) =
2Zes is a power of 4, when P(T ) is distinguished. Here Q (T )=P(T 2) /P (T ) . In this
case F1(1)=F 2 (1) is odd tim es power of 2 , where F 1(T ) and FA T) are given in
(4.2). Thus we again obtain Thoerem 1 (iii) via Theorem 5.

Remark 9 .  Here we verify the assertion of Remark 5 (1) in § 4 .  More pre-
cisely, we claim that both the polynomials F1(T ) and F2 (T ) have integral coefficients
if P(T ) is admissible. Here F,(T ), F2 (T ) are in (4.2).

By (4.8) in Lemma 4.2, it suffices to verify the claim for P(T )=0„,(T 2 ') for odd
tn. Moreover, by (5.3) we have Q (T )=0 2 .(T 2 ')  for P ( T ) =„,( T 2 ) ,  where Q (T )=
P(T 2) /P (T ) . Then we have only to verify the claim for „AT) for in o d d . For
171 -= 1 ,

(5.9) F1 (T ) = T  a n d  F2 (T ) =1  .

For 111>  1, noting that Q(T )=P(— T ), we have

(5.10)
{

FA T ) = the sum of terms in Q(T) of even degrees,
F2 (T ) = the sum of terms in Q(T) of odd degrees.

Hence the claim.

Remark 1 0 .  Let P(T ) be admissible, pure, and symmetric. Then Q(T) =
P(— T), so that we have (5.10) as w ell. Here Q(T), Fi (T ), and F2 (T ) are in (D2).
Thus for a pure polynomial, the condition (D2) is easier to test than general case.

Remark 1 1 .  Let P(T ) be admissible. Then from (4.8), (5.9), and (5.10), we
see that

(5.11) F1(T ) is m o n ic , and

(5.12) deg F,(T)> deg FA T) .

It follows from (5.11) and (M2") that the degree of a strongly distinguished
polynomial is divided by 4.

5.4. We give here a  result that some types of admissible polynomials can
never be distinguished.

Lemma 5 .5 .  Let M  E  Z  ±  be odd. Then
( i ) .(1 )=0  and  m ( i) 2  if  m =1.
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(ii) 0„,(1)=p a n d  , n (- 1 ) = 1  if m is a power of prime p.
( ) 0 . ( 1 ) = 1  and 04-1)=1 if  m  is div ided by  tw o distinct primes.

C orollary. L e t  m E Z  be odd, and P(T )=0„,(T 2 `) with Define FA T)
and FAT) by (4.2). Then

(i) F1(1)=F2 (1)=-1 if  m =1.
(ii) F1(1)=(p+1)/2  and F2 (1)—(1—p)12 if m is a power of prime p.
(iii) F 1(1 )= 1  and F 2(1 )= 0  if m is divided by two distinct primes.

Proof  of  L em m a 5.5. Since 0,(T)— T -1 , ( i)  is c le a r . Taking m =1  in  (5.3),
we obtain for r

OpH-1(T) = (Tr + 1 -1 )/(T P '-1 ) .

Let T-->±1 in this equality. Then we see (ii).
For (iii), we take an odd prime p  such that in=

p r + l t n o  
with m0 > 1 not divided

by p  and r O. Then again by (5.3),

. ( T )  = „, o (T P r + 1 )10 „,0(TPr ) .

Put T =± 1  in this equality. Then we get On,(+ 1 ) = 1 .  In fact, since ni, is odd
and not equal to 1, both of the numerator and the denominator in the right-hand
side have the common values On io (± 1 )* 0  at T =± 1 . Q.E.D.

Proposition 5.6. L et P(T ) be an admissible polynomial. A ssume that P(T ) is
not pure, and that f 1  —0 f o r i>0  in  the expression (5.6). Then P(T) cannot be dis-
tinguished.

P ro o f  Let Fi (T ) and FA T) be the polynomials defined by (4.2) for an admis-
sible polynomial P ( T ) .  Let us consider a condition ( )  on P(T ):

F 1( 1 ) > 0  a n d  F 2(1)_0

Then from the formula (4.8), we see that the product of admissible polynomials
satisfying (,>. ) also satisfies W e  k n o w  f ro m  (ii) and (iii) of Corollary to Lemma
5.5 that O JT ')  satisffies ( ) for odd m> 1.

Now let P(T ) be an admissible polynomial satisfying the assumptions in Pro-
position 5.6, and let P'(T )  and PA T ) be the pure and the impure part of P(T)
respectively. Then PA T )*  1, from the assumption that P(T ) is not pure. And
PA T ) satisfies the condition (K ), from the assumption that f ,, i = 0  for i> 0 .  Let

F ( T )  or Fli(T ), (T ) be the polynomials defined as in (4.1) correspond-
ing to P'(T ) or PA T ), respectively. Then from (4.8).

F1(T) F aT ) F 1 / ( T ) +F ( T ) F / ( T )  .

We may assume that P(T ) is symmetric, so that P'(T ) is sym em tric. Since P'(T )
is symmetric and pure, we see from Remark 10 that Fi(T ) consists of terms of even
degrees and F ( T )  of odd degrees. On the other hand, since PA T ) is properly
impure, both FÇ/(T ) and P 2 / (T )  consist of terms of even degrees. Therefore
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F'2(T )IT (T ) is the part of odd degrees of F,(T).
Now assume that P(T ) is distinguished. Then P(1)=0, so that P'(1)=0.

Therefore we have FAO =  F (1 )> 0 . O n the other hand, P T (1 ) 0 ,  because
PA T ) satisfies (.>*. ) .  Thus we see F(1)FT(1) - 0. However, by the condition
(D2), a ll the coefficients of F,(T), hence of F(T )FT (T ), are non-negative. This
implies F(T )FN T ) = 0 , which contradicts our assumption that P'(T )*  1 and
P " ( T ) * 1 . Thus P(T) cannot be distinguished. Q . E . D .

5.5. As wehave mentioned in Remark 10, a pure polynomial is easier to treat
i n  some sense. However, we cannot obtain counterexamples fo r  Problem
i i ( 0 ( 2 2r+1, K)) with r even, if we consider pure polynomials only. In fact, we have
the following.

Proposition 5.7. L e t P(T ) be  a  strongly distinguished poly nom ial. I f  P(T)
is pure, then Q(1) is a power of 16. Here Q(T )=P(T 2)/P(T).

For the proof, we prepare a lemma.

Lemma 5.8. L et e be an even integer, and j  a non-negative odd integer. Then

the binomial coefficient ( e

. 
is even.

.1

Pro o f . Clear from the congruence equality

(T -1) e =- (r — 1) e / 2m o d  2 .
Q.E.D.

Proof  o f  Proposition 5.7. Let us write P(T ) in the form (5.4). By the as-
sumption that P(T ) is pure, the exponent e, is zero for any even s. Clearly we
have Q(T)=11 3 (T 3 +1)e ,, and  Q (l )= 2 s .

We claim that every e, is even. Let us prove this by contradiction. Suppose
there exists an s such that e, is odd, and put h— minfs; e, is odd)-. N o te  then h
is odd. We expand Q(T) by the binomial theorem, and get

Q ( 7 ,)  =  z  ( e . 1)  ( e 3) ( e m ) T i  + 3 i 3 + . . . + A v i r
j •

i l )  / 3 ) k lm )

Here M = m a x  e 3 *01 , and the right-hand side should be understood to be a
formal power series in Z [M ], because e, may possibly be negative. But it is  in
fact a finite series. N o w  look at the coefficient of T h in this expansion, which reads
as follows:

(e3) eh - 2

1  ) ./1) j 3 ) ( i h - 2 )

where the sum in the second term is taken over j 1, j 3 , -••,jh _2 with j,--1-3j3 +•••+
(h-2)j h _2 — h. Then in the second term, not all j i 's are even, because h  is odd.

Therefore by Lemma 5.8, the second term is even; and by definition ( e ")--e,1
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is  o d d . S o  the coefficient of T h in  Q(T ) is  o d d . On the other hand, we know
that Q(T ) is monic. Thus there appear odd coefficients in Q(T), both in the terms
of odd degrees (term of T h ) and of even degrees (top term). This contradicts the
condition (M2") in §4.3, because as seen in  Remark 10, Fi (T ) and F2(T ) defined
in  (D2) are given by (5.10) for the pure polynomial P ( T ) .  We have thus proved
our claim that every e, is even.

For Proposition 5.7, it suffices to prove that E, e, is d iv ided by 4 . W e have
seen in Remark 11 that deg P(T ) is divided by 4, if P(T ) is strongly distinguished.
Therefore

deg P ( T )  = E s e , mO mod 4.
s: odd

On the other hand, we have seen above that every e , is even, so that (s -1 )e s _O
mod 4 for s odd. Then we obtain

E  e E E se,  0 m o d  4 .

This completes our proof. Q.E.D.

5.6. Here we give some interesting examples of distinguished polynolials.

Example 3 .  For / 1, P(T )=11  =  (Pi - 1 -1 ) 2 is distinguished. We prove this
fact in the next section.

Example 4 . P(T )=(T -1 )"0 9(T )=(T -1 ) 8 8 (T 9 -1 ) (7 1 - 1 ) - '  is distinguished.
This gives an  example that there actually appears a  negative exponent e , in the
expression (5.4).

Example 5. (C o n je c tu re )  P(T )=(T 1 — 1)(T-1) 1 2 will be distinguished for odd
/ > _ 1 . This is conjectured from the central limit theorem an d  a  property of the
function e - x2 corresponding to Gaussian distribution. For l 11, this is ascertained
by direct calculation.

The author computed some other examples, but cannot find until now  the
general rule to exhaust the distinguished polynomials. It seems a  rather com-
plicated problem.

§6 . On the alternating tensor product of degree 2.

6.1. In this section, we prove that the polynomials

P(T ) = (T -1)2(T 3- 1 ) 2 . . . ( 7 , 2 1 - 1  1 ) 2

are distinguished. This is in fact related to some more general result, which states
as follows.

Theorem 6 .  Let F  be a group, and r  a finite dimensional representation of U.
Put
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(6.1) xi =  ED A ' x , a n d  7 r, = E D  / '7E.
i: even i : odd

Assume that 7r1 and 7r, are completely reducible. Then A 2 7ri and  A 2 7E2 are equivalent
to each other.

Pro o f . Let 01 and 02 be the traces of 7r, and 7r2 ,  respectively. Since 7r1 an d  7E2

are assumed to be completely reducible, we can argue using their traces. Therefore
we see from (2.3) that A 2 7E1--- A 2 7r2 if and only if the equality

(0 7(g) - 0 2(g))(0 1(g) - F 0 2(g)) = 0 1(g2) - 0 2(g2)

holds for all g e l ' .  Now we put D(T ; g)=det (1+ T 7r(g)). Then

D(T ; g) =  T  Tr (A i 740) .
i O

Therefore we have

D(1; g) =- 0 1(g)+0 2 (g) , a n d  D ( - 1 ; g) 01(g )-0 2(g).
Thus

(01(g ) -0 2(g))(0 1(g)± 0 2 (g)) D ( - 1 ; g ) D ( 1 ; g)
= det (1 --7r(g)) det (1+74g)) det (1 —77(g2))

= D ( - 1 ; g2) 0 1(g2) - 0 2(g2)

This completes the proof. Q.E.D.

Corollary 1. Let r, 77 ,  7E1, 7c, be as abov e. A ssume that there ex ists a  g o E r
such that 77(g0) does not have 1 as its eigenv alue. Then the pair 71, 7r2 gives a counter-
example f or Problem iwr ; (12)), i,e.,7r,-\-7r2 and A 27,1,_, A 27,2 .

P ro o f  We have only to see 7Ei -71- 2 . This follows from the condition that the
function Tr771(g)—Tr772(g )= d e t(l —77(g)) does not identically vanish on T. Q .E .D .

Corollary 2. Let g be a semi-simple Lie algebra over K, and r  be a finite dimen-
sional representation of g. Assume that 0 is not a  weight o f  7r. Put 7r, and 7r, as
(6.1). Then 7r1vY7c2 and A 2 771--' A 2 7 2.

Remark 12. For the groups SL (1+ 1, K ), Sp(21, K ),  5 0 (21, K ) (simple
algebraic groups of classical type A l , C I , D I ), we can take, as the representation 7E
in Corollary 1, the identical representation o f  P .  Also we can take the identical
representation for r =0 (2 1 +1 , K )  as 7r. But for P =S 0(21+1 , K ), every rational
representation 7E satisfies det (1 —77(g)) =0 for all g G r .  Therefore to apply Corollary
1  to the connected groups of type B 1 ,  we must go to Spin (21+1, K ), the double
covering of S0(21+ 1, K ).

6.2. As an application of Theorem 6, we verify that the polynomial P(T)—
111_1(7,21-1_1)2 is distinguished.

In Theorem 6, we take P =S L (2 , K ) and 7E th e  21-dimensional irreducible re-
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presentation. Then for g =h(t) —diag (t, r 1) with t e K x ,  the eigenvalues of r(g) are
t21-1, t2 1 - 3 , t 2 1 1 . Therefore for g=h(t),

Tr 7r1(g)—Tr r 2 (g) = det (1 — 7r(g)) = A + p - t 2 1 - 1 ) ,

where r , and r 2 are as in  (6.1). Thus we obtain the Laurent polynomail p(T)
associated with the pair r„, r ,  as p(T )= + (1— T21 - 1), so that we have P(T)
defined by (4.5) as P ( T ) = 1 1  (T 2i- 1  -  1)2 . This shows that P(T ) is distinguished
(see Theorem 5 (i)).

6.3. We give here another calculative proof for the fact above that P(T)=.
1) is distinguished. It suffices to see that P(T ) satisfies (D2), because

the other conditions in Definition 4.2 (i) are obvious for P(T).
We recall first a q-analogue of the binomial theorem. Let x  and q be indeter-

minates. Then we have the following identity.

(6.2) — lx) r2/ .; q 21q

1=1 : 1 = - 1  r+,

Here 
[11 

; q  is the q-binomial coefficient or the Gaussian polynomial defined as
r

En
r ; qi =

[77]! 

[71! [n—r]!
w ith  [a]! = (q a —1)(q°' —1)•••(q —1) .

The proof of (6.2) is as follows. Denote by f (x )  the left-hand side of (6.2),
and write f(x)=E l

i _ i a •x i. Then there holds an equality

(1 q 2/-i x -i ) q x  f l ex )  _  (1 + q21+ix ) . f ( x )

Comparing the coefficients of x3 in both sides, we obtain
(q 2 1 + 2 1 - 1)a; (q21+1_qv-i)ot_,

From this and al = e ,  we can easily deduce (6.2).
Now putting q =T  and x=1 in (6.2), we have

(6.3)
,  [2 ,

Q (T ) = E ; r1 T . 12 ,
7=-7

where Q (T )=P(T 2) /P (T ) . As P(T ) is pure, we see from Remark 10,

{- /2 ;  T 2 i  T i ,
E

i : e v e n  L /-1-; i

F2(T )  =  E  [
2 1  

; r ] T i 2 .
o d d  1+j

(6.4)
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Here F1 (T) and F2 (T ) are defined by (4.2). On the other hand, we know that the

Gaussian polynomial ; T ] is symmetric and unimodal. This fact can be proved

in various ways (see e g. Kac [5, Ex. 10.13], Macdonald [8, Ch. 1.8, Ex. 4], White

[13]). Therefore [ i +  ;  T 1  symmetric a n d  unimodal in  step 2. Furthermore,

since deg [ ;2, ; 7 ] - 4 n - 0 ,  we have 1
2   (deg [ 2

/ ±
1 ;  T 1 T i 2)=1 2 . Thus in  th e  sum-

mations in (6.4), each summand [ T i i  ; T T ' 2 is symmetric and unimodal in  step

2 with the peak at P independent of f, so that FA T) and FA T ) are also symmetric
and unimodal in step 2 with their peaks at /2. This shows that P(T ) satisfies (D2),
and completes our proof.

§ 7 .  On Problem III (r; (2, 1)) for r—SL(2, K ).

In §3, we see from Theorem 2 and Remark 4 (2) that for a  connected algebraic
group r, Problem III(T ; (2, 1)) is affirmative if the dimensions of the representa-
tions are not power of 3. In this section, we investigate Problem ; (2, 1)) for
r=sL(2, K ) along the  same line a s  in  §§2, 4 , and 5. Then we can give more
precise result, which does ont require the condition ( t) on the dimensions of re-
presentations, as follows.

Theorem 7. L e t it , an d  r,  be f inite dim ensional rational representations of
SL(2, K). Then S(2,0 7 1- - S(2,1)7r2 implies 7r1 , -- - r 2 .

For the proof of this theorem, we recall some elementary facts on cyclotomic
fields.

Let C. EC denote a primitive m-th root of unity. W e fa  a  p rim itive  cubic
root of unity denoted by co.

First of all, we know the irreducibility of 0„,(T ) over Q , so that [Q(C„,): Q]=-
ço(m ). From this we see Q(C„,)(1Q(C„, , ) = Q  if m and m ' are relatively prime to each
other. Especially, „,(T) is irreducible over Z[co] if m is not divided by 3.

On the contrary, if n is divided by 3, we have Q(C„)DQ(co) and [Q(C „): Q(co)]=
9(n)12. Therefore 0„(T ) is factorized into two polynomials, both irreducible over
Z  [a] of degree ço(n)12. We see this factorization explicitly in the following equality
(7.2).

Lemma 7 .1 .  Let ni be a positive integer not divided by 3. Then we have

(7.1) 0.(P) = 0„,(T)0„,(coT)0„,(co 2 T) ,

and for r 0,

(7.2) 0 , r + 1 „ , ( T )  =  0,n (coT3 ')Ø ,„(c)2 r r) .

P ro o f  The equality (7.1) is easily deduced from (CP 3) in § 5 .1 .  In fact,
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0 m (7 , 3)  =__ p  ( T 3 d  _ i) ( m 1 d )

_  I f 1 ) ( 6 . , T a 1 ) ( ,0 2T a ) (m /d )
dim

H  ( ( T d 1 ) ( c o dT d _ 1 ) ( c 0 2aT d
dim

=  0,,,(T)O n s (coT)0„,(0o2 T ).

For (7.2), replace T  by 71  in  (7.1). Then we have

1)„,(T )  =  0 . (T 3 `)0„,(coT 3 r )0 „,(07 1 ' ) .

Recalling (5.3) with p =3, we see (7.2) clearly from this. Q.E.D.

We see from the remark just before the lem m a that „,(coT3 ' )  and 0 m ( 2 T 3 )
are irreducible over Z[co], for m not divided by 3.

For the proof of Theorem 7, we prepare the following

Lemma 7 .2 . Put 0„,(T)EZ[co1[T 112 , T - 1 1 2 ] as

(7.3) 0„,(T)  =  0 ,„(co T)T - 9
'

0 0 1 2
 .

Then we have

(7.4) = 77.95,.(T) •

Here nm  is a unit of  Z[cû] (i.e., 72. — ± i, +co, + 0 ) ,  and — (bar) means the complex
conjugate.

Proof . From (CP 3), we see

=  I-11(7 — d —1)11( mia) =  ±0 „ ,(T )T - 9 ( m) .

Therefore

0,,,(0.) T - 1) =0„,((55T) - ') +0,„(roT)• (c7)Tron ) -=  77.6.„(coT)7 - 1'(') ,

where 72.=+0oç'on ) . Then (7.4) is clear from this. Q.E.D.

Proof of Theorem 7. We put p(T)=c„ 1 (T ) —c„2 (T ) (for c ,(T ),  see §4.1), and

(7  )
s1(T) = c„ i (T)--coc,4T)

.5
s2(T) = c, i (T)—co2 c4 T )

(7.6) s(T) s ,(T )s ,(T ) =  c „ 1 (T ) 2 H-c„i (T)c,0 ) - P c , ( T ) 2 .

Then by Remark 4 (2), the assumption S(2,1)7 1,--.S(2,1)72 amounts to

(**) p (T )s (T ) =  p (r ).

Put T = 1  in  (**), and note that c ,,(1 )  and c,2(1) are positive. Then we see
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p(1)=0, whence c ,(1 )= c41 ).
For Theorem 7, it suffices to show that (**) implies p ( T ) =0 .  We prove this

by contradiction. Assume that p(T )1r 0 , and write it as p(T )=V — L b .T i with
bL * 0 .  Moreover, we define the polynomials P(T ), SAT), S2 (T ), and S (T ) as

IP (T )  = T L p(T) ,
(7.7) S i(T )= T L s , ( T )  a n d  S 2 (T ) =

S (T ) = S 1(T)S 2(T ) = s(T) .

Then from (**), we have

(***) P(T )S (T ) = P(T 3 ) .

Now by Proposition 5.3, P(T) is written, up to a constant factor, as a product of
the polynomials „,(T3 '), where m is not divided by 3 and i O. Therefore by (5.3),
we see that S (T ) is written as a product of the polynomials 0 3 i+1„,(T) with m not
divided by 3 and i O. W e  note that Z [w ] is a  U .F.D . (=unique factorization
domain). So that the polynomial ring Z[co][T] is also a U .F .D .. Then by Lemma
7.1, we see that up to a unit factor, S 1(T ) is written as a product of the irreducible
polynomials 0.(coT 3 ')  and 0,„() 2 T3 i)  with m not divided by 3 and i O. Thus up
to a unit factor, s i (T ) is a product of Laurent polynomials çb„,(T3 i) and b,„(7'3 ')  with
m not divided by 3 and F r o m  t h i s  and Lemma 7.2, we see s1(T - 1 ) =7 2 q1(T)
with some unit 77. On the other hand, since e„i (T ) and c.„(T ) are invariant under
Ti—>T - 3 , we have s1(T )=s 1 (7- 1 ). Therefore we obtain s1(T)=-77 • ,M T ), whence

(1 —72)• c„i (T) 07(1 —nco)• c4T) .

Put T =1 in this equality, and recall c„1(1)=c,(1)>0.Then we see 1 -77 =co(l — 7707).

If 77= 1 ,  then we get 1- 0 ) = 0 ,  a contradiction. And if n*1, then we obtain
c„1(T )=c 4 T ) , which contradicts our assumption  p(T ) * O. H ence the theorem.

Q.E.D.
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