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§1. Introduction and statements of results.

We consider the following boundary value problem
a2u a 2 u
+ q ( x ) — 0 , (x , t)E (0 , 00 )x  R ,a x2 a t 2

liM U(X, t )  = g ( t )  a n d  lim u(x, t) = 0 , t E  R .

The coefficient q (x ) is assumed to be a  real-valued bounded smooth function on
[0, 00) throughout this paper. We assume

(C )J i m  q(x)<0 .
S  0 0

In our previous work [4] we showed some existence theorems for the above pro-
a2

blem (P ) with  replaced by 4 , the Laplacian in  a  higher dimensional space,
82x

where q(x) satisfies (C ) or lim q(x)> 0. Here confining ourselves to the condition

(C ) we gain an insight into the problem (P ) to obtain the existence and uniqueness
theorem of the solution in a fairly distinct and self-contained way and exhibit the
analyticity in  t  of the solution u(x, t) for any fixed x larger than inf q(x)> 01.
We mention also to the existence of solutions satisfying zero boundary data.

Notation. g (t) is said to belong to H!,', if C ." g (t )G H k, (k>  — 00 ). We note
I° 2lig112H1;=-- 11gg,k = 2_; (e ' g ( t ) )  d t  for integer lc. 0  and H e—H n

.1=0 dt' k =0

Denote g ( t )  B ; , ' i f  e—Ytg(t)E13k, and I gl =  I g I . k  = ±  s u p  c i j  • (e—" g ( t ) )  and
t u  dt'

By= n14. f (x ,  t )E C k([0, 00); H) means that f(x , t) is k-times continuously differ-
entiable on [0, 00) and lim f(x , t )= 0  with values in H.

Theorem 1 . Suppose that q(x) satisfies ( C ) .  Then there exists a set
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S  = { r = +r k ; k  =0 , 1, 2, ro= 0<r i <r 2 <—, 1im r k co }
11+ 0 3

in the case of  f x ; q(x )>0)- *0 and S= { r =0}  =-(0)- in the case of  fx; q(x)>01- =0,
such that f or any  rG R — S  the problem (P )  with g(t) 117  h as  a unique solution
u(x , t) belonging to C 2 ([0, 00); Hy).

Theorem 1 0 . W e have the same result as in  Theorem 1 replacing Hy  by  By .

Remrak. If q(x)-= —1, then u(x, t)—g(t —x) for r> 0  and  u(x , t)=g(t+x ) for
r <O. Remark that it holds lim lu(x , •)11,, -0  in spite of I lu(x, -)110,0=I I g'110,0.

I f  q (x) < 0  i n  (0, 00), it is  w ell-know n that supp g (t) c [a, 00) implies
supp u(x, t)c [a, 00) fo r  a ll x> O. N ow  it is rem arkab le that in  the  case  of

f x ; q(x )>0)- *0 the solution u(x , t) with r e(0, co)—S never has this property.
Moreover we have

Theorem 2 .  Suppose (C) and {x; q(x)> 0} * 0 .  For any r E R— S, the solution
u(x, t) giv en by  T heorem  1 is real-analy tic w ith respect to  t  f o r any  f ix ed x >
inf {x; q(x )> 0}  . More precisely u(x, t) is analytic in ft E C ;  I 1m t I <d(x)} , where

8(x ) = 0 q(s),ds. H ere q(x ), =max fq(x), 0)-.

Remark. In  the  case  of q(x )_ 1, the solution of (P ) is given by u(x, t)—
1  r xg(s) ds. Suppose its integrability. Then u(x , t) is analytic in  ft e C;
ir — 0 +(t — s)2

11m t I <x  = .ç 1'12 ds} ,where x 2 +(t— s) 2 * 0 for all se R.

Theorem 3 .  Suppose (C) and f x ; q(x )> 0)- * 0 .  Suppose r E S—{0} . Then
there exists a soluiton u(x , t)$ 0 of (P) with g(t) 0 belonging to C 2([0, 00): By ).

Now we state the estimate of the solution in Theorem 1 more precisely.

Theorem 1'. In Theorem 1 we.can replace g(t)EH., and u(x , t)E C2 ([0, co): Hy )
by g(t)E11;; ± ( 3 1 2 ) and u(x , t) G C 2 ([0, co): 11), (k> — 00) respectively . M oreover
there exists a constant Ck , i  f or r E R— S, such that the following estimate holds:

sup „ U ,A ,  •  yd, (11 1,0 , ')H10 kII ( 0
au ( x ,  . )

Ox

2

*V,k
•,k+(3/2) •

    

Theorem 2'. W e have the same result as in Theorem 2 replacing g(t) H y  by
g(t)E (k> — 00).

To understand the estimate in Theorem 1', it is convenient to state

Remark. Notice that the  estimate in  Theorem 1' i s  inhomogeneous in the
8sense that u(x, t) and u(x , t) have the same index . T h is is derived from the

Ox
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fact that we use a non-linear method associated with the Riccati equation. If
0<m -q(x )._M  <00  in (0, 0 0 ) ,  then the equation is elliptic and we know,

sup 1114(X5../11h-1-(3/2)
o  

(114 X , •  /I Ik+27 -
\ 112 \112

a
-u(x •)ax

2
)dx
1

   

< Ck (11 (3h) lu(x, • )11k/x) ,

where 11g11, means 1 1 g11,,k =11g11,k, (cf. for example [5] and [8]). If — 0 0  <  —M  <
q(x )< —m <0 , then the equation is hyperbolic and we can verify the following
estimate in the course of our proof: For k >  — 00,

2
sup 1 lu(x,
( 0 , 0 . )

- (11u(x,(1h) + - )11i, ,k+ 1+
0

a
  u(x, •)ax

)dx
?,k

r 1   I I i i 2
r 2  I I gl 17,k-F3(/2) 5 r  R— IcOE .

Now let us explain our method in short. If the equation is elliptic or hyper-
bolic, a priori estimate follows from the integration by parts combined with some
suitable partitions of unity. However for equations of mixed type such a direct
method is not effective. Besides we do not know in advance the function spaces to
be considered, which we will rather determine through our reasoning. Let us rely

upon the Fourier-Laplace inversion formula g ( t ) =1  e i"  ( r) d r.  Since the problem

(P)  is linear, we seek the solution u(x, t )  described in the form

u(x , t) = ei "v(x, r)k(r)dr .

Here v(x, r) is the solution of

dx 2

 v(x, r) = 2-2q(x)v(x, r) , x E  (0 , 0 0 )

v (0, r) = 1 a n d  lim v(x, r) = 0 ,

and r is a path in C such that (P), has a unique solution for r E P .  So we study
the existence and uniqueness theorem for (P), with a  complex parameter r. Then
the existence of the solution of (P) follows from the integrability of (1.1), (cf. (2.1)
in Section 2). Moreover the uniqueness of the solution can be reduced to that of
( P ) , .  We will see that a serious argument in the theory of the Lebesgue integral
plays an important role in this reduction. To obtain Theorem 2, we need a sharper
estimate (E) stated in Section 6. Theorem 3 follows from a  residue caliculus at
each simple pole of v(x, r). We prove Theorems 1, 2 and 3 through the follow-
ing devices (a) and (b);
(a) Construction to some fundamental lemmas concerning the behavior of solu-
tions to Riccati equation w'=r2q(x)—w2,
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( b )  Introduction of an oblique coordinate in  C  depending o n  a  parameter for
obtaining the estimate of v(x, 7).

These methods will be useful in some researches for other problems. To justify
the interest of the problem studied here the author consulted to [1], [2], [6], [9] and
[10].

The author wishes to express his gratitudes to Prof. S. Mizohata for continu-
ous encouragement and invaluable criticism . H e thanks sincerly also to Profs.
R. Conti and H. Beirdo Da Veiga for inivting him to Italy, where he was given a
good opportunity for starting this research in 1980.

§2. Relation between ( P )  and (P ) 0 .

In this section we reduce Theorems 1, 2 and 3 to some theorems on the pro-
blem (P) 0 . We begin our argument with the uniqueness in Theorem 1.

Proposition 2.1. L et g(t) belong to _II; for a certain 7-  E R .  Suppose that the
problem (P) has a solution u(x, t)E C

°
([0, c o ) ;  HO r) 0 [0, 00); L ). T hen  û (x , r)=

lim  
A

—

1
e '`u (x , t)d t  is a solution of the following problem (P) 0 for almost every-

27r —A

where rE {r =a — ir , a ER}  ,

û ( x ,  r )  =  r 2q(x )4x , r) , x E  (0, 00) ,
(P)o

r) = ( r )  a n d  lim 16(x , r)I = 0 .

Pro o f . Multiply e t  to (P)  and take the Fourier transform. Then we have
a boundary value problem (P), for an ordinary differential equation with values in
M a ) .  Now apply Radon-Nikodym theorem, then for almost everywhere û(x, r)

an d  
d

q x , r ) are absolutely continuous in x  and 6(x , r)=r2 q(x)û(x, r )  holds.
dx dx2

From lim e- 7 t u(x , t)=0  follows lim h(x, 7)=0 in M a), which implies that û(x, r)

converges to zero in measure as x tends to  00. Hence from the theory of the
Lebesgue integral there exists a sequence -fx ,j tending to 00 such that lim 4 x , r ) = 0

n-yoo

for almost everywhere r.

As we can imagine, the problem (P), is equivalent to (P) 0 . Namely we have

Lemma 2.1. S uppose (C) and Im  7 *0 . L et v (x , r) be a solution of   d2 
dx 2

r2 q(x)v in (0, 00). Then limi v(x, r)1 =0 implies lim v(x, r) =0.

The exact proof of Lemma 2.1 is given later. Now from Proposition 2.1 we
have

dx 2

Proposition 2.2. L e t r be a  real num ber such that the solution of (P) 0 exists
uniquely for almost everywhere r E -(r =a — ir , a E R} . T hen the solution of  (P)
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belonging to 0([0, co); fl C2([0, co); L.;,) is unique.

By virtue of Proposition 2.2 the uniqueness in Theorem 1 follows from

Theorem 2.1. Suppose q(x) satisfy  (C). T hen there ex ists the set S  described
in Theorem 1 such that the problem  (P), has the unique solution v(x, r) if  and only
if r belongs to

D  = C —  {  (r = ± irk ; ± r k ES}  U { r EC; r  =OH-

To show the existence in Theorem 1 we use

Theorem 2.2. S uppose (C). For r G R — S , there ex ists a positive constant C.,
such that thy solution v(x, r) of (P), satisfies

v(x, 7) 
v(x' , r)

Since v(0, r)=1, from (2.1) we have I v(x, C( I + 1)  for all x > 0 . In
order to verify Theorem 2, we improve the estimate (2.1) partially in the case of
{ x; q(x)>0} *0  as follows.

Theorem 2.3. Suppose (C) and T E R — S . A ssum e q(x )>8>0 in an interval
[x0 , 4, .4=x ,H -d. T hen f or any  e G (0, 1) there exists a positive constant C,, y  such
that the solution v(x, r) of (P), satisfies

(2.2) Iv(xo+d,r)/v(xo,r)I1 C,,,,exp(—(1-4VS dIrI), Ilm rI= Ir l.

To obtain Theorem 3 we show

Theorem 2.4. Suppose (C) and -(x; q(x)> 0)-  *O . T hen  f or all x >0 , v (x , r)
is analytic with respect to r in D and has simple poles at r E f r =+ir k , r k  S —  { 0 }1.

§ 3 .  Strum- Liouville equations and Riccati equations.

The problem (P)0 is equivalent to

(3.1) —
d  

w  = r2q(x)—w2 ,
dx

if  v (x , r)*0 for all x  [0, c o ) .  Here we have put

(3.2) w = w(x, r) = r)/v(x, r)
dx

(3.3) v(x, r) = v(x', r) exp r)ds , 0 <x '<x .

(2.1) < C41 r I + 1)3/2 f o r rG  f r — ir; (1E 1 :4 , Cl< x '< x

  

Bin e x p  w(s, r)ds = O,
o

Considering the problem (3.1) in detail, we will be able to prove naturally the fol-
lowing Proposition 3.1, which implies Lemma 2.1.
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Proposition 3 . 1 .  Suppose (C )  an d  Im r 0 .  T hen any  solution v(x, r )  of

—
d 2  

v=r 2 q(x)v satisfies Ern v(x, 7)=0 or limlv(x, r)I 0 c .
dx2

Now let us rewrite the condition (C) as follows. There exist positive numbers
M, m and x , such that

(3.3) — M <q(x )<— m <0 i n  (x„ 00) .

We note incidentally

(3.4) — M < q (x )< M in (0, 00) .

Evidently Ern v(x, r)=0 follows from, for example,

(3.5) lim Re w(s, v)<0.

In the case of Re r 2 < 0  we can prove (3.5), (Lemma 3.1). However (3.5) is not
necessary for obtaining lirn  v(x , r)=0. Now we describe

Proposition 3 .2 .  Suppose *e (0 , it). Put z = e i+ . A ssume that g (x ) is a  con-
tinuous function satisfying I g (x )I < M ' and 1m (4(x)2) < — m' <0 f o r all xE[a, 00).

L et w(x), (respectively wi (x )) be a  bounded continuous solution of   d w  =g(x)—w2
dx

satisfying 0 < m" < Im (w(x)2) < M " in  (a, 00), (respectively — M "  < 1m (wi (x)f) <

—in" < 0  in (a, 00)). Then v(x) = e x p  w(s)ds satisfies lim v(x) =0 and sup I v(x) 12 +
a x + c ., 0  <I

1 (V(S) 12 + 1 (S) I2)ds<C , where C is a contant depending one n i', M ", m " and z,
a

(vi (x) = exp iv,(s)ds satisfies limI vi (s)I =00 respectively).

We postpone this proof and state

Lemma 3 .1 .  L et g (x ) b e  a  bounded continuous function defined on [a, 00).
Suppose that the value g(x) belongs to

(3.6) G,(M„ nh) = - (eE C; 0 <m i  <Re OE, I e < 4 . }

for all xE [a , 0 0 ). Put

(3.7) Di(Mi, m 1) =  w e C; Re w< — m11 ' , Im( e 1 
w 2012

4
Or

4
Tm( e  <   — 1 

w 2M
I

1P1 •

Let x ' belong to [a, 00). Suppose vv,,E D „ (respectively NE — DO, then the solution
w(x) of w' =c7(x) —w' and w (x ')=N  satisfies w(x)ED, f or all xE  [a, x'), (respectively
w(x)E - D I =  E C ; -w  E  for all x e  (x', 0 0 )).  Moreover there exists a unique
solution w(x) of  w' =4(x) —w' satisfying w(x)ED, for all xE  [a, 00).
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Lemma 3 .2 .  Suppose the same condition as in Lemma 3.1 replaced G, by
8-1C  i

(3.8) G2 (0, M2, /722) = e C; e < o, iei <M 2, I M ( e e  2 ) <  —m2)- ,

where M 2 , m2 and 0 satisfy 0<m 2 < M 2 and 0<0 <7r. Then we have the same results
as in Lemma 3.1 replacing 2 , by

(3.9) 322 = 3220, M2 , MD

=  {IV  C ; 7r <arg w< r, Im  (we 2 ) ›  ( m 2 cos

7 r - o 0
2 — COS —

/ m (  e 2  1
w

<  

3A/1/2 •

Im(we(9-')i)
2  )  < . 'sin —

2

Replacing G2 and D, by G- 2=  g C ;  - eG,}- and ,g2  respectively, we have the same
results.

We prove the above lemmas in Section 7. Using Lemmas 3.1, 3.2 and Pro-
position 3.2 we can prove the following Propositino 3.3 which implies Proposition
3.1 and Lemma 2.1.

Proposition 3 .3 .  Suppose (3.3) and Tm r  0 .  T hen there ex ists a unique
solution P(x, r) of

= r 2 q(x)P in  (x 1 , 0.0) , 1)(x1 , r) 1 a n d  lim P(x, r) =  0 .
C .

We have also (1P(s, r)1 2 +1P/(s, r)I 2 )ds <o c .  I f  P,(x, r) satisfies PÇ' = r 2q(x)T71 and

i",(x„ then it holds Ern î 1(x, r) I =00 or

Proof of Proposition 3.3. Put q(x)= r2q(x) and a= x,. If Re r2 < 0 , we can
apply Lemma 3.1 with M, — Mj r  2 and m,=mI Re r 2 I . Then w' =r2q(x) —w2  has
two solutions w(x, r) and  w,(x, r) satisfying w (x , r)e  2 , for a ll xe [x„ 00) and
wi (x, r)e — 2, for all x 0 0 ) .  Put

(3.10) P(x, r) = exp w(s, r)ds , r) = exp wi (s, r)ds .
. 1

Then by virtue of Proposition 3.2 we have Proposition 3.3 putting z = e 1 2 in  this
case . lf Tm r 2> 0, we apply Lemma 3.2 with

(3.11) 10 — arg r2,
2 M2 — MITI 2, m, — mIrl isn2 7T

- 0  
•

Similarly to the above case we have î3(x, r )  and i),(x, r) satisfying the desired con-
ditions. Since v=i3(x, r) satisfies v" =P2q(x)v if i i s  a solution of v "= r 2q(x)v, we
can reduce the case of Im r2 < 0  to the case of 1m r 2 > 0 .  Namely qx , f ) = - 5 ) ( x ,  r).
Thus we have Proposition 3.3.
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Proof of Proposition 3.2. Integrate —v"P= --g(x) j v 12 by parts in (a, x). Then
we have

x x
(3.21) w(a) = w(x) I v(x) 1 2 — a I v'(s) I 2 ds j  a 4(s)Iv(s)I 2 ds .

Take the imaginary part of (3.12) multiplied by 2 and make x tend to  00, then we
have

(3.13),

Therefore it holds

(3 .1 3 )2

m ./
iv'(s)I 2ds < a n d  S  I v(s) 2ds <M "  .

a sin 'fr. m'

sup I v ( x )  
2  <

M " a n d  lim v(x) = 0 .
a < .r /

Replacing w(x) and v(x) by w 1(x) and vi (x) respectively in (3.12), we can verify
lim I vi (x) I = 00 .
i ÷ oo

§ 4. Oblique coordinate and calculus for basic estimate.

We extend P(x, r) defined on [xl , 00) in Proposition 3.3 to [0, 00) as a solution
of f," =r 2q(x )P. Let us denote

(4.1) N  f r  EC — R ;  P(0, r) = 0} .

Concerning N  and P(x, r) we have

Proposition 4 . 1 .  S uppose (C). Then for any xE[O, co), 17(x, r) is analytic with
respect to r in  C — R . If we define qx, 0) 1 ,  (x , r) is continuous w ith respect to r
on I ;  Re r =0} .

Proposition 4 .2 .  S uppose (C). Then there exists a sequence of positive numbers
1r kl7,1 tending to co such that

N  = { r: r =  ± ir,  ,  k  =  1, 2, 3, ...} ,

i f  Ix ; q(x )>01 *O . W e have N=95 if  { x; q(x)>0)- = g 5 . Moreover P(0, r) has a
simple pole at each r E N.

The proof will be given in Section 5. Here we define

(4.2) v(x, r) = r)/i,(0, r) , C—N U R

Then v(x, r) is  the unique solution of (P) 0 . Our purpose in th is section is to
obtain the following proposition which yields Theorem 1 and Theorem l'.

Proposition 4 .3 .  Suppose (3.3) and (3.4). Then there exists a positive constant
C such that the following inequalities hold for 1m r 2 *0

(4.3) sup I v(x, r)lv(x' , r) CE(r)0<x,



5: d  v(s, r)
ds

2
ds <C  I r  I  E(r)2 ,

171+ 1
(4.4)
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(4.5) r 1 v(s, 7)1 2ds < CE(r)2 (1 + 1
1m

I 1 2 ,  where
7

E(r)2 = {lr1 3(1 7 1+ 1 )} IlRe r I lIm r lm in IR e I , I lm  r  II } •

Remark that (2.1) follows from (4.3) with x' = 0  and v(0, 7)=1. In order to
prove Proposition 4.3 we introduce a fairly general

Notation. Let fr  be a  real number belonging to [0, 7r). Put

(4.6) z , .\/ —z e1 ( 9 ÷
'

)1 2

We see I m  —z < 0  and Re .\/—z < 0  for ç2 (0, r ) .  Any complex number w is
decribed as

(4.7) w = Pz(w)z+ Qz(w)V —z 9 w here

(4.7)' P(w)
—z )( w )  Im  (w2) Im (w2) 

Tm (z.\/—z ) z I m  —z 2) I m  —z

which we call P, and Q, component of w.

Remark. For z =1, (P,(w), Q,(w)) is the usual Gauss coordinate. Relating to
Lemma 3.2 we remark

. 0Tm (we- i( - °) )/sm —
2

Q (w ) if z .

Notice that Q2(w)<0 means —0 <arg e <rc —0 .

Application to energy identity. Similarly to (3.12) it holds

(4.8) W M I KO I 2 =  W (X ) V (X ) I 2I  1A S )  I 2 dS q(s)I v(s)1 2 ds ,
xi xi

for 0< x' < x .  Here v(x) stands for v(x, 7) and w(x)—v'(x, r)lv(x, 7). Let us put,
for Im 72> 0,

— e 1 9 ,  Q 1 ( -1 ) =  2  I'm 71  , a 2 ( z .2)  _  0 ,
Id1

(4.9)
2
z 1 = 1 1 m  71/171<Qz1(-1)<2

1m ri  Q2(72) 17 111m 71,
Hi1

and take Q . or Q,1 component of (4.8), then

(4.10), Q2(w(x'))1v(-012 Q2(w(x))1v(x)1 2 + 2  11
1 mr  7

 I
 x

x , 1 v'(s)1 ads,

(4.9)
1

Z
r

2

1 r12
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(4.10)2 Q1(w(0) 1 v(x ') 12

= Qi i (w (x )) 1 V(x) 12 + Qz1 ( — 1) 1 lqs) I 2 d —— 1 r 1 1 1m r 1 lx,q(s)1 v(s) I 2 ds

Now as for the estimates of Qz (w(x, r)) and Qz i (w(x, r)) in (x1, C O ) ,  we have

Proposition 4 .4 .  Suppose (3.3) and (3.4). Then there exist positive constants
C and C, such that for 1m r2 > 0 we have

1
(4.11), jIm  r <Q

1 2. 2
z(w(x, r))<C  ' x > x ,

lIm r I

(4.11)2 11m
 r  <Qz (w(x, r ))<  c 1

1 r, x> x,
r I

Proof  of Proposition

=71" —arg m 2  m  r  2

M2, M O  ‘22(v) for x  xi.

4 .4 . A pply L em m a 3 .2  w ith  a =x 1 , (x) = r2q(x),

and m2 =m irr cos 
 e  

. T hen  w(x, r) belongs to 2 2 (0,
2

0Therefore we have from cos —
2 1 r 1

Qx(w(x, r)) (m2 coS ° ) 112 M 112 Im r I ,
2

Qx(w(X, r)) Min {2, 1  

} I w(x, r) 1 <
6 M ' 2 — 6 MY2 1 r 12

lImvi

Therefore we have (4.11)1.
have (4.11)2.

1Replacing 0 by 0, = r —  arg r 2 in the above proof we
2

In order to show the estimate of Qz (w(x, r)) on [0, xl ] we prepare

Lemma 4 .1 .  Suppose that g(x) satisf ies all the conditions a s  in L em m a 3.1
replaced G, by

(4.12) G 3  =  e  c; Qz ( e )  0,1e I <M3} ,

where z=ei+, 0 <VP < 7 r .  Then we have the same results as in Lemma 3.1 replacing 12,
by

sin v v acom i >
(4.13) 2 3 =  1

2 
11,  C ; Q z (w )> 0 , 1m (  e ( 4 '1 2 ) i ) >  o r Re 

w 3M1/2 w ) 3/1/1/ 2 1

Proposition 4 .5 .  Suppose (3.3) and (3.4). Then in it holds for Im r2 > 0

(4.14) I w(x,

(4.15) iIm r l  12-13 

sin 2
-c o s  -2 -

< 3m v2 r
/

2 , m •
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for all xE [0, co), where C depends only on M, m and x i .

Proof of Proposition 4.5. Since w(x i , r) belongs to 2 2 c ‘23, w(x, r) belongs to
S2, for a l l  x  [0, x i )  by virtue of Lemma 4.1 with 4(x)—qr2(x), z=r 2/1712 and
M3 =M - I r 12. Thus we have (4.14). Since it holds

Q,(w(x, 7)) 1 w (z , r )II  w(x r)11r1 
cos 1/P r 1

2

we have the upper estimate in (4.15). For the lower estimate we consider a  dif-
ferential inequality as follosw. The linear property of Q, yields

d Q ,(w) = Q2 (
d

 w ) = Q  ,(q (x )1  z  —  w 2) = — Q(w 2)
dx dx

Substituting iv2 = P,(w)2z2 + 2P x (w )Qz (w )z \ -z  -Qz (w ) 2z , Qz(2) = 211m  rU iri,
Qz(z \/— z )=1  and Q,(z )=0 to the above identity, we have

f '  =  — 2 ( i Im 2") 1/1r1 z(w)2 — 2  P..(w)f

where f— f(x)=Qz(w(x, r)). Let us recall (4.11),. Then we have

(4.16) f ' (ir1/21I1nr1)f2, f(xi)>IImr1/C.

Now consider g' =(171/21Im  r ) g2  and g(x 1)»= I
 Tm

 r i / C ,
 and compare its solution

with f ( x ) .  Then

f (x )>g(x ) = 1

 

for all x  [0, xl) •C  ( X ,  - x ) +
11111=1 Ilmr1

Thus we have (4.15) for x  [0, xd. From (4.11), follows (4.15) for x  [0, 00).

Proof  of  Proposition 4.3. (4.3) and (4.4) follows from (4.10), with x' =0 and

(4.15). Since (4.3) yields I v(s, r ) 2ds Cx,E(r) 2,  it suffices to consider

(4.17) I v(s, r)I 2ds -= I v(xi , r) 2i 3 ( s , 7 ) 1 2ds
x,

On the other hand (4.10)2 with x' =x, and v(x)=P(x, r) makes
-

(4.18) Q.1(w(xl, r)) r i f  P (s ,  r)1 2ds
xi

Remark that Qz(w(0 , Qz(w(xi, I v(xi, I 2 holds from (4.10)
1.

(4.17) and (4.18) we have

Qzi(w(xi, r))
1 (s, r) (m iri Jim r ) -

I Qx(w(0 , r)) Q
z(w(xi , r)) •

Then from



504 Sadao Miyatake

Therefore (4.5) holds from (4.11),, (4.11)2 and (4 .1 5 ) . Thus the proof of Proposition
4.3 is complet.

Remark to Proposition 4 .3 .  We can make (4.5) more precise as follows.

(4.5) ' I  vl
„

s, r)l - ds<Cx ,E(7) 2 , v(s, r)1 2c1s<C  E ( 7 ) 2  

(17 1+1 )1 In irl •x,

In order to prove (4.5)' we use the following (4.19) instead of (4.11), and (4 -1 1 )2-

(4.19) Qz(w(xi, r))1Qz 1 (11'(x1, '0)1 < 1 i l i n 7 1

C iri

We can prove (4.19) using (4.7)', (4.9),, (4.9) 2 and w(x i ,  r) E 2 2(0  M2 , m2), where
61=7r —arg 72 , M2=11/1'1- 12 and m2 =m I r 1 2 cos  o .

2

§ 5 .  The analyticity of the solution.

In this section we consider the analyticity of v(x, r) in r  and some properties
of its poles. For this purpose first we show that iY(x, r) is analytic with respect to
r  in C— R and has infinite number of simple zeros on pure imaginary line. Now
we state

Lemma 5 .1 .  Let q(x, r) be a bounded continuous function defined on [a, 00)x D,
where D is a domain in C. S uppose that q(x, 7) satisfies all the conditions in Lemma
3 .1 , (respectively Lemma 3.2) f o r all r E D . M oreov er q(x , 7 ) is assum ed to be
analytic in D  for each f ixed x E [a , 0 0 ).  Then the unique solution tiv

-
 (x, r )  o f  w '=

q(x, r)— w 2 belonging to Di , (respectively 2 2 ) f o r all (x, r )E  [a, 00)x D  is analy tic
with respect to 7 in D.

The proof of the above lemma is given in Section 7. Now we give

Proof  of Proposition 4 . 1 .  Fix an arbitrary r E C— R and take a  small neigh-
bourhood D of 7 in C — R such that we can apply Lemma 5.1 with q(x, r) = r 2q(x)
and a = x , .  Then the solution w(x, r) of (3.1) is analytic with respect to r  for each
fixed xE  [x ,, 00). i)(x , r) defined by (3.10) is also analytic for each x E [x i , 00).
Hence P(x, r) is analytic for each fixed x  { 0 ,  0 0 )  by virtue of the well-known
theorem on the analyticity of the solution with respect to a  parameter. Now
confine 7 to 1= {7: Re 7= 0}  and make r  tends to zero . Then Lemma 3.1 says that
w(x l , 7)= -TAxi , 7) tends to zero. Notice that 1 P ( x ,  0 )  satisfies r  = 0 , P (x „  0 )= 1
and P i(x ,, 0 )= 0 . Therefore i(x, 7) tends to 1 P (x , 0 ) , because î(x, r) is the solution
of r, "  = r 2q(x)i) with 1/(x1 , r ) = 1  and V(x, 7)=w(x 1 , r).

Proof of Proposition 4 .2 .  As we saw in Proposition 4.5, for Im 7 2 *0, w(x, r) is
bounded for x E  [ 0 ,  0 0 ) .  Therefore qx , r)  does not vanish on [0, 00) if (Re 7)(Im r)
* 0 .  In order to clarify the set N  defined by (4.1), it suffices to consider the case
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where r  belongs to / = C — R ; Re r =0)- . From P(x, f)=P(x, r), we have N =
— N = { r: —r E N }  . Now let us prove that N  is a set of infinite points without any
accumulating point. Suppose that q (x ) . a> 0 holds in (x 2 , x,), where 0 < x 2 < x 3 < x 1.
Put

0<x < xi ,
xi <x ,

x2< x < x 3

0<x< x2 , x3 G x

Then qi (x)r2 q ( x ) r 2 q 2 (x)r2 for r I. Let n(r), n i (r) and n2( r )  be numbers of
zeros of solutions of v " _ 7 2. 7 ( x ) v ,  y fi _ r 2g i o c sv i) and -v = r 2 q2(x)v2, satisfying lim v(x, r)

= 0 , Ern vi (x , r)= 0  and lim v2(x , r)= 0  respectively. Sturm's separation theorem

says

112(r)-1 <n(r)<n i (r)+l

(5-02 [

i,2 I r I (x3 —
x 2 )

]< n 2 (r )n i ( 7 )
m[  1/21,1

] + 1  5

where [a] is the largest integer less than or equa l to  a . On the other hand we
remark that P(x, r) is continuous in (x, r)e [0,  o c )  X -(C— R)- and has no zero of
order two with respect to x. Remark also P(x, 0)-= 1 and that for r I ,  P(x, r) is
positive valued on [xi , 00). Then we see that the number of elements of -(ir :
v(0, ir)=0,17-1 is not less than n ( r) .  Thus from (5.1), and (5.1)2 the number
of elements of N is infinite. Furthermore we can prove later

(5.2) r  a
r 

P(0, r)  = 0 -1  r i , '(s, r) 2 ds , if P(0, r) 0.a 0

Since 13(0, r)=0 implies P/ (0 , r)*0, we have from (5.2)

a r)* 0 ,
Or

i f  re N .

Therefore r  is a simple zero of 13(0, r) for r e N .  Putting

N =  +ir k ; 0 <r i  <r 2 <..-, lim r k
 =  oc )-,

k + o .

we have Proposition 4.2 if (5.2) is verified. Denote

g h( x ,  r )) g (X  r h)— g(x, r)
h

and g'(x, r)— g(x , r). From (3.1) follows
Ox

(2-2),q(x)—(w(x, r  h)± w(x, r))w h  .
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Hence we have

(5.3) r+h)P(x, r)w k (x, r))' = P(x, r+h)P(x, r)(r2)k q(x) .

Integrate (5.3) from 0 to 00 and make h tend to zero, then

i)(0, r)2 -A- w(0, r) —2r q(s)9(s, r)2ds
Or 0

follows from Fatou theorem. Since it holds

a aP(0, r) 2w ( 0 ,  r )  =  P(0, r) v'(0, r)— P'(0, r) P(0, r ),a r ar 8r

we have

 a 1/(0, r) = 2V(0, r) ' q ( s ) 9 ( s ,  r) 2ds , if P(0, r) = 0 .
r  Or 0

On the other hand the integration by parts of P"P=-r2 q(x)P2 yields

r)2ds = q(s)9(s, r)2ds if P(0, r) = 0.
0

Hence we have (5.2) and complete the proof of Proposition 4.2.

Proof o f  Theorem 3. Let rk be a closed path in C— R such that only one
point r? — irk belongs to the closure of the interior of r k .  Then

uk (x, t) ei" v(x, r)dr
r k

is a solution of (P) with boundary condition g(t)m 0 for any constant ck * O .  Then
the residue calculus gives

ck uk (x, t =  27rie - lkti3(x, irk)lim i r k
T iyk i(0, •

r)

From P(0, ir k ) =0  and (5.2), uk =e - Ikt-i)(x, i r k )  if

ck = I —a i 7  (0, ir k ) = z r k -r(0, ir k )(' ( s ,  i r k)2ds) - 1 .ar

§ 6 .  Proof of Theorem 2.

In this section we prove Theorem 2.3, Theorem 2 and Theorem 2'. First we
state

Proposition 6 . 1 .  Suppose the sam e conditions as in Theorem 2.3. Assume
1Re r1> 11m r1>  0 . Denote by w(x, r) the unique solution of  (3.1). Then there
exist tw o solutions w i (x , r) and w ,(x , r) of  w' =r2q(x)—iv2 i n  a n  interval (x0 , xô)
involved in (0, 00), such that we have
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(6.1) i WAX'S, r)—W(x6, 01 < C
1r12

I bri ri

(6.2)
1 

1 1472K  r ) — W(Xô, r) I 11m r I,
C

(6.3) Re w,(x, r)< --Nr,-7-  I Re r iz
Irl , Irl —

.v a I Re 2.12<Re w 2 (x ,  0  ,

(6.4) Iwi(x,r)I C Irl, Iw2(x,r)I_CIri
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f or all x e[x 0 , 4], where C is a positive constant.

Proposition 6 .2 .  S uppose the sam e conditions as in Theorem  2.3. Assume

I Re r  >1 Im r 1>0.  Let v(x , r) be  the unique solution of (P) 0 . Then v" =r 2q(x)v

has two solutions v i (x , r) and v 2 (x , r) satisfying

_v-- (IR ie, [ 12 ) ( x  _x6)

(6.5) I vi(x, r) I x  (X0 , ,
tiRe ,I2  ( x

\ 1, 1I VAX, 7) I e x  (x 0 , x6) .

v(x, r) Ci(r)qx, 2") +C2(2-)V2(X,

1 Cz(r)/Ci(r)1 C(1 r 1 / 11[111 r 1)2 •

Proposition 6 .3 .  Suppose the sam e conditions as in Theorem 2.3. Then the
unique solution w(x, r) of (3.1) satisfies

(6.8)u r n Re w(x
'  
r)

<  1sup
IRex 0 < x < x o + C 1 — e ) d Irl

for any fixed r = r  0  and all e e(0, 1).

Using Proposition 6.3, now we can verify Theorem 2.3 and Theorem 2'.

Proof  o f  Theorem 2.3. For TE S, w(x, r) is continuous on (x, r) E [0, 00) X
Ir ;  Im  r — 71. By virtue of (6.8), for any e e(0, 1) there exists a positive constant
C y  such that it holds for r f r ;  Tm r =+r}

sup Re w(x, —(1 - e) a
'0< '< x 0+( 1 -  e)d

Therefore we have from v(x, r)=v(xo, r) exp w(s, r)ds

(6.5)2

And we have

(6.6)

(6.7)

(6.9) v(x0-1-(1—e)d, r) 
v(x0 , r)

exP (—(1-6)2 /T -ci I r I) .

  

From (2.1) and (6.9) we have (2.2) replacing e suitably.
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Proof o f  Theorem 2'. Since x  is larger than inf -fx ; q(x )>0)- , there exist
positive numbers x o , d and a satisfying q (x )> â in  (xo , x o + d ) .  Hence (6.9) holds.
On the other hand from (4.10), and (4.15) there exist positive constants C and Cy

such that

(6.10) sup I T I312 + C
11m

r e -(r; Im r = .

   

D e c o m p o s in g  v ( x ,  r ) —  
 v(xo , r) 1(x0-(1—e)d, r) v(x , r) , we can prove that
v(0, r) v(xo, r) v(x0+(1—e)d, r)

u(x , t) is real-analytic with respect to t. Moreover taking account of the definition
of Riemann integral and the finer decomposition

v(xi , r) v (x , r ) v(x, r) — , x_ i  =  0  ,
.7=0 v(x r) V(Xk, r )

for sufficiently large k , we can obtain the estimate (E) below from (6.9) and (6.10).
For any fixed x> inf q(x )> 0}, T E S  and e C(0, 1), there exists a positive con-
stant such that it holds

(E) Iv (x ,r)l<C ,y ,xexp (— (a (x )— e)Irl), rE fr: IIm rI =

Denoting I'1=  fr: TM r =  — r, R e  =G ER I, we define u(x , t) by (1.1) w ith  = T .,.
Suppose g e H ,  i.e. e - Yi g(t)C H k , which is equal to saying (1 rI l ) ( r ) E  L 2 on Pi .
Notice

e-7tu(x , t) = e' v ( x ,  z-)k(r)dr .

From (E) follows

I e " " T v(x, exP ( - 0(x) - - 6 )+ Ihn tI)Ir I.

Therefore if  I Tm t I < S (x )-2e, we have

e u Re T v(x , ,r )e r s)1 I k(r ) I
This implies that e - l i u(x , t) is analytic with respect to  t  in the compex domain
f t: 11m t I <a(x ))- in  view o f  well-known theorems due to  Cauchy, Morera,
Lebesgue and Fubini.

Proof of Proposition 6.1. Notice th a t  = w(x, r) is a solution of w ' =f 2 q(x)— w 2

i f  w(x, r )  satisfies w'=z-2q(x)—w2 . Therefore it suffices to prove (6.1)—(6.4) in

the case of Tm r2>  0 . Put B =arg 0M 2 = M  r 12 and m2 =6 I r 12 cos   a n d  apply
2

dLemma 3.2 to the equation — w(x, f)==f-2 q(x)— w(x, 02 . Since q(x )= 2 q(x) belongs
dx

to G2(0, M2 , m2)  for all x G [xo , 4 ] ,  there exist two solutions wi (x, t) and w2(x,
belonging to 2 3(0, 1112, m2)  and —92(0, M 2 , m ,) respectively. Therefore w,(x, r)=
w,(x, t) and w2(x, r)=w 2(x, t )  satisfy w' =r2 q—w2 and belong to DAB M2 , tn,) and
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—12 2 (0 , M2, /1/2) respectively. Hence w we have

(6.11) I wx(x, r)1 5 3M r 2 (COS = 3M1/2  r  
I Re r

k  = 1, 2 ,
2

(6.12)
Trn(wi(x, oe -1(x-0) )  _ 

> 
(m 

2

0  ) 1 / 2 < b11 ( w 2 (x ,  r ) e -i(x-e))
COS

0 2 0
sin sin —

22

(6.13) Im(wi (x, r)e - i ( c-
0 1 2 ) > (m 2 cos  0 

 )1/2<  1 m  (_w2(x, 7 ) _i( t _0)/2)  9

2

for a ll X  E  [X 0 , x6]. From (6.11) follows (6.4). From (6.12) and (6.13) it holds
y / 2  IRe r  

I Re w1
0

1> (m 2 cos . Thus (6.3) holds. Now let us pu t z = r 2/ 1 r 12 .
2 / Irl

Then we have Qz (w(x, r ) ) .  0 and I w(x, r)1 3/141,21r 12/ 1
1i n  7 , , for all x [ 0 ,  0 0 ) ,

by virtue of Proposition 4.5. Thus we have (6.1). To verify (6.2) we remark first

1m(w2e - i ° ) ze 2—( m2
.cos Y / 2

Qz0v2(x, <00 0 cos
2

cos 
 2

1/tan
2

00Therefore w2 (x6, r)—w(4, r) 1 1 Qz(1172(xô, r)) cos 1 — (7772 cos 0  )1/2 sin — holds.
2 2 2

The right hand side is equal to 81/2 1r cos  0  sin  0 - 6 1/2 11:ter' l Im r i/ ir i .  Hence
we have (6.2). 2 2

LProof  of  Proposition 6.2. W e put vl (x, r) = exp x , wi (s, r)ds and v2(x, r) =
x

exp z

1
w2(s, r)ds. T hen (6.5) follows from  (6.3). (6 .6 )  a n d  w(x, r)v(x , r) =

ci (r)w,(x, r)v,(x, r)d - c,(r)w 2 (x, r)v,(x, r) with x=x6 make

ci(T) 147(x, r) — w2(xô, r) 
v(x6, r) wi (x6, r)—w2(x6, r) v(x6, r) w2(x6, r)—w i (x6, r)

where we have used v1(x6, r)=v 2(x6, r)=1. Therefore (6.7) follows from (6.1) and
(6.2).

Proof of Proposition 6.3. Since w(x, r) is represented by

w(x, r) —
v' (x , r)( w , ( x ,  r )  + C 2 ( r ) 1 2 , ( X ,  r )  w2(x , r))/ (1+

c 2 ( r ) v 2 ( x ,  r ) )

v(x, r) ci(r)vi(x, r) ci(r)v,(x, r)

we have (6.8) from (6.3), (6.5),, (6.5)2 and (6.7).

c2 (r )  _  w(x6, r)—w i (x6, r) 

§ 7 .  Proof of Lemmas and final comments.

Here we prove Lemmas 3.1, 3.2, 4.1 and 5.1. To make our proof short we
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prepare

Lemma 7 .1 .  Let Q(x, U) be a  continuous function defined on [a, 00)x R n with
values in R .  Suppose the local uniqueness of the solution to U' =Q (x, U ). Let D be a
bounded domain in R n and S i , (i=1, 2, •••, k) be hypersufaces in Rn such that it holds

8S2= (D n S i ). A ssum e Q(x, U)• n i (U)> 0 f o r all x  [a, 00) and all U E a D  n Si,=1
i=1, 2, •••, k, where n1(U ) is  the unit outer normal to S . Then there ex ists at least
one solution U(x) of  U' =Q(x, U) satisfying U(x)ED for all xE [a, 00).

Proo f  o f  L em m a 7.1. T a k e  a  sequence {xn }  satisfying a < x 1 < x 2 <  •
lim xn =  .  Denote by U(x; x0 , U0)  the solution of U ' =Q (x, U ) and U (x 0 ) = t i e .
,/ ÷ o c t

Put Dn =  {U(a; x„, U0 ); U0 E 0 } . Then follows 12 D D„D D * 0, n=1, 2, •-•. Put
F=Iim D n ,  then F * s b . l f  U, belongs to F  then  U(x; a, U0 )  belongs to D for all

xE[a, 00).

Lemma 7.1'. Suppose the same conditions as in Lemma 7.1 replaced Q(x, U)•
n1(U )> 0  by  Q(x, U)•n 1( U )> 0 .  Then w e hav e the sam e results as in lemma 7.1
replacing D by D.

Proof of Lemma 7.1'. We remark only that U, G .g implies U(x; x0 , U0) E 12 for
all xe[a, x 0). The same proof as that of Lemma 7.1 is valid if we replace D by D.

Proof of Lemmas 3.1, 3.2 and 4.1. Put U = g(Re w, 1m w), D = fl k , k=1, 2, 3,
and Q(x, U)= t (Re(g(x)—w 2 ) ,  1m ( q ( x ) - 0 ) .  In order to prove Lemmas 3.1 and
3.2 we may apply Lemma 7.1. In fact Q(x, U) and p k , k =1, 2 ,  satisfy all the
conditions in Lemma 7.1, if c7(x) belongs to Gk , k = 1 , 2  for all xEra, 00), (cf. the
proof of Lemmas 2 .1 , and 2 .4  in [4]). The uniqueness follows from Proposition
3.2. By virtue of Lemma 7.1 ' we have Lemma 4.1.

Proof of Lemma 5.1. At first we show the continuity of fqx, 7) with respect
t o  r  a s  fo llow s. Suppose th a t  73 tends t o  r 0 E D .  Taking a  subsequence, if
necessary, we can suppose lirn w(0, r i )= wo S2 k , (k =1 or 2). Then the solution

iT(x, 70) of w' =q(x, r 0) —w2 and w(0)=w 0 , belongs to Dk by virtue of the continuity
of solutions with respect to  initial data and coefficient. Therefore the uniqueness
implies i'v(x, r0) =0(x, 7 0). Hence 7) is continuous in 7 for any fixed x E [a, 00).

N ow  w e proceed  to  p rove  the analyticity. Put v(x, 7)=exp W (s, 7)ds. Then

from Lemma 3.1, 3.2 and Proposition 3.2, there exists a positive constant M  suhc
that

-
(7.1) supj v(x, r ) 2 + (I v(s, 12 -k liq s , r)1 2)ds M ,

a
for all T E D .

Let us fix r  in  D .  We have (5.3) replaced q(x)z- 2 b y  q(x, 7) for sufficiently small
complex number h  such that 2.-kh belongs to D .  Integrate it from x  to  0 0  and
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make h tend to zero, then from (7.1) we have

a -
(7.2) r) —1v ( s ,  r)2

-
a

q(s, r)ds .
ar v(x, r)2 x ay

Since the right hand side is continuous in r, iv(x, r) is analytic with respect to r
in D for any fixed x G [a, 00).

Proof o f  Theorem 1 ° .  Take a  C - -function a(t) with compact support satis-
fying a(t)-a.- 1 for I t I < 1 .  Put a,(t)— a(t), a 2(t) 1 —a i (t ),  g ,(t )= a k (t)g (t) and

uk (x, t) =  e i "v(x, r) 0 ( r )d r .  By virtue of Theorem 1 and Sobolev Lemma u,(x, t)

has the desired properties. Since

(7.3) u2 (x, t) =  c_ot+k  e i, (t-s)  ( ir Y i   
a k v (x ,  r )  d i  a s )

 dsdr
(i(t—s)) ka r k dsi

1 holds, if t is restricted to f t R ;  It I <  1. The analyticity of v(x, r) gives
2

(  a) k(7.4) r ) k ! v (x  r')  (7.4) ' d r  ,  r - ( r ;  —  I m  =71,27ri 

where r ,=  f r ';  r  — r '  — 2
1 min{ ir+rkl,k=o, 1, 2, • •• }1. Now let us use the

estimate (4.3) with r =r ' and v(x', r)— v(0, r ')=1. Then (7.3) and (7.4) yield

(7.5) sup1/1.< ,./2 dti
(e - l i u2 (x, t))

 

C y  i suptER
di _,t
dt1 " ( e  a t ) )

       

for all x  [ 0 ,  co) and j= 1 , 2, • • • . If we use a,(t)— a(t —4) and a2 (t) =  1 — ai(t),
1we can replace I t 1  < -

1

 b y  I  t—to I <—  in (7.5). Thus the proof of Theorem 1 0  is
complet. 2 2

Conclusion. Now we notice that the problem for equations of mixed type
involves essentially that for elliptic or hyperbolic equations. It is known that equa-
tions of mixed type are indispensable in the description of some real phenomena
such as subsonic and transsonic waves. Furthermore they surve many important
subjects to pure mathematics. Let us point out related topics to our problems.
(1) Boundary value problems for elliptic or hyperbolic equations in a half space,
(2) Local boundary value problems such as Tricomi and Frankl problems, (cf. for
example [2], [6] and [9]). ( 3 )  Asymptotic benhaviors of solutions to ordinary dif-
ferential equations of second order with a large parameter, (cf. for example [7]).
In the course of solving our problem we encountered some intimate relations among
them, and resolved them making use of the devices (a) and (b) stated in Introduc-
tion. Conversely (a) and (b) will give some new viewpoints and results to problems
(1), (2) and (3). We have limited ourselves to the case where the coefficient depends
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only on x, because of our method. And the generalization remains difficult. How-
ever now we can feel that there exist various problems behind.
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