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A  remark on automorphisms of Kummer
surfaces in characteristic p

By

Kenji UENO

Introduction. L et k  be a n  algebraically closed fie ld  a n d  C  a  non-singular
complete curve of genus two defined over k .  The Jacobian variety J(C ) of the
curve G is defined over k and has a natural involution c. If char. k * 2, the quotient
variety J(C)/<c> has sixteen rational double points of type A , .  Resolving these
singularities minimally, we obtain the Kummer surface Kum(C) associated with the
curve C .  The Kummer surface S=Kum(C) is a K3 surface, that is, the canonical
bundle Ks  o f  S  is trivial and I r ( S ,  0 ) = 0 .  In § I  of the present paper we shall
prove the following theorem.

Theorem . If char. k * 2, the Kummer surface Kum( C) carries a structure of an
elliptic surface 7 r: Kum(C)—>P; which has the following property: the elliptic fibration
7r has tw o sections c  and s  such that if  Kum(C) is considered as a one-dimensional
abelian variety E over K=k(P 1)  through 2V and a , then the K-rational point o f  E
corresponding to s is of infinite order in the group E(K) of K-rational points of E.

Moreover, it will be shown that there are many elliptic fibrations of Kum(C)
which have the property in the above theorem. (See Remark in  §1  below.)

The translation of E by a-  induces an autom orphism  a of K um (C ). Hence
we have the following corollary.

Corollary. If  char. k* 2, Aut(Kum(C)) contains an element o of infinite order
which preserves a structure of  an elliptic surface and o acts triv ially  on  H°(S, SA).
Moreover, Kum(C) contains infinitely many non-singular rational curves.

Note that Aut(Kum(C)) is a discrete g ro u p . In case k=C, it is easy to show
that Aut(Kum(C)) contains an element of infinite order by using the theory of the
K3 lattice. O ur approach is more primitive and it works fo r all characteristics
except 2. We use the fact that K um (C) contains thirty two distinguished non-
singular ratinai curves which form the Kummer configuration. (For details, see §1
below.)
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In §2, as an application of the above mentioned results, we shall prove a lemma
which was used in Ueno [9] to construct certain non-Kdhler threefolds. We also
construct new non-1{511er threefolds related to these threefolds.

The author expresses his thanks to Professors Oort and Shioda for valuable
discussions.

§ 1 .  Let C be a non-singular complete curve of genus 2 defined over an alge-
braically closed field k with char. k * 2. T h e re  is  a two sheeted ramified covering
7r: C-->P' with ramification points pi , ••-, N. Then we can define an embedding
of C into its Jacobian variety J(C) by

9: C—* J(C )
U.1

where [d] means the linear equivalence class containing a divisor 6. Since 2(1),-1),)
is linearly equivalent to zero, the point [p 1 —p1]= e 1 in J (C ) is a 2-torsion point. It
is easy to show that yo(C)fl J(C)2 consists of these six 2-torsion points, where J(C) 2

is the set of all 2-torsion points of J (C ) .  The covering 7r gives an involution c of
C and J(C ) has a  natural involution c: — z .  The embedding ço is compatible
with these involutions, that is yo(e())= —ço(p). For each 2-torsion point e of J(C),
the morphism

9e: C — J(C)

PH4 50 ) - Fe

is also an embedding and 50,(1())= —T e ( ) ) .  Note that çoe (C ) contains precisely six
2-torsion points ei + e , i= 1 , 2 , •••, 6 . Conversely for each 2-torsion point e there
are six 2-torsion points x i , 1=1, •••, 6 with çox i ( C )  e, where x•=e— e1.

Let K um (C ) b e  the minimal non-singular model o f th e  quotient variety
J(C)/<c>. The surface K um (C ) contains sixteen non-singular rational curves
(E-curves) appearing by the resolution of singularities corresponding to 2-torsion
points of J (C ) .  On the orther hand, the strict transform of the image of ço,(C)
in J ( C ) / < c >  to  K um (S ) is  a lso  a  non-singular rational curve and there are six-
teen such curves (Q-curves). From the above consideration it follows that each
Q-curve intersects six E -curves. Moreover, it is easy to show that they intersect
transversally. Similarly, each E-curve intersect six Q-curves transversally. More-
over, we number E-curves and Q-curves in such a way that

1,i f  k * i ,  1 = j  or k  = 1 ,1 * ],
Eu  —

O, otherwise,

1< i , j ,k ,1 < 4 ,
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where Q•E means the intersection number of divisors Q and E ' ) . Note that we
have QI, J =E d  = -2, where D2 i s  the self-intersection number o f a divisor D.
For further interesting properties of these rational curves, we refer the reader to
the books [1], [2].

Using these thirty two curves we shall construct an elliptic fibration. The
following lemma is an  easy consequence of the Riemann-Roch theorem and
well-known.

L em m a. On a K 3 surface S  if  there ex ists an effective divisor D  consisting of
non-singular rational curves which has the same type as a singular fibre of an elliptic
surface, then there ex ists a  unique elliptic fibration S  such that D  is  a
singular fibre of Vr.

Let us consider divisors D, D' on Kum(C) defined by

D = 2Qi 1 +  +En+ EH+ E21

- 2 Q21- 1- E224- E234- E24-4- Eu •

Then we have D• D' =0 and by the above lmema there
exists an elliptic fibration S = K u m (C )-> P 1 such that
D and D ' are singular fibres of r .  As we have

D•E i ;  = 0  , i  =  3, 4, j  = 2 , 3, 4 ,

these six curves E 1 1 are contained in singular fibres. On the other hand, as we have

D•Q i i  = 1 , i  = 3, 4, j  = 2, 3, 4 ,

these six curves Qi ;  are sections of r .  We take Q32 as the zero section s  of r.
Hence our ellitpic fibration S -* P ' with the zero section a t can be considered as
an elliptic curve E over the function field K =k (P 1). Then other five sections corres-
ponding to the curves Qi i  define K-rational points s,.; E ( K ) .  P u t =.5'4 2 and let us
consider the order of -4 in e(K). For that purpose we need to study singular fibres
Of r.

From above, the elliptic fibration it contains two singular fibres of type /8'
and other singular fibres which contain six curves E1 1 , i=3 , 4, j = 2 , 3, 4. The

1 )  For example, we can use the argument in "Two Configurations Revisited" in [1], p784--787 and
Figure 21  there . Note that the argument there is purely algebraic and works for all charac-
teristics except 2. Using the notation there, we have, for example, the following numbering.

Q 11=8, Q 1 2 = 1, Q13
= 8

 3, Q 1 4 = 8 . ,
Q21=8 4 5 , Q22= 0 2 3 , Q23 = 8 13, Q24 = 8

3,

Q31
=

 e35, Q32
-  8 249 Q33 - 9 143 Q34

=
 84 ,

Q41 - 8 34 9 Q42
- 9

25, Q43 = 8 33, Q44 = 8 5,

E51=u12, Ei2=u2, E 1 3 p 1 , E p i= u ,
E21= a3, E ,2

=
a13, E23

-
 P23, E24 - 145,

E31 =
i
2
4, E32

-
 /-

1
14 E33

=
i
2
24, E34 -

P35>
E41= lt6, E42 - P45, E43 =

P25, E44 -
P34.

E„

E13

E 1,

E21

201 1
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intersections of these six curves and two curves Q 3 2 , Q 4 2  are as follows.

E 32  E 3 3  E 3  I 4 E 43  E 4

0 3 2

0 4 ,

Here the symbol •  means that two curves intersect transversally and the symbol 0
means that two curves do not intersect. Since curves Q32 , Q 4 2  are sections of r,
from this configuration, we conlcude the following facts.
1 .1 )  All six curves Eq , i=3, 4, j=2, 3, 4, are components of singular fibres with
multiplicity one.
1 .2 )  The curves E 3 3 ,  E 3 4 ,  E 4 2  (resp. E32 , E 4 3 ,  E4 4) are contained in different singular
fibres. Hence there are at least three singular fibres other than D  and D'.
1 .3 )  Three of these six curves are not contained in a singular fibre.

From these informations we can detemrine all possible types of singular fibres.
Let us recall the list of singular fibres appearing in an elliptic fibration with a sec-
tion. W e use the nation of Kodaira [3].

Type l b Il' II 11* III II1* IV IV*

Euler
number b b+6 2 10 3 9 4 8

One of the important fact of an elliptic surface 7r: S—>P1 with a section is that the
Euler number of S is equal to the sum of the Euler numbers of all singular fibres, if
char. k *  2, 3. (By the Euler number e (F ) of a singular fibre F ,„ we mean the
number n+e —1 where n is the number of irreducible component of F , and e is 1
or 2 according as F), is of type Ib or other type, respectively. Note that this number
is equal to the usual Euler number when k = C .) In our case, since the Euler
number of a K3 surface is 24, if char. k* 3, then we have

24 = AEA

where ff,j- x A  is the set of all singular fibres of 7r: S—›-P'. If char. k =3, then we
have

24 = (e(F,)+6(F3 )),

where S(Fx ) is a non-negative integer which measures the degree of wild ramification.
(See Ogg [5]. The number 8(FA) may be positive, if F is a  singular fibre of one of
the types II, IV, II*, I V * . )

•Now assume that two of the six curves E,.; are contained in the same fibre.



0 S F, F2 F3 F4

N 2 2 1 1

6 >4 >2

S F1 F2 F3

N 2 2 2

e .el >4 >4
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Then this singular fibre F  is of type Ib , b>4 or type lt, b>_ 0 or type HI* or type
W *. Hence we hvae e ( F ) >4 . Moreover the equality holds if and only if F  is
of type T4 . F ro m  the above 1.1), 1.2), 1.3), we have the following possibilities of
singular fibres of r  containing our six curves Ei i .

0 F1 F2 F3 F4 F5 0 S F1 F2 F3 F4 F5 F6

N 2 1 1 1 1 N 1 1 1 1 1 1

6' >4 >2 >2 >2 e >2 >2 >2 >2

S : singular fibre N : the number of curves E l )  contained in the singular fibre.
e: Euler number of the singular fibre.

Since we have

E e(F,)> 12 ,

in the above table for the Euler numbers, only equalities hold and there are no
singular fibres other than two singular fibres of type I. T hus w e ob tain  the fol-
lowing Table.

types of singular fibres p'

case 1) I , It, 14, 14, 14 17

2) It, IZ% 14, 14, 12, 12 16

3) It, it, 14, 12, 12, 12, 12 15

4) It, it, 12, 12, 12, 12, 12, 12 14

Here p '=E ( n ,- 1 )  and 17x is the number of irreducible components of a singular
fibre Tk.

From this table, we conclude that the moduli of elliptic curves appearing in
smooth fibres of our elliptic fibration r are not constant. We let 1): N --4:1 1  be the
Néron minimal model of the elliptic fibration r. This is a group scheme over P '.
Put x =7 (D ). The fibre N x =v - i (x) of 1) over x is a group isomorphic to Go x ZI(4).
For a point y .1 =' where 7- '(y) is a singular fibre of type I b ,  the fibre N,=1) - '(y) is
a group isomorphic to Gn i x  Z I(b ). By the above table, we can always find such a
point y with b=2  or 4. There is natural group homomorphisms *x : e(K)—  N 0

and * y : e(K)- N .  N o w  let us consider the orders of * x (i) and * y (;) where a" is
a  K-rational point of g  corresponding to the curve 042. Note that Q32 and Q 42

intersect E 1 2  in the singular fibre D .  Hence * x (4) belongs to the identity component
AT? of Nx . As Arf i

x  is isomorphic to G, this implies that if char. k =0, then *.x 0  is
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of infinite order. O n  the  other hand, if  char.k=p>3 assum e that s is o f finite
order, say n=p ani, (p, m)=1. As ifrk) is contained in the identity component N.?,
lk.(Pa ) is also contained in N .  B y  a  theorem of Tate [7], * x is  injective on the
torsion elements e(K),., w hose orders are prime to  p .  Hence *,(p a-4) is of order
ni. This im plies that m = 1 .  Since the intersection points of Q 4 3 ,  Q 2 2  and the
singular fibre r - 1 (y) are different and Ny  is isomorphic to Gm XZI(b) with b=2 or 4
the order of Ib' y is prime to p .  This is a contradiction. Therefore, must be of
infinite order. Thus we have proved the theorem in the introduction.

Let a be a birational mapping of S=K um (C) induced from a translation of e
b y  o v e r  K=k(P 1). Since S contains no exceptional curves of the first kind, a is
an automorphism of S .  A s  is of infinite order in E(K), a is also of infinite order
in  A u t(S ) . Hence ak (Q,), k=1, 2, 3, ••• are disinct non-singular rational curves.
Moreover, since a comes from a translation of E, it operates trivially on H ° (S, D ) .
This proves the corollary of the introduction.

From the above proof we obtain the following

Corollary. L et 7r: S—>..P' b e  the sam e as  ab o v e . A ssum e th at  the Picard
num ber p(J(C))=1, then w e have the case 4) of  the above table.

Note that, if the curve C is generic, then p(J(C))=1.

P ro o f .  By a theorem of Shioda [6], we have

p(S) =  rank e(K )+2+p ',

where p' =E ( n , - 1 )  and  /ix i s  the  number o f  th e  irreducible components of a
A.e.A

singular fibre F .  O n  th e  other hand, we have

p(S) = 16+p(J(C)) =17 ,

and as we proved above,

rank e(K)_>_ 1 .

Hence, only the caes 4) is possible. Q.E.D.

Remark 1. There are many possibilities to find the above divisor of type
If we start from the curve Q„ as a  component of multiplicity 2, four other com-
ponents o f multiplicity one are taken from four of six curves E„, E11 , i=2, 3, 4.
Hence there are 15 different D's. _Hence there are 15 x 16 different choice of D, but
we saw above that D  and D ' give the same elliptic fibration. Thus we have 120
elliptic fibrations. On the other hand, since the translation Ta  o f  J(C) by a  two-
torsion point of J(C ) is  commutative w ith the  canonical involution e o f  J(C),
Ta  induces an automorphism ta o f  K u m ( C ) .  Hence Aut(Kum(C)) contains a
subgaroup G of order 16 isomorphic to the group of two-torsion points of J(C).
For any element ta o f  G, ta (D) is again a  divisor of the  same ty p e . Hence ta in-
duces a n  isomorphism between elliptic fibrations obtained from the  divisors D
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and ta ( D ) .  Moreover we can always find an element t8 of G with tb (D )=D ' . Hence
we have 15 different elliptic fibrations which are not isomorphic under the action
of G .  The author does not know whether there exist isomorphic elliptic fibrations
among these 15 elliptic fibrations.

2. Interchanging the role of Q-curves and E-curves in the above construction,
we obtain an elliptic fibration assoicated with a  divisor 13=2E11 H-Q12 -FQ1 3 -F0 14
Q .  T h is  fibration is isomorphic to the elliptic fibration associated with D .  This
can be seen as fo llow s. The singular surface J(C)/<e> is realized as a  quartic
surface S ' with 16 ordinary double points in P 3 . T h e  dual mapping

S' D X 1— > the tangent plane of S ' a t  x E P 3

induces an automorphism 1:5' of K um (C) which maps E-curves (resp. Q-curves) to
Q-curves (resp. E-curves).

3. The Kummer surface S=K um (C ) has many other elliptic fibrations. For
example we have the following divisors on S.

(1) 2Q11 -F2E4 H-E2 1 ± E 31 ± 10  - I-  0  type It.
(2) Q11d- E42+ Q22+ E21> type 14.
(3) Q11+E13+ Q12 + E22 + Q32 ± E34+ Q44+E41, (3113e 18.
(4) 6Q„+5E 12 +4Q 22 +3E„±2Q„H-E34 +3E, 3 +4E 3 ,+2Q 4 ,, type 11*.
I f  char. k = 0 , f ro m  the divisor (1) w e can construct a n  elliptic fibration

7r: S  1 =1 ' which satisfies the above theorem.

§ 2. For the notation in this section we refer the reader to  U eno [9]. Let
C be a non-singular curve of genus 2 defined over C .  Put S = K u m (C ). Then by
the above Remark 1, there exist two different elliptic fibrations r i : i= l, 2
which satisfy the above Theorem . Let c i b e  the analytic automorphism of S  of
infinite order constructed by the elliptic fibration rci as above.

Lemma 2.1. Let d be a subgroup of Aut (S) generated by cr, and a,. If  the group
d fixes the first Chern class c 1(L) of a line bundle L on S , then we have ic(S, L)<0.

Pro o f . Assume ic(S , L )> 0. If  K(S, L) =2, then it is w ell know n that any
subgroup G of A ut(S) which preserves ci (L) is finite. Therefore, by our assump-
tion we have K (S , L )=1. We let m be a  sufficiently large positive integer such that
the image of the rational mapping 0 1„,L1 associated with the complete linear system

m L I is one-dimensional. Let I M  (resp. Z) be the varialbe (resp. fixed) part of
I m L I . If M 2> 0 , then by the Riemann-Roch theorem we have x(S, M ) = 2 .  On
the other hand the group d fixes c,([M ]) and c,([Z]), respectively, where [M ] and
[Z ] are the corresponding line bundles to M  and Z , respectively. Therefore we
have M 2= 0 .  Hence we may assume that L 2 —0, I L I is free from base points and
fixed componets, O I L I ( S ) = C  is  a  non-singular curve and 0 - 0 In : S---> C has con-
nected fibres. T hen  0 : S--->C is an  elliptic surface. Moreover, we may assume
L =[F] where F is a general fibre of 0  and the elliptic fibration 0  is different from
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the elliptic fibration 7r1 . Hence we have F • F1 > 0  where F1 is  a  general fibre of 7r1 .
Since e1([1]) is fixed by the group 4 and ci ([Fi ]) is fixed by the group <or>, c,([FH-F,])
is fixed by the group <a i > . On the other hand, as we have (Fd -F1)2 — 2F. F,>0, we
have K(S, F+F1 )= 2 .  This contradicts the fact that a i  is of infinite order. q . e . d .

Let G be a finitely generated subgroup of Aut (S ) containing the group 4 such
that G operates trivially on H ° (S, D I ) .  Let -(g1 , g2 , ••• , gn )- be a  system of gene-
rators of G .  Take a non-singular curve A  of genus n with a system of generators
{a l ,  • , ,  fin} of the fundamental group of A  with the relation a i fii ar'f iT l...
a n f l„a;1 fi,71 = e .  The group homomorphism p : r i (A)—>G given by

a i gi, )9;1—* gT1, i  = 1, 2, •••, n ,

defines an analytic fibre bundle f : X -+ A  whose fibre is S and whose structure group
is G .  In Ueno [9], by using the above Lemma, it was shown that the algebraic
dimension a(X ) of X  is one and X  is not a holomorphic image of a compact Kahler
manifold. From our construction we have Kx =f *K A ,  since G  operates trivially
on H ° (S, Vs ). The threefold X  has the following numerical invariants.

p g (X ) 17 , I L ( X )  =  1  ,  ho,i(x) h1'°(X) = n

Moreover, the Albanese variety of X  is isomorphic to the Jacobian variety J(A )
of A.

Since f: X—* A is locally trivial and S  has a structure of an elliptic surface,
using the technique given in Ueno [10], we can construct an  analytic threefold Y
with a surjective holomorphic mapping h: Y—*-A which has the following properties.
1) There exists a Zariski open subset A ' of A  such that h' Y' =11- 1 (A')-->
A ' is isomorphic to f I x / :  x'
2) h: Y —> A  is not bimeromorphic to an analytic fibre bundle over A whose fibre
is S.
3) Each singular fibre of h  is reduced and a normal crossing divisor E  F ,1

i=o
where Fx ,, is a  non-singular K3 surface and other FA.,1 are elliptic Hopf surfaces.

a,
4) Ky =h*K A H-E E F 1 .

A. 1=i

The analytic threefold Y is not a holomorphic image of a compact Kahler
manifold and has the following numerical invariants.

a (Y ) =  1 , p g (Y  ) =- 11, K (17 )  =  1, /M Y ) =  MAY) =  .

Also Alb (Y) is isomorphic to J(A).

DEPARTMENT OF MATHEMATICS
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