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Semi-ampleness of the numerically effective part
of Zariski decomposition

By

Atsushi MORIWAKI

§ 0 .  Introduction.

The minimal model conjecture is the central problem in the classification theory
of algebraic varieties. Though big progress was m ade in this conjecture by the
effort of Kawamata [Kan many difficulities yet remain to be overcome.

Let f: X--> Y be the contraction with respect to an extremal ray which is iso-
morphic in codimension one. The existence of a flip of f : X-->Y is one of key steps
to prove the minimal model conjecture (for the definition of a flip, see § 4 ) .  As

—
will be showed in §4, it is equivalent to saying that the pluricanonical ring R = 7,=0
H

°
(X, (),(nd(Kx + f* (rA )))) is finitely generated, where A  is  an am ple divisor on

Y , r is a  sufficiently large integer and d is an  integer such that dK , is  a Cartier
divisor. The main aim o f this article is to show that the existence of suitable de-
composition of K ,±  f* (rA ) is enough for R to be finitely generated. Indeed we
have the following theorem which is, in some sense, a generalization of the theorem
in [Ka3, Theorem 6.1] and (A.5) in [F4].

Theorem O. L et (X , 4 ) be a norm al com plete variety  w ith only  log-terminal
singularities and D a nef and good Q-Cartier divisor on X .  Assume that (K1 + 4 )+ D
admits a  Zariski decomposition with rational coefficients (K 1 ± 4 )+ D = P ± N , where
P is the nef part of  this decomposition. If  there are two positive rational numbers a,
b such that v(X, D)_v(X, Dd-aP) and x(X, D+bP) 0, then P  is semi-maple.
(See §1 , for the definitions of the terminologies used in  the theorem.)

Applying the theorem to the case where D is the pullback of rA by some bira-
tional morphism, we see that if K,H-f*(rA) admits a Zariski decomposition in the
sense o f §4  by changing X , then there exists a  flip of f :  X  Y .  It seems to the
author that the theory of generalized Zariski decomposition must play a key role
to establish the minimal model conjecture.

§1 is preliminaries to prepare our notation and to recall some o f known re-
sults. § 2  is devoted to prove the Theorem O. Our proof of the theorem is just
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the same as Kawamata [Ka3] except for the final step. In §3, as application of
our theorem, we prove that log-canonical ring  with ic 2 is finitely generated.
In  § 4 , we discuss the reltaionship among several conjectures which are relevant
to our theorem.

The author wolud like to thank Professor S . Tsunoda for his good advices
and thank Professor M. Maruyama for his kind encouragement.

§ I. Preliminaries.

( 1 .1 )  Notation.
Throughout this paper, all the varieties are defined over an algebraically closed

field k  of characteristic zero.
(1 .1 .1 )  Let X  be a normal complete variety of dimension n. We set

Z _ 1(X ) = {Weil divisors on X ), a n d
Div (X) =  {Cartier divisors on X I.

Then there is a  natural injective homomorphism

Div (X) —> 4 _ 1(X ) .

A Q-divisor (or Q-Cartier divisor) on X is an element of 4 _ I (X )0 Q  (or Div(X)0Q,
re sp .) . A  norm al variety is said to be Q-factorial if every Weil divisor is a  Q-
C artier d iv isor. F o r  a n y  surjective morphism f :  Y  o f  n o rm a l complete
varieties, we have a homomorphism

f *  : Div (Y)0Q —> Div (X )0Q

Furthermore, if/ . is birational, we can define a homomorphism

f *  zn-1(x)0Q--> zn-1(Y)0(1

C learlyf*f*=
1 D i v  ( X ) 0 Q •

A Q-Cartier divisor D  o n  X  is called nef (or numerically effective) if ( D • C ) 0
for any integral curve C  o n  X .  L et D  b e  a Q -C artier divisor o n  X  and d  a
positive integer such that dD is a Cartier divisor. Then we define

— 0 0  i f  h
°
(X , O x (nidD)) = 0  f o r  any ,

Ic(X , D) = tc(X , dD) =
max {dim 0 1„,„Di (X)1 , otherwise,

which is called D-dimension. Let D1 , •••, De be Q-Cartier divisors on X .  We de-
fine D,•••De -.=.0 if  fo r  any e-cycle W  o n  X, (D,••• De - W ) = 0 .  I f  X  is projective
and D„ •••, D . are nef, then (D,••• De • An

-
e) = 0 fo r some ample divisor A  implies

D i •••De a - 0. The numerical Kodaira dimension of a nef Q-Cartier divisor D  on
X  is defined to be the integer

i)(X , D ) = max lelD e S 0) .
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It is well known that x(X , D)_..v(X , D) (cf. [Ka3, Proposition 2.2]). If the equality
holds in  the above inquality, then D  is  s a id  to  b e  g o o d . D  is ca lled  big if
v (X , D )=n. Due to [Kal, Lemma 3], D  is big if and only if Ic(X, D)—n.

(1 .1 .2 ) Let U be a smooth part of X  and i: U-->X  the inclusion map. Then
we define cox  = i * (21). It is easy to  see that there is a Weil divisor K x  such that
0 1 (K1 ) =co1 . K x  is called a canonical divisor of X . X  is said to be Q-Gorenstein
if Kx  i s  a  Q-Cartier d iv iso r . A  Q-Gorenstein variety X  has only canonical sin-
gularities (or terminal singularities) if there  is a  desingularization Y — > X  such
that K y =,1*(K ,)+1,a i E i for some non-negative (or positive, resp.) rational num-
bers a i , where Z i E i is the exceptional locus of it.

(1.1 .3) According to Kawamata, the rouding-up Fri o f a  real num ber r  is
the integer min ft E Z  r  4 .  Let D=X i ai D , be  a  Q-divisor, where a i e Q  and
Di 's are mutually distinct prime divisors. Then we define

rD i  _  E i ra i lD i  5

[D] — a i l D i
-(D)- = D—[D] .

(1 .1 .4 ) Let d  be an effective Q-divisor on X  such  that [4]=0. The pair (X, d)
is said to have only log-terminal singularities if  K1 -1-4 is  a  Q-Cartier divisor and
there  is a  desingularization Y - - >  X  su ch  th a t E = ((the exceptional locus of

U it - 1 (Supp ■61)) r „  is a divisor with only normal crossings and that K y ="1*(K x -H4)
+ I f ai E i for some ai  Q  with a,> — 1, where E = I i E , .  Let i t ' :  Y'—>X be an arbi-
trary desingularization such that E' =((the exceptional locus of i t ')  U it — i (Suppd)),,,„
is a divisor with only normal crossings. Then the above condition with respect to
E ' is satisfied (cf. [Ka2, Lemma 1.5]).

(1.1 .5) A Q-Cartier divisor D  on X  is said to have a Zariski decomposition
with rational coefficients  if D  has a decomposition D =P +N  such that

(i) P  is a nef Q-Cartier divisor on X  and N  is an effective Q-Cartier divisor
on X , and

(ii) there is a positive integer d  such that dP and dD  are Cartier divisors,
and that h

°
(X, O x (mdP))=ff(X, O x (indD)) for any integer ni O .

P  is called the nef part (or numerically effective part) of this decomposition and
N  is said the negative part.

Proposition (1.1.6) (cf. [F4, (A .3)]) The notation being as  above, we assume
that K(X, D )= d im X . Then a Z arisk i decomposition with rational coefficients of  D
is uniquely determined if it exists.

P ro o f  It is sufficient to show that for any effective Q-Cartier divisor E  on X
such that D— E is nef. E— N is effective. We may assume that D , P, N  and E are
Cartier divisors, considering m D, m P, m N  and m E for some positive integer m.
We take a resolution of singularities it: Y-->X such that there are effective divisors
H , N ' and E ' o n  Y  su c h  th a t u*N =H + N ', It*E  = E '  and  Supp N '
S u p p  E '= 0 . We set L =,a*D — H . From the facts that /2*(D— E) and ,a*(D—N)
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are nef and L—,1*P=N', L is nef and big. Therefore due to [Fl. Theorem (6.12)],
there is an effective divisor on Y such that Bs I tL— r fo r any interger t »O.
On the other hand, since L=,u*P—N', we have

h
°
(Y, Oy (tL— tN ')).h °(Y, ey (tL ))_h°

(Y , Cy(t it* DD
 and

11°(Y, O y (tL—tN')) = h °(Y, Oy (0*(P)) .

Hence from the definition of the Zariski decomposition,

H °( Y, Cy(tL - tN ')) =-
 I1°( Y, O y (tL)) .

Therefore tN ' is a  sum of fixed components o f  tLII. Combining these facts, we
have for all t »  0. H ence N '= 0 .  Thus we get E—N is effective. q.e.d.

(1 .2 )  Known results.
Let X be a  complete irreducible variety and D a Cartier divisor o n  X .  We

define

SBs(D) = ,p o BsInDI,

which is called the stable base locus of D .  Fujita [FI] proved the following two re-
sults.

(1 .2 .1)  [F l, Proposition (1 .18)] There exists a  positive integer i n  such that
BsImDI=SBs(D).

(1.2.2) [FI, Theorem (1.20)] Let f: X—> Y  be a surjective morphism of an
irreducible variety X  onto a  n o rm a l variety Y . T hen SB5(f*D)=1 - 1 (SBs(D))
for any Cartier divisor D  o n  Y.

A  C artier divisor D  o n  a  n o rm a l variety X  is  sa id  to  b e  semi-ample if
SBs(D )=0. We say that a Q-Cartier divisor D is semi-ample if there is a positive
integer d  suhc that dD is a semi-ample Cartier divisor. Kawamata [Ka3] genaralized
slightly a  result in Kollár [Ko2].

(1.2.3) [Ka3, Theorem (3.2)] Let X  be a  non-singular projective variety, L
a semi-ample Q-Cartier divisor o n  X  such that L r e d  has only normal crossings,
and D be an effective divisor on X .  Assume that there is an effective divisor D'
such that D + D 'E I mL1 and mL is  a Cartier divisor fo r some integer m . Then
homomorphisms induced by multiplying D

Oi
D  : ex(rL-14-1(x))—> H i(X, O5(L 1-f- D - 1- 1 (x ))

are injective for all i 0.
Next we introduce the notion of a normal crossing variety. A  reduced equi-

dimenisonal projective scheme X is called a norm al crossing variety if  th e  com-
pletion of a local ring at each point of X is isomorphic to

k ftx 0 , • • •, xd11/(x0 • • • x,) •

Since a norm al crossing variety is a  locally complete intersection, X has the  in-
vertible dualizing sheaf, which is denoted by 0 1 (K x ). Let X , be a  normalization
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of X . We set

X„ = X o x ••• x X , (n+1 factors), and
2- lc

e n :  X„---> X (natural projection),

for any integer n O. It is easy to see that X „ is non-singular for all n and a cor-
respondance 41—>X„ gives a simplicial scheme X. in  th e  settee of Deligne [D].
The union of the images of lower dimensional irreducible components of X„, for
n '>n  forms a  divisor on  X , with only normal crossings which is denoted by B .
A Cartier divisor D  on X is said to be permissible if the pullback of D  by e n in-
duces a Cartier divisor on X„ for all n, i.e., locally no strata of X are contained in
Supp (D) A n  element o f  {permissible Cartier divisors o n  X }  Q  is called a
permissible Q-Cartier divisor. We say that a  permissible C artier divisor o n  X
has only normal crossings if  el (D) U B,, has only normal crossings on X,, fo r all
n. Kawamata [Ka3, Theorem 5.1] proved th e  following theorem which is a
generalization of non-vanishing theorem of Shokurov [S].

(1 .2 .4 ) Let X be a normal corssing variety, Z  a projective variety, f : X —, •Z
a morphism, Ha permissible Cartier divisor on X , A  a permissible Q-Cartier divisor
on X , and let q  be a positive integer. Assume that the following conditions are
satisfied.

(i) f  induces a surjective morphism from each irreducible component of X„
onto Z for all n.

(ii) Supp (A ) has only normal crossings and r i l l  is effective.
(iii) There is a nef Cartier divisor H , on Z  such that 1 ( q H )= f * ( (H 0)).
(iv) There is an  am ple  divisor L o o n  Z  such that Ox (q (H + A —K .0 ) —

f  *(0,(L o)), where qA is a  permissible Cartier divisor.
Then there is a positive integer p such that

kr(X, Ox (pal -FrA1»*0

for all sufficiently large integer t.
Finally we recall Hironaka's result on  resolution of singularities. Let X  be

a  non-singular variety and B a  non-singular subvarity of X . We say that an ef-
fective divisor E  on X  has only normal crossings with B if  fo r any point x EB,
there exists a  regular system of parameters of O x ,x , say (z„•••, z„), such that the
ideal in Ox ,, of each irreducible component of E containing x  is generated by one
of z i 's, and that the ideal of B in  O x , x  is generated by some of z i 's. A  resolution
datum R on X is an object of the following form;

E =(E„ •••, E„: D ),

where I i E1 is  an effective divisor on X with only normal crossings and D  is  an
effective divisor on X . A resolution datum R  o n  X  is said to be resolved if D r e d

has only normal crossings. Let C be a  non-singular subvariety of X and f: X '—>X
a  blowing-up with center C .  We say that f  is permissible with respect to a resolu-
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tion datum R =(E „ ••, E .: D) if  1 E  has only normal crossings with C .  Then we
set

f *R  = (Ef , •••,

where Ef is the strict transform of E i by f  for 1:.< j a and E c .„,= f '( D ) .  Clearly
f * R  is also a  resolution datum o n  X ' .  By the  fundamental theorem g . "  [HI,
p170], we have the following theorem.

(1.2 .5) Let R  be  an  arbitrary resolution datum o n  X .  Then there is a  se-
quence of birational morphisms;

f r- f r-2
A r — P A r - 2 — *  • • •

such that

(i) X 1 1X 1 (o i<r) is a blowing-up with smooth center C i ,
Ro=R,

(iii) f i is permissible with respect to R i (0 i<r),
(iv) R i ÷ i =f tR i (0 i<r) , and that
( y )  R,. is resolved.

Furthermore, we need Hironaka's flattening theorem.
(1.2.6) [H2. Flattening theorem] Let f: V — > S be a  proper surjective mor-

phism o f algebraic varieties. Then there exists a  birational morphism r: S'-->S,
which is obtained by a  sequence of blowing-ups, such that f ': V  x S '/torsion—S'
is  a  flat morphism.

7C'
V  X  S ' / to rsion V

 s

We say that f ': V  x S/torsion ---> S ' is a flat model of f: V—>S.

§ 2 .  Proof of Theorem O.

This theorem is proved by the same method as in  Kawamata [Ka3].
Let us consider the following diagram;

7r

f 'l ,
T' T

(i) V, T  a n d  T ' are non-singular projective varieties, a n d  V ' is a projective
variety, and

(ii) r  and n ' are birational morphisms, f  is a surjective morphism with con-

=
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nected fibres and f '  is a flat m orphism . Then we have,

Lemma (2.1) The notation being as above, le t E  be an effective Q-divisor on
V such that the support of  E is not mapped onto T and E is f-nef, i.e., f or any curve
F  on V  such that f (r) is a point, (E-r) o. T hen there is an effective Q-divisor
F on T ' such that f '*F=r'*E.

Pro o f . W e se t d=dim  V  and  e= d im  T .  We may assume Let
2: W—>V' be a desingularization of V ' and h the composition of f '  a n d  2. Let
F  be a maximal effective Q-divisor on T ' such that X =r'*E — f '*F is  effective.
It is obvious that X  is f '-nef . S u p p o se  that X * 0 .  Then there is a prime divisor
D  on W  such that h(D)c f'(Supp X ), h(D) is a  divisor o n  T ' and that D  is not
contained in  2 * X . L et A , B  be very ample divisors o n  T ', W  respectively and
we take general members

, Al , B 1 , ,

We set
C = A 1 n n  Ae_i  , s = h ( C )  n B1 n Bd-e-i

Then the following conditions are satisfied.
(1) h' =h1 s : S—>C is a surjective morphism of a non-singular surface onto a

non-singilar curve with connected fibres.
(2) il*X  I s  a n d  D i ,  are non-zero effective divisors.

Hence we h av e  a  curve I ' o n  S  such that h'(r) is  a  po in t and  (2*X  s •r)<o.
This is a contradiction. q.e.d.

Now we start the proof of the theorem.
Step 1. First we claim that there is a diagram;

such that
(2.2) Y and Z  are non-singular projective varieties,
(2.3) u  i s  a birational morphism and f  is a surjective morphism with con-

nected bfires,
(2 .4 )  there is a nef and big Q-Cartier divisor D , on Z  such that f *D 0 =,u*D,

and that
(2 .5 )  there is a nef Q-Cartier divisor P, on Z  such that f *P,=,u*P.
We set ic = p(X, D) x ( X , D )  and n =d im  X . Fix a positive integer s  such

that the dimension of the image of

0 1, , I :  X ... Proj:EB Symn (1/AX , Ox(dsD)))
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is equal to r. By resolution of singularities and the Stein factorization, we ob-
tain the following diagram;

Y — >  X

f i
7C

Z = 01s D1(-17)

such that
(a) Y and Z are non-singular projective varieties,
(b) I t  is  a birational morphism, f  is a surjective morphism with connected

fibres and v is a generically finite morphism, and that
( c )  there is a nef and big Cartier divisor M , on Z  such that M o is base-point

free and ,u*(sD)—f*M 0 H-F, where F is the fixed part of  J
 , u * ( s D ) 1 J.

Let H be an ample divisor on  Y. we caluculate

0 ( u * ( sD )" +1  •( ( m +  F r i  H n - K - 1 . )

M1.F ) + ( m . + 1 ,
i =1

where M  *  M o .
Since M o is base-point free and D is a nef, we have

((u*D) i • M i • Hn - ' •  F ) 0  for a n d  M K + ' = 0 .

In particular, (MK•F•Hn - x - 1 ) = 0 .  Hence n o  irreducible components o f  F  are
mapped onto Z .  Moreover, it is obvious that F is f - n e f .  By lemma (2.1), taking
a  flat model of f: Y -->  Z  and resolution o f  singularities, i f  necessary, we may
assume that there is an effective Q-divisor F0 on Z such that F= f *Fe . Hence we
have a nef and big Q-divisor Do on Z such that f* D o = it* D . O n the other hand,
since D and P  are nef, (D±aP)" + 1 = 0 implies P • D"--=- 0, considering the expansion

(DH-aP) aDi • (D+ aP)' - ' • PH-DK+1 .
i=0

By the same argument as above, P  D "  0 implies ,u*(P)- MK = O. Hence we have

,u*(D+P)• M K (11s)(M K +1 +F • MK)+b,u*(P)• M" 0 .

Therefore our claim is clear by lemma (2.1).
S tep  2. x (X , P ) O.
Fix a positive integer d such that dP, dP o and dN are Cartier divisors. Thanks

to [K a l, Lemma 3  and 4], there exists a Q-divisor D , o n  Z  such that D0— D 1

is ample for all rational number a with 0<a<1. Changing a  model o f  Y , if
necessary, we may assume (2.6), (2.7), (2.8) and (2.9).

(2 .6 )  There is a  divisor E---= 1 1 Ei o n  Y  with only normal crossings, where
/={1, •••, a}.

(2 .7 )  (it* N) r .,,d 5_ E.
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(2 .8 )  (T  U ,a'(Supp A)) ro d  is a divisor whose support is contained in E, where
T is the exceptional locus of ,a.

(2 .9 )  f * A =Z i e l bi E i with b, non-negative rational numbers.
By our assumotion, if we set

K y —u*(Kx +4)+,a*N

with a1 E Q , then ai > — 1 for i E I. We can check easily that

(2 .1 0 )  (  i  )  K y +,a*D = ,u*PH- 1 ai E i ,
(ii) A t*( r Ky —11* (1<x+ 4 )1) = 0, and

At*(Fit* N1) FN1'
We define

A , = Z i E l (ai —Sbi )E i  .

Then rA1
1 is effective if is small enough, and

it*(dP)+A , — K y  = f  *((d-1)P 0 +(1),— sp i ))

Hence by (1.2.4), there is a positive integer p l  such that

H°(Y, O y (tp,,a*(dP)+F A,1)) *  0

for t >0. On the other hand, by (2.10),

A*(1-A11) 1/*(Kx — A* (Kx + 4 )+A * N1)
,a* (rKy +  4 ) 1+ rit*N -1)
rNi

Hence we have

r t(T-Ppi.n*(dN))

for t > 0 .  Therefore, we obtain the following inequalities

h°(Y , O y (tp1A1*(dP))) ▪  h °(Y, O n (tpl e(dP)d-rA i
rl))

▪ h°(Y , O y (e(tp,d(P+N ))-1-tT )) .

By the definition of Zariski decomposition with rational coefficients and the fact
that T is the exceptional locus of

h°(Y , O y (tp i p*(dP)) = h °(Y , Oy (p*(tp i d(P± N ))+tT )) .

Thus we get x(K,
Step 3. P is semi-ample.
By (1.1), there is a positive integer mo such that SB s(dP)=B sIm o d P I .  We

suppose that SBs(dP) is not empty. Taking a sequence of blowing-ups, if neces-
sary, it may be assumed that

(2 .1 1 ) it*(m o d P)=L +Z i r r,E , with non-negative integer r i ,  where L  is base-
point free and E,c SB s(u*(dP))=A -1 (SBs(dP)) if r > 0.
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Let f ' : Y'--->Z' be a flat model of f: Y ---> Z and g: Y ' a nomalization of Y'.
We set r, r '  and f  as following diagram.

Y' -2 r—>' Y

i f ' i f

Z ' Z ' Z
7r

Let 141 be  the movable part of I r*(m o dPo )I . Then from  equidimentionality of
J an d  f*I7r*(mo dP0)1 = I g * r ' * 11*(modP)1 1  L 0 1  = g * e * L  I . Hence we may
assume that

(2.12) there is a nef Cartier divisor Lo  on Z  such that f* L 0 =L .
We set

c m in fai l- 1- 6 •b t 1i E , and1r i

-{ic I l c r i = a g -1-1 -8 b 1)- .

Then if o<a <1, c  is  positive. Let {GIEJ-  be the collection of subvarieties of Z
such that

{Go} = {one of irreducible components of f (Ei i • • • E 014, • • • ,

We take a minimal element G1 w ith respect to  the inclusion relation among G o 's.
We choose a menber

D ,E  I q(Do —D,) I

for some positive integer q  such that G ,c D , and Gp ct D, for fi * l .  Let R  be a
resolution datum (El , • • • , E  El + • • • + E„H-f* D,) and I, : Y'--> Y a blowing-up with
smooth center C  which is permissible with respect to  R .  Then we set

p*R = (Er, •••, E;, EL_F1 : P*(E1 + ••• and
I '  =  {1, 2, •••, a, a+1}  .

Let cif, t4  and rf be rational numbers determined by the same manner as before.
Then we have

(1) c = min fd i +  I —
`

3/4 I i ,  and
r

(2) if we set /ô = (i E +1 —aba and J= { iE I 1 C c E 1)-, then

h U  + 1 }  if J CI, a n d  if,/ = Codimy  C
--- h otherwise.

This is an easy consequence of the following inequality.
(2.13) Let a i ,  • • • ,  a , r 1 • • • ,  r i be non-negative real numbers such that (0- „ r i ) *

(0,0) for 1 Si S /. Then we get the inequality
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cr , + • • • + a  >  min ri 11 ,
+ • • • ± 2 - 1

Ti
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where equality holds if  and  only if  ai lr,=••• = a d z , .  Hence by (1.2.5), we may
assume that

(2 .14) f * D,= I  s i E , with non-negative intergers s i .
We set

l  andac ' =  min

{i I I a,±1 —ab, s i )} .

Clearly, if a' is small enough, then c' < c , I I .g./0 a n d  s > 0 , r i > 0 for all
Therefore, by our construction we obtain the following.

(2 .15) The E i  w ith  ie h  and their intersections are mapped surjectively onto
G, by f.
We define

A E 1 1 _1 1 (—cV,H-a's i )d-a, —abi )E i , and

B = E', .

Since f (1 -A-1) F Ni, by the same argument as in Step 2, we have

H °(Y, 0,(n it* (d P))) H °(Y, 0 y (n,u*(dP)+F Al))

if n is sufficiently la rg e . Hence B  is  a  sum o f fixed components o f  I n,u*(dP)H-
rAl I because B is a  sum of fixed components o f I n ,u*(dP)1 by (2.11). Let us con-
sider a Q-divisor on Y

W = ma*(dP)-F A — B — Ky

By (2.4), (2.5), (2.9), (2.10), (2.11), (2.12) and (2.14), we caluculate

W  (nd—c' mo d — 1),O (P )± L±(1 a 'q)f * (Do—a Di)
f*((nd— c'm o d— i)Po +c' L o +(i— c'a' q)(D 0 -8 Di )) .

Therefore, if n  0 and d'<1, we have

mo d W — B (nd mod —1)(u* (mo dP)— B)+ mo dc' L
d-m0d(1—c's'q)(D 0 —ap1)

.

Hence applying (1.2.3), if n 0 and a'<i,
1--P(Y, Oy (n,a*(dP)+F Al — B)) ---> Oy(nu*(c/P)-1-1- Al))

is injective. Considering the  cohomology sequence derived from the short exact
sequence

0 O y (n,u*(dP)+F —B) ----> 0 y OW* (dP)+I-0 , 3 ( n , a * ( d P ) + F  — >  0
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we get

H°(B, OB (np*(dP)+F.,41)) --- O.

On the other hand, by (2.14), applying (1.2.4) to

B (ni-4* (dP)-F A)i B  
K

 B

( f i 13)
* (Œnd — c' mod —1)P0+ c' Lo + (1 — c' ' q)(Do —a D1))10,)

there exists a positive integer p such that

H °0 3 , B (tpit*)(d P)+F A lp* 0

for t O . This is a contradiction. q.e.d.

Remark (2.16) If the singularities of X  are worse than log-terminal, then
this theorem is not necessarily tru e . Indeed Wilson [W] gave a normal projec-
tive Gorentein variety of general type with nef dualizing sheaf whose canonical
ring is not finitely generated.

§ 3  Log-canonical ring with 2.

In this section, we prove the following theorem, which is a  generalization of
Fujita's result [F4] that the canonical rings of elliptic threefolds are finitely gene-
rated.

Theorem (3 .1 ) Let (X, 4) be a norm al complete variety with only log-terminal
singularities. Assume that 1:) .x(X, Kx + 4) 5 2. Then there exists a birational mor-
phism f: Y—>X from non-singular complete variety Y  to X such that f* (K x +4 ) has a
Zariski decomposition with rational coefficients f* (K x +  4 )= P+ N  and that the nef

part P is sem i-am ple. In particular, the log-canonical ring ED Fro-, o y an(Kx +4)]))n.0
is finitely generated.

First, we prove the following lemma.

Lemma (3 .2 ) L et X  be a  normal complete variety and D  a Q-Cartier divisor
on X  with 0. _x(X, D)5 2. Then there ex ists a birational morphism f: Y—>X from
a  non-singular complete variety Y  to  X  such that f * (D ) has a  Zariski decomposi-
tion with rational coefficients f * (D )= P + N  and that the nef part P  is nef and good.

P ro o f  Clearly we may assume that D  is  effective. F o r  sufficiently large
integer m, we can construct the following commutative diagram.

h
Y  - ->  W

f I  g
„. , 1 m 0 1  ,

"  0  IM  0
1mDI
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( i ) Y and W are non-singular complete varieties,
(ii) f and g are birational morphisms and
(iii) h is a fibre space.
Then, by the argument in [I, proof of theorem 1 and 2], we have an effective

Q-divisor M  o n  W  s u c h  th a t  h*M...
-

f * D  and  that 1-r(Y, e y (h*([mM])))=_
.
-
-

H
°
(Y, Oy ([mf*(D)])) for a ll m> O. S in c e  d im  W 2 , th e re  e x is ts  a  Zariski de-

composition with rational coefficients M =P 0 H-N0 such that the nef part P o i s  nef
and b ig. Set P=h*(P o )  and N =f* (D) — P .  Then f* (D )= P +  N  is  a  desired
Zariski decomposition.  q . e . d .

Proof of Theorem (3.1). By lemma (3.2), there exists a  birational morphism
f :  Y.—>X such that

( i ) Y is a non-singular complete variety,
(ii) there exists a normal crossing divisor F = l i Fi on Y,
(iii) Ky =f*(K i +d)+M i ai F i for some ai EQ with ai >  —1 and that
(v i)  f* (K x +d) has a Zariski decomposition f* (K x + d )= P + N  such that the

nef part is nef and good.
Set d '=  E —ai F i andl N' =N H- E ai F i . Then (Y, d ')  has only log-terminal sin-

a t a i> 0

gularities and Ky + d ' = P ± N ' is  a  Zariski decomposition since the support of
E ai F i is exceptional by (2.10). Hence P is semi-ample by Theorem 0. q.e.d.., > 0

§ 4  Some remarks on the related topics.

Let X  b e  a  non-singular complete variety and D  an effective element of
Div (X )O R . W e say that D  has a  Zariski decomposition if there is an effective
element N of Div (X )® R  such that P=D—N is nef and for some positive integer
d, ho (X, 0 x ([ndP]))=h

°
(X, 0 x ([nd to])) for all n 0. If the nef part P  is  nef and

good, then this Zariski decomposition is called a  good Zariski decomposition.
(The goodness of nef divisor with real coefficients is defined by similar manner
as in § 1 ) .  Recently S.D. Cutkosky [C] gave an example of a b ig divisor whose
Zariski decomposition has no rational coefficients. Hence the fundamental con-
jecture of Zariski decomposition is the following form.

(Z D )„: For any  effective element D  of D iv(X )Ø R  on  an  n-dimensional
non-singular complete variety X, there is a  birational morphism of non-singular
compelete varieties f:  Y -->X such that f*(D ) has a Zariski deciomposition.

Recently we prove the following theorem. First, Kawamata [Ka4] proved this
in the case where IC,+d is a big divisor. D etails and proof of this theorem will
be written in my master thesis [M].

Theorem ( 4 .1 )  Let X be a non-singular projective variety  and d an  effective
Q-divisor on X such that (X , d) has only  log-terminal singularities. Assume that
Kx -I-4 has a good Zariski decomposition IC,- f-d—P-FN. Then P is a Q-divisor.
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Let X  be a  norm al algebraic variety and f :  Y-->X a desingularization of X.
-

Then it is easy to check that O s -algebra e f * (cor )  is independent o f the  choice
/1 =

of the resolution f. Thus we define

L R (X ) :E6of * (co9") ,

which is called the local canonical ring of X .  M. Reid [R1] raised the following
problem.

(L n ): LR (X ) is finitely generated O s -algebra f o r  any n-dimensional normal
variety X .  A global venons of this problem is

(C G )„ : F o r  any n-dimensional projective variety X  having only canonical
-

singularities with maximal Kodaira dimension, the pluricanonical ring e le(X ,n.0
Ox (nKx )) is finitely generated.

The minimal model conjecture of dimension n  is

(M M C ) :  Every n-dimensional algebraic variety X  is birationally equivalence
to  a projective variety X having only terminal singularities which satisfies one of
the following;

(i) K x is a nef Q-Cartier divisor,
(ii) there is a surjective morphism 0: T ->Y with connected fibres such that

dim YGdim X  and — Kx is 0-ample.

W e recall M . R eid and Y. Kawamata's program for (MMC)„ in short (for
detail, see [Ka2] o r [R 2]). L e t X  be an n-dimensional normal Q-factorial projec-
tive variety with only terminal singularies. We set

N 1(X ) = fl-cycles on X )-/= O R  ,
N E(X ) = the closure of the cone in N1(X) generated

by effective 1-cycles,
NED (X) -(z NE(X )1(D•z)>.0)- ,

where = is the numerical equivalence and D is a Q-Cartier divisor on X .  We say
a half line R + z  in  N E  (X ) to  b e  an extremal r a y  i f  (Kx •z )<0  a n d  fo r  any
Z1 , Z2 NE(X ) such that z r E z ,E R ,z , z1, z2 E R ± z. By [Kol, Theorem 1], we have
the following theorem.

(4 .2 )  For any  e>0 and any  ample divisor A  on X , there are  integral cure yes

'1 such that
(i) N E(X )=R + [11]+•••-k R 41,]+N E K x + ,,(X ), and
(ii) K i [11] is an extremal ray for i=1, •••, r,

where [4] (i=1, •••, r) denotes the class of  1 in N i (X).

Furthermore, due to [Ka2, Theorem 2.6 or our theorem 0], we obtain the contrac-



(MMC,)„
(b)

(CG),,  -   (ZD)„
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tion theorem.

(4 .3 ) For every extremal ray  R , we have the contraction 0: X-->Y such that
(i) 0 is a morphism of  X onto a normal projective v ariety  Y  with connected

fibres,
(ii) —Kx  is 0-ample, and
(iii) f o r any curve C on X , [C] _12 if  and only  if  C is contracted by  0.

We can classify the  extremal rays into 3-types by the  properties of contractions
as follows.

(a) dim Y<dim X .  Then 0 gives Q-fano fibring.
(b) 0 is a birational morphism which is not isomorphic in  codimension one.

In this case, Y is also Q-factorial variety with only terminal singularities.
(c) 0  is  a  birational morphism which is isomorphic in  codimension one.

Then Y has only rational singularities, but is not Q-Gorenstein.
In  order to avoid the case of (c), we need some modification of 0: X—  Y

For the existence of this modifiaction, there is the following conjecture.

(M M C,)„: There exists a  Q-factorial normal projective variety X +  with only
terminal singularities such that

(1) there is a birational morphism X,-->Y which is isomorphic in codimen-
sion one, and

(2) K x +  is 0 + -ample.
0+  : X + —>Y is called a  fllip of 0: X -->Y. Assuming (MMC,)„, the conjecture of
inductinon is as follows.

(MMC2)„: After a  finite number of contractions and flips, we can get a  min-
imal model as in (MMC)„.

A relationship of these conjectures is given by the following.

Proposition (4.4)
(a) (MMC)„ implies (CG)..
(b) (ZD)„ implies (CG)„.
(c) (CG), implies (LC)„.
(d) (LC)„ implies (MMC1)..
(e) (MMC 1)„ a n d  (MMC 2)„ imply (MMC)„.

(d) (c)(LC)„

P ro o f  By our Theorem 0 and Thhorem (4.1), (a) and (b) are obvious. (e) is
the program of M. Reid and Y. Kawamata.
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(c): Let X  be  a norm al variety and f: X-->X a resolution of singularities of
X .  Clearly we can reduce to the case where X is projective. Let A  be an ample
divisor on X and r a sufficiently large integer. Taking a general menber D e I 2rAl

such that f * D  is sm ooth on  Y , we have a double covering r - ›  Y reamifying
along f * D .  It is easy to see that Y is a  smooth projective variety of general type
and K i7=7c*(Ky ± f * (rA )).  Hence we have

(4 .4 .1) r * Ok(nK i

-
7) =  0,(n(K y d-f*(rA)))07r * Op .

Let G  be the Galois group Gal(k/Y ) of the covering. Then from (4.4.1),

(51
1-7(nKi7)))G I -r(Y , Oy (n(Ky + f* (rA )))).

Therefore, by th e  assumption o f  (CG)„, H
°
(Y, O y (n(Ky + f* (rA ))) )  is finitely

n=0
generated. It is well known that

Projx( fiDo f*(c0 9")) =  Pro] fi3la (fr(Y , Oy(ii(Ky+P(rA))))

(See [R1]). Hence LR(X) is finitely generated.
(d): Let f: X—> Y be the contraction with respect to an extremal ray which is

isomorphic in  codim ension o n e .  A  f lip  o f  f: X --> Y  is nothing m o re  than
Proj y (LR(Y)) (See [Ka2]). q.e.d.
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