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On the maximal p-ramified p-abelian extensions
over Zdp-extensions

By

Masan ' UEDA

Introduction.

Let p be an odd prime number and k be a finite algebraic number field. L e t
k . be a Z dp-extension of k, that is, a Galois extension of k with the Galois group
G(k— lk) isomorphic to a product of d  copies of the additive group of p-adic inte-
gers Z .  L e t  M ( L )  denote the maximal p-ramified p-abelian extension of
Here, we say that a Galois extension is p-ramified if it is unramified outside the
set of all prime divisors lying over p. Moreover, let 1(k 0.) denote the Galois group
of M (k .) over k0. and A , the complete group ring of G =G(ko I k) over Z .  T h en
we can consider 1(lcco) as a finitely generated /1 0 -m odule. Let p (k .) denote the
rank of 1(k 0.) as a AG -module and r2 (k) the number of complex places of k.

Our main purpose in this paper is to study the following question.

(1) p (k .) =  r 2 ( k )  for a n y  Z d
p -extension koolk ?

On this question, Babaicev [1] and Greenberg [9] showed that this equality (1) is
valid for almost all Zp -extensions of k .  But for a given Zp -extension, only following
criterions of the equality (1) are known:
(a) koolk is the cyclotomic Zp -extension. (Iwasawa [11], Greenberg [8]).
(b) Leopoldt's conjecture is valid for k. (Greenberg [9]).
( c )  k . contains a  Z p -extension of  k f o r which the equality (1) is valid ([9]).

We shall first give another criterion under a certain assumption in section 1.
The result is as follows.

Theorem I. L et k be a finite algebraic number field and k . be a Z p -extension
of k .  Assume that k contains a primitive p-th root of  unity . If  there exists no prime
ideal of  k over p which splits completely in k . and if  Iwasawa's , u ( k 0 . 1 k )
is zero, then we have

p (k .) =  r 2 (k) .

In this case we shall also give a  necessary and sufficient condition for p(Ic c o )
= r 2 (k) in terms of invariants of k.lk  (see Corollary 1.10 in section 1).
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Next we shall consider the behavior of p(k-) when k varies in a family of finite
algebraic number fields. L e t  11- be a 4,-extension of k such that lc_ n
For all positive integers n, let H the fixed subfield of H.. for G(H_Ik)Pn .
Then we have a family of Z-extensions k-H„IH„ (n=0, 1, 2...). Let M(k_H„)
be the maximal p-ramified p-abelian extension of k-H n and ff(k-H„) be its Galois
group over k-Hn . Then, every i '- (k-H„) can be considered as a AG -m odule. Let
p(k_Hn )  denote the rank of Y(k....ff,i ) as a AG -m odule. In this situation, we shall
prove the following theorem in section 2.

Theorem II. There exist non negative integers p and c=c(k_, 11_), which are
independent of n, such that

p(k_H„) =- p p n +c ,

for all sufficiently large n.

We shall give an example for Theorem I in section 1 and two sufficient con-
ditions for the constant c in Theorem II to vanish in section 2.

Notation and Terminology.
We shall use the notation in Introduction. Let ,ten denote the group consits-

ing of all p n -th roots of unity for a positive integer n and F p  the finite field with
p elements. We use the following notations for any Z-module A.

(A) p  =  { A  al pa , p (A) = AlpA

Moreover, if A  is  a  discrete module, rp (A)—dim,p (A)0  will be called the p-rank
of A  and if A  is a compact module, rp (A)=dim F p  p (A) will be called the p-rank of A.

Let Q(R) denote the quotient field for any integral domain R .  Then, for
any R-module M, rkR (M)=dim Q (R )(M O R Q(R)) will be called the R-rank of M.
Let AnnR (M)— al aM =0)- and TorR (M)--- {MB m I am = 0  (R  a  0)} .

Let C(k) denote the ideal class group of k and Co (k ) the subgroup of C(k)
generated by all ideal classes containing prime ideals over p.

§ 1 .  The proof of Theorem I.

Throughout this section, we assume that d=1 and k contains it,. Let ko.„
be a Z p -extension of k and a be a topological generator of G  =G (k  k ). Let AG
denote the complete group ring of G over Z p . Then, we can identify A, with the
power series ring Z p [[T]] in such a way as a corresponds to I + T .  From now on,
we fix this identification.

Let k„ denote the unique cyclic extension of k of degree pn in k_ for all n_0.
Let if *(kn ) denote the Pontrjagin's dual group of X'(k„). Then, 1 ( k )  is  a finitely
generated Zp -module (see [11] Theorem 2), therefore p(i(k)) is a finite p-abelian
group. The dual group of ( (k ) )  is just (Y*(k„)) p . Hence, we obtain

(2) rp(.k(k„)) rp (Y*(k,,)) .
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We shall give formulas for rp (Y(lcn )) and rp (P (k „) )  in Proposition 1.6 and
1.7. Theorem I follows from these propositions and (2).

We know the following result.

Proposition 1.1. (Bertrandias-Payan [2])

(3) rp (X- *(k)) = g(k)H-r,(k)-Erp (P(k))

where g(k) is the number of prime ideals of  k  over p  and P(k)=C(k)ICak).

Replacing k with k„ in (3), we have

(4) r p (Y *(k ,,)) = g(k)±r2(k„)+r p (P (k„)) .

We shall rewrite this formula (4) in such a way that we can see the asymptotic be-
havior of rp (1*(k„)) as n grows.

Since any place outside p  is unramified in any Zp -extension of k , we have

(5) r2(k ) = r2(k)p n .

Next we shall consider the part of g(lc).

Proposition 1.2. L et f i(k .) be the number of the prime ideals of k  over p  which
splits com pletely  in L . T here is a non negative integer r(k .), which is independent
of n, such that

(6) g(k ) = 19(k -)p n +r(k ..,),

f or all sufficiently large n.

Pro o f . Let A , (1 -. i g(k)) denote the prime ideals of k  over p .  Then, the
number of prime ideals in k„ over p is the sum of the number g (k )  of prime ideals
in k„ over A . over all i. Let Z . denote the decomposition group of A , .  Then,
we have

g1(k) = I G(k n I k)I I  Z,G(k col kn ): G(k4k)1

Since Z. is  a  closed subgroup of G(kcolk)=Z p , we have either Z 1 = {0} or i nZ p  for
som e m O . W e have Z .  {0} if and only if A . splits completely in L .  I n  this
case, we have g 1( k ) = p .  On the other hand, if Z i --- ,--p m Z p  for some m>_-0, then
g i (k„)=p m  if n_ m .  So, the proof is complete.

Remark. In the above proof, if we use the inertia group in place of the de-
composition group, we obtain the following result: there ex ists a  non negative
integer e, such that each prime ideal of Ice over p  is either unramified or totally rami-
f ied in k . .  Until the last of this section, we shall fix this number e.

Next, we shall consider the part of P(k „). By means of Artin map, Co(k)
is mapped onto the composite group of decomposition groups of all prime ideals
over p  in k. Hence, we have the isomorphism P(k).---:---- G(L'(k)1k), where for any
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algebraic extension K over Q , we denote by L '(K ) the maximal unramified p-abelian
extension of K  in which every prime divisor of K  over p  splits completely. Now,
we shall consider X ' =G(L '(k .)Ikc..). This Galois group is a  finitely generated
torsion A G -module (see Iwasawa [11]). Using the structure theorem of a finitely
generated AG -module (see Bourbaki [3], chaptre 7, §4, n °4), we have the following
decomposition of X'.

(7) X  •••-• e  AG /pci)  e  e  AG /(fto ) ,

11(k,,,)

1=1

wheie, a'(k..,) and b'(k_) are non negative integers, c i and d, are positive integers,
f ,  are distinguished polynomials and denotes a  pseudo-isomorphism from
X ' to the right-hand side of (7).

Then, we can prove the following proposition.

Proposition 1.3. We have

(8) r p (P (k )) = a' (k -) pn,

where, 0(1) means the bounded number as n grows.

P ro o f  Let Y '=G(L'(k-)11c.L '(k e)). It follows from Iwasawa [11] Theorem
8 that Y' is the AG -submodule of X ' and G(L '(k„)1k)=--G(k.,L '(k)1k.,)=X '12), „ Y'
for all n _ e , where ve ,n = 1+ 0 ' + 0 2 P ' H- '•• - k  ( P "  "  - 1 ) P  E  AG . Therefore, rp(P(k..)) =
rp(G(L'(k„)1k0)— rp(X 'Ive,,,Y '). From the exact sequence:

0 —> Y'lve ,„ Y ' —> X'Ive ,„ Y' X'/Y ' —> O,

it follows that

rp (Y 'lv e ,„ Y' rp (X 'Iv e ,,, Y ) .5._rp (Y 'lv e ,„ Y ')H-rp (X 'IY ').

Since rp (X '11") is obviously independent of n, we have the following formula.

(9) rp (P(k„)) = rp (Y 'lv e ,„ Y ')+ .

Now we shall calculate rp (Y'iv e ,„ Y'). For simplicity, let E  denote the right-
hand side of (7). We need the following two lemmas.

Lemma 1.4. We have

rp (Elve ,„ E) I)" + O W  for all n O .

P ro o f  It is sufficient to calculate the p-rank of each direct summand. Since
A G I(p`i, v e ,„)O z p 1 , , , n )  and li -= TP" - P' mod pA G , we obtain

A G /(p, ve,n) = A c/(P, T P "- P ') F r - P '

From the definition of distinguished polynomial, it follows that A G /(f », v e ,„)O z p  F p

fL-_- AG /(p. Tdideg(fi), TP " - P ' ). If p n —pe _cli  deg( .6 ), the last group is isomorphic to
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F ri l j d e g ( f

.7
) •  Combining these results, we obtain the assertion of Lemma 1.4.

Lem m a 1.5. L e t X ,, X , be f initely  generated torsion A G -modules. A ssume
that X , is pseudo-isomorphic to X ,. Then, we have

X1 )- r p (X2Ive ,„ X2) 0(1).

Pro o f : Since both X , and X2 are torsion A G -modules, X1 --X 2 is equivalent to
(see Cuoco-Monsky [6]). Therefore it is sufficient to show that rp (X i /v e ,„ X1)

- r i,(X2 Ive ,„ X2 )  is bounded to the above. Let N , and N , denote the kernel and
cokernel of the pseudo-isomorphism X 1 -->X2 . Then we resolve the exact sequence
0-->N1 -->X1-->X2 ->N 2 ->0  into the following short exact sequences: 0 - .N 1 ->X 1--
X - 0  and 0->X1.->X2-->N2 -->0. Taking the reduction of these sequences modulo
(p, v e ,„) and estimating the p-rank of each term, we obtain rp (N2 ) ..rp (X2 / v ,  X 2) -
rp (X,Ive ,„ X1). Since r( N 2 ) is independent of n and finite, the proof of Lemma 1 5
is complete.

We return to the proof of the proposition. Since X 'IY '=G(L'(1c -
e )lk.,) is  a

finite group, we have X '-  Y '. We have of course X ' - E, so, From Lem-
m a 1.4 and 1.5, it follows that rp (Y 'Iv  Y ') - r i,(Elv e ,„ E )+0 (1 )-a'(k -)p n +0(1).
Combining this result with formula (9), we obtain the proposition.

Combining (4), (5), (6), (8), we obtain the following expression of the asym-
ptotic behavior of rp (k - *(k,i)) as n grows.

Proposition 1.6. We have

(10) rp(1*(k„))=(r2(k)+a'(k.)+,8(1c00))pn +0(1)

for all n.O .

Now, we shall calculate rp (1 (k „) ) . Since Y (k -)  is  a  finitely generated AG-
module, we have the following decomposition of 2(k...),

s ( k o o , to,‘„,
Ar"(k.)— Atk-)e( e A GI(Pn 0)ED( ED AG/(g7i)),

j = i

where p(k .„), s(k .) and t(k .)  are non negative integers, n, and m ;  are positive inte-
gers and g ;  a re  distinguished polynomials. Then we can prove the following
proposition.

Proposition 1.7. We have

(12) rp(2(k,)) = (p(lcc.,)+s(k...)) pn +0 ( 1 ) ,  for all n 0 .

Pro o f . For simplicity, we shall write Y.-54k.°) in this proof. We first con-
sider the exact sequence of Galois groups: 0--->G(M(Ulk-)-->Y (k, i )-->G(lccolk„)-->
0. Since G(lcoolk„) is isomorphic to Z p , this exact sequence splits as a sequence of
Z p -m odules. We know also a s as a A G -module, where con=



428 Masaru Ueda

- 1 E AG (see Iwasawa [11]). So, we obtain

(13) rp (2(k„)) = r p (1lcon  if")+ 1 .

Next, we shall consider Y/con X'. Let E denote the right-hand side of the decom-
position (11) and N , and N , denote the kernel and cokernel of the pseudo-
isomorphism X -> E . Then we resolve the decomposition (11) into the following
short exact sequences: 0--->N ,-4 -4 '- -> 0  and 0--4'.-->E N2-> 0 . By means of
these exact sequences, we obtain the following estimation of the p-ranks,

(14) r p (X- 1 con )H -r p (N21 con ND> rp (EI con E) .

Since cv„.7,-  TP" mod(pA r ), in the same manner as the proof of Lemma 1.4, we can
prove r p (EI E )-(p (k -)--1 -s (k -)) p n  + 0 (1 ). Therefore we obtain

(15) r(1/co Y)(p(lc..)-ks(k..,))p n  +0(1) .

Here, we need the next lemma to show the converse inequality.

Lemma 1.8. Let R = Z p [[T„, •••, I 'd ]] and M  be a finitely generated torsion-free
R-module. Assume that a is neither a zero nor a unit in R . T hen there is a AER
and a R-free submodule M' of M  such that A  is prime to  a and 2 M  M '.

P ro o f  Let 19
1 , •••, P„ denote all prime ideals containing a  of height 1 and

S = R -U  P i . Then the quotient ring R , is a Dedekind domain. Since R  is a

U.F.D., for any prime ideal P of height 1, there is an element f  in R such that P =
JR. S o ,  IT  s= gs if and only if f  divide a , hence R s  has only finite number of
prime ideals. Therefore R s  is a principal ideal domain. Since M  R s  is a finite-
ly generated torsion-free Rs-module, it is a  Rs-free module. Now we can take a
basis of M O R  R s  over R s  from M 0 1 .  Let {mi 0111:<i_-< p }  be a  basis. We

define M '=e) Rm i ,  so M ' is a  R-free module. It follows from the definition

Ar OR RS = MDR R s , hence (M/M)0 R  R5 = 0 .  Since (M/M') is a finitely generated
R-module, there is a  AES such that 2 (M IM )= 0 . So, the proof of the lemma is
complete.

We return to the proof of the proposition. Let T=TorA g I  and Z = k- /T.
Then by means of the exact sequence: 0--->T-4--->Z--->B, we obtain the following
estimation of the p-ranks.

(16) rp(TIco,, T)H-rp(ZIco,,Z)>rp(21co„ P .

We shall first consider the part of Z .  We can apply Lemma 1.8 to Z  and p.
Therefore there is a  2 E A r -p A r  and  a  As -free submodule Z' of Z  such that
2 Z ç .Z '.  So, Z/Z ' is  a torsion Ar -module and Ann, o (Z/Z)B2, hence Ann,,
(Z IZ ') pA G .

So, using the structure theorem, we have the decomposition:
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A G /( /1 0 , where a is a  non negative integer, bi are positive integers and

P i are the prime ideals of height 1 of AG which are not in pA G . Therefore, using
the method of the proof of Lemma 1.4 and 1.5, we obtain

(17) rp((Z/Z)/con(Z/Z)) = 0(1) .

On the other hand, we can easily show that p(k- ) — rkA G,2 --- r k A G , Z=rk A g Z'.
Hence, Z '--- -=- AVe- ) . Therefore we obtain

(18) rp(Z/con Z') = p(k - ) .

Next, by means of the exact sequence: 0—>Z'--->Z-->Z/Z—>0, we obtain the esti-
mation of p-ranks,

(19) r p (Z' Icon  Z')d - rp ((ZIZ')Ico(Z/Z))_> r p (Zicon Z)

Combining (17), (18), (19), we obtain

(20) rp(Z/con Z )5  p(k- ) +O M  .

Obviously, T  is pseudo-isomorphic to the AG -torsion part of E .  Therefore, we
obtain

(21) r p (TI co T) = s(k - ) p m +0(1)

by means of the method of the proof of Lemma 1.4 and 1.5. Now, combining
(13), (15), (16), (20), (21), the proof of the proposition is complete.

By virtue of the above calculations and the equality (2), we obtain the following
theorem.

Theorem 1.9. Under the above notations, we have

(22) p (k -)±s (L ) =  r 2 (k)+ fi(k-)+a'(k-) .

Now, we shall derive the necessary and sufficient condition for p(k _)=r2 (k).

Corollary 1.10. Under the above notations, we have s(k.)_fi(k -)±a '(k .).
And the following conditions are equivalent:

(i) p (k _)= r 2 (k),
(ii) s(k -)= fi(k.)+ a' (k-),

(iii) s(k-) fi(k-)H-a'(k-).

Pro o f . We know that p(k- ) r,(k) (see Greenberg [9]). Combining this fact
and Theorem 1.9, we obtain the above assertion.

Next, we shall give the proof of Theorem I.

The proof  of  T heorem  I. We preserve the above notations and terminologies.
Let X = G (L(k- )1k.) and Y= G (L(k - )1k- L(k e )), where, for any algebraic extension

L (K ) denote the maximal unramified p-abelian extension of K .  Since X is
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a  finitely generated torsion Ac module (see Iwasawa [11]), we have the following
decomposition of X:

/ b ( le ca )

X • '  e  A GI(Pu i ))ED AG/(hi))1=1

where a(k.) and b(k_) are non negative integers, u, and 1, 1 are positive integers and
ack_)

hi  a re  distinguished polynomials. Then, lwasawa's /2-invariant ,u(k_lk) is  E u..,=1 8

So, we obtain ,u(k_lk)=0 if and only if a (k4=0 . Therefore the assumptions of
the Theorem I  are equivalent to  fl(k)=0 and a (k )= 0 .  On the other hand, we
have also the isomorphism C(k„)=-G(L(kOlk„)=-Xlv Y for all n e (see Iwasawa
[11]). U s in g  the method of the proof of Proposition 1.3, we obtain

(23) rp(C(k„)) = a(k.)p n +0(1) .

Next, estimating the p-rank of each term of the exact sequence: 0- - >C0(k„)- - >C(k.)
we obtain

(24) r p (C 0 (k n ))+ r p (P (k n )) r  p (C (k „)) >_ r p (P (k u )) .

c 0 (k )  is generated by the ideal classes of the prime ideals of k p .  From
this fact and Proposition 1.2, it follows that

(25) rp(C0(1(n))--ii(k.) +  0  ( i )  fo r  a ll n. - 0 .

Combining (8), (23), (24), (25), we obtain a '(L )+ ,3 (k _ )> a (k 4 a '(k -). From
this inequality, it follows that fl(L)=0 and a (L )= 0  if and only if 18(k-)=0 and
a '(k -)= 0 . Obviously, s(k_)_0= g(k 00+ a '(L ) .  Therefore using Corollary 1.10,
we obtain Theorem I.

Rem ark. We can prove Corollary 1.10 and Theorem I by modifying method
of Greenberg [8] Theorem  3. W e can also express the necessary and sufficient
condition by means of Galois cohom ology. Let F denote the maximal p-ramified
p-extension of k .  Put Gn —G(Flkn ). Since 1-13(G„, Z) is divisible, we can express
1-13(G„, Z)---=(Q pl Z p)a " for s o m e  a . 0 .  Then, we have p(k.)=r,(k) if and only
if an  is bounded with respect to n (see Brumer [4]).

On the assumptions of Theorem I , following results are known (see Green-
berg [7], Babaicev [1], Monsky [14], Kuz'min [13]). Let E(k) denote the set of
all Z p-extensions of k. Let E,(k)=-- E E(k)1 it(k k) =01 and E2 (k)= {L c  E(k)1
18(k4=0)- . Then, in a certain natural topology, E2 (k) is a non empty open dense
subset of E (k ). And if E,(k)*0, then E 1(k) is also an open dense subset of E(k).
Therefore if there is a Z p-extension k_ of k whose fl-invariant is zero, E 1 (k) n EA)
is an open dense subset of E(k) and so there are many Zp-extensions which satisfy
the assumption of Theorem I.

Finally, we shall give an example.
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Example 1 . 1 1 .  We assume that the p-Sylow subgroup of C(k) is trivial and
that k has only one prime ideal over p .  For example, if p is a regular prime, Q(,a,)
satisfies these conditions. Let k -  be any Z n-extension of k  and k ' a  finite Galois
extension with degree a power of p  such that all prime ideals of k , which is ramified
in k ', do not split completely in k _ .  Then, for Z p-extension k 'k -  of k ', we can
easily see A k 'k _)=0 and have ,u(k 'k .110=0 by virtue of Iwasawa [10] and [12]
Theorem 2. So, using Theorem I, we have p(k 'k_)=r2(k ') for this Z p-extension
k 'k -  of k'. It seems that the case of k 'k _Ik ' cannot be treated by the criterion
of Iwasawa and Greenberg.

§ 2 .  The proof of Theorem II.

In this section, we do not assume that k  contains A, and d = 1 .  We shall use
the notations in the statement of Theorem II in Introduction.

By means of the assumption /coo r) IL .=k , we can identify naturally G(k-H-111-)
with G(k_HIH„) for all n  O. We denote by G this g roup . Similarly, we identify
G(k-Hoolk.) with G(H_Ik) and denote by B  this group . Then we denote by AG
and AB the complete group rings of G and B over Z .  L e t  AA denote the complete
group ring o v er Z  of the Galois group A =G(k_H o o lk). Let {ci , •••, ad}  be a
system of topological generators of G and r  a topological generator of B .  Then,
a  system of topological generators of A  is given by ••-, cd , r}. Now we can
identify AA with Z n  [[S,, • • • , Sd , 7 ]] in such a  way a s  ai (1 and
z-- >T . So, by means of this identification, we identify naturally AG and AB with
Z n [[Si , •• • , Se ]] and Z p [[T]] respectively.

Our main purpose in this section is to study the asymptotic behavior of rk , o

as n grow s. For simplicity, put K=k_11_, A n =G (K IH ,), =Y(K),
M (K ), M i =M (k_H„) and X- „= "f(k_H „). Now, we shall consider the exact se-
quence of AG -modules:
0-->G(Mn IK)—>;1%—>G(Klk_H,z)— >0. Since Klk is an abelian extension, G acts tri-
vially on G(K lk_14). So, G(Klk_11) is a torsion A G -module, hence rk , o  1 n = rk , 0

G(111/K). W e know  also that G(M„/K)=- Y /T ,S  a s  AA -modules, where Tn =
(1+ T ) " - 1 E  A A .  Hence, we have

(26) rk,0 = rk i ,6  1 /T a 1 .

In the case of n=0, we can calculate rk , G, as follows.

Proposition 2 . 1 .  Pu t k— Tor,A (A) f or a finitely generated A A -module Y, then
we have

kTi>" = rk,„ X- H-rk, 0  / T 1 .

P ro o f  Let p = rk„ , A> and  Z =X IY . Since 2  is  a torsion-free AA -module,
we obtain an exact sequence:

(27) 0 ---> --> 1/ —> 2IT2  0 .
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So that we have rk A o  2 / T ï= r k A G , k7T1 - PrkAG, 2/T2. It is sufficient to show i =
rkA  2/T2. We shall apply Lemma 1.8 to 2 and T .  Then there exist a  E A A  —

T A , and a free AA -submodule 2' of 2 such that 2' contains 2 i .  Let W=2'122
and W'=.212'. Since both W/TW and W 'ITW ' are annihilated by (2 mod TA A )

A A /TAA --z---A G ,  we obtain rk A G (WITW)=rk A a ( VITW ') = 0 .  By means of the
following two exact sequences: 0— '--> W--->0 and o—.2', 2--->kr-->o, we
obtain the equality of AG -ranks:
rk A 6,(27T 2 ')= rk A g ( 2 / T 2 ) .  Since 2' is a free AA -module and 22ç_2', we have
also p = rk A A . 2—rkA A  — rk .A 0 ( 2 7 T 2 ') .  So, the proof is complete.

Before we go to the general case, we shall consider the part of rk A Â

Proposition 2 .2 .  AA is a free A A -module of  the rank p i  an d  rkA,„ :Y=(rk A A Y)
p n for all n.>_0.

P ro o f  We can easily show that {a„ ••• , ad , z- P"} is a  system of topological
generators of A n an d  can identify AA  Z p [[Si , •••, S d , Tn ]] under the fixed
identification AA=Zp[[Si, •••, S d ,  T]], and T„ is  the distinguished polynomial.
From these facts and the use of Weierstrass's preparation Theorem, our assertions
follow easily.

Since AA is integral over A A , we have easily k --TorA A „ ( 2 ) .  So, if we rewrite
the equality of Proposition 2.1 in the terms of AA  -module, we obtain

(28) rk j(k -/T ) =  rkA A „(ï)-k rk A a (k/T„

= (rk , A X.) I; -Prk i ( Y/Tn
 -1'7 ) for all n O.

Next, we shall calculate k/T„17.

Proposition 2 .3 .  L e t  cn =rk A o (f/T„Y- ). T he sequence o f  numbers { c n i n -
0, 1, 2, •••} increases monotonely and bounded to the above. Hence, f or all sufficiently
large n, c n  is equal to a constant c.

P ro o f  Since k is a  finitely generated torsion AA -module, we can take the
pseudo-null modules N „ N 2 such that the sequence of AA -modules:

a
0-->N1—> AA /(p7o->N2 , 0  is exact, where a is a non negative integer, ni are,-1
positive integers and P i are the prime ideals of height 1 in A,. We resolve this
exact sequence into the two short exact sequences:

0-->N1—> Y---> Y'-->0 and 0--> Y'--> M i -->N2--->0, where M I —AA / (P i)  (1

By means of these exact sequences, we obtain the following estimation of AG -ranks:

(29) rkA(N2/TflN2) r k ( M I / TflMÎ) —rkAG( f/T ,î5 .

By virtue of Bourbaki [3] chaptre 7 , §4, n°8, Proposition 18, N2 is also a pseudo-
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null A ,-m o d u le . From the definition of pseudo-null, it follows that AnnAA „ N2
Therefore r k ( N 2/T„N2)= 0 .  So, we obtain

rkA o (k/T„k) rkAa(Mi/T„Mi) .

a a

On the other hand, since both Y-  and ED Mi are torsion A A -modules, Y,---E3 M.
i =1i  =  I

implies ED -  Y.
i=1

So, the converse inequality can be shown in the same way.
Now, we obtain

(30) rkA 0 ( T  )  =  r k A  ,( M i l T„M i )  .

Next we shall calculate rkA o (M /T „M ), where M  is A A /Pi for the prime ideal P  of
height 1 in AA and a certain positive integer j. Since A ,  is a U.F.D., P is generated
over A A  by a prime element F .  Let f = F i ,  then Pi =f A A . Moreover, we shall
define a A G -isomorphism: A A /T„A,--->(A G) as follows. Using Weierstrass's pre-
paration Theorem, for any element h E AA, there are hi E A, (1__ p n —1) such that

p"-1
h i T i mod T „ A ,  and these hi  a re  determined uniquely. Then we definei=0

A G -isomorphism by the correspondence h mod T„.114 —>(h0 , • • • , E (A G )P".
For any element g e  A A , we define the endomorphism 0(g) of (A G ) "  in  such

a way as the following diagram is commutative:

A A /T,,A , (AG)P"

X g I 16(g)
A A l T n A , (AG)P"

where x g means the multiplication by g.
Then it is easy to show M/T„M=coker 0 ( f ) .  Let Q (A G )  denote the quotient

field of A , .  Then we easily obtain: coker 0 (f )  is a torsion A G -module if and only
if coker 0 ( f ) 0 .,,,,Q (A G ) = 0  and this is so if and only if the Q(A G )-linear extension
of 0(f): Q(.11.,)P"-->Q(A G )P " i s  surjective. The last statement is equivalent to
det 0 ( f )*  0.

Next we shall calculate det 0 ( f ) .  We put f =h T „-k g , where hG AA and g -
p"-i .
E b i Tg , b i E A , pn — 1). Obviously 0: ,— >E n d  A g ((A G )P ')  is  a  A G -lineari=0
ring homomorphism.

P "-1
So, 0(f )=0(g)—  E bi O ( T ) .  It follows easily from the direct calculation that thei-0
set of all eigen values of 0(T ) is 1 C -1  C e i t ,J - .  So, we find that the set of all eigen
values of 0 ( f )  is {f(5 1 ,  • -• , S d , C —1)1 C . Therefore

det 0 (f ) f(51, • • • , S d , C - 1 ) .  So, we obtain



434 Masaru Ueda

(31) rkAa(MIT„Al)*0 if and only if

F(S„ • • • , Sd, C — 1 )  = 0  for some

In this case, we can easily see also that such F is essentially the cyclotomic poly-
nomial ik,n , that is FA A = 7„AA ,  where lit,„ is  T if m = 0 and is  T,n /T,„_, if
This follows from that 'sb•  is a distinguished polynomial and so we can divide F by

and (31).
Combining the above results, we obtain

(32) ric iaM IT „M )* 0  if and only i f  P  '',„A A  f o r  som e n> m> 0 .

Next we shall calculate rIc.,,G (A,/(T„A A -Hfr A A )). Let R, denote the ideal in A B =
Z p [[7]] generated by Tn and '0•,';, (n j  1).
Let n :  A B [[Si , •••, Sal] - - >(AB/R0 f[S1, ••• S a l] denote the AG - homomorphism ob-
tained from the reduction modulo R , of coefficients of A A= AB[{Sj• • •• • Sall

Then we can easily show that ker72=T„A A -H0, ,A A . So, we obtain

(33) (AB/Ri) [[S1, •" , Se]] =  A  Al(TnA A + 1kLI A  A) •

On the other hand, it is easily shown that

(34) rk,,(AB/Ri) [[S i , •••, .5d ]] =  rkz,(A B /R 1) .

By virtue of W eierstrass's preparation Theorem, we obtain also AB /T,z AB = Z p

Z p [ r ] .  So , w e have AB /R1 -- - --fZp[T]/R 2 ,  where R2=71. Z p[T]+*4z Z [7 ] .
Next, we shall calculate rk z p (Z p [T]/R2). We know that (Z p [T]I ROO z  p  Q

Q [71/(T  Q  p [7]4-*L i Q p [7]), T n =  f l f r 1  a n d  that Vti is irreducib le in Q [T ] .,=0
So, Qp  [7] Tn +Q p [T] r";,=Q p [7] -tfr,„. Therefore we have

(35) rk,p(Zp [W O  cliMg p (Q p [T]l*„, Q p [T])

j 1 i f  m  = 0 .

P n - 1 (P - 1 )
 

if .

Combining (33), (34), (35), we obtain

i f  m  = 0 .
(36) rk,o(AA/(T„AA+44A)) =  

pm - 1 (p — 1 ) if .

Let In  denote the set of all prime ideals P1 which appear in the decomposition
el

Y'•., A A /(pri) and are generated by for some n rn O. B y  v irtue  of (30),

(31) and (32), we have cn =r1c, o k/T„k=  E  rk ,,(A A /(P-1- T n A A )).
P,EI

Obviously, /„ is  a monotone increasing sequence of sets as n  grows and .T„
is stable for all sufficiently large n, because i n g__ -(P,!1 i < a} . Moreover, for any
P rkA(A,/(P7,+ T n A A ) )  is independent of n  by virtue of (36). Combining
these results, the proof of the proposition is complete.
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Proof  of  Theorem  II. Theorem 11 follows from (26), (28) and Proposition 2.3.

Remark. W e can prove the  criterion o f  Greenberg mentioned in  Introduc-
tion by means of Theorem II.

Corollary 2.4. Under the notations of  Theorem I I  in Introduction, the follow-
ing two conditions are equivalent:
(i) p r2 ( k )  an d  c  = O.

(ii) p(kocHn )  = r,(H „) for a l l  /7

P ro o f  W e first assum e (i). By virtue. of Proposition 2.3, we obtain c n = 0
for all n 0. T h e re fo re  the relations (26) and (28) im ply (ii). N ext, w e assume
(ii). Using Theorem II, we obtain (rka )  + c = r 2 ( 1 1 . ) = 1 " 2 ( k )  pn fo r all sufficient-
ly large n. Dividing both sides by pn and  taking their limits as n tends to  the in-
finity, we obtain (i).

Finally, we shall give two sufficient conditions for the constant c=0.

Proposition 2.5. A ssum e that k  contains ,u, an d  k .lk  is a  4-ex tension such
that k . n H . =k . I f  there exists no prime ideal of k over p which splits completely
in k . and if  Iwasawa's ii-invariant ,u(k4k) is zero, then the constant c=c(k., H...)
Theorem II is zero.

P ro o f  By virtue o f  example 1.11, we have f i(k -H„)=,u(k .H„IH„)=0 for all
n 0. Then our Theorem  I assert that p(k.H„)— r,(H„) fo r all O .  So, our
assertion follows from Corollary 2.4.

Proposition 2.6. A ssume that k contains g i and d=1 and that H . be the cyclo-
tomic 4-extension of k such that ko. CI 11.— k . If  lw asaw a's 2-invariant 2(H.k,n 1k,n )
is bounded with respect to m . then the constant c=c(k ., H.) in Theorem  II is zero,
where k„ denotes the unique cyclic ex tension of  k  of  degree p n in  L .

P ro o f  By virtue of the proof of Greenberg [8] Theorem 3, we have 2(11.1c„,1k,„)
rkz p  (H „k ,n ) — r,(H„k„,) 1=a(H„k„,) for a ll  n _ 0 , Let A— G(H00k 001k),

G — G (k k), p =rk A A  k ( H .k .)  and ion =rk A o  k- (H „k.). Then w e find from  G re-
enberg [9], pdi n d-0(1)—rk z t  X- (11„k,n )=r2 (H„) pm  +1+6(H„lc,n ) ,  where 0(1) means
the bounded number with respect to m .  So, we obtain

(37) (P . P — Pn+1) p m  =1*Ilnk .) — a(f in+ik .)+ 0 ( 1) •
Put c =c (k ., H .) , then Theorem 11 implies p n p— p„, 1 =(p — 1) c. Combining (37)
and Cuoco [5] Theorem 1.1, we obtain the following estimation:
(p —1) c =p . (pa(H„k „,)+ (H„ +„ k,n ))+p - m (p+ 1) p -  (10 + 1 , )
+ p '  0(1),0(1), where 4, 4 are constants. So, taking their limits as m  tends to  the
infinity, we obtain (p —1)c (p+1) I,,, so if 4=0, then we obtain c= 0 .  The proof
is complete.
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