On sojourn times, excursions and spectral measures connected with quasidiffusions

By

Uwe Küchler

1. Introduction.

Let $X=\left(X_{t}\right)_{t \geq 0}$ be a quasidiffusion on the real line with natural scale and speed measure m, i.e. a strong Markov process the infinitesimal generator of which is a restriction of the generalized second order differential operator $D_{m} D_{x}$.
Examples are diffusions and birth-and death-processes. We shall consider excursions of X from 0 over some level $a>0$ and study the sojourn time T which X spends over $a^{\prime}\left(a^{\prime} \in[0, a]\right)$ during such an excursion.
If $a^{\prime}=a$, then T has a mixed exponential distribution. The mixing measure can be identified with the normalized spectral-measure of a so-called dual string (see Proposition 3.2).
We consider the process $\left(P_{t}\left(a, a^{\prime}\right)\right)_{t \geq 0}$ where $P_{t}\left(a, a^{\prime}\right)$ is equal to the time which X spends over a^{\prime} during excursions of X from 0 to a occuring before the local time $l(\cdot, 0)$ of X at zero equals t. If $a^{\prime}>0$ it turns out to be a randomly stopped compounded Poisson process (Theorem 4.4).
If $a^{\prime}=0$ or $a^{\prime}=a$ its Laplace transform can be calculated by the spectral measures of some corresponding dual strings (see point 4.2 below). In parituclar, if ν denotes the Ito excursion law of X at zero, V the "peak" of an excursion, we obtain the Laplace transform of the measure $\nu(T \in d t, V \geqq a)$ (Corollary 4.6). Finally a connection between the trajectories of X and some spectral measures via the local time of X is derived (Proposition 4.10). This extends a result of Ito, McKean [5] for diffusions.

2. Quasidiffusions, strings and spectral measures.

In this chapter we summarize some definitions and facts on quasidiffusions and related topics which are necessary in the sequel. Proofs are omitted, details can be found e.g. in [2, 3, 5, 6, 9-13] or can be easily derived from those.
We denote by R the real line, by \mathfrak{B} the σ-algebra of its Borelian subsets and by K the set of complex numbers. Let $b \mathfrak{B}$ be the set of all bounded measurable real functions on R.

2.1. Quasidiffusions.

Let m be an extended real-valued right-continuous nondecresaing function on R and put

$$
\begin{aligned}
& l_{0}:=\inf \{x \in R \mid m(x)>-\infty\}, \quad l_{1}:=\sup \{x \in R \mid m(x)<\infty\}, \\
& r_{0}:=\inf \left\{x>l_{0} \mid m(x)>m\left(l_{0}\right)\right\}, \quad r_{1}:=\sup \left\{x<l_{1} \mid m(x)<m\left(\left(l_{1}-0\right)\right\},\right. \\
& m_{0}:=m(\{0\}) .
\end{aligned}
$$

Assume

$$
m(0-0)=0, \quad m(x) \neq 0, \quad l_{0}<0<r_{1}
$$

and define

$$
I:=\left(l_{0}, l_{1}\right), E:=\left[r_{0}, r_{1}\right] \cap I .
$$

Denote by E_{m} the points of E in which m increases. The function m and the measure generated by m on I are identified.
Let $W=\left(W_{t}, \mathscr{F}_{t}^{W},\left(P_{x}\right)_{x \in R}\right)$ be a standard Wiener process and $l^{W}(t, x)(t \geqq 0, x \in R)$ its (continuous in (t, x)) local time with

$$
\int_{R} l(t, x) f(x) d x=\int_{0}^{t} f\left(W_{s}\right) d s \quad\left(t \geqq 0, f \in b^{\mathfrak{B}}\right) .
$$

Put

$$
\begin{array}{rlrl}
S_{t}: & =\int_{R} l^{W}(t, x) m(d x) & (t \geqq 0) \\
T_{t}: & =\inf \left\{u \geq 0 \mid S_{u}>t\right\} & & (t \geqq 0)
\end{array}
$$

with the definition inf $\phi:=\infty$.
Then $\left(T_{t}\right)_{t \leq 0}$ is a right-continuous strictly increasng process and T_{t} is an \mathscr{F}^{W}-stopping time $\left(\mathscr{F}^{W}:=\left(\mathscr{F}_{t}^{W}\right)_{t \geq 0}\right)$. Define

$$
\begin{aligned}
& \mathscr{F}_{t}:=\mathscr{F}_{T_{t}}^{W} \quad(t \geqq 0), \\
& \zeta:=\inf \left\{t>0 \mid W_{T_{t}} \in\left(l_{0}, l_{1}\right)\right\}, \\
& X_{t}:=W_{T_{t}} \quad(0 \leqq t<\zeta) .
\end{aligned}
$$

Then $X=\left(X_{t}, \zeta, \mathscr{F}_{t},\left(P_{x}\right)_{x \in E_{m}}\right)$ is a right-continuous strong Markov process with state space E_{m} killed at the time ζ. We call X the quasidiffusion with speed measure m (other notations are: generalized diffusion process [10], gap diffusion [9]). $\quad X$ is skip free in the sense that

$$
\left(X_{t} \wedge X_{t-}, X_{t} \vee X_{t-}\right) \cap E_{m}=\emptyset \quad(0<t<\zeta)
$$

In particular, starting at $x<y \in E_{m}, X$ enters [y, l_{1}] through y : we have with $\sigma_{y}:=\inf \left\{t>0 \mid X_{t} \geqq y\right\}$ the equality

$$
X_{\sigma_{y}}=y \quad \text { on } \quad\left\{\sigma_{y}<\infty\right\} \bmod P_{x}
$$

The analogous property holds if $x>y$.
If m is strictly increasing, it follows that $E_{m}=E$ and X is continuous, i.e. X is a diffusion in the sense of [5]. If m is piecewise constant and E_{m} has no point of accumulation in (r_{0}, r_{1}), then X is a birth- and death-process.
By

$$
\begin{array}{ll}
l(t, x):=l^{W}\left(T_{t}, x\right) & (0 \leqq t<\zeta) \text { and } \\
l(\zeta, x):=l(\zeta-0, x) & \left(x \in E_{m}\right)
\end{array}
$$

the local time l of X is defined. It is continuous in both variables and for every bounded measurable real function f on E_{m} we have

$$
\begin{equation*}
\int_{E_{m}} f(x) l(t, x) m(d x)=\int_{0}^{t} f\left(X_{s}\right) d s \quad(0 \leqq t<\zeta), \tag{1}
\end{equation*}
$$

in particular

$$
\begin{equation*}
m_{0} \cdot l(t, 0)=\int_{0}^{t} \mathbf{1}_{(0)}\left(X_{\mathbf{s}}\right) d s \quad(0 \leqq t<\zeta) \tag{2}
\end{equation*}
$$

Put

$$
\tau_{y}^{W}:=\inf \left\{t>0 \mid W_{t}=y\right\}, \quad \tau_{y}:=\inf \left\{t>0 \mid X_{t}=y\right\} \quad\left(y \in E_{m}\right) .
$$

Then it holds

$$
T_{\tau_{y}}=\tau_{y}^{W}\left(y \in E_{m}\right), \quad T_{\zeta}=\tau_{l_{0}}^{W} \wedge \tau_{l_{1}}^{W}=: \zeta^{W} .
$$

Using (1) with $f \equiv 1$ we obtain

$$
\begin{equation*}
\tau_{y}=\int_{E_{m}} l\left(\tau_{y}, x\right) m(d x)=\int_{E_{m}} l^{W}\left(\tau_{y}^{W}, x\right) m(d x) \quad\left(y \in E_{m}\right) . \tag{3}
\end{equation*}
$$

If $G \in \mathfrak{B}$, we define a measure m^{G} on I by $d m^{G}:=\mathbf{1}_{G} d m$ and mark all quantities connected with m^{G} by G, e.g. X^{G}, τ_{y}^{G}. From (1) and (3) we get

$$
\begin{equation*}
\tau_{y}^{G}=\int_{0}^{\tau_{y}} \mathbf{1}_{G}\left(X_{s}\right) d s \quad\left(y \in E_{m} \cap G\right) . \tag{4}
\end{equation*}
$$

With m there is connected a generalized second order differential operator $D_{m} D_{x}$ defined by ${ }^{1)}$

$$
D_{m} D_{x} f=g: \Leftrightarrow f(x)=f(0)+x D^{-} f(0)+\int_{0}^{x}(x-s) g(s) m(d s), \quad(x \in I)
$$

on an appropriately chosen domain of continuous functions on I which are linear on the components of the open set $I \backslash E_{m}$. The restriction of $D_{m} D_{x}$ to the Banach space \boldsymbol{C}_{m} of all such functions that are bounded and satisfy

1) $\mathrm{D}^{-}\left(\mathrm{D}^{+}\right)$denotes the left (right) hand side derivation operator.

$$
\lim _{x \rightarrow l_{i}} f(x)=0 \quad \text { if } \quad\left|l_{i}\right|<\infty \quad(i=0,1)
$$

is the infinitesimal generator of X.
Let φ and ψ be the (uniquely determined) solution of

$$
\begin{aligned}
& \varphi(x, \lambda)=1-\lambda \int_{0}^{x}(x-s) \varphi(s, \lambda) m(d s) \quad \text { and } \\
& \psi(x, \lambda)=x-\lambda \int_{0}^{x}(x-s) \psi(s, \lambda) m(d s), \quad(\lambda \in K, x \in I)
\end{aligned}
$$

respectively.
It holds the Lagrange identity, i.e. for every $\lambda \in K$ we have

$$
\begin{equation*}
\varphi(x, \lambda) D^{-} \psi(x, \lambda)-\psi(x, \lambda) D^{-} \varphi(x, \lambda) \equiv 1 \quad\left(x \in E_{m}\right) . \tag{5}
\end{equation*}
$$

Suppose $z \in E_{m} \cup\left(l_{0}, l_{1}\right), \lambda \in K_{0}:=K \backslash[0, \infty)$ and put

$$
\begin{array}{ll}
\chi_{+}^{2}(x, \lambda):=\varphi(x, \lambda) \int_{x}^{z} \varphi^{-2}(s, \lambda) d s & \left(z \geqq 0, l_{0} \leqq x \leqq z\right) \\
\chi_{-}^{2}(x, \lambda):=\dot{\varphi}(x, \lambda) \int_{z}^{x} \varphi^{-2}(s, \lambda) d s & \left(z \leqq 0, z \leqq x \leqq l_{1}\right) .
\end{array}
$$

If $z=l_{0}$ or $=l_{1}$ we omit the mark $z: \chi_{-}^{l_{0}}=\chi_{-}, \chi_{+}^{l_{1}}=\chi_{+}$. Let z_{0}, z_{1} be given with $z_{0} \leqq 0, z_{1}>0, z_{1} \in E_{m} \cup\left(l_{0}, l_{1}\right)(i=0,1)$. Then, for $x \in E_{m} \cap\left(z_{0}, z_{1}\right) \sigma:=\zeta \wedge \inf \{t>0 \mid$ $\left.X_{t} \in\left(z_{0}, z_{1}\right)\right\}, \lambda<0$, we have for any $f \in b \mathscr{B}$

$$
E_{x} \int_{0}^{\sigma} e^{\lambda t} f\left(X_{t}\right) d t=\int_{z_{0}}^{z_{1}} \chi_{-}^{z_{0}}(x \wedge y, \lambda) \chi_{+}^{z_{1}}(x \vee y, \lambda) f(y) m(d y) .
$$

From this formula, the strong Markov property, and the skip freeness of X it follows under the same assumptions on z_{0}, z_{1}, x and λ by a known method of [5]:

$$
\begin{align*}
& E_{x}\left[\exp \left(\lambda \tau_{y}\right) \cdot \mathbf{1}_{\left\{\tau_{z_{1}}>\tau_{y}\right\}}\right]=\frac{\chi_{+}^{2_{1}}(x, \lambda)}{\chi_{+}^{2}(y, \lambda)} \quad\left(y \in E_{m}, y \leqq x \leqq z_{1}\right), \tag{6}\\
& E_{x}\left[\exp \left(\lambda \tau_{y}\right) \cdot 1_{\left\{\tau_{z_{0}}>\tau_{y}\right\}}\right]=\frac{\chi_{0}^{z_{0}}(x, \lambda)}{\chi_{-}^{z_{0}}(y, \lambda)} \quad\left(y \in E_{m}, z_{0} \leqq x \leqq y\right) . \tag{7}
\end{align*}
$$

2.2. Strings and dual strings.

A measure m as considered above is called a string if $l_{0}=-\infty$ and $r_{0} \geqq 0$. Let \mathfrak{M} be the set of all strings and assume $m \in \mathfrak{M}$. The function h defined by

$$
h(\lambda):=\int_{0}^{l_{1}} \varphi^{-2}(x, \lambda) d x \quad\left(\lambda \in K_{0}\right)
$$

is called the characteristic function of m ([10]). We have

$$
h(\lambda)=\chi_{+}(0, \lambda)=\lim _{x \neq 1_{1}} \frac{\psi(x, \lambda)}{\varphi(x, \lambda)} \quad \text { and }
$$

$$
\begin{equation*}
\chi_{+}(x, \lambda)=h(\lambda) \varphi(x, \lambda)-\psi(x, \lambda) \quad\left(\lambda \in K_{0}\right) \tag{8}
\end{equation*}
$$

If $m, m^{\prime} \in \mathfrak{M}, a, b, m_{0}^{\prime} \geqq 0, c>0$ and

$$
m^{\prime}(x)=m_{0}^{\prime}+\frac{b}{c} m\left(\frac{x-a}{c}\right), \quad(x \in R)
$$

then the characteristic functions h_{m} and $h_{m^{\prime}}$ of m and m^{\prime}, respectively, are related by

$$
\begin{equation*}
\frac{1}{h_{m^{\prime}}(\lambda)}=-\lambda m_{0}^{\prime}+\frac{1}{a+c h_{m}(b \lambda)} \quad\left(\lambda \in K_{0}\right) . \tag{9}
\end{equation*}
$$

For every $m \in \mathfrak{M}$ there exists a σ-finite measure σ on $[0, \infty$), called the spectral measure of m, with

$$
\int_{[0, \infty)} \frac{\sigma(d u)}{1+u}<\infty
$$

such that

$$
\begin{array}{ll}
h(\lambda)=r_{0}+\int_{[0, \infty)} \frac{\sigma(d u)}{u-\lambda} & \left(\lambda \in K_{0}\right), \\
\sigma([0, u))=\frac{1}{\pi} \lim _{c \neq 0} \int_{[0, u)} \operatorname{Im} h(b+i c) d b & (u \geqq 0) . \tag{11}
\end{array}
$$

Moreover, we have

$$
\begin{align*}
& \sigma([0, \infty))=\frac{1}{m_{0}} \text { and } \tag{12}\\
& \sigma(\{0\})=\frac{1}{m\left(r_{1}\right)} \text { if } l_{1}=\infty,=0 \text { if } l<\infty . \tag{13}
\end{align*}
$$

If m is a measure as in 2.1. above and $x \in E_{m}$, then two strings m_{x}^{+}are given by

$$
\begin{aligned}
& m_{x}^{-}([0, y)):=m((x-y, x]), \\
& m_{x}^{+}([0, y)):=m([x, x+y)) \quad(y>0) .
\end{aligned}
$$

Note that $m_{x}^{-}(\{0\})=0, m_{x}^{+}(\{0\})=m(\{x\})$.
For the characteristic functions h_{x}^{+}of m_{x}^{-}, respectively, we obtain after some calculations

$$
\begin{equation*}
h_{x}^{+}(\lambda)=\frac{\chi_{-}(x, \lambda)}{D^{-} \chi_{-}(x, \lambda)}, \quad h_{x}^{+}(\lambda)=-\frac{\chi_{+}(x, \lambda)}{D^{-} \chi_{+}(x, \lambda)} \quad\left(\lambda \in K_{0}\right), \tag{14}
\end{equation*}
$$

If $G=[a, \infty)(a>0),(9)$ and (14) imply

$$
\begin{equation*}
h_{0}^{G,+}(\lambda)=h_{a}^{+}(\lambda)+a=\frac{a D^{-} \chi_{+}(a, \lambda)-\chi_{+}(a, \lambda)}{D^{-} \chi_{+}(a, \lambda)} \quad\left(\lambda \in K_{0}\right) . \tag{15}
\end{equation*}
$$

Let $m \in \mathfrak{M}$ and put

$$
m_{d}(x):=\inf \{y>0 \mid m(y)>x\} \quad(x \geqq 0),=0(x>0)
$$

Then it holds that $m_{d} \in \mathfrak{M}$ and $\left(m_{d}\right)_{d}=m$. The string m_{d} is called the dual string to m. All quantities connected with m_{d} will be marked by d, e.g. $\psi_{d}, \varphi_{d}, \sigma_{d}$. With the notation

$$
x_{+}:=\inf \left\{y>x \mid y \in E_{m} \cup\left\{l_{1}\right\}\right\}, \quad x_{-}=\sup \left\{y<x \mid y \in E_{m} \cup\left\{l_{0}\right\}\right\} \quad\left(x \in E_{m}\right)
$$

we get for $x \in I, \lambda \in K$

$$
\begin{array}{r}
-\lambda \psi(x, \lambda)=\left.D^{+} \varphi_{d}(z, \lambda)\right|_{z=m(x)}+\lambda\left(x_{+}-x\right) \varphi_{d}(m(x), \lambda) \\
\varphi(x, \lambda)=\left.D^{+} \psi_{d}(z, \lambda)\right|_{z=m(x)}+\lambda\left(x_{+}-x\right) \psi_{d}(m(x), \lambda) .
\end{array}
$$

These equations provide

$$
\begin{equation*}
h_{d}(\lambda)=-(\lambda h(\lambda))^{-1} \quad\left(\lambda \in K_{0}\right) . \tag{16}
\end{equation*}
$$

We conclude this point with several formulas concerning the dual strings m_{d}. From (10) and (13) it follows

$$
\begin{equation*}
h_{d}(\lambda)=m_{0}-\left(\lambda l_{1}\right)^{-1}+\int_{(0, \infty)} \frac{\sigma_{d}(d u)}{u-\lambda} \quad\left(\lambda \in K_{0}\right) . \tag{17}
\end{equation*}
$$

Thus we have by (14)

$$
\begin{align*}
& l_{1}^{-1}-h^{-1}(\lambda)=m_{0}+\int_{(0, \infty)}\left(\frac{1}{u}-\frac{1}{u-\lambda}\right) u \sigma_{d}(d u)= \\
= & m_{0}+\int_{(0, \infty)}\left(1-e^{\lambda u}\right) \vartheta_{d}(u) d u \quad\left(\lambda \in K_{0}\right) \tag{18}
\end{align*}
$$

with

$$
\vartheta_{d}(u):=\int_{(0, \infty)} v e^{-u v} \sigma_{d}(d v) . \quad(u>0) .
$$

Note that

$$
\begin{align*}
\int_{\varepsilon}^{\infty} \vartheta_{d}(u) d u= & \int_{(0, \infty)} e^{-\varepsilon v} \sigma_{d}(d v) \underset{\varepsilon \downarrow 0}{\longrightarrow} \sigma_{d}((0, \infty))=r_{0}^{-1}-l_{1}^{-1} \tag{19}\\
& \left(r_{0}^{-1}:=\infty \text { if } r_{0}=0\right) .
\end{align*}
$$

Furthermore, (14)-(16) imply for $G:=[a, \infty)$

$$
\begin{equation*}
\frac{D^{-} \chi_{+}(a, \lambda)}{\chi_{+}(a, \lambda)-a D^{-} \chi_{+}(a, \lambda)}=\lambda h_{d}^{G}(\lambda) \quad\left(\lambda \in K_{0}, a>0\right) \tag{20}
\end{equation*}
$$

and using (18) we get for $a>0$

$$
\begin{equation*}
\frac{\chi_{+}(a, \lambda)}{\chi_{+}(a, \lambda)-a D^{-} \chi_{+}(a, \lambda)}=1+a \lambda h_{d}^{G}(\lambda)=a \int_{(0, \infty)} \frac{u}{u-\lambda} \sigma_{d}^{G}(d u) \quad\left(\lambda \in K_{0}\right) \tag{21}
\end{equation*}
$$

(σ_{d}^{G} denotes the spectral measure of the string $\left(m^{G}\right)_{d}$ which is dual to $\left.m^{G}\right)$.

2.3. Examples.

1. If $m(x)=x^{\gamma} \cdot \mathbf{1}_{[0, \infty)}(x)(\gamma>0$ fixed, $x \in R)$, then ' X is a diffusion on $[0, \infty)$ instantaneously reflected at zero. We have

$$
h(\lambda)=\frac{\Gamma\left(\frac{1}{r+1}\right)}{\Gamma\left(\frac{r}{r+1}\right)} \cdot(r+1)^{(1-\gamma) /(1+\gamma)} \cdot(-\lambda r)^{-1 /(\gamma+1)}
$$

and

$$
\sigma(d u)=\left[\Gamma\left(\frac{r}{r+1}\right)\right]^{-2}(r+1)^{(1-\gamma) /(1+\gamma)}(u r)^{-1 /(1+\gamma)} d u \quad(u \geqslant 0)
$$

The dual quantities m_{d}, h_{d}, σ_{d} are obtained by substituting γ^{-1} for r.
2. Put $m(d x):=\left(\mathbf{1}_{[0, v]}(x)+c^{-2} \mathbf{1}_{(v, \infty)}(x)\right) d x(c, v>0$ fixed, $x \in R)$

Then it holds

$$
h(\lambda)=(-\lambda)^{-1 / 2} \cdot \frac{c+\tanh v \sqrt{-\lambda}}{1+c \tanh v \sqrt{-\lambda}} \quad\left(\lambda \in K_{0}\right)
$$

and

$$
\sigma(d u)=\frac{2 c \cdot d u}{\pi u^{1 / 2}\left(1+c^{2}+\left(1-c^{2}\right) \cos 2 v \sqrt{u}\right)} \quad(u>0)
$$

Replacing c by c^{-1} we obtain m_{d}, h_{d}, σ_{d}.
Define $\quad p(x):=x \mathbf{1}_{[0, v]}(x)+(v+c(x-v)) \mathbf{1}_{[v, \infty)}(x) \quad(x \geqq 0)$,
then $\left(p^{-1}\left(X_{t}\right)\right)_{t \geq 0}$ behaves like a skew Brownian motion process reflected at zero with diffusion coefficient 2 and "skew point" v.
3. Assume m is a string consisting of a weightless thread carrying beads with mass $m_{i}>0$ at $p_{i}\left(i=1, \cdots, N ; 0<p_{1}<\cdots<p_{N}\right)$. Put $\Delta_{0}:=p_{1}, \quad \Delta_{i}:=p_{i+1}-p_{i}$ ($i=1, \cdots, N-1$) and $l:=\infty$. It holds

$$
h_{m}(\lambda)=\Lambda_{0}+\sum_{k=1}^{N} \frac{\sigma_{k}}{u_{k}-\lambda} \quad\left(\lambda \in K_{0}\right)
$$

where $u_{k}(k=1, \cdots, N)$ are the eigenvalues of the matrix $-A$ which is given by $A=\left(a_{i j}\right), i, j=1, \cdots, N, a_{11}=-\lambda_{1}, a_{i i}=-\left(\lambda_{i}+\mu_{i}\right)(i=2, \cdots, N-1), a_{N N}=-\mu_{N}$, $a_{i i-1}=\mu_{i}(i=2,, \cdots N), a_{i i+1}=\lambda_{i}(i=1, \cdots, N-1), a_{i j}=0$ otherwise, $\lambda_{i}:=\left(m_{i} \cdot \Delta_{i}\right)^{-1}$ $(i=1, \cdots, N-1) \mu_{i}=\left(m_{i} \Delta_{i-1}\right)^{-1}(i=1, \cdots, N)$. Furthermore

$$
\sigma_{k}:=\left(\sum_{i=0}^{N-1} Q_{i}^{2}\left(u_{k}\right) m_{i+1}\right)^{-1},
$$

and $\left(Q_{0}\left(u_{k}\right), \cdots, Q_{N-1}\left(u_{k}\right)\right)^{T}$ is the eigenvector of -A belonging to u_{k} normalized by $Q_{0}\left(u_{k}\right) \equiv 1,(k=1, \cdots, N)$.
The quasidiffusion X with speed measure m is the birth- and death-process on p_{1}, \cdots, p_{N} with A as its matrix of intensities. The dual string m_{d} has the masses $m_{d, i}=\Delta_{i}(i=0, \cdots, N-1)$ at the points

$$
p_{d, 0}=0, \quad p_{d, k}=\sum_{i=1}^{k} m_{i} \quad(k=1, \cdots, N-1)
$$

and it holds $\left(l_{1}\right)_{d}=\sum_{i=1}^{N} m_{i}$. We have

$$
\begin{align*}
& h_{d}(\lambda)=\sum_{k=1}^{N} \frac{\sigma_{d, k}}{u_{d, k}-\lambda} \text { where } u_{d, k} \text { are the eigenvalues of }-A_{d} \text { with } \\
& A_{d}=\left(\left(a_{d}\right)_{i j}\right) \quad(i, j=1, \cdots, N), \quad\left(a_{d}\right)_{i j}=a_{j i}(i \neq j), \\
& a_{11}=-\mu_{1}, \quad a_{i i}=-\left(\lambda_{i-1}+\mu_{i}\right) \quad(i=2, \cdots, N), \\
& \sigma_{d, k}:=\left(\sum_{i=0}^{N-1}\left(Q_{d, 1}^{2}\left(u_{d, k}\right) \Delta_{i}\right)^{-1}\right. \tag{22}
\end{align*}
$$

and $\left(Q_{d, 0}\left(u_{d, k}\right), \cdots, Q_{d, N-1}\left(u_{d, k}\right)\right)^{T}$ is the eigenvector of $-A_{d}$ corresponding to $u_{d, k}$, $Q_{d, 0}\left(u_{d, k}\right) \equiv 1(k=1, \cdots, N)$.
The quasidiffusion with speed measure m_{d} is the birth- and death-process on
$\left\{0, m_{1}, m_{1}+m_{2}, \cdots, \sum_{1}^{N-1} m_{k}\right\} \quad$ with A_{d} as its matrix of intensities.

3. A sojourn times over positive levels.

Assume X is a quasidiffusion with speed measure m and suppose $r_{0} \leqq 0$ and $0 \in E_{m}$. Moreover, choose $x, a, a^{\prime} \in E_{m}$ with $0<x \leqq a^{\prime} \leqq a \leqq r_{1}$ and put $G:=\left[a^{\prime}, l_{1}\right)$. Then, from (6), (7) and the strong Markov property of X it follows for $\lambda<0$:

$$
\begin{align*}
& E_{x} \exp \left(\lambda \tau_{0}^{G}\right) \mathbf{1}_{\left\{\tau_{a}<\tau_{0}<\zeta\right\}}= \\
= & \left.\left(E_{x} \exp \left(\lambda \tau_{a}^{G}\right) \mathbf{1}_{\left\{\tau_{a}<\tau_{0}\right\}}\right)\left(E_{a} \exp \left(\lambda \tau_{d}^{G}\right)\right) \mathbf{1}_{\left\{\tau_{0}<\tau_{l_{1}}\right\}}\right) \\
= & \frac{\chi_{-}^{G, 0}(x, \lambda)}{\chi_{-}^{G, 0}(a, \lambda)} \cdot \frac{\chi_{+}^{G}(a, \lambda)}{\chi_{+}^{G}(0, \lambda)}=: H\left(a, x, a^{\prime}, \lambda\right) \tag{23}
\end{align*}
$$

(Here τ^{G} is understood as the last integral in (4).)
Using $D_{m} D_{x} f+\lambda f=0$ on G for $f=\varphi^{G}$ and $f=\psi^{G}$ it follows that φ^{G}, ψ^{G} are linear combinations of φ and ψ on G. Now, from $\varphi^{G}(y, \lambda)=1, \psi^{G}(y, \lambda)=y$ on $\left[0, a^{\prime}\right]$ we obtain

$$
\begin{aligned}
& \chi_{+}^{G}(a, \lambda)=-\frac{\chi_{+}(a, \lambda)}{D^{-} \chi_{+}(a, \lambda)}, \\
& \chi_{+}^{G}(0, \lambda)=a^{\prime}-\frac{\chi_{+}\left(a^{\prime}, \lambda\right)}{D^{-} \chi_{+}\left(a^{\prime}, \lambda\right)},
\end{aligned}
$$

$$
\begin{gathered}
\chi_{-}^{G, 0}\left(a^{\prime}, \lambda\right)=D^{-} \chi_{-}^{G, 0}\left(a^{\prime}, \lambda\right)\left[-\varphi(a, \lambda) \psi\left(a^{\prime}, \lambda\right)+\varphi\left(a^{\prime}, \lambda\right) \psi(a, \lambda)-\right. \\
\left.-a^{\prime}\left(D^{-} \varphi\left(a^{\prime}, \lambda\right) \psi(a, \lambda)-D^{-} \psi\left(a^{\prime}, \lambda\right) \varphi(a, \lambda)\right)\right] \\
\chi_{-}^{G, 0}(x, \lambda)=x \cdot D^{-} \chi_{-}^{G, 0}\left(a^{\prime}, \lambda\right) \quad\left(\lambda \in K_{0}\right) .
\end{gathered}
$$

Observe that

$$
h_{0}^{a,+}(\lambda):=\frac{\psi(a, \lambda)}{\varphi(a, \lambda)} \quad\left(\lambda \in K_{0}\right)
$$

is the characteristic function of the string

$$
\mathbf{1}_{[0, a]}(x) m(d x)+\infty \cdot \delta_{a}(d x)
$$

(δ_{a} denotes the measure with unit mass concentrated at a) and that it holds

$$
\begin{aligned}
& \chi_{+}^{a}\left(a^{\prime}, \lambda\right)=\varphi\left(a^{\prime}, \lambda\right) \int_{a^{\prime}}^{a} \varphi^{-2}(s, \lambda) d s= \\
= & \varphi\left(a^{\prime}, \lambda\right)\left(\frac{\psi(a, \lambda)}{\varphi(a, \lambda)}-\frac{\psi\left(a^{\prime}, \lambda\right)}{\varphi\left(a^{\prime}, \lambda\right)}\right)=h_{0}^{a,+}(\lambda) \varphi\left(a^{\prime}, \lambda\right)-\psi\left(a^{\prime}, \lambda\right) .
\end{aligned}
$$

In the following we write h and h^{a} instead of h_{0}^{+}and $h_{0}^{a,+}$, respectively. Then we obtain for $\lambda<0$

$$
H\left(x, a, a^{\prime} \lambda\right)=\frac{x\left(h(\lambda)-h^{a}(\lambda)\right)}{\left.\left[\chi_{+}\left(a^{\prime}, \lambda\right)-a^{\prime} D^{-} \chi_{+}\left(a^{\prime}, \lambda\right)\right)\right]\left[\chi_{+}^{a}\left(a^{\prime}, \lambda\right)-a^{\prime} D^{-} \chi_{+}^{a}\left(a^{\prime}, \lambda\right)\right]}
$$

If $2 \uparrow 0$ it follows from (23)

$$
P_{x}\left(\tau_{a}<\tau_{0}<\zeta\right)=\frac{x}{a} \cdot \frac{l_{1}-a}{l_{1}} \text { with } \frac{l_{1}-a}{l_{1}}=1 \text { if } l_{1}=\infty .
$$

Thus we have proved
Proposition 3.1. If $0<x \leqq a^{\prime} \leqq a \leqq r_{1}\left(x, a, a^{\prime} \in E_{m}\right)$, then for $\lambda<0$

$$
\begin{align*}
& \phi\left(a, a^{\prime}, \lambda\right):=E_{x}\left[\exp \left(\lambda \int_{0}^{\tau_{0}} \mathbf{1}_{\left[a^{\prime}, l_{1}\right.}\left(X_{s}\right) d s\right) \mid \tau_{a}<\tau_{0}<\zeta\right]= \\
= & \mu^{-1} \cdot \frac{h(\lambda)-h^{a}(\lambda)}{\left(\chi_{+}\left(a^{\prime}, \lambda\right)-a^{\prime} D^{-} \chi_{+}\left(a^{\prime}, \lambda\right)\right)\left(\chi_{+}^{a}\left(a^{\prime}, \lambda\right)-a^{\prime} D^{-} \chi_{+}^{a}\left(a^{\prime}, \lambda\right)\right)} \\
= & \mu^{-1} \cdot \frac{h(\lambda)-h^{a}(\lambda)}{h^{G}(\lambda) h^{G, a}(\lambda)} \cdot D^{-} \chi_{+}\left(a^{\prime}, \lambda\right) D^{-} \chi_{+}^{a}\left(a^{\prime}, \lambda\right) \tag{24}
\end{align*}
$$

with the notation $\mu:=a^{-1}-l_{1}^{-1}$.
(Recall that h^{a}, h^{G}, and $h^{G, a}$ are the characteristic functions of

$$
\mathbf{1}_{[0, \infty)} d m, \mathbf{1}_{[0, a]} d m+\infty \delta_{a} ; \mathbf{1}_{[0, \infty)} d m^{G} \quad \text { and } \quad \mathbf{1}_{[0, a]} d m^{G}+\infty \delta_{a}
$$

respectively.)

Let $a^{\prime} \uparrow a\left(a^{\prime} \in E_{m}\right)$. Then, by using

$$
\begin{aligned}
& h(\lambda)-h^{a}(\lambda)=\frac{\chi_{+}(a, \lambda)}{\varphi(a, \lambda)}, \quad \chi_{+}^{a}\left(a^{\prime}, \lambda\right) \rightarrow 0 . \\
& D^{-} \chi_{+}^{a}\left(a^{\prime}, \lambda\right) \rightarrow-\varphi^{-1}(a, \lambda)\left(a^{\prime} \uparrow a\right) \text { and }(21)
\end{aligned}
$$

we obtain

$$
\begin{align*}
& \phi(a, \lambda):=\lim _{a^{\prime} \uparrow a} \phi\left(a, a^{\prime}, \lambda\right)=(a \mu)^{-1} \cdot \frac{\chi_{+}(a, \lambda)}{\chi_{+}(a, \lambda)-a D^{-} \chi_{+}(a, \lambda)}= \\
= & \mu^{-1} \cdot \int_{(0, \infty)} \frac{u}{u-\lambda} \sigma_{d}^{G}(d u)=\mu^{-1} \cdot \int_{0}^{\infty} e^{u \lambda \vartheta_{d}^{G}(u) d u} \tag{25}
\end{align*}
$$

with

$$
G=[a, \infty), \quad \vartheta_{d}^{G}(u):=\int_{(0, \infty)} v e^{-u v} \sigma_{d}^{G}(d v)
$$

Because of

$$
\sigma_{d}^{G}((0, \infty))=\int_{0}^{\infty} \vartheta_{d}^{G}(u) d u=a^{-1}-l_{1}^{-1}=\mu<\infty \quad \text { (see (19)) }
$$

we can introduce a probability σ on $(0, \infty)$ by

$$
\sigma(A):=\mu^{-1} \sigma_{d}^{G}(A) . \quad(A \in \mathfrak{B} \cap(0, \infty))
$$

Obviously, $\phi(a, \cdot)$ is the Laplace transform of a mixed exponential distribution with mixing measure σ. Thus we have shown the following

Proposition 3.2. If $0<x \leqq a \leqq r_{1}\left(x, a \in E_{m}\right)$, we have

$$
\begin{aligned}
& P_{x}\left(\int_{0}^{\tau_{0}} \mathbf{1}_{\left[a, l_{1}\right)}\left(X_{s}\right) d s \in d t \mid \tau_{a}<\tau_{0}<\zeta\right)= \\
= & d t \int_{(0, \infty)} u e^{-u t} \sigma(d u)=\mu^{-1} \vartheta_{d}^{G}(t) d t .
\end{aligned}
$$

Let $0<a<l_{1} \leqq \infty$ be fixed, $G=\left[a, l_{1}\right)$ and denote by \mathfrak{M}_{a} the set of all strings m from \mathfrak{M} with $a \in E_{m^{\sigma}}$. Then the mapping $m^{G} \rightarrow \sigma$ defined by Proposition 3.2. is a one-onto-one correspondence between the set of all strings of the form

$$
d m^{G}(x)=\mathbf{1}_{G}(x) d m(x)+\infty \delta_{l_{1}}(x) d x \quad\left(m \in \mathfrak{M}_{a}\right)
$$

and the set of probabilities σ on $(0, \infty)$.
This is a consequence of M.G. Krein's inverse spectral theorem. (Indeed, given a probability σ on $(0, \infty)$ define $\sigma_{1}:=\mu \sigma$ with $\mu=a^{-1}-l_{1}^{-1}$, supplement it by mass l_{1}^{-1} at zero and choose, by Krein's theorem (see e.g. [2, 6, 10]) the uniquely determined string n having σ_{1} as its spectral measure. (12) and (13) imply $n(\{0\})=a, n([0, \infty))=$ l_{1}. Take the dual string n_{d}, which turns out to be of the form m^{G} with the desired properties.)

Examples:

1. Consider the standard Wiener process W, it is a quasidiffusion on R with speed measure $m(x)=2 x(x \in R)$, and choose $a>0$. Then, for the characteristic function $h_{0, d}^{G,+}$ of the dual string of $\mathbf{1}_{G}(x) d m(x)(G=[a, \infty))$ we get

$$
h_{0, d}^{G,+}(\lambda)=-\frac{2 a \lambda+\sqrt{-2 \lambda}}{\lambda+2 a^{2} \lambda^{2}} \quad\left(\lambda \in K_{0}\right)
$$

and for the normalized measure σ we obtain

$$
\sigma(d u)=\frac{2 a}{\pi \sqrt{2 u}}-\frac{1}{1+2 u a^{2}} d u \quad(u>0)
$$

Then it follows

$$
P_{x}\left(\int_{0}^{\tau_{0}} \mathbf{1}_{[a, \infty)}\left(W_{s}\right) d s>t \mid \tau_{a}<\tau_{0}\right)=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{e^{-\frac{v^{2}}{2} t}}{1+v^{2} a^{2}} d v \quad(x \in(0, a])
$$

2. Let X be a birth- and death-process with finite state space $\{0,1, \cdots, N\}$ and intensities

$$
\lambda_{i}>0 \quad(i=0, \cdots, N-1) \quad \mu_{i}>0 \quad(i=1, \cdots, N)
$$

Then, starting at 1 the hitting time $\tau_{0}=\inf \left\{t>0 / X_{t}=0\right\}$ has a mixed exponential distribution

$$
P_{1}\left(\tau_{0} \in d t / X_{0}=1\right)=\sum_{k=1}^{N} W_{k} \exp \left(-W_{k} t\right) \sigma_{k} d t
$$

where $W_{k}(k=1, \cdots, N)$ are the eigenvalues of the matrix $-A_{d}$ (see above) and

$$
\sigma_{k}:=\sigma_{d, k} \cdot\left(\sum_{1}^{N} \sigma_{d, j}\right)^{-1} \quad(k=1, \cdots, N)
$$

with $\sigma_{d, k}$ given by (22).

4. Excursions, local time and spectral measure.

4.1. Excursions of the Wiener process.

Assume $W=\left(W_{t}, \mathscr{F}_{t}^{W}, P_{x}\right)$ is a standard Wiener process. In this point we consider W under the measure P_{0} only, i.e. W starts at zero. The open set $[0, \infty) \backslash\left\{t \geqq 0 / W_{t}\right.$ $=0\}$ is the union of its components $\left(a_{n}^{W}, b_{n}^{W}\right)(n \geqq 1)$. For every $n \geqq 1$ the process U_{n}^{W} given by

$$
U_{n}^{W}(t)=W_{t+a_{n}} \quad\left(0 \leqq t \leqq b_{n}^{W}-a_{n}^{W}\right), \quad=0 \quad\left(t \geqq b_{n}^{W}-a_{n}^{W}\right)
$$

is called an excursion of W. We introduce the length T_{n}^{W} and the peak V_{n}^{W} of the excursion U_{n}^{W} by defining

$$
T_{n}^{W}:=b_{n}^{W}-a_{n}^{W}, V_{n}^{W}:=\max _{t \geqslant 0} U_{n}^{W}(t) \operatorname{sgn} U_{n}^{W}\left(\frac{b_{n}^{W}+a_{n}^{W}}{2}\right) .
$$

If n is not specified we write U^{W}, V^{W}, T^{W} only. K. Ito proved ([4], see also [14]) that the points $\left(l^{W}\left(a_{n}^{W}, 0\right), U_{n}^{W}\right)$ are the atoms of a Poisson measure Q on $((0, \infty) \times U$, $(\mathfrak{B}(0, \infty)) \otimes \mathcal{U})$ where (U, \mathcal{U}) denotes the space of all excursions. Moreover, he showed that the σ-finite measure n given by $n(\Lambda):=E Q(\Lambda)$ satisfies

$$
n(d t, d f)=d t \nu^{W}(d f)
$$

where ν^{W} is a measure on (U, \mathcal{Q}), called the Ito excursion law of W at zero. It holds

$$
\begin{equation*}
\nu^{W}\left(V^{W} \in d x\right)=x^{-2} d x \quad(x \in R \backslash\{0\}) . \tag{26}
\end{equation*}
$$

Before using these properties we shall introduce some notations. If E is a Borel subset of $R \backslash(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$ define $N_{t}^{W}(E)$ to be the number of all excursions U_{n}^{W} with $V_{n}^{W} \in E$ and $l^{W}\left(a_{n}, 0\right) \leqslant t(t \geqslant 0)$. Thus $N_{t}(E)$ counts the excursions of W from zero with peak in E which are finished before

$$
L^{W}(t, 0):=\inf \left\{s>0| |^{W}(s, 0)>t\right\} \quad(t \geqslant 0)
$$

or, equivalently, up to the moment, when the local time $l^{W}(\cdot, 0)$ equals t. From the mentioned Ito's results it easily follows

Lemma 4.1. Let E_{1}, E_{2} be disjoint Borel subsets of

$$
\{x \in R||x|>\varepsilon\} \quad \text { for some } \quad \varepsilon>0 .
$$

Then $N^{W}\left(E_{k}\right)$ are mutually independent Poisson processes with intensities

$$
\nu^{W}\left(V^{W} \in E_{k}\right) \quad(k=1,2) .
$$

Denote by $U_{k_{j}}^{V}(j \geqslant 1)$ the j-th excursion of W from 0 with peak in E_{k} and let $s(d x)$ be a σ-finite measure on R. Then for every $A \in \mathfrak{B}$ the variables

$$
y_{k_{1}}(A):=\int_{A}\left(l^{W}\left(b_{k_{j}}^{W}, x\right)-l^{W}\left(a_{k_{j}}^{W}, x\right)\right) s(d x) \quad(k=1,2 ; j \geqq 1)
$$

are mutually independent, identically distributed and independent of $N^{W}\left(E_{k}\right)(k=1,2)$.
Assume a, l_{0}, l_{1} to be real numbers with $l_{0}<0<a<l_{1}$ and put $E_{1}=\left[a, l_{1}\right), E_{2}=R \backslash\left(l_{0}, l_{1}\right)$. Then the preceding lemma implies

Corollary 4.2. The number $N_{t}^{W}\left(E_{1}\right)$ of excursions of W with peaks in $\left[a, l_{1}\right)$ which occur before $L^{W}(t, 0)$ form a Poisson process with intensity $\mu=a^{-1}-l_{1}^{-1}$ which is independent of

$$
l^{W}\left(\zeta^{W}, 0\right)=\inf \left\{t>0 \mid N_{t}^{W}\left(E_{2}\right) \geqq 1\right\}
$$

and this variable is exponentially distributed with the parameter $\kappa:=l_{1}^{-1}-l_{0}^{-1}$.

4.2. Excursions of quasidiffusions.

Introducing the excursions of a quasidiffusion X from 0 we have to take into consideration the role of the gaps of E_{m} and the killing time ζ. Let X be a quasidiffusion with speed measure m as constructed in 2.1. above, we also assume here that X starts at zero. Put

$$
a_{n}:=S_{a_{n}^{W}}, \quad b_{n}:=S_{b_{n}^{W}} \quad(n \in N)
$$

It may happen that $a_{n}=b_{n}$ (this means the excursion U_{n}^{W} does not meet $E_{m} \backslash\{0\}$) or that $b_{n}=\infty$ (i.e. W hits l_{0} or l_{1} before b_{n}^{W}). Therefore we define

$$
\begin{aligned}
& \mathfrak{N}:=\left\{n \geqq 1 \mid a_{n}<b_{n}<\zeta\right\} \quad \text { and put } \\
& U_{n}(t):=X_{t+a_{n}} \quad\left(0 \leqq t<b_{n}-a_{n}\right), \quad=0\left(t \geqq b_{n}-a_{n}\right) \quad(n \in \mathcal{N})
\end{aligned}
$$

The processes $U_{n}(n \in \mathscr{I})$ are called the excursions of X from 0 . This notation is justified by the following properties:
a) $U_{n}(t) \neq 0$ for $t \in\left(a_{n}, b_{n}\right) \quad(n \in \mathscr{T})$
b) If $\tau:=\sup \left\{t<\zeta \mid X_{t}=0\right\}$ and $t \in[0, \tau)$ with $X_{t} \neq 0$, then $t \in\left(a_{n}, b_{n}\right)$ for some $n \in \mathscr{N}$.
If $V_{n}^{W}>0$ then $V_{n}=\left(V_{n}^{W}\right)_{-}=\sup \left\{y<V_{n}^{W} \mid y \in E_{m}\right\}$. Now choose $a>0, a \in E_{m}$ and define $N_{t}(a)$ to be the number of all excursions $U_{n}(n \in \mathcal{I})$ such that $V_{n} \in\left(a, l_{1}\right)$ and $l\left(a_{n}, 0\right) \leq t$. Then (recall the definition of $\left.\mathcal{I}\right) N_{t}(a)$ counts the number of excursions of X from 0 over the level a which occur before $L(t, 0) \wedge \zeta$ where $L(\cdot, 0)$ denotes the inverse local time:

$$
L(t, 0):=\inf \{s>0 \mid l(s, 0)>t\} \quad(t \geqslant 0)
$$

By virtue of $l(\zeta, 0)=l^{W}\left(\zeta^{W}, 0\right)$ we have

$$
N_{t}(a)=N_{t \wedge l^{W}\left(\zeta^{W}, 0\right)}^{W}\left(\left[a, l_{1}\right)\right) \quad(t \geqslant 0)
$$

Thus from Corollary 4.2. and the second half of Lemma 4.1. with $s(d x)=m(d x)$ we conclude

Proposition 4.3. For every $a \in E_{m}, a>0$, the process $N(a)$ forms a Poisson process with intensity $\mu=a^{-1}-l_{1}^{-1}$ which is stopped at the random time $l(\zeta, 0)$. The variable $l(\zeta, 0)$ is independent of $N(a)$ and exponentially distributed with the parameter $\kappa=l_{1}^{-1}-l_{0}^{-1}$.

For every $A \in \mathfrak{B}$ the variables

$$
\begin{aligned}
Y_{n}(A): & =\int_{A}\left(l^{W}\left(b_{n}^{W}, x\right)-l^{W}\left(a_{n}^{W}, x\right)\right) m(d x)= \\
& =\int_{A}\left(l\left(b_{n}, x\right)-l\left(a_{n}, x\right)\right) m(d x)=\int_{a_{n}}^{b_{n}} \mathbf{1}_{A}\left(X_{s}\right) d s \quad(n \in \mathcal{T})
\end{aligned}
$$

are mutually independent, independent of $N(a)$ and identically distributed.
Choose an $a^{\prime} \in(0, a) \cap E_{m} \quad$ and put

$$
Y_{n}\left(a^{\prime}\right):=Y_{n}\left(\left[a^{\prime}, l_{1}\right)\right) \quad(n \in \mathscr{R}) .
$$

The strong Markov property of X implies that the Laplace transform

$$
E_{0}\left(\exp \left(\lambda Y_{n}\left(a^{\prime}\right)\right) \mid V_{n} \geqslant a\right)
$$

of $Y_{n}\left(a^{\prime}\right)$ under $\left\{V_{n} \geqslant a\right\}$ equals
$E_{a^{\prime}}\left(\exp \left(\lambda \int_{0}^{\tau_{0}} \mathbf{1}_{\left[a^{\prime}, l_{1}\right)}\left(X_{s}\right) d s\right) \mid \tau_{a}<\tau_{0}<\zeta\right)$, i.e. it is given by $\Phi\left(a, a^{\prime}, \lambda\right)$ from formula (24) $(n \in \mathfrak{N}, \lambda<0)$. Put

$$
P_{t}\left(a, a^{\prime}\right):=\sum Y_{n}\left(a^{\prime}\right) \quad(t \geqslant 0)
$$

where the sum is going over all $n \in \mathcal{N}$ such that $l\left(a_{n}, 0\right) \leqslant t$ and $V_{n} \in\left[a, l_{1}\right)$, and define

$$
P\left(a, a^{\prime}\right):=\left(P_{t}\left(a, a^{\prime}\right)\right)_{t \geqslant 0} .
$$

The variable $P_{t}\left(a, a^{\prime}\right)$ is equal to the time which X spends over a^{\prime} during excursions of X from zero to a occuring before $L(t, 0) \wedge \zeta$, i.e. before the local time $l(\cdot, 0)$ equals $t \wedge l(\zeta, 0)$.
From the Proposition 4.3. and the remarks after this proposition it follows now
Theorem 4.4. Assume $0<a^{\prime}<a$ with $a, a^{\prime} \in E_{m}$. Then the process $P\left(a, a^{\prime}\right)$ is an increasing compounded Poisson process with intensity $\mu=a^{-1}-l_{1}^{-1}$ stopped at the random time $l(\zeta, 0)$ which is independent of $P\left(a, a^{\prime}\right)$ and exponentially distributed with the parameter $\kappa=l_{1}^{-1}-l_{0}^{-1}$.
In particular

$$
\begin{align*}
& \Phi_{t}\left(a, a^{\prime}, \lambda\right):=E_{0}\left(\exp \left(\lambda P_{t}\left(a, a^{\prime}\right)\right) \mid l(\zeta, 0)>t\right)= \\
= & \exp \left(-\mu t\left(1-\Phi\left(a, a^{\prime}, \lambda\right)\right)\right) \quad(t \geqslant 0, \lambda<0) \tag{27}
\end{align*}
$$

with $\Phi\left(a, a^{\prime}, \lambda\right)$ as given in (24).
Proposition 4.5. The process $P(a, 0):=\left(P_{t}(a, 0)\right)_{t \geq 0}$ is an increasing compounded Poisson process with intensity μ stopped at $l(\zeta, 0)$ which is independent of $P(a, 0)$ and exponentially distributed with the parameter κ. It holds

$$
\begin{align*}
& E_{p}\left(\exp \left(\lambda P_{t}(a, 0)\right) \mid l(\zeta, 0)>t\right)=\exp \left(-t\left[\left(\frac{1}{a}-\frac{1}{h^{a}(\lambda)}\right)-\left(\frac{1}{l_{1}}-\frac{1}{h(\lambda)}\right)\right]\right) \\
= & \exp \left(-t\left(\int_{0}^{\infty}\left(1-e^{\lambda u}\right)\left(\vartheta_{d}(u)-\vartheta_{d}^{(a)}(u)\right) d u\right) \quad(t \geqq 0, \lambda<0),\right. \tag{28}
\end{align*}
$$

where

$$
\vartheta_{d}^{(a)}(u)=\int_{(0, \infty)} v e^{-v u} \sigma_{d}^{(a)}(d v), \quad(u>0)
$$

and $\sigma_{d}^{(a)}$ denotes the spectral measure of the string dual to

$$
\mathbf{1}_{[0, a)}(x) m(d x)+\delta_{a}(d x) \cdot \infty .
$$

Note that the integral

$$
\int_{0}^{\infty}\left(\vartheta_{d}(u)-\vartheta_{d}^{(a)}(u)\right) d u=\lim _{\lambda \downarrow-\infty} \int_{0}^{\infty}\left(1-e^{\lambda u}\right)\left(\vartheta_{d}(u)-\vartheta_{d}^{(a)}(u)\right) d u
$$

equals μ (this also follows from

$$
\frac{1}{h^{a}(\lambda)}-\frac{1}{h(\lambda)}=\frac{\varphi(a, \lambda)}{\psi(a, \lambda)}-\lim _{x \uparrow_{1}} \frac{\varphi(x, \lambda)}{\psi(x, \lambda)}=\int_{a}^{l_{1}} \psi^{-2}(s \lambda) d s \rightarrow 0
$$

for $\lambda \downarrow-\infty$) but the integrals over ϑ_{d} and over $\vartheta_{d}^{(a)}$ must not be finite.
(We supposed $a^{\prime} \downarrow 0, a^{\prime} \in E_{m}$, which demands $0_{+}=0$. However the results are valid for $0_{+}>0$, too. This becomes obvious by using $\chi_{+}\left(0_{+}, \lambda\right)-0_{+} \cdot D^{-} \chi_{+}\left(0_{+}, \lambda\right)=h(\lambda)$.) In particular, the preceding Proposition implies that the distribution of the length

$$
T_{n}=y_{n}(0)=\int_{a_{n}}^{b_{n}} \mathbf{1}_{\left[0, l_{1}\right)}\left(x_{s}\right) d s
$$

under $\left\{V_{n} \geqq a\right\}$ is given by

$$
\begin{equation*}
P_{0}\left(T_{n} \in d u \mid V_{n} \geqslant a\right)=\mu^{-1}\left(\vartheta_{d}(u)-\vartheta_{d}^{(a)}(u)\right) d u \quad(u \geqslant 0) \tag{29}
\end{equation*}
$$

With these remarks Proposition 4.5. provides a connection between Ito's excursion law of X and the spectral measures of two dual strings:

Corollary 4.6. Assume 0 is a recurrent state, i.e. $l_{1}=-I_{0}=\infty$ and therefore $\zeta=\infty$. Denote by ν the Ito excursion law of X at zero, by T the length and by V the peak of the excursion U of X from 0 . Then it holds

$$
\begin{align*}
& \nu(V \geqslant a)=\nu^{W}\left(V^{W} \geqslant a\right)=a^{-1} \tag{30}\\
& \nu(T \in d u, V \geqslant a)=\nu(V \geqslant a) P_{0}(T \in d u \mid V \geqslant a) \\
& =\left(\vartheta_{d}(u)-\vartheta_{d}^{(a)}(u)\right) d u \tag{31}\\
& \nu(T \in d u)=\vartheta_{d}(u) d u \text { and } \\
& \int_{0}^{\infty}\left(1-e^{\lambda t}\right) \nu(T \in d t, V \geqslant a)=\frac{1}{h(\lambda)}-\left(\frac{1}{h^{a}(\lambda)}-\frac{1}{a}\right) .
\end{align*}
$$

In particular (30) implies now

$$
\int_{0}^{\infty} e^{\lambda t} \nu(T \in d t, V \geqslant a)=\frac{1}{h^{a}(\lambda)}-\frac{1}{h(\lambda)}=\int_{a}^{\infty} \psi^{-2}(x, \lambda) d x \quad\left(a \in E_{m}\right)
$$

This formula extends a result for the standard Wiener process $(m(x)=2 x, x \in R)$ for which $\psi(x, \lambda)=\frac{\sinh \sqrt{-2 \lambda x}}{\sqrt{-2 \lambda}}$ holds (see Williams [14], p. 99). In this case we get

$$
\nu(T \in d t, V \geqslant a)=\left(\left(2 \pi t^{3}\right)^{-1 / 2}-\frac{1}{a} \sum_{k=1}^{\infty} \frac{k^{2} \pi^{2}}{a^{2}} \exp \left(-\frac{k^{2} \pi^{2}}{2 a^{2}}\right)\right) d t \quad(t>0, a>0)
$$

Now let us consider the second special case: $a^{\prime} \uparrow a$ where $a>0, a \in E_{m}$ is fixed. From (25) and (27) it follows

$$
\begin{align*}
& \Phi_{l}(a, \lambda):=\lim _{u^{\prime} \mathfrak{t}^{a}} \Phi_{t}\left(a, a^{\prime}, \lambda\right)=\exp (-\mu t(1-\Phi(a, \lambda)))= \\
= & \exp \left(-\mu t\left(1-\int_{(0, \infty)} \frac{u}{u-\lambda} \sigma(d u)\right)\right)= \\
= & \exp \left(-t \int_{0}^{\infty}\left(1-e^{u \lambda}\right) \vartheta_{d}^{G}(u) d u\right) \quad(\lambda<0), \tag{32}
\end{align*}
$$

where $G=\left[a, l_{1}\right), \sigma=\mu^{-1} \sigma_{d}^{G}, \vartheta_{d}^{G}(u)=\int_{(0, \infty)} v e^{-u v} \sigma_{d}^{G}(d v)$ with $\int_{0}^{\infty} \vartheta_{d}^{G}(u) d u=\mu$ and σ_{d}^{G} is the spectral measure of the string dual to m^{G}. Then we have shown

Proposition 4.8. The process $P(a, a)=\left(P_{t}(a, a)\right)_{t \geq 0}$ is an increasing compounded Poisson process with intensity μ stopped at the random time $l(\zeta, 0)$ which is independent of $P(a, a)$ and exponentially distributed with the parameter κ. It holds

$$
E_{0}\left(\exp \left(\lambda P_{t}(a, a)\right) \mid l(\zeta, 0)>t\right)=\Phi_{t}(a, \lambda)
$$

where $\Phi_{t}(a, \lambda)$ is given by (32).
Note that

$$
P_{t}(a, a)=\int_{0}^{l(t, 0) / \zeta} \mathbf{1}_{\left[a, l_{1}\right)}\left(X_{s}\right) d s \quad(t \geqq 0)
$$

(These properties also hold, if a is not an accumulation point of E_{m} from the left.)
In both particular cases $a^{\prime} \downarrow 0$ and $a^{\prime} \uparrow a$ we have explicit representations of the Lévy-measure of the increasing compounded Poisson process $P=\left(P_{t}\right)_{t \geq 0}$ by spectral measures of some corresponding dual strings. Moreover, in these cases the distribution of P_{t} under $\{l(\zeta, 0)>t\}$ belongs to the so-called Bondesson-class of distributions (see [1]). (It should be remarked, that every distribution of the Bon-desson-class occur if m runs through all strings, this is also a consequence of M.G. Krein's theorem mentioned above.)
It remains an oepn problem to derive similar statements for the general case given in (27).

4.3. Local times and spectral measures.

We consider (32) again and let $a \downarrow 0$. Then, from (25) we have

$$
\begin{aligned}
& \Phi_{t}(0,0, \lambda):=E_{0}\left(\exp \left(\lambda \int_{0}^{L(t, 0)} \mathbf{1}_{(0, \infty)}\left(X_{s}\right) d s\right) \mid l(\zeta, 0)>t\right)= \\
= & \lim _{a \downarrow 0} \Phi_{t}(a, a, \lambda)=\lim _{a \downarrow 0} \exp \left[t\left(l_{1}^{-1}+\frac{D^{-} \chi_{+}(a, \lambda)}{\chi_{+}(a, \lambda)-a D^{-} \chi_{+}(a, \lambda)}\right)\right]= \\
= & \exp \left[t\left(l_{1}^{-1}+\frac{D^{+} \chi_{+}(0, \lambda)}{\chi_{+}(0, \lambda)}\right)\right]=\exp \left[t\left(\frac{1}{l_{1}}-\frac{1}{h(\lambda)}-\lambda m_{0}\right)\right] \quad(\lambda<0, t \geqq 0)
\end{aligned}
$$

(Note that $\left(\frac{1}{h(\lambda)}+\lambda m_{0}\right)^{-1}$ is the characteristic function of the string $\mathbf{1}_{(0, \infty)}(x) d m(x)$,
see (9).)
From (2) and $l(L(t, 0), 0)=t$ on $\{l(\zeta, 0)>t\}$ it follows

$$
E_{0}\left(\exp \left(\lambda \int_{0}^{L(t, 0)} \mathbf{1}_{(0)}\left(X_{s}\right) d s \mid l(\zeta, 0)>t\right)=\exp \left(\lambda t m_{0}\right) \quad(\lambda<0, t \geqq 0)\right.
$$

Define $A_{1}:=\left(l_{0}, 0\right), A_{2}:=\left[0, l_{1}\right], P_{t}\left(A_{i}\right):=\int_{0}^{L(t, 0) \wedge \xi} \mathbf{1}_{A_{i}}\left(X_{s}\right) d s(t \geqq 0, i=1,2)$. Then we have shown

Proposition 4.9. The two processes $P\left(A_{i}\right):=\left(P_{t}\left(A_{i}\right)\right)_{t \geq 0}(i=1,2)$ are independent increasing processes with independent stationary increments killed at the random time $l(\zeta, 0)$ which is independent of $P\left(A_{i}\right)(i=1,2)$ and exponentially distributed with the parameter κ. Furthermore it holds

$$
\begin{aligned}
& E_{0}\left(\exp \left(\lambda P_{t}\left(A_{i}\right)\right) \mid l(\zeta, 0)>t\right)= \\
= & \exp \left[-t\left(\frac{1}{l_{0}}+\frac{1}{h_{0}^{-}(\lambda)}\right)\right] \quad \text { for } \quad i=1, \\
= & \exp \left[-t\left(-\frac{1}{l_{1}}+\frac{1}{h_{0}^{+}(\lambda)}\right)\right] \quad \text { for } \quad i=2 \quad(\lambda<0) .
\end{aligned}
$$

Applying (18) we obtain

$$
\begin{aligned}
& \frac{1}{l_{0}}+\frac{1}{h_{0}^{-}(\lambda)}=\int_{(0, \infty)}\left(1-e^{\lambda u}\right) \vartheta_{0, d}^{-}(u) d u \\
& -\frac{1}{l_{1}}+\frac{1}{h_{0}^{+}(\lambda)}=\int_{(0, \infty)}\left(1-e^{\lambda u}\right) \vartheta_{p, d}^{+}(u) d u+\lambda m_{0}
\end{aligned}
$$

with

$$
\vartheta_{0, d}^{ \pm}(u)=\int_{(0, \infty)} v e^{-u v} \sigma_{0, d}^{ \pm}(d v) \quad(u>0)
$$

where $\sigma_{0, d}^{+}$and $\sigma_{0, d}^{-}$denote the spectral measure of the string dual to $\mathbf{1}_{(0, \infty)} m_{0}^{+}$and m_{0}^{-}respectively. In particular we have

$$
\begin{align*}
& E_{0}(\exp (\lambda L(t, 0)) \mid l(\zeta, 0)>t)= \\
= & \exp \left[-t\left(\lambda m_{0}+\int_{(0, \infty)}\left(1-e^{\lambda n}\right) \vartheta_{0, d}(u) d u\right] \quad(\lambda<0)\right. \tag{33}
\end{align*}
$$

with $\vartheta_{0, d}:=\zeta_{0, d}^{+}+\vartheta_{0, d}^{-}$.
Proposition 4.9. was proved for $r_{0}=0$ and $l_{1}=\infty$ in [9], see also [5] for the case of diffusions. Define

$$
G(\varepsilon):=\int_{\varepsilon}^{\infty} \vartheta_{0, d}(u) d u=\int_{(0, \infty)} e^{-v \varepsilon} \sigma_{0, d}(d v)
$$

with $\sigma_{0, d}:=\sigma_{0, d}^{+}+\sigma_{d, 0}^{-}$.

The following proposition generalizes a result for diffusions from [5], Chapter 6.3.
Proposition 4.10. Assume $m_{0}=0,0 \in E_{m}$ and $l_{0}=\infty, l_{1}=-\infty$. Then it holds

$$
l(t, 0)=\lim _{\varepsilon \nleftarrow 0} \frac{\text { number of all excursions of } X \text { from } 0 \text { before } t \text { with length } \geqq \varepsilon}{G(\varepsilon)}
$$

Proof. The proof is similar to those for the Wiener process ([5], Chapter 2.2). We sketch it only. Firstly observe that $\lim _{\varepsilon \neq 0} G(\varepsilon)=\infty$. This comes from the assumption $m_{0}=0,0 \in E_{m}$ which implise that 0 is a point of accumulation of E_{m}. Therefore at least one of the functions $\vartheta_{0, d}^{+}$is not integrable. Furthermore we have $\zeta=\infty$ a.s. because of $\left|l_{i}\right|=\infty(i=0,1)$. We know from Proposition 4.9. that $(L(t, 0))_{t \geq 0}$ is an increasing process with independent stationary increments having the Lévy measure $\vartheta_{0, d}(u) d u(u>0)$. Thus by a strong law of large numbers it follows
$\lim G_{(\mathrm{e})}^{-1} . \quad$ (Number of all jumps of $L(\cdot, 0)$ with magnitude $\geqq \varepsilon$ up to s) $=s$ a.s.
Recall that the jumps of $L(\cdot, 0)$ up to s correspond to the flat stretches of $l(\cdot, 0)$ up to $L(s, 0)$, i.e. to the excursions of X from 0 up to $L(s, 0)$. Applying this, substituting $s=l(t, 0)$ and noting that $L(l(t, 0))-t$ is finite by virtue of $\lim _{u \rightarrow \infty} l(u, 0)=\infty$ we get the assertion.
It should be remarked that by applying Tauberian type theorems the limit behaviour of $G(\varepsilon)$ for $\varepsilon \downarrow 0$ can be obtained from the limits of

$$
\int_{0}^{\infty} e^{\lambda \varepsilon} G(\varepsilon) d \varepsilon=-\frac{1}{\lambda}\left(\frac{1}{h_{0}^{+}(\lambda)}+\frac{1}{h_{0}^{-}(\lambda)}\right) \quad \text { for } \quad \lambda \downarrow \infty .
$$

For instance, for the diffusion on $[0, \infty)$ with speed measure $m(x)=x^{\gamma}(x \geqq 0)$ (see example 1. in 2.3) we have

$$
G(\varepsilon) \sim \frac{1}{\Gamma\left(\frac{1}{\gamma+1}\right)}(\gamma+1)^{\frac{\gamma-1}{\gamma+1}} \gamma^{\frac{1}{\gamma+1}} \varepsilon^{-\frac{1}{\gamma+1}}
$$

and for the example 2 from 2.3 we obtain

$$
G(\varepsilon) \sim \frac{1}{\Gamma\left(\frac{1}{2}\right)} \varepsilon^{-\frac{1}{2} \frac{1+c \tanh v}{c+\tanh v}=\frac{1}{\sqrt{\pi \varepsilon}} \frac{1+c \tanh v}{c+\tanh v} \quad(\varepsilon \downarrow 0) ~}
$$

References

[1] L. Bondesson, Classes of infinitely divisible distributions and densities, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 57 (1981), 39-71.
[2] H. Dym and H. P. McKean, Gaussian processes, function-theory and the inverse spectral theorem, New York, Academic Press (1976).
[3] J. Groh, Über eine Klasse eindimensionaler Markov-processe, Math. Nachr., 65 (1976), 125-136.
[4] K. Ito, Poisson Point Processes attached to Markov Processes, Proc. 6th Berkeley Symp. Math. Statist. Prob., 3 (1971), 225-240.
[5] K. Ito, and H. P. McKean, Diffusion Processes and their Sample Paths, 2nd Printing, Springer, Berlin (1974).
[6] I.S. Kac, and M. G. Krein, On the spectral functions of the string, Amer. Math. Soc. Transl., (2) 103 (1974), 19-102.
[7] J. Kent, Eigenvalue expansion for diffusion hitting times, Z. Wahrscheinlichkeitstheorie verw. Geb., 52 (1980), 309-319.
[8] J. Kent, The spectral decomposition of a diffusion hitting time, Ann. Prob., 10, (1982) 207-219.
[9] F. B. Knight, Characterization of the Lévy measures of inverse local times of gap diffusion, Progress in Prob. Statist. 1, Birkhäuser, Boston, Mass. 1981.
[10] S. Kotani and S. Watanabe, Krein's spectral theory of strings and generalized diffusion processes, Lecture Notes of Mathematics Vol. 923, (1981) 235-259.
[11] U. Küchler, Some Asymptotic Properties of the Transition Densities of One-Dimensional Quasidiffusion, Publ. RIMS, Kyoto-University, 16 (1980), 245-268.
[12] P. Mandl, Analytical treatment of one-dimensional Markov processes, Academic Prague and Springer Verlag, Berlin (1968).
[13] C. Stone, Limit theorems for random walks, birth and death processes and diffusion processes, III. J. Math., 7 (1963), 638-660.
[14] D. Williams, Diffusions, Markov Processes and Martingales Vol. 1, J. Wiley and Sons, London (1979).

