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On sojourn times, excursions and spectral
measures connected with quasidiffusions
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Uwe KUCHLER

1. Introduction.

Let X --(X ,),, be a  quasidiffusion on the real line with natural scale and speed
measure m, i.e. a  strong Markov process the infinitesimal generator of which is a
restriction of the generalized second order differential operator D„,Dx .
Examples are diffusions and birth-and death-processes. We shall consider excur-
sions of X from 0 over some level a> 0 and study the sojourn time T which X spends
over a' (a' [0, a]) during such an excursion.
If a' =a, then T has a  mixed exponential distribution. The mixing measure can
be identified with the normalized spectral-measure of a so-called dual string (see
Proposition 3.2).
We consider the process (1) ,(a, a ')),,w here P f (a, a') is equal to the time which X
spends over a' during excursions of X from 0 to a occuring before the local time
l(., 0 ) of X  a t zero equals t. If a '> 0  it turns out to be a  randomly stopped
compounded Poisson process (Theorem 4.4).
If a '= 0  or a' =a its Laplace transform can be calculated by the spectral measures
of some corresponding dual strings (see point 4.2 below ). In parituclar, if y de-
notes the Ito excursion law of X at zero, V the "peak" of an excursion, we obtain
the Laplace transform of the measure 1,(T Gdt, V a) (Corollary 4.6). Finally a
connection between the trajectories of X and some spectral measures via the local
time of X is derived (Proposition 4 .1 0 ). This extends a result of Ito, McKean [5]
for diffusions.

2. Quasidiffusions, strings and spectral measures.

ln  this chapter we summarize some definitions and facts on quasidiffusions and
related topics which are necessary in the sequel. Proofs are omitted, details can
be found e.g. in [2, 3, 5, 6, 9-13] or can be easily derived from those.
We denote by R the real line, by 0  the a-algebra of its  Borelian subsets and by
K the set of complex numbers. Let 03 be the set of all bounded measurable real
functions on R.

Communicated by S. W atanabe, March 1, 1985



404 Uwe Kiichler

2.1. Quasidiffusions.
Let m  be an  extended real-valued right-continuous nondecresaing function o n  R
and put

4: = inf {x ER I m (x)> — 001 , 4: = sup Ix e R  m(x)<
ro : = inf -[x> /0 I m(x)>m(10)1 r1: = suP {x <4 I m(x)<m((4 - 0 )}

mo : = m({0} ) .

Assume

m(0 - 0) =  0 , m ( x ) $ 0 ,  l o GOGri

and define

I: = (4, 1,), E: = [ro , r1]f l I .

Denote by E. the points of E in which in increases. The function in and the measure
generated by m  on I  are identified.
L et W =(W ,, 97, (P x )x e R )  be a standard Wiener process and /''(t, x )(t x  R)
its (continuous in (t, x)) local time with

1(t, x)f(x)dx f(W s)ds f  eb,V3)
0

Put

S,: =  l w (t, x)m(dx) (t 0)

T,: =  inf -[u>OIS„> t)- (t

with the definition inf ç : = co.
Then is a  right-continuous strictly increasng process and  T , is an 9 '- s to p -
ping time ( g w : — ( g 7 ) / 0 ) .  D efine

F,: = 9 , ( ) )

C:i n f  [ t  > 0  I WT , e (4, ,

X ,: = <C) .

Then X=(X,, C,  t ,  (  x )  x E R )  is a  right-continuous strong Markov process with
state space E„ killed at the time C. We call X  the quasidiffusion with speed m easure
in (other notations are: generalized diffusion process [10], gap diffusion [9]). X  is
skip free in the sense that

(x, A xt v n E”, = 0( 0 <  t <C).

In  particular, starting  at x <y  E  E ., X  enters [y, through y : we have with
a y := i n f  > 0 I X ,  y l the equality
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--- y  o n  {ay < 00} mod P .

The analogous property holds if x >y .
If m is strictly increasing, it follows that E,n —E and X  is continuous, i.e. X  is a dif-
fusion in the sense of [5]. If m  is piecewise constant and En, has no point of ac-
cumulation in (r,, r1), then X  is a birth- and death-process.
By

/(t, x ): = lw (T t , x) (OS t<C) and

/(C, x): = /(C-0, x) (xEE„,)

the local time 1 of X  is defined. It is continuous in both variables and for every
bounded measurable real function f  on En, we have

E.f (x )1(t, x )m (dx ) = o f (X s )ds (0 _ t<C ) , ( 1 )

in particular

mo •l(t, 0 )  =  1(0 )(X5)ds (05t<C) • ( 2 )

Put

inf it > 0 W t  Y1, = inf {t > 01 X t( Y E E . )  •

Then it holds

T,ry  =  D' EE„,) , T  =  rro A rri : C w .

Using (1) with f  =1  we obtain

ry  = 1(5, x)m(dx) lw(21, x)m(dx) (yEE„,) . ( 3 )
E . E,„

If G e 0 ,  we define a measure mG on / by &JIG : =1 G dm and mark all quantities con-
nected with inG by G, e.g. X ',  11. From (l) and (3) we get

=  T Y  1 G (Xs )ds (y e  n G). ( 4 )

With m  there is connected a  generalized second order differential operator A n Dx

defined by' )

D„,Dx f = g :<=> f(x) f ( 0 ) + x 1 ) -f ( 0 )+ 
o  

(x — s)g(s)m(ds) , (x e I)

on an appropriately chosen domain of continuous functions on / which are linear
on the components of the open set I\E„,. The restriction of D,„D, to  the
Banach space Cm of all such functions that are bounded and satisfy

1 )  D -  (D+) denotes the left (right) hand side derivation operator.
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lim  f(x) = 0 if 1/i I <00 (i = 0, 1)

is the infinitesimal generator of X .
Let ça and lb. be the (uniquely determined) solution of

p(x , 2) = 1- 2 S  (x—s)50(s, 2)m(ds) and

Afr(x, 2) = x - 2 z
0 (x—s)yr(s, 2)m(ds), (2 E K , xc I)

respectively.

It holds the Lagrange identity, i.e. for every 2 K we have

ço(x, 2)D- *(x, 2)—ik(x, 2)D - 90(x, 2)-m, 1 (x E E,„) . ( 5 )

Suppose zeE„,LJ (4, 1,), 2 e Ko : =K\[0, 00) and put

f + (x , 2): = p(x, 2) 9 - 2 (s, 2)ds (z 0, 10 1<x - z)

xl(x, 2): = 51) .(x , 2)S çols, 2)ds

If z=10 o r  =11 w e  omit the mark z: x 1_0=x _, x l
+1=x + . Let zo , z 1 be given with

;5 0 ,  z 1>0, E „,  U ( 4 , 4) (i=0, 1). Then, for x  En, n (zo, z1) a :  =C A inf f t> 0
X 1 (z0 , z1)}, 2<0, we have for any f  E

ex t f(X f)dt = zo x10(x A y, 2)41(xV  y, 2)f(y)m(dy) .
0 

From this formula, the strong Markov property, and the skip freeness of X  it fol-
lows under the same assumptions on zo , z 1, x  and 2 by a known method of [5]:

xz+qx, 2 ) Ex  [exP (25).1fri>ry}1 x+i(Y, 2 )
xL0(x, 2) Ex  [exP (Ary) .

 l fr o >TYP x'°(Y, 2 )

EE,,„ y x zi)

(y E E ,„ y).

2 .2 . Strings and dual strings.

A measure m as considered above is called a string if 4 = -0 0  and r 0. Let 931
be the set of all strings and assume m c9n. The function h defined by

h(2): = 50- 2 (x, 2)dx (2E K0)

is called the characteristic function of m ([10]). We have

4 2 ) = x 2) l i r n *(x , 2)
't ii  9(x, 2)

 and
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x + (x, 2) h(2)ço(x, Vr(x, 2) (2e K 0) ( 8 )

If ni, m' e n ,  a, b, c>0  and

m '(x ) = in6 ±  ( X  a  ) (x eR )
Cc

then the characteristic functions hm and h„,, of m and m ', respectively, are related by

1 1 —  2m 6+ (2EK0) .
hm ,(2) a+ chm (b2) ( 9  )

For every m eiCa there exists a  a-finite measure a on [0, 00), called the spectral
measure of m, with

a ( d u ) ‹ .
J[0,..)1+u

such that

e4 2 )  =  r o + a ( d u ) ( A lCo) (10)
J[0, - ) u - 2

a([0, u)) =  -L lim fin h(b+ic)db (u 0) . (11)
4, 0 [ 0 , u )

Moreover, we have

c ([0, 00)) =  1 a n d
mo

1ae(01) — if 4=00, =0  if /< 00 .
m(r i)

If 111 is a measure as in 2.1. above and xEE„„ then two strings m x+ are given by

.Y)): m((x — Y,

y)): m([x, x±y)) (y> 0) .

Note that m;(101)=0, m:(101)=m({4).
For the characteristic functions h : of mT, respectively, we obtain after some cal-
culations

(12)

(13).

h'x' (2) =  z - ( x , A) h-xl (2) __ z+(x, 2 )  
D -  x_(x, 2)' D- x + (x, 2)

If G—[a,00) (a> 0), (9) and (14) imply

11, , +(2) h(2)-Fa x-,-(a, 2)— x + (a, 2)
D -  x+ (a, 2)

(2 e Ko) (14)

(2c Ko) • (15)
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Let m e n  and put

m d (x): inf {y>O I m (y)> ( x  0), 0  (x > 0) .

Then it holds that md  S R  and (md )d = t n .  The string md  is called the dual string to
in. All quantities connected with md  will be marked by d, e.g. lb.d , 9 d , ad . With

the notation

x+ : = inf fy> x yE E „ i U sup fy< x j yeE ,n U Von E Em )

we get fo r x e i, 2 eK

— 2 'k x ,  2 ) D÷ Sod(z, 2 )1 z=.(x)+2 (x+— x)9d(rn(x), 2)

9(x , 2 ) = D +*d(z , 2 )1 z---.(x)± 2(x + — x)*d (m(x), 2) .

These equations provide

hd (2) = — (2h(2))' (2eK0). (16)

We conclude this point with several formulas concerning the dual strings md . From
(10) and (13) it follows

a (du)hd (2) = m o —(24) - 1 +5 d ( 2 E . (17)
(o,-) u - 2

Thus we have by (14)

1 1= — )uad(du)
(o, )" u  u - 2

mo +1 (1 —ex")z,
d (u)du (2E14)

with

d ( 4 ): = L o ) Ve- " C AdV) 01> .

Note that

15'd(u)du = e'vad(dv) e7 b a d ((O, 00)) = rc7 1 —IT'
(o,-)

= 0 0  if  r, = 0) .

Furthermore, (14)-(16) imply for G:=[a, 00)

x + (a, 2) — 214(2) (2 K o , a> 0)( 2 0 )
x + (a, 2)—a1) -  x+ (a, 2)

and using (18) we get for a> 0

(18)

(19)
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2,
+ (a, 2) u  Ga2hY (2) a ad(du) (2 e  K0) (21)

x ± (a, 2)—aD -  z+ (a, 2) u -2

(aY denotes the spectral measure of the string (mG)d  which is dual to mG).

2 .3 .  Examples.
1. If m (x)=x 1 .1[0, . ) (x ) ( r> 0  fixed, x ER), then 'x is  a  diffusion on [0, 00)

instantaneously reflected at zero . We have

r
(

4 2 )  r + 1  . ( r + 1 )(1-191(1+10 ( - 2 r )-1/(1+1)

r (  rr+1
and

- 2
a (du) = [ . r (   r   ) ]  ( r +i)(1-10/0+7)(u r rici+-odu( u  0 )

\r  + l

The dual quantities md , hd , ad are obtained by substituting T - 1  for r.

2. Put m(dx):—(1[0 ,,](x )+c - 2 1(i ,_)(x))dx (c, v>0 fixed, x E R )
Then it holds

h ( 2 ) (  2 ) _1 / 2 .t a n h  v  —  2( 2 E  K 0 )

1+  c tanh v

and
2c • du u(du) —

nu1/2(1+c 2 + ( 1—c2) cos 2vV  u )

Replacing c by C I  we obtain md , hd , a,.

Define p(x): =  x1 [ 0 ,0 (x )+ (v+c(x— v))1 [_ ) (x) (x>_0)

then (p - 1 (X,)) 1 0 behaves like a skew Brownian motion process reflected at zero with
diffusion coefficient 2 and "skew point" v.

3. Assume m is a string consisting of a weightless thread carrying beads with
mass mi >  0  a t  p i ( i =1, •••, N; 0 < p 1 < •• • <p N ). P u t  z l o :
(i=1, •••, N -1) and /: = 0 0 .  It holds

h „,(2 ) =  z lo+ E  Ck( 2  E Ka)
k =1 uh - 2

where uk  (k  = 1, •••, N )  are the eigenvalues of the matrix -A  which is given by
A —(a i ; ), j = l ,  • • • , N , = c ii i =  — (21+10 (i = 2, • ••, N -1 ), a N N  =

(i= 2 , ,••• N), ai 1+1= 2 1 (i=1, •••, N-1), = 0  otherwise, 2i :  =  (mi•zli )
1

(i=1, •••, N - 1 ) g1=On14 1-0 - 1  (i=1 , ••• , N ). Furthermore

a =  (NE- 1  Ouk)mi+0 - 1

i.0
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and (Q0 (uk ), •••, Q ,_,(u k ))T  is the eigenvector of -A belonging to uk normalized by
Q0(uk) Ea' I, (k =1, •• • , N).
The quasidiffusion X  with speed measure m  is  the birth- and death-process on
Pi' ••-, p N  with A  as its matrix of intensities. The dual string In d  has the masses
md ,i  =d i ( i=0 , •••, N - 1 )  at the points

Pd,0 ° P d ,k  =  E m i (k  = 1, •• • , N-1)
i f

and it holds (/i )d =E m i . We have
1=1

a d , k  
h d(2)  =  E 2 where ud , ,  are the eigenvalues of —A d with

k 1

A d =  ( ( a d ) i j )  ( i , 1  = 1 , N ) , (ad)ii (1*

al l  = aii (i =- 2, •••, N)
N - 1  2

\A \-1C d ,k :  = ( Q d  1(ild k ia 'i)• •

and ( 0  ( u d ,k ) , . . . , Q d,N -1(ud,k ))T  is  the eigenvector of —A d corresponding to ud ,,,
Q d , 0 ( u d , k )

- 1 (k = 1 , •••, N).
The quasidiffusion with speed measure /li d  is the birth- and death-nrocess on

N -1
-(0, m„ m 1 ± m 2 , •••, ma with A d as its matrix of intensities.

3 .  A  sojourn times over positive levels.

Assume X  is a quasidiffusion with speed measure m  and suppose r0 0  and OE E„,.
Moreover, choose x, a, a' E .  with 0<x - a' a 5 r i  and put G :=[a%  4). Then,
from (6), (7) and the strong Markov property of X  it follows for 2<0:

Ek exp (2 z 1
) 1 {:rk <z o <C) —

=  (Ek  exp (2 r ) 1 {  < r }  )(Ea  exp (2r))1{,. < 2 . } )

; e • 13(x, 2) x . . ( a ,  2)
x ' )(a, 2) z_(0, 2)

: H(a, x , a', 2) (23)
' 

(Here z-G.  is understood as the last integral in (4).)
Using D„,Dx f ± 2 f = 0  on G for f=g)G and f=1/rG it follows that çoG, ift•G are linear
combinations of ça and o n  G .  Now, from çoG(y, 2)=1, lf rG(y , 2)=y on [0, a l  we
obtain

x_(a, 2) — —  x +( a ' 2 )  

x + (a, 2)'

x._(0, 2) a' z ±( a ' '
2,

+ (a% 2)'

1=0
(22)
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2) = , 2)[-9(a, 2)*(a ', 2)+9(a', 2)*(a, 2)—

ço(a' , 2)*(a, 2)—D -  *(a' , 2)9(a, 2))]

2'_'°(x, 2) = x • 1) -  2, •°(a', 2) (A E K0) .

Observe that

N.+ (A): ifr(a, 2 ) 
9(a, 2)

is the characteristic function of the string

1[0 .0 ](x)m(dx)+ 00 • 8 a (dx)

(a a denotes the measure with unit mass concentrated at a) and that it holds
a

Xa+(a', 2) (a', 2) 2)ds =

= 9(a , 2)( * ( a ' 2 )  —11f(a% 2 ) )  — hr (2)99(a' , 2)-1/r(a' , 2) .
9)(a, 2) ço(a', 2)

In the following we write h and ha instead of 14 and hg, ., respectively. Then we
obtain for 2 <0

H(x, a, a' 2) — x ( h ( 2 ) (2)) 
[x 4.(a' , 2) —a' x.„(a' , 2))][4 (a ',  2 )-6 ' e + (a' , A)]

If 2 f 0 it follows from (23)

x  I —a 1 —a .1).(ro< ro< C ) — • with 1  —  1  if 11c o  .
a 4

Thus we have proved

Proposition 3 .1 .  /f0< x (x, a, a'EE„,), then for 2<0

0(a, a', 2 ): =  Ex [exp (A ,1 )(Xs)dS) I ra < r o <C ] =
o 

-1  h ( 2 ) —  ha  (2)—  tt •
(X  +(ce 71) — a' D-  + ( a ' 2))(x+(a', 2)—a' D -  z+ 2))

h(2)—ha (2)
 1 )

-
 2 ( a ' ,  2 ) 1 ,

-
 z a + ( a ' ,  2 )

116(2)17G.a(2)

with the notation ,u: =a -1 —1T1 •
(Recall that h° , hG , and hG 'a are the characteristic functions of

1[0,aidni+ 00 aa ; 1[0 ,.)dm 0  a n d  lro,odmG ± œaa

(24)

(A E K0)

respectively.)



a(0..)u  112 a (d u )= • e"?.9.(u)du (25)

with

412 Uwe Kiichler

Let a' t a (a' E E „,) .  Then, by using

h(2)— h a (2) —  x + (a ' 2 ) ( a ' ,  A )  —> O.
ço(a, A)

x(a', 2) — > — ço - 1 (a, 2) (a ' t a) and (21)

we obtain

x+ (a, A) q5 (a, 2 ): = firn o5(a, a', A) = (a,tt)' •e ta x+(a, 2)— aD -  x± (a, 2)

G [a, 00), (u): (0..ove-avaY  (dv) .

Because of

ad ( (
0

,  ( X )
) )  = oy(u)du =0 - 1  —IT' /1< 00( s e e  (19)) ,

we can introduce a probability a on (0, 00) by

a(A ): = ,u - l aY (A ) . (A E0 n(O, 0 0 ) )  .

Obviously, 0 (a, •)  is  the Laplace transform o f  a  mixed exponential distribution
with mixing measure a. Thus we have shown the following

Proposition 3.2. 1 f 0 <x :‹ ar,( x ,aG E „,) ,  we have

Px1 [. )  (X ,O d s  d t  7 , < r o <C)0 '

= d t ue-ut a(du) 61(t)dt.
(0,w)

Let 0<a<11 0 0 b e  fixed, G =[a, II ) and denote by sift, the set of all strings in from
with aE E „,a . Then the mapping mG---->a defined by Proposition 3.2. is a  one-

onto-one correspondence between the set of all strings of the form

dmG(x) 1 ,(x )dm (x )±  00  a,,(x )dx (m s,U l a )

and the set of probabilities a on (0, 00).
This is a  consequence of M.G. Krein's inverse spectral theorem. (Indeed, given a
probability a on (0, 00) define ai :=,tta with it =a - 1 — 1T1 , supplement it by mass /r1

at zero and choose, by Krein's theorem (see e.g. [2, 6, 10]) the uniquely determined
string n having a, as its spectral measure. (12) and (13) imply n({ 0} )— a, n([0, 00))=
4. Take the dual string na , which turns out to be of the form mG with the desired
properties.)
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Examples:
1. Consider the standard Wiener process W, it is a  quasidiffusion on R  with

speed measure m(x)=2x(x R ), and choose a > 0 .  Then, for the characteristic
function h0

0
',  of the dual string of 1G (x)dm(x) (G =[a, 00)) we get

2a2+\/-22
h (2 2  +  2  a 2 2 2

and for the normalized measure a we obtain

2a1a (du) — du (u> 0) .
\/2u  1  +2ua 2

Then it follows

P(it ,...) (W s)d s> t  ITa <0 )—_, e  2
d v (X  E (0, a]) .

0 7C 0  1+ v2a ,

2. Let X  be a  birth- and death-process with finite state space {0, 1, •••, Al-
and intensities

2; > 0  ( i =0, •••, N -1) ,a,>0  ( i=1 ,• • • ,N )

Then, starting at 1 the hitting time ro =inf {t>0/X e= 0 }  has a  mixed exponential
distribution

Pi(ro dtlX , = 1) = Wk  exp (— Wk t) a k  dt

where Wk(k =1, • ••, N) are the eigenvalues of the matrix —A d  (see above) and

a h : = a d ,k • (E Cid,j) - 1 ( k  =  1 ,  • •  •  ,  N )

with ad , k  given by (22).

4 .  Excursions, local time and spectral measure.

4 .1 .  Excursions of the Wiener process.
Assume W—(Wt , 97, Px )  is a standard Wiener process. In this point we consider
W under the measure P, only, i.e. W starts at zero. The open set [0, 00)\ {t . 07W,
= 0 }  is the union of its components (ar„ b') (n 1 ) .  For ev e ry  n  1 the process
U r,  given by

Ur(t) (0 t b;r = 0  (t e 7

is called an excursion of W . We introduce the length TT and the peak V1 of the
excursion U,T by defining

(2
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=  max U ;(t ) sgn U;r( b L v + dnv) .t> 0 2

If n is not specified we write Uw, Vw , Tw o n ly .  K. Ito proved ([4], see also [14])
that the points (r(a„w , 0), U n  are the atoms of a Poisson measure Q on ((O, 00) x U,
(0  (0, 00))09J) where (U, V )  denotes the space of all excursions. Moreover, he
showed that the a-finite measure n given by n(A): = EQ(A) satisfies

n(dt,df) = dtvw(df)

where vw is a  measure on  (U, V ) , called the Ito  excursion law of W  a t z e r o .  It
holds

vw(Vw Edx) = x - 2  dx (xER\{0}) • (26)

Before using these properties we shall introduce some no ta tions. If  E is a Borel
subset of R\( —e, e) fo r some e>0 define N T (E ) to  b e  th e  number o f  all ex-
cursions U,T with V,TE E a n d  /w(a„, 0)< t (t >0 ). Thus N (E )  counts th e  ex-
cursions of W from zero with peak in E which are finished before

Lw (t, 0): inf {s> 0 /w (s, 0)> t} (t > 0)

or, equivalently, up to the moment, when the local tim e 
/ W ( . ,

 0) equals t.
From the mentioned Ito's results it easily follows

Lem m a 4.1. L et E,, L., be disjoint Borel subsets of

E R  x >  e l  f o r so m e  e>0O.

Then N w (Ek ) are mutually independent Poisson processes with intensities

pw (Vw EEk ) ( k  =  1, 2) .

Denote by U v
k 5 ( j> 1 ) the j-th excursion of W f rom  0 with peak in Ek and let s(dx) be

a  a-f inite m easure on R . Then f o r every AE93 the variables

yk i (A ): =  L(PV  (b Wk j , X) - 1W ( a Wk5 , x))s(dx) (k 1, 2: j 1)

are mutually independent, identically distributed and independent of N w (Ek )(k =1, 2).

Assume a, 1,, 4 to be real num bers with <0<a<I 1 and put E,=[a, E 2 =R V I0 , 4).
Then the preceding lemma implies

C orollary 4.2. T he number NT(E 1)  of excursions o f  W  w ith peaks in  [a,
which occur before Lw (t, 0) form  a Poisson process with intensity ,a=a - ' —IT1 which
is independent of

/w(Cw, 0) inf {t> OINT(E2)__ 1}

and this variable is exponentially distributed with the param eter x:=IT1-1,7,1.
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4 .2 .  Excursions of quasidiffusions.
Introducing the excursions of a quasidiffusion X from 0 we have to take into con-
sideration the role of the gaps of E . and the killing time C. Let X be a quasidif-
fusion with speed measure m as constructed in  2 .1 . above, we also assume here
that X starts at ze ro . P u t

an : =  S o n  bn : =  S (n N )

It may happen that a = b „ (this means the excursion U r, does not meet Em \ ( 0 ) )  or
that b n =00(i.e. W  hits 4 or 4 before b n .  Therefore we define

: = 1 I a „<b n <C 1  and put

nU (t): =  X (0_.< t <1) „ —an ), =  0  (t b  — an )  (n

The processes Un (n g2) are called the excursions of X from  O . This notation is
justified by the following properties:
a) Un ( t ) # 0  f o r  tG(a„, b n ) (n g2)
b) If r: = sup  -(t <C X, = 0}  and t E [0, r )  with X 1 *0 , then t G (an , b„) for some
nEg2.
If V n

w > 0  then V„—(Vnw )_  =sup {y <V „w  y  E , n }. Now choose a>0, a EE„, and
define N 1(a) to be the number of all excursions 1.1„(n G g2) such that V„ E (a, 1,) and
1(a„, 0)< t. Then (recall the definition of gl) N(a) counts the number of excursions
of X from 0 over the level a which occur before L(t, 0) A C where L (., 0) denotes the
inverse local time:

L(t, 0): =  inf -Cs> 0 I /(s, 0)> t} (t 0) .

By virtue of /(C, 0)=/w (Cw , 0) we have

N 1(a) N irninrr,o) ([a, 4)) (t O ).

Thus from Corollary 4.2. and the second half of Lemma 4.1. with s(dx)—m(dx) we
conclude

Proposition 4 .3 .  For every  aGE,n , a>0 , the process N(a) f orm s a Poisson
process with intensity 12=a - 1 -1 T ' which is stopped at the random time l(C, 0). The
variable 1(C, 0) is independent of N(a) and exponentially distributed with the parameter

/
i
1.

For every A E  the variables

= (/w (e, x)/'(a ', x)) m (dx)
A

Ç'=  
A a

(1(b„, x)-1(a„, x))m(dx) = 1 AO'  Oa S (it G
„

are mutually independent, independent of N(a) and identically distributed.
Choose a n  a' a) n E„, and put
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Yn (d): = Y „([a' ,11)) (n Y1) .

The strong Markov property of X implies that the Laplace transform

Eo(exp (2 Y „(a))!V„> a)

of Y (a )  under 11;3> a l  equals

E. , (exp (2 lre ,1 (Xs)ds)i < o< C) , i.e . it is given by (1)(a, a', 2) from formula
o

(24) (n E  1, 2< 0). P u t

13 ,(a, =  E  Y (d ) (t >0)

where the sum is going over all n e T  such that 1(a„, 0)< t and Vn G [a,1,), and define

P(a, = (P 1(a, .

The variable P,(a, a')  is equal to the time which X  spends over a ' during excur-
sions of X  from zero to  a  occuring before L(t, 0)A C, i.e. before the local time
1(•, 0) equals t A /(C, 0).
From the Proposition 4.3. and the remarks after this proposition it follows now

Theorem 4.4. A ssume 0-<a' <a w ith  a, a 'E E .  Then the process P(a, a')  is
an increasing compounded Poisson process with intensity I2=a - 1 - -1 -

1
- 1  stopped at the

random time l(C, 0) which is independent of P(a, a') and exponentially distributed with
the parameter K=17- 1  —1(Ti .
In particular

(Dt(a, a', A): E0(exP (213 a) ) 1  l( C  , t) —
= exp ( (l —0(a, a', 2))) (t >0, 2 <0)( 2 7 )

with (1)(a, a', 2) as given in (24).

Proposition 4.5. The process P(a, 0): —(P1(a,0)), a , is an increasing compounded
Poisson process with intensity A t stopped at l(C, 0) which is independent of P(a, 0) and
exponentially distributed with the param eter K . It holds

\1\Ep(exp (2P,(a, 0))11(C ,0)> t) = exp (— t [( 1  —a h 6 (2 ) ) (\ 
1 1
4 h(a)/J)

exp (— t (r (I _ e x ) (0 A u )  tY(2) (u))dtt) (t 0, 2 <0) , (28)

where

0 (1) (u) = ve-"" ti (
aa) (dv) , (u>0)

and C (da )  denotes the spectral measure of the string dual to

1[O a) (x)m(dx)+ a (dx)• 00 .
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Note that the integral

(75',/(a) — ?9 (t  (u)) du = lim (1 — e " )  d(u) —OP (u))du
o

equals i t  (this also follows from

1 19 ( a ,  2 )  i i m  9(x, 2) 
2)ds —› 0

ha (2) h(2) ilf(a, 2) tii ilf(x, 2) a

for A 1, —00) but the integrals over Od and over zY(
da) must not be finite.

(We supposed a' ,l, 0, a' G E m , which demands 0 , - 0 .  However the results are valid
for 0+ >0, t o o .  This becomes obvious by using x + (0+ , 2)-0 + • /31 - x+ (0+ , 2)—h(2).)

In particular, the preceding Proposition implies that the distribution of the length

b„
T „  =  n ( 0 ) 1[0,1i) (;)d s

under is given by

1)0(T„ G dui V , a) = ,u - 1 (25d (u)—OP(u)) du( u 0 ) ( 2 9 )

With these remarks Proposition 4.5. provides a  connection between Ito's excur-
sion law of X  and the spectral measures of two dual strings:

Corollary 4 .6 . Assume 0 is a  recurrent state, i.e. 4  —  =  c o  and  therefore
C - 0 9 .  Denote by u the Ito excursion law of X  at zero, by T  the length and by V
the peak of the excursion U of X from 0. Then it holds

v(V>a) = v w (Vw>a) =

p (T E d u ,  V  a) v ( V  a) P o(Teduj V > a)

(S' 7.5q1a) (u)) du

ii(Tdu) =  Od(u) d u  and

(1 —ext) p(TEdt, V a ) 1 (
ha  (2)

1  - - L ) .

h(2) a

In particular (30) implies now

1 1 
e" v(TEdt, V a )  —  = 2) dx ( a  E.)

h°(2) h ( 2 ) a

This formula extends a result for the standard Wiener process (m (x)-2x, xE R) for
s i n h  V  — 2 2 x

which Ilr(x, 2)— holds (see Williams [14], p. 9 9 ). In this case we get
V —22

r '
v(T dt, V a )  =  ((27rt3 ) - 1 /2 — k2r2x O  e p   ) d t  (t>0, a>0) .

a  "=' a22 a 2 ) "

(30)

(31)
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Now let us consider the second special case: a' a  where a> 0, aG E n , is fixed.
From (25) and (27) it follows

0 1(a, 2 ): = lim  t (a, a', 2) =- exp (—,a t(1 —0(a, 2))) =

= exp t(1 —U   a(du))) =-
(0,-) u - 2

= exp (—t (1 _ e x )  ?, t (u) du) (2 <0) , (32)
0

where G---[(2,1,), a =,a - ' a , y e - -  0 (d o  withY zYY(u) d u =p  and aY
(0,00 a

is the spectral measure of the string dual to mG . Then we have shown

Proposition 4.8. The process P(a, a) =(13 ,(a, is  an  increasing  com pounded
Poisson process w ith intensity  it stopped at the random time l(C, 0 )  which is inde-
pendent of P(a, a) and exponentially distributed with the parameter IC . It holds

E, (exp (21)
1(a, a))1 1(C, 0)> t )  =  i (a, 2)

where 0(a, 2) is given by (32).

Note that

r(t.0)
P t (a, a) = [a,ii )(Xs )ds (t 0 )  .

(These properties also hold, if a is not an accumulation point of E„, from the left.)
In  both particular cases a' I. 0 and a' t  a  we have explicit representations of

th e  Lévy-measure o f  th e  increasing compounded Poisson process P -=(Pt)io  by
spectral measures o f some corresponding dual strings. Moreover, in  these cases
the distribution of Pt under -(/(C, 0)> t}  belongs to the so-called Bondesson-class of
distributions (see [1]). (It should be remarked, that every distribution of the Bon-
desson-class occur if m  runs through all strings, this is also a  consequence of M.G.
Krein's theorem mentioned above.)
It remains an oepn problem to derive similar statements for the general case given
in (27).

4.3. Local times and spectral measures.
We consider (32) again and let a  0. Then, from (25) we have

L(1,0)
, ( 0  0, 2): = E0 (exp (2 1( ,.) (Xs) ds)11(C, 0)> t)  =

0

= lim  0,(a, a, 2) = lirn exp [t(1T1H--  x + (a, 2) 
a x+(a, 2)— aD -  x + (a, 2)1

= exp [t(iT i ± D ± X ± ( °  2 )
)  —  ex p  [t ( 1  —  1 2m0)  I (2<0,0 )

4 .(0, 2) 4 h(2)
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(Note that (  1   +2m 0) - 1  is  the characteristic function of the string 1 ( , , . ) (x)dm(x),
see (9).) h(2)

From (2) and l(L(t, 0), 0)----t on N C, 0)> t)- it follows

L(t,o)
E 0(eXp (2 1 (01 (X)ds 11(C 0)>t) exP (2 Imo) (2<0, t 0)

rt.0)As
Define A 1 :=(10 , 0), A2: = [0, id, Pt(A i):= 1A 1(X s)ds (t 0, 1=1, 2). Then we

0
have shown

Proposition 4.9. The two processes P(A i ): = (NA  i))tao (i = 1 , 2) are independent
increasing processes with independent stationary increments killed at the random time
l(C, 0 )  which is independent of  P(A i )  (i=1, 2 )  and exponentially distributed with
the parameter lc. Furthermore it holds

En(exp (21),(A i ))1l(C, 0)> t)—

= exp [t 1 1 0  + hi7
1
0 ) ) ] f o r  i = I ,

exp[— t + 1
( 2 )

) ] f o r  i  = 2  ( 2 < 0 )  .

Applying (18) we obtain

1 1 +  — (1 — e")0 d (u)du
h.c7(2 ) (o,- )

1 1 —
hô(2) 

=-_ (1 — e" )611,d(u)dud - amo c o , - )

with

zrot d (u) = ve-"a0d(dv)( u > 0)
03,-)

where c4,d and cq,d denote the spectral measure of the string dual to 1(0 ,.. ) m -
o'  and

mnj: respectively. In particular we have

E, (exp (2L(t, 0)) I /(C, 0 )> t)  =

= exp[ —I (2m, + (1 —e4u)61„. d (u)du] (2<0)( 3 3 )
03,-)

with z90,d: =C0a+ ZY17,(1.
Proposition 4.9. was proved for r0 = 0  and /, C O  in [9], see also [5] for the case of
diffusions. Define

G(6): = d(u)du e-"co,d (dv)

with co,d := c d + a i ,o .
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The following proposition generalizes a  result for diffusions from [5], Chapter 6.3.

Proposition 4 .1 0 . A ssume m0 =0 , 0 E Em  an d  4 - = 0 0 ,  0 0 .  Then it holds

1 ( t ,  0 )  =  urn
number of all excursions of X from  0 before t  with length e

EV) G(e)

P ro o f . The proof is similar to those for the Wiener process ([5], Chapter 2.2).
W e sketch it  o n ly . F irs t ly  observe that Jim  G (e )=  0 0 . T his comes from the

24 0

assumption m0 =0, OGE„, which implise that 0 is a point of accumulation of Em .
Therefore at least one of the functions 7Y-0',d is not integrable. Furthermore we have
C =DO a.s. because o f  1/, I = 00 (i =0 , 1). W e know from  Proposition 4.9. that
(L(t, 0)),,, is an  increasing process with independent .stationary increments having
th e  Levy measure 250,d(u)du (u > 0 ).  T hus by  a  strong law of large numbers it
follows

lim G . ( N u m b e r  of all jumps of L(• , 0) with magnitude up to s )= s  a.s.

Recall that the jum ps of L (., 0) up to  s correspond to  the flat stretches of l( ., 0)
u p  to  L(s, 0), i.e . to  the excursions of X  from 0 up  to  L(s, 0). Applying this,
substituting s=/(t, 0) and noting that L(I(t, 0))—t is finite by virtue of lim /(u, 0)=00
we get the assertion.
It should be remarked that by applying Tauberian type theorems the limit behaviour
of G(e) for e 0 can be obtained from the limits of

I (  1 1 P "G (e )d e  —  —
hô(2) h,Y(2)1

f o r  2 I, 00.

For instance, for the diffusion on [0, co) with speed measure m (x)= .e 0) (see
example 1. in 2.3) we have

G ( e ) —  1 .

r (7- +I 1)

'Y 
( 7- ± 1 yy k i r y  + 1  - 7+1 (e 0)

and for the example 2 from 2.3 we obtain

G (e)-- - 2 l + c  tanh y1   1 - F c  t a n h  y
6  

r
(   2 )

c d - t a n h re  c+tanh
(e 0)
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