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On the Gevrey index for some
hypoelliptic opertors

By

Takashi OkAl

1. Introduction.

Let P be a partial differential operator with analytic coefficients in £ which
is an open set in R?. For x& £, we say P be r-hypoelliptic in a neighborhood
of x if there exists a neighborhood @ of x such that the following implication holds;
for any open subset ' Cw, any ue 9D’'(v)

Puer®@)=>ucr(o).
Here r@(w’) means the Gevrey class of order s in o’

ferYe) it f(x)eC~(e') and satisfies
VKew’', 7C, 7C,, YaEN, sup| Dif(x)| < C,C, " \(al) .
K

Our concern is to determine the smallest numbers for P to be 7®-hypoel-
liptic in a neighborhood of x. Let
T (P)={s€R; P is r®-hypoelliptic in a n.b.d. of x} and r,(P)= inf s which
sel (P>

we call the Gevrey index for P. Here we define 7 (P)=o0 if T (P)=¢. " We think
that in general, I',(P) is a closed connected set.

For the operator with constant coefficients and the semi-elliptic operator
with variable coefficients, 7,(P) has been determined by L. Hormander [3]. and
T. Okaji [7]. In this paper, we consider the following simple operator;

n-1
P=S1D%4idD,, . D=/ " (=01, m),
j=1 g ox;
where k is a positive integer.
From the result of [7], it follows that ry(P)=2 since r,(P)>2 for x,&0. On
the other hand, since P is viewed as an operator of Hormander type; >3 Xi+X,,

J
from the result of M. Derrdji and Ci. Zuily [1], it follows that ro(P)<2(k+2).
But we have more sharp result for P as follows;
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388 Takashi Okaji
Theorem 1. 7(P)<<k-+2.
Theorem 2. When n=1, r(P)<2.
Theorem 3. When k=1, ry(P)<2.
Theorem 4.  When n>2 and either k=3 or even number,r(P)=k-+2.

Corollary. 7(P) = (2 (n=I1 or k=1)
1 k+2 (n=2 and either k=3 or even)

We conjecture that if n>2 and k>2, ry(P)=k+2, but possibly for a technically
reason, we must make a restriction on k.

The plan of this paper is as follows. In §2, we shall show theorem 1 with
aids of the result of M. Durand [2]. In §3, we shall prove theorem 2 by the meth-
od of Morrey and Nirenberg. In §4, we shall construct a parametrix of P, when
k=1, which implies theorem 3. In the last section, we shall prove theorem 4
by using the Hormander-Métivier’s inequality.

2. Proof of theorem 1.

In 1978, M. Durand has proved that if the partial differential operator Q of
order 2 with coefficients belonging to r(2) satisfies the following estimate; for
t>0, any K&&£, and any g&C>(£2), there exist constants Cy ;, Cg (g) such that
for any ue C7(K), ‘

el < Coe, {11 Qull - s+ ullo}
2.1 o, ij]u”tsCK,t'{“Qu”t+l—b+”u”0} s J=0,-,n, and
Q. glull, < Cr, (&) {l1Qull,—p+lullo} »

where Cy ,, Cg (g) are the constants depending uniformly on ¢ when ¢ is bounded,
and

lull? = S (14| €| 4(E) | 2deE

then for any s> max(1/b, 2/a), O is r®-hypoelliptic in £.
For our operator P, from the result of [8] (c.f. th.18) it follows that

21 [1D%ull +[[KD DY ¥ Pul|, < Ce Al Pull o A-1udl [}
ji=0
which implies (2.1) with a=2/(k-+2), b=1/(k+-2) since for any ¢>0,
[lull LellKDDTulli+Co o, llully  if 1, 0>0.

Therefore, applying the result of M. Durand to P, we conclude that for any
s>k-+2, Pis r®-hypoelliptic in a neighborhood of the origin. This proves theo-
rem 1.
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3. Proof of theorem 2.

In this section, we consider the case n=1, and denote D,; by D;. We observe
that from the result of [4] or [8], it follows that for uC7(2), (£ is sufficiently
small neighborhood of the origin),

G.0) gIIDéuH—HIXKDDuHSCIIPuII ,

where [|+||=]||l, and o(<DD)=(1+|&]%)'™.
So, in order to prove theorem 2, it suffices to show

Proposition 3.1. Let P=D}+ixkb(x)D, satisfy (3.1), where b is a real-valued
Sfunction belonging to r(82) and b(0)==0. Then for any s>2, P is r-hypoelliptic
in a neighborhood of the origin.

We note that for x,#=0, P is a semi-elliptic operator, so that if u.9'(2)
and Puer(w), 2D w, s>2, then uer®(w\ {x,=0}). Hence it suffices to show
that if u€9D'(2) and Pusr(o°), s>2, then uer®(«°), where o’=(—r,r)x
(—r, r), (r is a small positive number.)

We prove this proposition by the method of Morrey and Nirenberg. We
begin with some preparations. Let

@® = (—r+d, r—d), and

denote by x, () the characteristic function of
(—r+d+e, r—d—e).
We define @, ,.(1)=¢"'(/e)* x4 ,(t), where ¢(t)E C5((—r, 1)), #(0)=1, and |¢| <1
Let @, 5,(x)= ']1 Ba2¢(x;). Then @;, has the following properties;
$ipe=1 on @** =0 on Co’, [¢;,|<1, and

(32) sup| D26, /(x)| <C,e™®
where C, is a constant independent of ¢, d. We consider the norm;

Ne(<Dl>jV) = q}]g |[<Dl>jq)v“l.2((—r+z,r—e)xR) » J =0, 1/2a 1’ 3/2 )

where X,={0 € C5(RY); ®=1 on »'}. We note that N,(v)=||v||;2s). Then we
observe that for ue S(R),

(3.3) KD, B, o(x)lul | < Ce™ 2l
(3.4) IKDKDOY?, by, Cenlull < C e IKDDPul |+ e~ [l l}
3.5 KDV, el | < CHKD Pul |+ 7 #|ull} ,  and

(3.6) IKDDYPDy, 84,e(x0)1ul| < C {eHIKDD2ul |+~ [ul]}
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where C is a constant independent of d, ¢, u. (c.f. [2])
Let

2
E d,!,l(v) = p2=0 N, d+e(Dg<Dl>l/2 V)+Ngpe(x §<Dl>l/2D1 v,

Epveol?) = 33 Nured D)+ Nos oKDY

Ry1(v) = Ny(KD)2x§Dyv)+¢ 72N 4(xb Dov)
+ e !NLKDOxv)+6 732N, (xkv), and
Rd.o(") = Nd(ngov)’i’ e'lNd(xﬁv) .

Then we obtain

Lemma 3.2. Under the hypothesis of proposition 3.1, there are the constants
C; (j=1, 2) independent of d, ¢ such that for any ve C=(2),

(€3] B0 oS CL{ENy(PV)+eR, o(V)}, and
(3.8) ES/ZEd.e.l(v) S Co{e™2N (KDY Py)+ €N y(P)

2R, (V) +2 3T N(D)}
»=0

Proof. Let u=¢, (x)vin (3.1). We observe that

Nd+e(xg<Dl>u)£”x’6<Dl>¢d,eu” v Nyo(Dh) < ll¢d,eD€u|| >
Dg¢d,e = ¢d,!Dg+[Dg’ ¢d,e] ) and
Py = ¢d,!P+[D%’ ¢d,e]+ixgb(x)[Dl’ Bael -

Since [D3, @, .(x,)] vanishes on a neighborhood of the origin, (3.7) follows from
(3.2). Let d, be a fixed number and y~(x) =y (x,)¥~(x;) such that

YveCH(2), =1 on o%,
For d> d,, let u=y<D,>*¢, v in (3.1). We observe that

Ny o KD YPx§ D) < ||x(’§<D1>3/2¢d.,u| l
S|[PYL D Py, il | || xS DK DY, 918, el
N1 o DK Du) | [KDy 84,0 Diull|
<|IDAK DY, by ol |+ Py Doy ul |4 11K DY 00 DEJuI]
DD, = DS, 8. (x0)] [KDDY, 84 o(x1)1D+ 4, DK DO
for o=X;, and
PYKD Y8,y = [P, wKD D04 o +-P, KD DV18, o+ DD Py . .

Then, similarly as before, from (3.3) (3.5), it follows that (3.8) holds.

Lemma 3.3. We suppose the same hypothesis as proposition 3.1. Moreover
suppose that for s >2,
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uED'(2), Pu=fecr9).
Then theres exists a constant M independent of ¢, j such that for < j,

0t >3 N(1+j)e(D{>J <M.
0<r<2

Proof. By C=-hypoellipticity of P, we may assume that uC=(°). So it
suffices to show the estimate. We must prepare some consideration.

Let K=w° Then by hypothesis, there is the constants 4 and B such that
for any e N?,

sup | Dif| <A™ el and
K

sup | D%b| < B®*lal’,
K

Let je=d. Then, we observe that for |a|=j,

(3.9 eIN(D2f)< AT,
(3.10) e sup | D3| < B since <1,
d
(3.11) [P, DY) = ixt = (q)mbm_m’ and
o<r<a \I'
(.12) (f)rrj-ffg for 0<r<gq.

Moreover, since we may assume that supp g, ,C @?**~*'A, as the proof of lemma 2.4
in [2], we see that

(3.13) N, d+e(<D1>l/2u) < Cyfe 2N, d+e- es(KDDu)+e “SEN d+e-e‘/3(u)}

where C, is a constant independent of d, ¢, and u.
Then from (3.9), (3.13), it follows that

(3.14) eUHDN (DD )< C(A+1)A47H .
From (3.10), (3.11), (3.12), it follows that

(3.15) DN, (P, DIlu)< 33 BrHesa N (xhDI~ 1), and
r=1
(3.16) g UHIAN qz+e/z(<D1>lﬂ[P , Dflu)

9
< 33 CHAB TN o5 DT )

+Br+l(B+ l)es(q—’H)quﬂ/z—eS/a(ng‘f—H1 w} .

Here we used the fact that ||<Du||~||u||+]||Dyul|.
These inequalities (3.15) and (3.16), and lemma 3.2 imply the desired estimate.
In fact, we show this by induction on j. We assume that
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(3.17);‘ { Egzqﬂ)N(fﬂ)!o(Dngu)SMNZ > p=012,
ESTIN e (XKDODIW) S M? for ¢<j,

and

G.1 8),-_1 { egUTAN (j+3/2)eo(Dg<D1>llzD'xlu) M2
SN e, (ICDY DY) < M7

for p=0,1,2, and ¢<j—1.

In (3.8), let d=(2/3)e,(j+1), e —&,/2, and
p = ei@t3A-2pyy,

If s>2, we see that

s'+3/2=s(g+1), s'+1=s(g+1),
s'+1/2=>s(g+1/2), s'>sq,

where s'=s(q+3/2)—2. So, by (3.9), (3.14), (3.15), (3.16), we see that (3.17);
and (3.18);_, imply (3.18);, if

M >max{2B, (32B(B+1)C,C,), (C(A+1)), 4% .

For, from Schwartz inequality an (3.17);, it follows that since r#*~'<t* if k>1,
and ¢ is small positive,

e3“TVN, (j+1)eo(xg<Dx>lﬂDoD(f”) <2MHE,
and it is seen that
53(q+3ﬂ)N(j+1)eo(<D1>lﬂPD'llu) <2(B+ l)B2C3M‘1+2 é.‘(l) (B/M)r

<4(B+1)BC; ML (1/8) M52
and
SN e (PDI) S4B M < (1/8) M2

The similar argument as above show that (3.18); and (3.17); imply (3.17),,,
if
M > max{2B, 4% (12C)% .
Therefore, by induction, we arrive at the conclusion of lemma 3.3 with e =¢,.

Lemma 3.4. Under the same hypothesis of lemma 3.3, there exists a constant
M independent of j and ¢ such that for any p, q satisfying p+-q< j,

3.19) ePTON (DIDIw) < MP*Het
Proof. Instead of (3.7), (3.8), we start from the following inequality;

2 PNy 4o(Dht) < C{eN(Pu)+ e N (Do) + N (u)} .
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Then, by the similar argument in the previous lemma, from the result of lemma
3.3 it follows that (3.19) holds.

Proof of proposition 3.1. Let ej=d. Then, from (3.19), it follows that for

[| DS DIull 208 < N(DEDI) < j9d I MP*+ (s>2),

which implies that u is in 7®(»?). Combining this with the remark in the below
of proposition 3.1, we obtain proposition 3.1.

4. Proof of theorem 3.

In this section, we consider the case k=1, and shall prove that for s>2, P,
given in the section 1, is 7-hypoelliptic in a neighborhood of the origin. It suf-
fices to show that if u&'(2), and Puer®(w), s>2, then uer*)(w), where 2
and o are the neighborhoods of the origin such that 2D w.

Let X=(x,, -+, X,_,), x'=(xy, **-, X,), and x”"=(x,, **+, x,_,), and denote their

dual variables by £, &', £”, respectively. Define 7{(2) by
{usP'(2); for any open sets ¥ CR", and W CR such that V'x WC &, and
any v & Cy(W), the distribution uy on V given by

<u4” ¢> = <us ¢(i)1p(xn)>
belongs to r®(V)},

and also define 7'5,‘")(!)), similarly. Then, since there exists a constant C such that
for any e, g, and |£| > |&,|%, xe8

| P& (x, &)1/1p(x, &) S C™PHlal (BP1+[E)7™,
from the result of [5], it follows that
uer;f/z)(l)) if rP(@)eu.
So, in order to prove theorem 3, it suffices to show

Proposition 4.1. Let uc&'(2), and Pu=f€r®(w) (2Dw). If s=>2, then
Sor any neighborhood wy=w of the origin, there are the constants C and L such that
for any ¢ = Cq(w,),

4.1) [<D%u, 82| <C**(al)’| o],
where |¢]|,= sup (S | DB ¢ | %dx)'7 .
IBI<T %

We begin with some preparations. By Fourier transformation with respect
to x’, or x, P is transformed into
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Pl = Dil+ !f”lz—*—ixofn 5 or
Py, = iquEO-l‘ |E|2 .
Let A(z) and Bg(z) are the linearly independent solution of the equation
(—(dJdzyP+2)V =0
such that
A@R)~(1)2\/ T )z Ve 21

as z—>oo in{|argz| <z}, and for o=-exp[2zi/(k+2)],

A(oz) if £,>0

Bi() = {A(a'lz) if £,<0.

We denote by W; the wronskian of {A(z), Bs(z)}, and define the operator E on
S(Rn+l ) by ’

Bf e €)= {7 BGro 30, €700 €0, (0, €) = [ et x0ax),

(€,)PWE A(2(xo, €))Be(z(yo, €))  if x> o,

E s V0 ) =
(xo yo 5) iE(yoy xo’ 6’) lf x0<y09

where z(t, £')=t(i&,)'*+(i€,)"%*|£”|%. Here we take a branch such that z'” is
real if z>0.
Let us define another operator H on S(R"**!) by

#fe) = | HEw m €0, €2y, 7@ = | et p0,

&t exp (=& E —7°)37 4 1€ 1360 —0)])

if £,>0,&>7,,
0 if £,>0, &<y,
0 if £,<0,&>7,
& exp (=& [(E8—m0)3 7+ 1€ |6 —mo))

if £,<0, &<<n,.

H(EO, o> 5,) = .ﬁ

Now, we consider the equation
4.2) Pu=f,

where f€S(R"™) such that f(t, £,)=0 if |£,|<1. We observe that if Pu=0,

ue S(R™), then u=0, since (P;7, 1)=0 leads to 0=\|&|2|%|%dé. So, the solu-
tion u of (4.2) is uniquely given by ’

43) wx) = S e (EF) X, ENVQ2x)"dE’,  or
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(44) utx) = | ety @) @my e

We need some properties about E and H.

Lemma 4.2. If |x,—y,| =0>0, then there exists a constant ¢>0 such that
4.5) | E(xo, o, €)| < Cte| &R exp (—e|£,72])

as |&,|—>eo.

Proof. We consider the case x,>y,. In the contrary case the similar argu-
ment hold, so we omit this. When both z(x,, £) and z(y,, &) tend to infinity, we

have
E(xy, ¥y, E)~Cte ;73 {z(xy, E)z(3p,6 W}~
X exp {—(2/3)(z(x0, €V —2(yo, €'VP)}
~Cte ;134 ” }"1/4

xexp (— [ " Vig i 1€
730

where Re/& 1+ 7[> 0. When z(x,, y,,§') tends to infinity but z(y,, &) is
bounded, we observe that

E(xq, yo, §')~Cte &5 YPz(xy, )V exp (—(2/3)z(xy, 7)),

and in this case, if |x,—y,|=>0>0 and |£,|—>o0, then |x,| >8/2>0. So, these
consideration lead to (4.5).

Lemma 4.3. Let &, =t+io\/|¢,|, 1<m<n—1. Then for |t|<|E,|, we
have, uniformly in t,

[ 1HG 10 91dn,. and [ HEom €)1,
< C|&* R exp (Co®|E)7]),
where C is a constant independent of p.
Proof. We observe that there exists constant C,>0 such that
[H| < exp (—Col & ' €o—n0 [*4-0%&—, ) .
Let [£,;1%](§,—mn)=u. Then, when &,>0,
1= m, €)1 deg< [ exp (—(compa e wEzsa
Let u=v0&Y°Cy%. Then,
1=0Cs 7 | exp (CRARE(— (073 + )iy
~OCTEEEN 7 exp ((2/3)0°C5 /)N 1/(C; o% 177)
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as §,—>oo. When £,<0, the similar argument holds. So, we obtain the half of
lemma. As for the other half of this lemma, we can prove similarly as above.

Q.E.D.

Lemma 4.4. For |t| <o\/|E&,|, we have, uniformly in t,

(4'6) I‘fo_ﬂo I ? I Dq,, | {H(fo, 7os E”+it0ma fn) I f,,,=£,,} |
SC3glE T exp (— &=l 1€,1/4)  for any g,

where 0,,;=(d;)1<j<n-1 With d;=0,, ;, 1<m<n—1, 8, ; is a Kronecker’s &)

Proof. Writing H(Eo, o, € +it0n, £,)|¢, -, =Ei"* exp (—h(Eo, 70, 1, £,)), We
observe that

—Reh (&g, 70, 8, E)< =37 E 73| 1€,171—1/21€,| |€&—n,],
IDg,,h(EO’ 770’ t, 6;1)' ch+lq'{3_llfg_ﬂg| IE,,l_l
+(1/2)[Eo—mo| €41} €177

So, since x’e™*< j!, for x>0, (4.6) follows from the well known fact that

. k
Drte @} =ty o CUETT (oo
Iy ool .

k
where X} ijrP=a, 33i;=i, r¥ =0, and f;=D1f.
j=1

Lemma 4.5. For a measurable function K(t, s) on R*, suppose that

J B} | K(¢, s)|dt, and g , |K(t,s)|ds< M. Then the integral operator K given by
R R
Ku = S K(t, s)u(s)ds
Rd

is a bounded operator on L*(R?) with norm<M.
This lemma is well-known. So we omit its proof.
Proof of proposition 4.1. Let y€r®(R) such that
0<z<1, x2() =1 if [t|=2, and =0 if [¢|<I.
Then we see that for ¢ € C5(@,),

(—DXDLu, > = x(D,)u, D; >+<(1—2(D,,)u,Di 6>
=I+1I.

Since 1—x(D,) is a regularizing operator with respect to x,, we have
(1—x(D,, ))uer(z)(wo) So it suffices to show that there exist constants C,, Cj,
and L such that for any ¢ Ci(w,), |I| <C,Clg¥|#].. (s=0).

Let v &8 such that Py =g, where g =x(D,,)D} ¢. Then we observe that
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1=Lu, '"Py>=f, ¥, and
v = | ¥ B9 (v, €)@ e
Let @’ is a neighborhood of the origin such that
wCo'Cw ,
and h€C§ (') such that h=1 on w,. Then, I is written by

I =<, v>+A=hf, > =J+J".

In view of hif €r® ("), we see that

J = DBy, )0+ 1€ 1)
X D (1 =4V (hf) (x)b(y)dxdydé' (2z) ™" .
Let N=qg+[n/2]4+1. Then this representation implies that
[T < GCllg!) 18], -

Next, we consider J'. We observe that, since f&'(2), there exists a con-
stant L such that f= 33 Dffp(x), where fa(x)e LA(R"*"), with support contained
IBISL

in some compact set, from which it follows that
I =3 (=1 fa(x), D=y (x)}> = 33 Jg .
IBIZE IBISE

We note that suppkzNsuppg=¢, so that we can take a partition of unity satis-
fying that

3 xix) = 1, 1;ECF(R"™),

supp x; is sufficiently small such that if xEw,Nsupp x; and yEsupp(1—h)N
supp¥,, then the one of the following cases holds:

“4.7-1) | Xo—yo| =0>0,
4.7-2) | Xy,—y,| =06>0
(4.7-3) for some m,| <m<n—1, |x,—p,| =06>0, and |x,—y,|<5/2.
In view of ker’P=0 in &S, we have the following representations;
J = ;2_73 Jiks

where for ¢,=2,¢ and f;=x;f(1—h),

Ty = | D 1 YRG0, 1o, —E N SV Iy e d2m) ™



398 Takashi Okaji
or = S dCIOEREBU(E 7, —&)e vt g, (p)fi(x)dydn,dEdx(2m) "

where the integration is carried in its order, from left to right. We note that,
by the construction of {x,}, on the support of the integrand of J;,, one of (4.7)
holds.

So, we investigate J;,, case by case. In the case (4.7-1), we take the first
representation for J;,. Then, from lemma 4.2, it follows that there exists a con-
stant Cg depending only on 3, such that

1,4 < [161718, 17752 120 exp (—e €, 1'7)
X((L—=47)""1*78,) () (x)dyd€ 'dx(2x) ™"
< C™MU@W bel g4l filo s
where <&">=(1+1£" |2,
In the case (4.7-2), we take the second representation for J;, since it is diffi-
cul to estimate D*E. We note that £f= ) (’f °)(€,—7,)"7807". So, the integ-

Y<Bo
ration by parts with respect to £, implies that

T = 33 (20) [ =y 70 DY Ao heEar 0
X (1—=d5)" DDy )P0~ "8, y)f(x)dydnydE dx(2z) ™" ,
where K/, 70, ¥, q) = EBFI(E)H (&, 1, —E&)e 0k
From lemma 4.4, it follows that for N=p8,4+q-+[n/2]+1, on the support of H,

D?{' {(fo_ﬂo)yhlf(‘sm %05 Vs q)}
1 . .
— 51 N pi (sl x(E,)DE HE 10, —€) | Eg—mol”

welr=m k)

<CEPRED T exp (—(1/4)[So—o| [€4]) -

So, by Parseval equality and lemma 4.5, we have
Bo e
54l < Syomcgrgrd [ <oy ey | et
; R .

X | B 115 14tur11 | il o -

Lastly, we consider the case (4.7-3). We also take the second representa-
tion for J;,. Let @(,,¢,) be a function such that =1 if |£,|>]¢,| and =0 if
|€,]1<<|&,]. Then,

ik = Se" 1O he (&g, Nor Yy PO (E s €PN (X)dydnydEdx(2m) ™™
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+ [ 0 hy (1 -8,V (dydndedn(am)
= K+K'.
As for K, the integration by parts with respect to £, leads to
K= [ Gumya) e 2D ODE e, 1o, 3, DBOV)
X dydn,dédx(2r)™"
[ Gru—pa) i heics=20 DY ) ey
X dEyeoodE ,y_ dE iy dE ,dx(2m) ™1

= K,+K,, where D hy = [Dfheinzl .

_

k=0

Since on the support of @, |£,,| V< |&,| ¥ and for some éﬁ, e>0,
| DY hy | S CFHINY €, 7 exp (—e ] Eg—o]*[ €47
, in the same way as case (4.7-2), we obtain
K| <C™q | 84| 5 142n ] fo -
On the other hand, since if ,,=+ ¢, ],
|0/8€,{i<x—y, £D} | =6/2>0,
by the integration by parts with respect to &£,, we have
| K| < CE*q! | ¢y Biaan | filo -

Now, we consider K'. To treat this, we use a complex integral with respect
to £,. We may assume that x,,—y,>0. In the contrary case, the similar argu-
ment holds. Then,

K= e Phy(e m v, BV

+ SI"{ ’ bdu
+ Sr”{ ! }d,u
=L+L'+L",

where du=dydnd¢ ,d&y-+-d¢,,_\d¢,,\++-dE ,dx(2x)™*"!, and the paths are taken as
follows; for 0>0,

T = {&, = —I&,]+it; 0<r<oV/[¢,|}

I = {£, =t+ioV]E,]; — & 1<t<|&,|}
T = {6, =&, +it; oV [E,[=1>0} .
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Since if {,,&T or I'”,
18/6¢,i{x—y, £>]=8/2>0,
by lemma 4.4, the integration by parts with respect to &, leads to
LI+ L7 <CE"q! 84l 1A 12l flo -
On the other hand, we observe that for £,,&T",
KX —Ym> € = KX —Ym, D— (X0 —2m)oV/ [E,].

So, from lemma 4.3, it follows that if p is sufficiently small, there are the constant
e and C>0 such that

L1 <O | (et (e, 1€, 7P dEY 64 5 gl o
which implies that for some Cg,

IL,Ich+lq!2'¢k||§l+2n1fj|0 .

Summing up the above argument, we obtain (4.1) Q.E.D.

5. Proof of theorem 4.
We use the Hérmander-Métivier inequality as follows;

Lemma 5.1. If P is r-hypoelliptic in a neighborhood of the origin, then for
any sufficiently small, neighborhood w'&w of the origin, there exist constants C and
L such that for any u&e C*(w), and any [E N.

(5-1) {fu|2<",HD‘:UHZLZ(N/)}wSCU{,E:ls(l—I“D”DfP“HLZ(w)+(/!)s||ul|L2(w>} .

Proof. P has a right inverse in L*(2) if £ is small. So, (5.1) follows from
[6] (c.f. p. 112 in [3] and [7]).

Proposition 5.2. [If there exists a non-zero complex number 2 such that the
equation {P(t,&’, D) |¢—q0,.0,-n} V(t)=0:

(5.2) {D?—it*} v(t) = —2%u(t)

has a non-trivial solution in LX(R), then for | <s<<k+2, P is not r-hypoelliptic
in any neighborhood of the origin.

Proof. Let ¥(t) be a non-trivial solution in LAR) of (5.2.) Then, we note
that v C=(R). For a large parameter p, let V(x, o) =v(0x,)exp (iix;0 —ip**2x,).
Then, this function satisfies the equation
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PV = (5 D%, +ixiD, W(x, 0) = 0.
j=0

Moreover, we observe that for any N EN,

(5.3) | DY V(%, 0)| Zcp®PV | and

(5.4) S | V(x, 0)|2dx<c'p™ e,

where ¢, ¢/, 8 are the positive constants independent of o, N, and X=p"'y such
that w(y)=0.
Let u=V(x, o) in (5.1). Then, from (5.3), (5.4) it follows that

cp(k+2)(l—[n/2]—l) S CLI(“)SC'p—leBP ,

which implies that
1<ce'Cexp (Ilog L+Islog I4+00—(k+2) log p+[n/2] (k+5) log o) .

In the last inequality, let o=/ and /—+co. Then, if s<<k-+2, the right hand side
of it tends to 0, which leads to a contradiction. Q.E.D.

Proof of theorem 4. We claim that the condition of proposition 5.2 is satisfied
if k=3 or even number when n>2. First, we consider the case k=3, n>2. Let

S = {z€C; |argz|<=/5}, and S = {z€C; 3z/5< argz<n=} .

From the result of Y. Sibuya [9]. Chap. 6, it follows that there exist the non-zero
complex number # and the non-trivial solution V(z) of equation

(Di+2)V = uV

such that V(z) is exponentially decreasing as z—oco in § and S’. So, it is easily
seen that V(te ™) satisfies the condition of proposition 5.2 with —A%=ue™5,

Secondly, we consider the case that k is even and n>2. Let S,={z&C;
largz| <z/(k+2) and S,={z€C;|argz—=| <z/(k+2)}. Then, for each u, there
exists a fundamental system of solution {V'¥} of the equation

(D -2V = uV

such that V'} is exponentially increasing and V; is exponentially decreasing as
z—o0 in §;, j=0,1. On the other hand, it is well known that the operator

—(9/8y)*+y*  on LAR)

has infinitely many eigenvalues if k is even. Let 4 be a non-zero eigenvalue and
V be its eigenfunction belonging to L:(R). We note that V is an entire function.
Since the real line R is properly contained in S; (j=0, 1), {V, V;} is linearly de-
pendent, for j=0, 1, which implies that V(te~™/®+9) gsatisfies the condition of
proposition 5.2 with —2%=pue™/*+2),
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Therefore, we can use proposition 5.2 and obtain theorem 4.

Remark. For A€ R, the condition of proposition 5.2 is never satisfied. This
is connected to C=-hypoellipticity of P. Of course, for the case n=1 (i.e. 2=0)
and k=1, the condition of proposition is not satisfied.
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