On the Gevrey index for some hypoelliptic opertors

By

Takashi Окал

1. Introduction.

Let P be a partial differential operator with analytic coefficients in \mathcal{Q} which is an open set in \mathbb{R}^d . For $x \in \mathcal{Q}$, we say P be $r^{(s)}$ -hypoelliptic in a neighborhood of x if there exists a neighborhood ω of x such that the following implication holds; for any open subset $\omega' \subset \omega$, any $u \in \mathcal{D}'(\omega)$

$$Pu \in \gamma^{(s)}(\omega') \Rightarrow u \in \gamma^{(s)}(\omega')$$
.

Here $r^{(s)}(\omega')$ means the Gevrey class of order s in ω'

 $f(x) \in \tau^{(s)}(\omega')$ iff $f(x) \in C^{\infty}(\omega')$ and satisfies ${}^{\nu}K \equiv \omega', {}^{g}C_{0}, {}^{g}C_{1}, {}^{\nu}\alpha \in \mathbb{N}, \sup_{\kappa'} |D_{x}^{\alpha}f(x)| \leq C_{0}C_{1}^{|\alpha|}(\alpha!)^{s}$.

Our concern is to determine the smallest numbers for P to be $r^{(s)}$ -hypoelliptic in a neighborhood of x. Let

 $\Gamma_x(P) = \{s \in \mathbf{R}; P \text{ is } r^{(s)}\text{-hypoelliptic in a n.b.d. of } x\} \text{ and } r_x(P) = \inf_{s \in \Gamma_x(P)} s \text{ which}$ we call the Gevrey index for P. Here we define $r_x(P) = \infty$ if $\Gamma_x(P) = \phi$. We think that in general, $\Gamma_x(P)$ is a closed connected set.

For the operator with constant coefficients and the semi-elliptic operator with variable coefficients, $r_x(P)$ has been determined by L. Hörmander [3], and T. Ōkaji [7]. In this paper, we consider the following simple operator;

$$P = \sum_{j=1}^{n-1} D_{x_j}^2 + i x_0^k D_{x_n}, \quad D_{x_j} = (1/i) \frac{\partial}{\partial x_j} \qquad (j = 0, 1, \dots, n),$$

where k is a positive integer.

From the result of [7], it follows that $r_0(P) \ge 2$ since $r_x(P) \ge 2$ for $x_0 \ne 0$. On the other hand, since P is viewed as an operator of Hörmander type; $\sum_j X_j^2 + X_0$, from the result of M. Derrdji and Ci. Zuily [1], it follows that $r_0(P) \le 2(k+2)$. But we have more sharp result for P as follows;

Received February 22, 1985

Theorem 1. $r_0(P) \leq k+2$. Theorem 2. When n=1, $r_0(P) \leq 2$. Theorem 3. When k=1, $r_0(P) \leq 2$. Theorem 4. When $n \geq 2$ and either k=3 or even number, $r_0(P) \geq k+2$. Corollary. $r_0(P) = \begin{cases} 2 (n=1 \text{ or } k=1) \\ k+2 (n \geq 2 \text{ and either } k=3 \text{ or even}) \end{cases}$

We conjecture that if $n \ge 2$ and $k \ge 2$, $r_0(P) = k+2$, but possibly for a technically reason, we must make a restriction on k.

The plan of this paper is as follows. In §2, we shall show theorem 1 with aids of the result of M. Durand [2]. In §3, we shall prove theorem 2 by the method of Morrey and Nirenberg. In §4, we shall construct a parametrix of P, when k=1, which implies theorem 3. In the last section, we shall prove theorem 4 by using the Hörmander-Métivier's inequality.

2. Proof of theorem 1.

In 1978, M. Durand has proved that if the partial differential operator Q of order 2 with coefficients belonging to $r^{(s)}(\mathcal{Q})$ satisfies the following estimate; for t>0, any $K \subseteq \mathcal{Q}$, and any $g \in C^{\infty}(\mathcal{Q})$, there exist constants $C_{K,t}$, $C_{K,t}(g)$ such that for any $u \in C_0^{\infty}(K)$,

(2.1)
$$\begin{cases} ||u||_t \leq C_{K,t} \{ ||Qu||_{t-a} + ||u||_0 \} \\ ||[Q, D_{x_j}]u||_t \leq C_{K,t} \{ ||Qu||_{t+1-b} + ||u||_0 \} , \quad j = 0, \dots, n , \text{ and} \\ ||[Q, g]u||_t \leq C_{K,t}(g) \{ ||Qu||_{t-b} + ||u||_0 \} , \end{cases}$$

where $C_{K,t}$, $C_{K,t}(g)$ are the constants depending uniformly on t when t is bounded, and

$$||u||_t^2 = \int (1+|\xi|)^{2t} |\hat{u}(\xi)|^2 d\xi$$

then for any $s \ge \max(1/b, 2/a)$, Q is $r^{(s)}$ -hypoelliptic in Q.

For our operator P, from the result of [8] (c.f. th.18) it follows that

$$\sum_{j=0}^{n-1} ||D_{x_j}^2 u||_t + ||\langle D_x \rangle^{2/(k+2)} u||_t \leq C_{K,t} \{||Pu||_t + ||u||_t\},\$$

which implies (2.1) with a=2/(k+2), b=1/(k+2) since for any $\varepsilon > 0$,

$$||u||_t \leq \varepsilon ||\langle D_x \rangle^{\sigma} u||_t + C_{\varepsilon,\sigma,t} ||u||_0 \quad \text{if} \quad t, \sigma > 0.$$

Therefore, applying the result of M. Durand to P, we conclude that for any $s \ge k+2$, P is $r^{(s)}$ -hypoelliptic in a neighborhood of the origin. This proves theorem 1.

3. Proof of theorem 2.

In this section, we consider the case n=1, and denote D_{x_j} by D_j . We observe that from the result of [4] or [8], it follows that for $u \in C_0^{\infty}(\mathcal{Q})$, (\mathcal{Q} is sufficiently small neighborhood of the origin),

(3.1)
$$\sum_{j=0}^{2} ||D_{0}^{j}u|| + ||x_{0}^{k}\langle D_{1}\rangle u|| \leq C ||Pu||,$$

where $\|\cdot\| = \|\cdot\|_0$ and $\sigma(\langle D_1 \rangle) = (1 + |\xi|^2)^{1/2}$.

So, in order to prove theorem 2, it suffices to show

Proposition 3.1. Let $P = D_0^2 + ix_0^k b(x) D_1$ satisfy (3.1), where *b* is a real-valued function belonging to $\tau^{(s)}(\Omega)$ and $b(0) \neq 0$. Then for any $s \geq 2$, *P* is $\tau^{(s)}$ -hypoelliptic in a neighborhood of the origin.

We note that for $x_0 \neq 0$, P is a semi-elliptic operator, so that if $u \in \mathcal{D}'(\mathcal{Q})$ and $Pu \in r^{(s)}(\omega)$, $\mathcal{Q} \supset \omega$, $s \geq 2$, then $u \in r^{(s)}(\omega \setminus \{x_0=0\})$. Hence it suffices to show that if $u \in \mathcal{D}'(\mathcal{Q})$ and $Pu \in r^{(s)}(\omega^0)$, $s \geq 2$, then $u \in r^{(s)}(\omega^0)$, where $\omega^0 = (-r, r) \times$ (-r, r), (r is a small positive number.)

We prove this proposition by the method of Morrey and Nirenberg. We begin with some preparations. Let

$$\omega^d = (-r+d, r-d)$$
, and

denote by $\chi_{d,e}(t)$ the characteristic function of

(3.2)

$$(-r+d+\varepsilon, r-d-\varepsilon)$$
.

We define $\tilde{\phi}_{d,2\mathfrak{e}}(t) = \varepsilon^{-1}\tilde{\phi}(t/\varepsilon) * \chi_{d,\mathfrak{e}}(t)$, where $\tilde{\phi}(t) \in C_0^{\infty}((-r,r))$, $\tilde{\phi}(0) = 1$, and $|\tilde{\phi}| \leq 1$ Let $\phi_{d,2\mathfrak{e}}(x) = \prod_{i=0}^{1} \tilde{\phi}_{d,2\mathfrak{e}}(x_i)$. Then $\phi_{d,2\mathfrak{e}}$ has the following properties;

$$\phi_{d,2\mathfrak{e}} = 1$$
 on $\omega^{i+2\mathfrak{e}}$, $= 0$ on $\mathcal{C}\omega^d$, $|\phi_{d,2\mathfrak{e}}| \le 1$, and
 $\sup |D_x^{\omega}\phi_{d,\mathfrak{e}}(x)| \le C_{\alpha}\varepsilon^{-|\omega|}$,

where C_{α} is a constant independent of ϵ , d. We consider the norm;

$$N_{\mathfrak{e}}(\langle D_1 \rangle^j v) = \inf_{\phi \in \mathfrak{x}_{\mathfrak{e}}} ||\langle D_1 \rangle^j \phi v||_{L^2((-r+\mathfrak{e},r-\mathfrak{e})\times \mathbf{R})}, \quad j = 0, 1/2, 1, 3/2,$$

where $X_{\mathfrak{e}} = \{ \boldsymbol{\Phi} \in C_0^{\infty}(\mathbf{R}^2); \ \boldsymbol{\Phi} = 1 \text{ on } \omega^{\mathfrak{e}} \}$. We note that $N_{\mathfrak{e}}(v) = ||v||_{L^2(\omega^{\mathfrak{e}})}$. Then we observe that for $u \in \mathcal{S}(\mathbf{R})$,

(3.3)
$$||[\langle D_I \rangle^{1/2}, \, \tilde{\phi}_{d,\varepsilon}(x_1)]u|| \leq C \varepsilon^{-1/2} ||u|| \,,$$

$$(3.4) ||\langle D_1 \rangle [\langle D_1 \rangle^{1/2}, \, \tilde{\phi}_{d,\varepsilon}(x_1)] u|| \le C \left\{ \varepsilon^{-1} ||\langle D_1 \rangle^{1/2} u|| + \varepsilon^{-3/2} ||u|| \right\}$$

(3.5)
$$||\langle D_1 \rangle^{1/2} \tilde{\phi}_{d,\mathfrak{e}}(x_1) u|| \le C \{||\langle D_1 \rangle^{1/2} u|| + \varepsilon^{-1/2} ||u||\}$$
, and

$$(3.6) ||\langle D_1\rangle^{3/2}[D_1, \tilde{\phi}_{d,\epsilon}(x_1)]u|| \le C \{\varepsilon^{-1}||\langle D_1\rangle^{1/2}u|| + \varepsilon^{-3/2}||u||\},$$

where C is a constant independent of d, ϵ , u. (c.f. [2]) Let

$$\begin{split} E_{d,\mathfrak{e},1}(v) &= \sum_{p=0}^{2} N_{d+\mathfrak{e}}(D_{0}^{p} \langle D_{1} \rangle^{1/2} v) + N_{d+\mathfrak{e}}(x_{0}^{k} \langle D_{1} \rangle^{1/2} D_{1} v) ,\\ E_{d,\mathfrak{e},0}(v) &= \sum_{p=0}^{2} N_{d+\mathfrak{e}}(D_{0}^{p} v) + N_{d+\mathfrak{e}}(x_{0}^{k} \langle D_{1} \rangle v) ,\\ R_{d,1}(v) &= N_{d}(\langle D_{1} \rangle^{1/2} x_{0}^{l} D_{0} v) + \varepsilon^{-1/2} N_{d}(x_{0}^{k} D_{0} v) \\ &\quad + \varepsilon^{-1} N_{d} \langle D_{1} \rangle^{1/2} x_{0} v) + \varepsilon^{-3/2} N_{d}(x_{0}^{k} v) , \quad \text{and} \\ R_{d,0}(v) &= N_{d}(x_{0}^{k} D_{0} v) + \varepsilon^{-1} N_{d}(x_{0}^{k} v) . \end{split}$$

Then we obtain

Lemma 3.2. Under the hypothesis of proposition 3.1, there are the constants C_j (j=1, 2) independent of d, ε such that for any $v \in C^{\infty}(\Omega)$,

(3.7) $\varepsilon^2 E_{d,\varepsilon,0}(v) \le C_1 \{ \varepsilon^2 N_d(Pv) + \varepsilon R_{d,0}(v) \}, \quad and$

(3.8)
$$\varepsilon^{5/2} E_{d,\mathfrak{e},1}(v) \le C_2 \{ \varepsilon^{5/2} N_d(\langle D_1 \rangle^{1/2} P v) + \varepsilon^2 N_d(P v) \\ + \varepsilon^{3/2} R_{d,1}(v) + \varepsilon^{5/2} \sum_{p=0}^2 N_d(D_0^p v) \} .$$

Proof. Let $u = \phi_{d,e}(x)v$ in (3.1). We observe that

$$\begin{split} N_{d+\mathfrak{e}}(x_0^k \langle D_1 \rangle u) &\leq ||x_0^k \langle D_1 \rangle \phi_{d,\mathfrak{e}} u|| , \quad N_{d+\mathfrak{e}}(D_0^b u) \leq ||\phi_{d,\mathfrak{e}} D_0^b u|| ,\\ D_0^b \phi_{d,\mathfrak{e}} &= \phi_{d,\mathfrak{e}} D_0^b + [D_0^b, \phi_{d,\mathfrak{e}}] , \quad \text{and} \\ P\phi_{d,\mathfrak{e}} &= \phi_{d,\mathfrak{e}} P + [D_0^2, \phi_{d,\mathfrak{e}}] + i x_0^k b(x) [D_1, \phi_{d,\mathfrak{e}}] . \end{split}$$

Since $[D_0^{\beta}, \tilde{\phi}_{d,\epsilon}(x_0)]$ vanishes on a neighborhood of the origin, (3.7) follows from (3.2). Let d_0 be a fixed number and $\psi(x) = \tilde{\psi}(x_0)\tilde{\psi}(x_1)$ such that

 $\psi \in C_0^{\infty}(\mathcal{Q}), = 1$ on ω^{d_0} .

For $d > d_0$, let $u = \psi \langle D_1 \rangle^d \phi_{d,e^V}$ in (3.1). We observe that

Then, similarly as before, from (3.3) (3.5), it follows that (3.8) holds.

Lemma 3.3. We suppose the same hypothesis as proposition 3.1. Moreover suppose that for $s \ge 2$,

Some hypoelliptic operators

$$u \in \mathcal{D}'(\mathcal{Q}), \quad Pu = f \in r^{(s)}(\overline{\omega}^0).$$

Then theres exists a constant M independent of ε , j such that for $q \leq j$,

$$\varepsilon^{s(j+2)} \sum_{0 \leq p \leq 2} N_{(1+j)e}(D_0^p D_1^q u) \leq M^{q+2}$$

Proof. By C^{∞} -hypoellipticity of P, we may assume that $u \in C^{\infty}(\omega^0)$. So it suffices to show the estimate. We must prepare some consideration.

Let $K = \overline{\omega^0}$. Then by hypothesis, there is the constants A and B such that for any $\alpha \in N^2$,

$$\sup_{\kappa} |D_x^{\alpha}f| \le A^{|\alpha|+1} \alpha!^s, \text{ and}$$
$$\sup_{\kappa} |D_x^{\alpha}b| \le B^{|\alpha|+1} \alpha!^s.$$

Let $j \in =d$. Then, we observe that for $|\alpha| = j$,

(3.9)
$$\varepsilon^{sj}N_d(D_x^{\alpha}f) \leq A^{j+1},$$

(3.10)
$$\varepsilon^{sj} \sup_{\omega^d} |D_x^{\alpha}b| \le B^{j+1} \quad \text{since} \quad \varepsilon j \le 1 ,$$

(3.11)
$$[P, D_1^q] = i x_0^k \sum_{0 \le r \le q} {\binom{q}{r}} D_1^r b D_1^{q-r+1}, \text{ and}$$

(3.12)
$$\binom{q}{r} r!^{s} j^{-jr} \leq 1 \quad \text{for} \quad 0 < r \leq q \, .$$

Moreover, since we may assume that $\operatorname{supp} \phi_{d,\epsilon} \subset \omega^{d+\epsilon-\epsilon^{s}/3}$, as the proof of lemma 2.4 in [2], we see that

$$(3.13) N_{d+\mathfrak{e}}(\langle D_1 \rangle^{1/2} u) \leq C_3 \{ \varepsilon^{s/2} N_{d+\mathfrak{e}-\mathfrak{e}^{s/3}}(\langle D_1 \rangle u) + \varepsilon^{-s/2} N_{d+\mathfrak{e}-\mathfrak{e}^{s/3}}(u) \}$$

where C_3 is a constant independent of d, ε , and u.

Then from (3.9), (3.13), it follows that

(3.14)
$$\varepsilon^{s(j+1/2)} N_{je}(\langle D_1 \rangle^{1/2} D_1^j f) \leq C_3(A+1)A^{j+1}$$

From (3.10), (3.11), (3.12), it follows that

(3.15)
$$\varepsilon^{s(q+1)}N_{qe}([P, D_1^q]u) \le \sum_{r=1}^q B^{r+1}\varepsilon^{s(q-r+1)}N_{qe}(x_0^k D_1^{q-r+1}u), \text{ and}$$

(3.16) $\varepsilon^{s(q+3/2)} N_{q\mathfrak{e}+\mathfrak{e}/2} (\langle D_1 \rangle^{1/2} [P, D_1^q] u)$

$$\leq \sum_{r=1}^{q} C_{3} \{ B^{r+1} \varepsilon^{s(q-r+2)} N_{q \ell + \ell/2 - \ell^{s}/3}(x_{0}^{k} D_{1}^{q-r+2} u) \\ + B^{r+1}(B+1) \varepsilon^{s(q-r+1)} N_{q \ell + \ell/2 - \ell^{s}/3}(x_{0}^{k} D_{1}^{q-r+1} u) \}$$

Here we used the fact that $||\langle D_1 \rangle u|| \sim ||u|| + ||D_1 u||$.

These inequalities (3.15) and (3.16), and lemma 3.2 imply the desired estimate. In fact, we show this by induction on j. We assume that

. . .

(3.17)_j
$$\begin{cases} \varepsilon_0^{s(q+1)} N_{(j+1)\varepsilon_0}(D_0^b D_1^q u) \le M^{q+2}, & p = 0, 1, 2, \\ \varepsilon_0^{s(q+1)} N_{(j+1)\varepsilon_0}(x_0^k \langle D_1 \rangle D_1^q u) \le M^{q+2} & \text{for } q \le j, \end{cases}$$

and

(3.18)_{j-1}
$$\begin{cases} \varepsilon_0^{s(q+3/2)} N_{(j+3/2)\varepsilon_0} (D_0^{\flat} \langle D_1 \rangle^{1/2} D_1^q u) \leq M^{q+3/2}, \\ \varepsilon_0^{s(q+3/2)} N_{(j+3/2)\varepsilon_0} (x_0^{\flat} \langle D_1 \rangle^{1/2} D_1^{q+1} u) \leq M^{q+3/2} \\ \text{for } p = 0, 1, 2, \text{ and } q \leq j-1. \end{cases}$$

In (3.8), let $d=(2/3)\varepsilon_0(j+1)$, $\varepsilon = \varepsilon_0/2$, and

$$v = \varepsilon_0^{s(q+3/2)-2} D_1^q u$$

If $s \ge 2$, we see that

$$s'+3/2 \ge s(q+1)$$
, $s'+1 \ge s(q+1)$,
 $s'+1/2 \ge s(q+1/2)$, $s' \ge sq$,

where s' = s(q+3/2) - 2. So, by (3.9), (3.14), (3.15), (3.16), we see that (3.17), and $(3.18)_{j-1}$ imply $(3.18)_j$, if

$$M \ge \max \{2B, (32B(B+1)C_2C_3)^2, (C_3(A+1))^2, A^2\}$$
.

For, from Schwartz inequality an $(3.17)_i$, it follows that since $t^{2k-1} \le t^k$ if $k \ge 1$, and t is small positive,

$$\epsilon_0^{s(q+1)} N_{(j+1)\epsilon_0}(x_0^k \langle D_1 \rangle^{1/2} D_0 D_1^q u) \leq 2M^{q+2},$$

and it is seen that

$$\begin{split} \varepsilon_0^{s(q+3/2)} N_{(j+1)\epsilon_0}(\langle D_1 \rangle^{1/2} P D_1^q u) &\leq 2(B+1) B^2 C_3 M^{q+2} \sum_{r \geq 0} (B/M)^r \\ &\leq 4(B+1) B^2 C_3 M^{q+2} \leq (1/8) M^{q+5/2} , \end{split}$$

and

$$\varepsilon_0^{s(q+1)} N_{(j+1)\varepsilon_0}(PD_1^q u) \leq 4B^2 M^{q+2} \leq (1/8) M^{q+5/2}$$

The similar argument as above show that $(3.18)_j$ and $(3.17)_j$ imply $(3.17)_{j+1}$ if

$$M \ge \max \{2B, A^2, (12C_1)^2\}$$
.

Therefore, by induction, we arrive at the conclusion of lemma 3.3 with $\epsilon = \epsilon_0$.

Lemma 3.4. Under the same hypothesis of lemma 3.3, there exists a constant M independent of j and ε such that for any p, q satisfying $p+q \leq j$,

(3.19)
$$\varepsilon^{s(p+q)}N_{i\epsilon}(D_0^p D_1^q u) \leq M^{p+q+1}$$

Proof. Instead of (3.7), (3.8), we start from the following inequality;

$$\sum_{p=0}^{2} \varepsilon^{p} N_{d+e}(D_{0}^{p} u) \leq C \left\{ \varepsilon^{2} N_{d}(P u) + \varepsilon N_{d}(D_{0} u) + N_{d}(u) \right\}$$

Then, by the similar argument in the previous lemma, from the result of lemma 3.3 it follows that (3.19) holds.

Proof of proposition 3.1. Let $\epsilon_j = d$. Then, from (3.19), it follows that for p+q=j,

$$||D_0^p D_1^q u||_{L^2(\omega^d)} \leq N_d(D_0^p D_1^q u) \leq j^{sj} d^{-sj} M^{p+q+1} \qquad (s \geq 2),$$

which implies that u is in $\tau^{(s)}(\omega^d)$. Combining this with the remark in the below of proposition 3.1, we obtain proposition 3.1.

4. Proof of theorem 3.

In this section, we consider the case k=1, and shall prove that for $s \ge 2$, P, given in the section 1, is $r^{(s)}$ -hypoelliptic in a neighborhood of the origin. It suffices to show that if $u \in \mathcal{E}'(\mathcal{Q})$, and $Pu \in r^{(s)}(\omega)$, $s \ge 2$, then $u \in r^{(s)}(\omega)$, where \mathcal{Q} and ω are the neighborhoods of the origin such that $\mathcal{Q} \supset \omega$.

Let $\tilde{x} = (x_0, \dots, x_{n-1}), x' = (x_1, \dots, x_n)$, and $x'' = (x_1, \dots, x_{n-1})$, and denote their dual variables by $\tilde{\xi}, \xi', \xi''$, respectively. Define $r_{\tilde{x}}^{(s)}(\Omega)$ by

 $\{u \in \mathcal{D}'(\mathcal{Q}); \text{ for any open sets } V \subset \mathbb{R}^n, \text{ and } W \subset \mathbb{R} \text{ such that } V \times W \subset \mathcal{Q}, \text{ and} any \ \psi \in C_0^{\infty}(W), \text{ the distribution } u_{\psi} \text{ on } V \text{ given by}$

$$\langle u_{\psi}, \phi \rangle = \langle u, \phi(\tilde{x})\psi(x_n) \rangle$$

belongs to $r^{(s)}(V)$ },

and also define $r_{x_n}^{(s)}(\Omega)$, similarly. Then, since there exists a constant C such that for any α , β , and $|\xi| \ge |\xi_n|^{1/2}$, $x \in \Omega$

$$|P_{(\beta)}^{(\alpha)}(x,\xi)| / |p(x,\xi)| \le C^{|\alpha+\beta|+1} \alpha! (\beta!)^2 (1+|\xi|)^{-|\alpha|},$$

from the result of [5], it follows that

$$u \in \tau_{\widetilde{x}}^{(s/2)}(\mathcal{Q}) \quad \text{if} \quad \tau_{x_n}^{(s)}(\mathcal{Q}) \in u$$

So, in order to prove theorem 3, it suffices to show

Proposition 4.1. Let $u \in \mathcal{E}'(\mathcal{Q})$, and $Pu = f \in r^{(s)}(\omega)$ $(\mathcal{Q} \supset \omega)$. If $s \ge 2$, then for any neighborhood $\omega_0 \subseteq \omega$ of the origin, there are the constants C and L such that for any $\phi \in C_0^{\infty}(\omega_0)$,

$$(4.1) \qquad |\langle D_{x_{u}}^{\alpha}u, \phi \rangle| \leq C^{\alpha+1}(\alpha!)^{s} |\phi|_{L},$$

where $\|\phi\|_{L} = \sup_{|\beta| \leq L} (\int |D_{\tilde{x}}^{\beta} \phi|^{2} dx)^{1/2}$.

We begin with some preparations. By Fourier transformation with respect to x', or x, P is transformed into

$$\begin{split} P_1 &= D_{x_1}^2 + |\xi''|^2 + i x_0 \xi_n , \quad \text{or} \\ P_2 &= i \xi_n D_{\xi_0} + |\tilde{\xi}|^2 . \end{split}$$

Let A(z) and $B_{\xi}(z)$ are the linearly independent solution of the equation

$$(-(d/dz)^2 + z)V = 0$$

such that

$$A(z) \sim (1/2\sqrt{\pi}) \cdot z^{-1/4} e^{-2z^{3/2}/3}$$

as $z \rightarrow \infty$ in { $|\arg z| < \pi$ }, and for $\sigma = \exp[2\pi i/(k+2)]$,

$$B_{\xi}(z) = \begin{cases} A(\sigma z) & \text{if } \xi_n > 0\\ A(\sigma^{-1}z) & \text{if } \xi_n < 0 \end{cases}.$$

We denote by W_{ξ} the wronskian of $\{A(z), B_{\xi}(z)\}$, and define the operator E on $S(\mathbf{R}^{n+1})$ by

$$E\hat{f}(x,\,\xi') = \int_{-\infty}^{\infty} E(x_0,\,y_0,\,\xi')\hat{f}(y_0,\,\xi')dy_0\,,\quad (\hat{f}(t,\,\xi') = \int e^{-ix'\xi}f(t,\,x')dx')\,,$$
$$E(x_0,\,y_0,\,\xi') = \begin{cases} (i\xi_n)^{-1/3}W_{\xi}^{-1}A(z(x_0,\,\xi'))B_{\xi}(z(y_0,\,\xi')) & \text{if } x_0 > y_0\,,\\ E(y_0,\,x_0,\,\xi') & \text{if } x_0 < y_0\,, \end{cases}$$

where $z(t, \xi') = t(i\xi_n)^{1/3} + (i\xi_n)^{-2/3} |\xi''|^2$. Here we take a branch such that $z^{1/3}$ is real if z > 0.

Let us define another operator H on $\mathcal{S}(\mathbf{R}^{n+1})$ by

$$H\widehat{f}(\xi) = \int_{-\infty}^{+\infty} H(\xi_0, \eta_0, \xi') \widehat{f}(\eta_0, \xi') d\eta_0, \quad \widehat{f}(\xi) = \int e^{-ix\xi} f(x) dx,$$

$$H(\xi_0, \eta_0, \xi') = \begin{cases} \xi_n^{-1} \exp\left(-\xi_n^{-1} [(\xi_0^3 - \eta_0^3) 3^{-1} + |\xi''|^2 (\xi_0 - \eta_0)]\right) & \text{if } \xi_n > 0, \xi_0 > \eta_0, \\ 0 & \text{if } \xi_n > 0, \xi_0 > \eta_0, \\ 0 & \text{if } \xi_n < 0, \xi_0 > \eta_0, \\ 0 & \text{if } \xi_n < 0, \xi_0 > \eta_0, \\ \xi_n^{-1} \exp\left(-\xi_n^{-1} [(\xi_0^3 - \eta_0^3) 3^{-1} + |\xi''|^2 (\xi_0 - \eta_0)]\right) & \text{if } \xi_n < 0, \xi_0 < \eta_0. \end{cases}$$

Now, we consider the equation

Pu = f,

where $f \in \mathcal{S}(\mathbf{R}^{n+1})$ such that $\hat{f}(t, \xi_n) = 0$ if $|\xi_n| \le 1$. We observe that if Pu = 0, $u \in \mathcal{S}(\mathbf{R}^{n+1})$, then u = 0, since $(P_2\hat{u}, \hat{u}) = 0$ leads to $0 = \int |\tilde{\xi}|^2 |\hat{u}|^2 d\xi$. So, the solution u of (4.2) is uniquely given by

(4.3)
$$u(x) = \int e^{ix'\xi'} (E\hat{f})(x,\xi')(2\pi)^{-n} d\xi', \quad \text{or}$$

Some hypoelliptic operators

(4.4)
$$u(x) = \int e^{ix\xi} (H\hat{f})(\xi) (2\pi)^{-n-1} d\xi$$

We need some properties about E and H.

Lemma 4.2. If $|x_0 - y_0| \ge \delta > 0$, then there exists a constant $\varepsilon > 0$ such that (4.5) $|E(x_0, y_0, \xi')| \le Cte |\xi_n^{-1/3}| \exp(-\varepsilon |\xi_n^{1/2}|)$

as $|\xi_n| \rightarrow \infty$.

Proof. We consider the case $x_0 > y_0$. In the contrary case the similar argument hold, so we omit this. When both $z(x_0, \xi)$ and $z(y_0, \xi)$ tend to infinity, we have

$$E(x_{0}, y_{0}, \xi') \sim Cte \, \xi_{n}^{-1/3} \{ z(x_{0}, \xi') z(y_{0}, \xi') \}^{-1/4} \\ \times \exp \{ -(2/3)(z(x_{0}, \xi')^{3/2} - z(y_{0}, \xi')^{3/2}) \} \\ \sim Cte \, \xi_{n}^{-1/3} \{ \qquad " \}^{-1/4} \\ \times \exp \left(- \int_{y_{0}}^{x_{0}} \sqrt{i\xi_{n}t} + |\xi''|^{2} dt \right)$$

where $\operatorname{Re}\sqrt{\xi_n t + |\xi''|^2} \ge 0$. When $z(x_0, y_0, \xi')$ tends to infinity but $z(y_0, \xi')$ is bounded, we observe that

$$E(x_0, y_0, \xi') \sim Cte \, \xi_n^{-1/3} z(x_0, \xi')^{-1/4} \exp\left(-(2/3) z(x_0, \xi')^{3/2}\right),$$

and in this case, if $|x_0-y_0| \ge \delta > 0$ and $|\xi_n| \to \infty$, then $|x_0| \ge \delta/2 > 0$. So, these consideration lead to (4.5).

Lemma 4.3. Let $\xi_m = t + i\rho\sqrt{|\xi_n|}$, $1 \le m \le n-1$. Then for $|t| \le |\xi_n|$, we have, uniformly in t,

$$\int_{-\infty}^{+\infty} |H(\xi_0, \eta_0, \xi')| d\eta_0, \quad and \quad \int_{-\infty}^{+\infty} |H(\xi_0, \eta_0, \xi')| d\xi_0$$

$$\leq C |\xi_n^{-4/3}| \exp(C\rho^3 |\xi_n^{1/2}|),$$

where C is a constant independent of ρ .

Proof. We observe that there exists constant $C_0 > 0$ such that

$$|H| \le \exp\left(-C_0 |\xi_n^-|^1| |\xi_0 - \eta_0|^3 + \delta^2 |\xi_0 - \eta_0|\right).$$

Let $|\xi_n^{-1/3}|(\xi_0 - \eta_0) = u$. Then, when $\xi_n > 0$,

$$I = \int_{-\infty}^{+\infty} |H(\xi_0, \eta_0, \xi')| d\xi_0 \le \int_0^{+\infty} \exp\left(-(C_0/3)u^3 + \delta^2 \xi_n^{1/3} u\right) \xi_n^{-2/3} du$$

Let $u = v \delta \xi_n^{1/6} C_0^{-1/2}$. Then,

$$I \leq \delta C_0^{-1/2} \xi_n^{-1/2} \int_0^{+\infty} \exp\left(C_0^{-1/2} \delta^2 \xi_n^{1/2} (-(v^3/3)+v)\right) dv$$

$$\sim \delta C_0^{-1/2} \xi_n^{-1/2} \sqrt{\pi} \exp\left((2/3) \delta^3 C_0^{-1/2} \xi_n^{1/2}\right) \sqrt{1/(C_0^{-1/2} \delta^3 \xi_n^{1/2})}$$

as $\xi_n \to \infty$. When $\xi_n < 0$, the similar argument holds. So, we obtain the half of lemma. As for the other half of this lemma, we can prove similarly as above. Q.E.D.

Lemma 4.4. For $|t| \leq \rho \sqrt{|\xi_n|}$, we have, uniformly in t,

(4.6)
$$|\xi_{0} - \eta_{0}|^{p} |D_{\xi_{n}}^{q}| \{H(\xi_{0}, \eta_{0}, \xi'' + it\theta_{m}, \xi_{n})|_{\xi_{m} = \xi_{n}}\} | \\ \leq C_{p}^{q+1}q! |\xi_{n}|^{-q-1} \exp(-|\xi_{0} - \eta_{0}||\xi_{n}|/4) \quad \text{for any } q,$$

where $\theta_{mj} = (d_j)_{1 \le j \le n-1}$ with $d_j = \delta_{m,j}$, $(1 \le m \le n-1, \delta_{i,j}$ is a Kronecker's δ)

Proof. Writing $H(\xi_0, \eta_0, \xi'' + it\theta_m, \xi_n)|_{\xi_m = \xi_n} = \xi_n^{-1} \exp(-h(\xi_0, \eta_0, t, \xi_n))$, we observe that

$$\begin{aligned} -\operatorname{Re}h\left(\xi_{0}, \eta_{0}, t, \xi_{0}\right) &\leq -3^{-1} \left|\xi_{0}^{3} - \eta_{0}^{3}\right| \left|\xi_{n}\right|^{-1} - \frac{1}{2} \left|\xi_{n}\right| \left|\xi_{0} - \eta_{0}\right|, \\ \left|D_{\xi_{n}}^{q} h(\xi_{0}, \eta_{0}, t, \xi_{n})\right| &\leq C^{q+1} q! \left\{3^{-1} \left|\xi_{0}^{3} - \eta_{0}^{3}\right| \left|\xi_{n}\right|^{-1} \\ &+ (1/2) \left|\xi_{0} - \eta_{0}\right| \left|\xi_{n}\right|\right\} \left|\xi_{n}\right|^{-q}. \end{aligned}$$

So, since $x^j e^{-x} \le j!$, for $x \ge 0$, (4.6) follows from the well known fact that

$$D_{x}^{\alpha} \{ e^{-f(x)} \} = \alpha ! \sum \frac{i!}{i_{1} ! \cdots i_{k} !} \frac{(-1)^{i} e^{-f}}{i!} \prod_{j=1}^{k} (f_{(\gamma^{(j)})} / r^{(j)} !)^{i_{j}}$$

where $\sum_{j=1}^{k} i_{j} r^{(j)} = \alpha$, $\sum i_{j} = i, r^{(j)} \neq 0$, and $f_{(\gamma)} = D_{x}^{\gamma} f.$

Lemma 4.5. For a measurable function K(t, s) on \mathbb{R}^{2d} , suppose that $\int_{\mathbb{R}^d} |K(t,s)| dt$, and $\int_{\mathbb{R}^d} |K(t,s)| ds \leq M$. Then the integral operator K given by $Ku = \int_{\mathbb{R}^d} K(t, s)u(s) ds$

is a bounded operator on $L^2(\mathbf{R}^d)$ with norm $\leq M$.

This lemma is well-known. So we omit its proof.

Proof of proposition 4.1. Let $\chi \in r^{(2)}(\mathbf{R})$ such that

$$0 \le \chi \le 1$$
, $\chi(t) = 1$ if $|t| \ge 2$, and $= 0$ if $|t| \le 1$.

Then we see that for $\phi \in C_0^{\infty}(\omega_0)$,

$$(-1)^{q} \langle D_{x_{n}}^{q} u, \phi \rangle = \langle \chi(D_{n}) u, D_{x_{n}}^{b} \phi \rangle + \langle (1 - \chi(D_{x_{n}})) u, D_{x_{n}}^{q} \phi \rangle$$
$$= I + I'.$$

Since $1-\chi(D_{x_n})$ is a regularizing operator with respect to x_n , we have $(1-\chi(D_{y_n}))u \in T_{x_n}^{(2)}(\omega_0)$. So it suffices to show that there exist constants C_0 , C_1 , and L such that for any $\phi \in C_0^{\infty}(\omega_0)$, $|I| \leq C_0 C_1^q q!^s |\phi|_L$. $(s \geq 0)$.

Let $\psi \in S$ such that ${}^{t}P\psi = g$, where $g = \chi(D_{x_n})D_{x_n}^{q}\phi$. Then we observe that

 $I = \langle u, {}^{t}P\psi \rangle = \langle f, \psi \rangle$, and

$$\psi(x)=\int e^{ix'\xi'}(Eg)(x',\,\xi')(2\pi)^{-n}d\xi'\,.$$

Let ω' is a neighborhood of the origin such that

$$\omega_0 \mathbf{C} \omega' \mathbf{C} \omega$$
,

and $h \in C_0^{\infty}(\omega')$ such that h=1 on ω_0 . Then, I is written by

$$I = \langle hf, \psi \rangle + \langle (1-h)f, \psi \rangle = J + J'$$

In view of $hf \in r^{(s)}(\omega')$, we see that

$$J = \int e^{i\langle x' - y', \xi' \rangle} E(x_0, y_0, \xi') (1 + |\xi'|^2)^{-N} \chi(\xi_n)$$

 $\times D^q_{x_n} (1 - d_{x'})^N (hf)(x) \phi(y) dx dy d\xi' (2\pi)^{-n}.$

Let N=q+[n/2]+1. Then this representation implies that

$$|J| \leq C_0 C_1^q (q!)^s |\phi|_0.$$

Next, we consider J'. We observe that, since $f \in \mathcal{E}'(\mathcal{Q})$, there exists a constant L such that $f = \sum_{|\beta| \leq L} D_{\beta}^{\beta} f_{\beta}(x)$, where $f_{\beta}(x) \in L^{2}(\mathbb{R}^{n+1})$, with support contained in some compact set, from which it follows that

$$J' = \sum_{|\beta| \leq L} (-1)^{\beta} \langle f_{\beta}(x), D_x^{\beta} \{ (1-h)\psi(x) \} \rangle = \sum_{|\beta| \leq L} J_{\beta}.$$

We note that $supph \cap supp \phi = \phi$, so that we can take a partition of unity satisfying that

$$\sum \chi_j(x) = 1, \chi_j \in C_0^{\infty}(\mathbf{R}^{n+1}),$$

 $\operatorname{supp} \chi_j$ is sufficiently small such that if $x \in \omega_0 \cap \operatorname{supp} \chi_j$ and $y \in \operatorname{supp} (1-h) \cap \operatorname{supp} \chi_k$, then the one of the following cases holds:

$$(4.7-1) \qquad |x_0 - y_0| \ge \delta > 0 ,$$

 $(4.7-2) \qquad |x_n - y_n| \ge \delta > 0$

(4.7-3) for some
$$m, 1 \le m \le n-1, |x_m - y_m| \ge \delta > 0$$
, and $|x_n - y_n| \le \delta/2$.

In view of ker ${}^{t}P=0$ in S, we have the following representations;

$$J=\sum_{j,k}J_{j,k}\,,$$

where for $\phi_k = \chi_k \phi$ and $f_j = \chi_j f(1-h)$,

$$J_{j,k} = \int D_x^{\beta} \{ e^{i\langle x'-y',\xi'\rangle} \chi(\xi_n) \xi_n^{q} E(x_0, y_0, -\xi') \} \phi_k(y) f_j(x) dy' dy_0 d\xi' dx (2\pi)^{-n} ,$$

or
$$= \int e^{i\langle x-y,\xi\rangle} \tilde{\xi}^{\tilde{\beta}} \xi_n^{\beta_n+q} H(\xi_0,\eta_0,-\xi') e^{i\langle y_0,\xi_0-\eta_0\rangle} \phi_k(y) f_i(x) dy d\eta_0 d\xi dx (2\pi)^{-n-1},$$

where the integration is carried in its order, from left to right. We note that, by the construction of $\{x_j\}$, on the support of the integrand of $J_{j,k}$, one of (4.7) holds.

So, we investigate $J_{j,k}$, case by case. In the case (4.7–1), we take the first representation for $J_{j,k}$. Then, from lemma 4.2, it follows that there exists a constant C_{β} depending only on β , such that

$$\begin{split} |J_{j,k}| &\leq \int |\xi|^{\beta} |\xi_{n}|^{q} \langle \xi'' \rangle^{-2|\beta''|-2n} \exp\left(-\varepsilon |\xi_{n}|^{1/2}\right) \\ &\times ((1 - \mathcal{A}_{x''})^{|\beta''|+n} \phi_{k})(y) f_{j}(x) dy d\xi' dx (2\pi)^{-n} \\ &\leq C^{q+1} (q!)^{2} |\phi_{k}|_{|\beta''|+n} |f_{j}|_{0} \,, \end{split}$$

where $\langle \xi'' \rangle = (1 + |\xi''|^2)^{1/2}$,

In the case (4.7-2), we take the second representation for $J_{j,k}$ since it is difficul to estimate $D^{\alpha}E$. We note that $\xi_0^{\beta} = \sum_{\gamma \leq \beta_0} {\beta_0 \choose \gamma} (\xi_0 - \eta_0)^{\gamma} \eta_0^{\beta_0 - \gamma}$. So, the integration by parts with respect to ξ_n implies that

$$J_{j,k} = \sum_{\gamma < \beta_0} {\beta_0 \choose \gamma} \int (1/(x_n - y_n)^N) e^{i\langle x - y, \xi \rangle} \langle \tilde{\xi} \rangle^{-2n} D_{\xi_n}^N \{ (\xi_0 - \eta_0)^{\gamma} h_{\xi'}(\xi_0, \eta_0, y, q) \} \\ \times (1 - \mathcal{A}_{\tilde{y}})^n D_{\beta''}^{y''}(D_{y_0})^{\beta_0 - \gamma} \phi_k(y) f_j(x) dy d\eta_0 d\xi dx (2\pi)^{-n-1} ,$$

where $h_{\xi'}(\xi_0, \eta_0, y, q) = \xi_n^{\beta_n + q} \chi(\xi_n) H(\xi_0, \eta_0, -\xi') e^{i \langle y_0, \xi_0 - \eta_0 \rangle}$.

From lemma 4.4, it follows that for $N = \beta_n + q + [n/2] + 1$, on the support of H,

$$D_{\xi_{n}}^{N} \{ (\xi_{0} - \eta_{0})^{\gamma} h_{\xi}(\xi_{0}, \eta_{0}, y, q) \}$$

$$= \sum_{k+i+j=N} \frac{N!}{i!j!k!} D_{\xi_{n}}^{i} (\xi_{n}^{\beta_{n}+q}) D_{\xi_{n}}^{j} \chi(\xi_{n}) D_{\xi_{n}}^{k} H(\xi_{0}, \eta_{0}, -\xi') |\xi_{0} - \eta_{0}|^{\gamma}$$

$$\leq C_{\beta}^{q+1} q!^{2} \langle \xi_{n} \rangle^{-2} \exp\left(-(1/4) |\xi_{0} - \eta_{0}| |\xi_{n}|\right).$$

So, by Parseval equality and lemma 4.5, we have

$$|J_{j,k}| \leq \sum_{\gamma=0}^{\beta_0} \delta^{-N} C_{\beta}^{q+1} q!^2 \{ \int \langle \xi \rangle^{-n} \langle \xi_n \rangle^{-2} d\xi \}^{1/2} \int_0^{+\infty} e^{-t/4} dt \\ \times |\phi_k|_{|\widetilde{\beta}|+[n/2]+1} |f_j|_0.$$

Lastly, we consider the case (4.7-3). We also take the second representation for $J_{j,k}$. Let $\Phi(\xi_m, \xi_n)$ be a function such that =1 if $|\xi_m| \ge |\xi_n|$ and =0 if $|\xi_m| < |\xi_n|$. Then,

$$J_{j,k} = \int e^{i\langle x-y,\xi\rangle} h_{\xi'}(\xi_0,\eta_0,y,q) \Phi(\xi_m,\xi_n) \Phi_k(y) f_j(x) dy d\eta_0 d\xi dx (2\pi)^{-n-1}$$

$$+\int e^{i\langle x-y,\xi\rangle}h_{\xi'}(1-\phi)\phi_k(y)f_j(x)dyd\eta_0d\xi dx(2\pi)^{-n-1}$$
$$=K+K'.$$

As for K, the integration by parts with respect to ξ_m leads to

$$K = \int (x_m - y_m)^{-N} e^{i\langle x - y, \xi \rangle} \Phi D_{\xi_m}^N h_{\xi'}(\xi_0, \eta_0, y, q) \phi_k(y) f_j(x) \times dy d\eta_0 d\xi dx (2\pi)^{-n-1} - \sum_{k=0}^{N-1} \int (x_m - y_m)^{-1-k} e^{i\langle x - y, \xi \rangle} \widetilde{D_{\xi_m}^k} h_{\xi'} \phi_k(y) f_j(x) dy d\eta_0 \times d\xi_0 \cdots d\xi_{m-1} d\xi_{m+1} \cdots d\xi_n dx (2\pi)^{-n-1} = K_1 + K_2, \text{ where } \widetilde{D_{\xi_m}^k} h_{\xi'} = [D_{\xi_n}^k h_{\xi'}]_{\xi_m}^{\xi_m - |\xi_n|}.$$

Since on the support of Φ , $|\xi_m|^{-N} \leq |\xi_n|^{-N}$ and for some \tilde{C}_{β} , $\varepsilon > 0$,

$$|D_{\xi}^{N} h_{\xi'}| \leq \tilde{C}_{\beta}^{N+1} N! |\xi_{m}|^{-N} \exp\left(-\epsilon |\xi_{0} - \eta_{0}|^{3} |\xi_{n}|^{-1}\right)$$

, in the same way as case (4.7-2), we obtain

$$|K_1| \leq C^{q+2} q! |\phi_k|_{|\widetilde{\beta}|+2n} |f_j|_0.$$

On the other hand, since if $\xi_m = \pm |\xi_n|$,

$$|\partial/\partial \xi_n \{i \langle x-y, \xi \rangle\}| \geq \delta/2 > 0$$
,

by the integration by parts with respect to ξ_n , we have

$$|K_2| \leq C_{\beta}^{q+1}q! |\phi_k|_{|\widetilde{\beta}|+2n} |f_j|_0.$$

Now, we consider K'. To treat this, we use a complex integral with respect to ξ_m . We may assume that $x_m - y_m > \delta$. In the contrary case, the similar argument holds. Then,

$$K' = \int_{\Gamma} e^{i\langle x-y,\xi\rangle} h_{\xi'}(\xi_0, \eta_0, y, q) \phi_k(y) f_j(x) d\mu$$

+
$$\int_{\Gamma'} \{ \qquad " \qquad \} d\mu$$

+
$$\int_{\Gamma''} \{ \qquad " \qquad \} d\mu$$

= $L + L' + L'',$

where $d\mu = dy d\eta_0 d\xi_m d\xi_0 \cdots d\xi_{m-1} d\xi_{m+1} \cdots d\xi_n dx (2\pi)^{-n-1}$, and the paths are taken as follows; for $\rho > 0$,

$$\begin{split} &\Gamma = \{\xi_m = -|\xi_n| + it; \ 0 \le t \le \rho \sqrt{|\xi_n|}\} \\ &\Gamma' = \{\xi_m = t + i\rho \sqrt{|\xi_n|}; \ -|\xi_n| \le t \le |\xi_n|\} \\ &\Gamma'' = \{\xi_m = |\xi_n| + it; \ \rho \sqrt{|\xi_n|} \ge t \ge 0\} \ . \end{split}$$

Since if $\xi_m \in \Gamma$ or Γ'' ,

$$|\partial/\partial \xi_n i\langle x-y, \xi\rangle| \geq \delta/2 > 0$$
,

by lemma 4.4, the integration by parts with respect to ξ_n leads to

 $|L| + |L''| \leq C_{\beta}^{q+1}q! |\phi_k|_{|\tilde{\beta}|+2n} |f_j|_0.$

On the other hand, we observe that for $\xi_m \in \Gamma'$,

$$i\langle x_m - y_m, \xi_m \rangle = i\langle x_m - y_m, t \rangle - (x_m - y_m)\rho \sqrt{|\xi_n|}.$$

So, from lemma 4.3, it follows that if ρ is sufficiently small, there are the constant ϵ and C>0 such that

$$|L'| \leq C \{ \int (e^{-\epsilon_{|\xi_n|^{1/2}} \langle \tilde{\xi} \rangle^{-2n} \chi(\xi_n) |\xi_n|^{q+\beta_n-3/4})^2 d\xi \}^{1/2} |\phi_k|_{|\tilde{\beta}|+2n} |f_j|_0,$$

which implies that for some C_{β} ,

 $|L'| \leq C_{\beta}^{q+1} q!^2 |\phi_k|_{|\widetilde{\beta}|+2n} |f_j|_0.$

Summing up the above argument, we obtain (4.1)

Q.E.D.

5. Proof of theorem 4.

We use the Hörmander-Métivier inequality as follows;

Lemma 5.1. If P is $r^{(s)}$ -hypoelliptic in a neighborhood of the origin, then for any sufficiently small, neighborhood $\omega' \Subset \omega$ of the origin, there exist constants C and L such that for any $u \in C^{\infty}(\omega)$, and any $l \in N$.

(5.1)
$$\{\sum_{|\alpha| \leq l} ||D_x^{\alpha} u||_{L^2(\omega')}^2\}^{1/2} \leq CL^l \{\sum_{|\alpha| \leq l} l^{s(l-|\alpha|)} ||D_x^{\alpha} P u||_{L^2(\omega)} + (l!)^s ||u||_{L^2(\omega)}\}.$$

Proof. P has a right inverse in $L^2(\mathcal{Q})$ if \mathcal{Q} is small. So, (5.1) follows from [6] (c.f. p. 112 in [3] and [7]).

Proposition 5.2. If there exists a non-zero complex number λ such that the equation $\{\hat{P}(t, \xi', D_t)|_{\xi=(\lambda,0,\cdots,0,-1)}\} v(t)=0$:

(5.2)
$$\{D_t^2 - it^k\} v(t) = -\lambda^2 v(t)$$

has a non-trivial solution in $L^2(\mathbf{R})$, then for $1 \le s < k+2$, P is not $r^{(s)}$ -hypoelliptic in any neighborhood of the origin.

Proof. Let v(t) be a non-trivial solution in $L^2(\mathbf{R})$ of (5.2.) Then, we note that $v \in C^{\infty}(\mathbf{R})$. For a large parameter ρ , let $V(x, \rho) = v(\rho x_0) \exp(i\lambda x_1 \rho - i\rho^{k+2} x_n)$. Then, this function satisfies the equation

Some hypoelliptic operators

$$PV = \left(\sum_{j=0}^{n-1} D_{x_j}^2 + i x_0^k D_{x_n}\right) V(x, \rho) = 0.$$

Moreover, we observe that for any $N \in \mathbb{N}$,

(5.3)
$$|D_{x_n}^N V(\bar{x}, \rho)| \ge c \rho^{(k+2)N}$$
, and

(5.4)
$$\int_{\omega} |V(x,\rho)|^2 dx \leq c' \rho^{-1} e^{\delta \rho},$$

where c, c', δ are the positive constants independent of ρ , N, and $\bar{x} = \rho^{-1}\bar{y}$ such that $v(\bar{y}) = 0$.

Let $u = V(x, \rho)$ in (5.1). Then, from (5.3), (5.4) it follows that

$$c\rho^{(k+2)(l-[n/2]-1)} \leq CL^{l}(l!)^{s}c'\rho^{-1}e^{\delta\rho}$$

which implies that

$$1 \le c^{-1} c' C \exp(l \log L + ls \log l + \delta \rho - (k+2)l \log \rho + [n/2](k+s) \log \rho).$$

In the last inequality, let $\rho = l$ and $l \rightarrow +\infty$. Then, if s < k+2, the right hand side of it tends to 0, which leads to a contradiction. Q.E.D.

Proof of theorem 4. We claim that the condition of proposition 5.2 is satisfied if k=3 or even number when $n\geq 2$. First, we consider the case k=3, $n\geq 2$. Let

$$S = \{z \in C; |\arg z| < \pi/5\}$$
, and $S' = \{z \in C; 3\pi/5 < \arg z < \pi\}$.

From the result of Y. Sibuya [9]. Chap. 6, it follows that there exist the non-zero complex number μ and the non-trivial solution V(z) of equation

$$(D_z^2 + z^3)V = \mu V$$

such that V(z) is exponentially decreasing as $z \to \infty$ in S and S'. So, it is easily seen that $V(te^{-\pi i/10})$ satisfies the condition of proposition 5.2 with $-\lambda^2 = \mu e^{\pi i/5}$.

Secondly, we consider the case that k is even and $n \ge 2$. Let $S_0 = \{z \in C; |\arg z| < \pi/(k+2) \}$ and $S_1 = \{z \in C; |\arg z - \pi| < \pi/(k+2)\}$. Then, for each μ , there exists a fundamental system of solution $\{V_i^{\pm}\}$ of the equation

$$(D_z^2 + z^k)V = \mu V$$

such that V_j^+ is exponentially increasing and V_j^- is exponentially decreasing as $z \rightarrow \infty$ in S_j , j=0, 1. On the other hand, it is well known that the operator

$$-(\partial/\partial y)^k + y^k$$
 on $L^2(\mathbf{R})$

has infinitely many eigenvalues if k is even. Let μ be a non-zero eigenvalue and V be its eigenfunction belonging to $L^2(\mathbf{R})$. We note that V is an entire function. Since the real line **R** is properly contained in S_j (j=0, 1), $\{V, V_j^-\}$ is linearly dependent, for j=0, 1, which implies that $V(te^{-\pi i/(2k+4)})$ satisfies the condition of proposition 5.2 with $-\lambda^2 = \mu e^{\pi i/(k+2)}$.

Therefore, we can use proposition 5.2 and obtain theorem 4.

Remark. For $\lambda \in \mathbf{R}$, the condition of proposition 5.2 is never satisfied. This is connected to C^{∞} -hypoellipticity of *P*. Of course, for the case n=1 (i.e. $\lambda=0$) and k=1, the condition of proposition is not satisfied.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] M. Derridj and C. Zuily, Sur la régularité Gevrey des opértaeurs de Hörmander, J. Math. pure et appl., 52 (1973), 301-336.
- [2] M. Durand, Régularité Gevrey d'une classe d'opérateurs hypoelliptiques, J. Math. pure et appl., 57 (1978), 323-366.
- [3] L. Hörmander, Linear partial differential operators, (1963), Springer.
- [4] A. Menikoff, On hypoelliptic operators with double characteristics, Ann. Scuola. Norm. Sup. Pisa, (4) 4 (1977), 689–724.
- [5] T. Matsuzawa, Partially hypoelliptic pseudodifferential operators, Comm. Part. Diff. Eq., 9 (1984), 1059–1084.
- [6] G. Métivier, Une classe d'opérateurs non-hypoelliptiques analytiques, Indiana Univ. Math. J. 29 (1980), 823-860.
- [7] T. Okaji, On the lowest index for the semi-elliptic operators to be Gevrey hypoelliptic, J. Math. Kyoto Univ. 25 (1985), 693-701.
- [8] L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1977), 247-320.
- [9] Y. Sibuya, Global theory of second order linear ordinary equation with a polynomial coefficient, (1975) North Holland Math. Studies 18.