On the Gevrey index for some hypoelliptic opertors

By
Takashi $\bar{O}_{\text {KAJI }}$

1. Introduction.

Let P be a partial differential operator with analytic coefficients in Ω which is an open set in \boldsymbol{R}^{d}. For $x \in \Omega$, we say P be $\gamma^{(s)}$-hypoelliptic in a neighborhood of x if there exists a neighborhood ω of x such that the following implication holds; for any open subset $\omega^{\prime} \subset \omega$, any $u \in \mathscr{D}^{\prime}(\omega)$

$$
P u \in \gamma^{(s)}\left(\omega^{\prime}\right) \Rightarrow u \in \gamma^{(s)}\left(\omega^{\prime}\right) .
$$

Here $\gamma^{(s)}\left(\omega^{\prime}\right)$ means the Gevrey class of order s in ω^{\prime}

$$
\begin{aligned}
& f(x) \in \gamma^{(s)}\left(\omega^{\prime}\right) \quad \text { iff } \quad f(x) \in C^{\infty}\left(\omega^{\prime}\right) \text { and satisfies } \\
& { }^{v} K \subseteq \omega^{\prime},{ }^{a} C_{0},{ }^{a} C_{1},{ }^{v} \alpha \in \boldsymbol{N}, \sup _{K}\left|D_{x}^{\alpha} f(x)\right| \leqslant C_{0} C_{1}{ }^{|\alpha|}(\alpha!)^{s} .
\end{aligned}
$$

Our concern is to determine the smallest numbers for P to be $\gamma^{(s)}$-hypoelliptic in a neighborhood of x. Let
$\Gamma_{x}(P)=\left\{s \in \boldsymbol{R} ; P\right.$ is $\gamma^{(s)}$-hypoelliptic in a n.b.d. of $\left.x\right\}$ and $\gamma_{x}(P)=\inf _{s \in \Gamma_{x}(P)} s$ which we call the Gevrey index for P. Here we define $\gamma_{x}(P)=\infty$ if $\Gamma_{x}(P)=\phi$. We think that in general, $\Gamma_{x}(P)$ is a closed connected set.

For the operator with constant coefficients and the semi-elliptic operator with variable coefficients, $\gamma_{x}(P)$ has been determined by L. Hörmander [3], and T. Ōkaji [7]. In this paper, we consider the following simple operator;

$$
P=\sum_{j=1}^{n-1} D_{x_{j}}^{2}+i x_{0}^{k} D_{x_{n}}, \quad D_{x_{j}}=(1 / i) \frac{\partial}{\partial x_{j}} \quad(j=0,1, \cdots, n),
$$

where k is a positive integer.
From the result of [7], it follows that $\gamma_{0}(P) \geqslant 2$ since $\gamma_{x}(P) \geqslant 2$ for $x_{0} \neq 0$. On the other hand, since P is viewed as an operator of Hörmander type; $\sum_{j} X_{j}^{2}+X_{0}$, from the result of M . Derrdji and Ci . Zuily [1], it follows that $\gamma_{0}(P) \leqslant 2(k+2)$. But we have more sharp result for P as follows;

Theorem 1. $\quad r_{0}(P) \leqslant k+2$.
Theorem 2. When $n=1, r_{0}(P) \leqslant 2$.
Theorem 3. When $k=1, r_{0}(P) \leqslant 2$.
Theorem 4. When $n \geqslant 2$ and either $k=3$ or even number, $r_{0}(P) \geqslant k+2$.
Corollary. $\quad r_{0}(P)=\left\{\begin{array}{l}2(n=1 \text { or } k=1) \\ k+2(n \geqslant 2 \text { and either } k=3 \text { or even })\end{array}\right.$
We conjecture that if $n \geqslant 2$ and $k \geqslant 2, r_{0}(P)=k+2$, but possibly for a technically reason, we must make a restriction on k.

The plan of this paper is as follows. In §2, we shall show theorem 1 with aids of the result of M. Durand [2]. In $\S 3$, we shall prove theorem 2 by the method of Morrey and Nirenberg. In $\S 4$, we shall construct a parametrix of P, when $k=1$, which implies theorem 3. In the last section, we shall prove theorem 4 by using the Hörmander-Métivier's inequality.

2. Proof of theorem 1.

In 1978, M. Durand has proved that if the partial differential operator Q of order 2 with coefficients belonging to $\gamma^{(s)}(\Omega)$ satisfies the following estimate; for $t>0$, any $K \Subset \Omega$, and any $g \in C^{\infty}(\Omega)$, there exist constants $C_{K, t}, C_{K, t}(g)$ such that for any $u \in C_{0}^{\infty}(K)$,

$$
\left\{\begin{array}{l}
\|u\|_{t} \leq C_{K, t}\left\{\|Q u\|_{t-a}+\|u\|_{0}\right\} \tag{2.1}\\
\left\|\left[Q, D_{x_{j}}\right] u\right\|_{t} \leq C_{K, t}\left\{\|Q u\|_{t+1-b}+\|u\|_{0}\right\}, \quad j=0, \cdots, n, \quad \text { and } \\
\|[Q, g] u\|_{t} \leq C_{K, t}(g)\left\{\|Q u\|_{t-b}+\|u\|_{0}\right\}
\end{array}\right.
$$

where $C_{K, t}, C_{K, t}(g)$ are the constants depending uniformly on t when t is bounded, and

$$
\|u\|_{t}^{2}=\int(1+|\xi|)^{2 t}|\hat{u}(\xi)|^{2} d \xi
$$

then for any $s \geq \max (1 / b, 2 / a), Q$ is $\gamma^{(s)}$-hypoelliptic in Ω.
For our operator P, from the result of [8] (c.f. th.18) it follows that

$$
\sum_{j=0}^{n-1}\left\|D_{x_{j}}^{2} u\right\|_{t}+\left\|\left\langle D_{x}\right\rangle^{2 /(k+2)} u\right\|_{t} \leq C_{K, t}\left\{\|P u\|_{t}+\|u\|_{t}\right\}
$$

which implies (2.1) with $a=2 /(k+2), b=1 /(k+2)$ since for any $\varepsilon>0$,

$$
\|u\|_{t} \leq \varepsilon\left\|\left\langle D_{x}\right\rangle^{\sigma} u\right\|_{t}+C_{\varepsilon, \sigma, t}\|u\|_{0} \quad \text { if } \quad t, \sigma>0 .
$$

Therefore, applying the result of M . Durand to P, we conclude that for any $s \geq k+2, P$ is $r^{(s)}$-hypoelliptic in a neighborhood of the origin. This proves theorem 1 .

3. Proof of theorem 2.

In this section, we consider the case $n=1$, and denote $D_{x_{j}}$ by D_{j}. We observe that from the result of [4] or [8], it follows that for $u \in C_{0}^{\infty}(\Omega),(\Omega$ is sufficiently small neighborhood of the origin),

$$
\begin{equation*}
\sum_{j=0}^{2}\left\|D_{0}^{j} u\right\|+\left\|x_{0}^{k}\left\langle D_{1}\right\rangle u\right\| \leq C\|P u\| \tag{3.1}
\end{equation*}
$$

where $\|\cdot\|=\|\cdot\|_{0}$ and $\sigma\left(\left\langle D_{1}\right\rangle\right)=\left(1+|\xi|^{2}\right)^{1 / 2}$.
So, in order to prove theorem 2 , it suffices to show
Proposition 3.1. Let $P=D_{0}^{2}+i x_{0}^{k} b(x) D_{1}$ satisfy (3.1), where b is a real-valued function belonging to $\gamma^{(s)}(\Omega)$ and $b(0) \neq 0$. Then for any $s \geq 2, P$ is $r^{(s)}$-hypoelliptic in a neighborhood of the origin.

We note that for $x_{0} \neq 0, P$ is a semi-elliptic operator, so that if $u \in \mathscr{D}^{\prime}(\Omega)$ and $P u \in r^{(s)}(\omega), \Omega \supset \omega, s \geq 2$, then $u \in r^{(s)}\left(\omega \backslash\left\{x_{0}=0\right\}\right)$. Hence it suffices to show that if $u \in \mathscr{D}^{\prime}(\Omega)$ and $P u \in r^{(s)}\left(\omega^{0}\right), s \geq 2$, then $u \in r^{(s)}\left(\omega^{0}\right)$, where $\omega^{0}=(-r, r) \times$ $(-r, r),(r$ is a small positive number.)

We prove this proposition by the method of Morrey and Nirenberg. We begin with some preparations. Let

$$
\omega^{d}=(-r+d, r-d), \quad \text { and }
$$

denote by $\chi_{d, \mathrm{e}}(t)$ the characteristic function of

$$
(-r+d+\varepsilon, r-d-\varepsilon) .
$$

We define $\tilde{\phi}_{d, 2 \mathrm{e}}(t)=\varepsilon^{-1} \tilde{\phi}(t / \varepsilon) * \chi_{d, \mathrm{e}}(t)$, where $\tilde{\phi}(t) \in C_{0}^{\infty}((-r, r)), \tilde{\phi}(0)=1$, and $|\tilde{\phi}| \leq 1$ Let $\phi_{d, 2 \mathrm{e}}(x)=\prod_{i=0}^{1} \tilde{\phi}_{d, 2 \mathrm{e}}\left(x_{i}\right)$. Then $\phi_{d, 2 \mathrm{e}}$ has the following properties;

$$
\begin{gather*}
\phi_{d, 2 \mathrm{e}}=1 \quad \text { on } \quad \omega^{i+2 \mathrm{e}},=0 \text { on } \mathcal{C} \omega^{d}, \quad\left|\phi_{d, 2 \mathrm{e}}\right| \leq 1, \quad \text { and } \\
\sup \left|D_{x}^{\alpha} \phi_{d, \mathrm{e}}(x)\right| \leq C_{\alpha} \varepsilon^{-|\alpha|}, \tag{3.2}
\end{gather*}
$$

where C_{α} is a constant independent of ε, d. We consider the norm;

$$
N_{\mathrm{e}}\left(\left\langle D_{1}\right\rangle^{j} v\right)=\inf _{\phi \in X_{\mathrm{z}}}\left\|\left\langle D_{1}\right\rangle^{j} \Phi_{\nu}\right\|_{L^{2}((-r+\varepsilon, r-\mathrm{z}) \times \boldsymbol{R})}, \quad j=0,1 / 2,1,3 / 2,
$$

where $X_{\mathrm{e}}=\left\{\Phi \in C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right) ; \Phi=1\right.$ on $\left.\omega^{\mathrm{q}}\right\}$. We note that $N_{\mathrm{e}}(v)=\|v\|_{L^{2}\left(\omega^{\mathrm{e}}\right)}$. Then we observe that for $u \in \mathcal{S}(\boldsymbol{R})$,

$$
\begin{gather*}
\left\|\left\langle\left\langle D_{l}\right\rangle^{1 / 2}, \tilde{\phi}_{d, \mathrm{e}}\left(x_{1}\right)\right] u\right\| \leq C \varepsilon^{-1 / 2}\|u\|, \tag{3.3}\\
\left\|\left\langle D_{1}\right\rangle\left\langle\left\langle D_{1}\right\rangle^{1 / 2}, \tilde{\phi}_{d, \mathrm{e}}\left(x_{1}\right)\right] u\right\| \leq C\left\{\varepsilon^{-1}| |\left\langle D_{1}\right\rangle^{1 / 2} u\left\|+\varepsilon^{-3 / 2}\right\| u \|\right\}, \tag{3.4}\\
\left\|\left\langle D_{1}\right\rangle^{1 / 2} \tilde{\phi}_{d, \mathrm{e}}\left(x_{1}\right) u\right\| \leq C\left\{\left\|\left\langle D_{1}\right\rangle^{1 / 2} u\right\|+\varepsilon^{-1 / 2}\|u\|\right\}, \quad \text { and } \tag{3.5}\\
\left\|\left\langle D_{1}\right\rangle^{3 / 2}\left[D_{1}, \tilde{\phi}_{d, \mathrm{e}}\left(x_{1}\right)\right] u\right\| \leq C\left\{\varepsilon^{-1}| |\left\langle D_{1}\right\rangle^{1 / 2} u\left\|+\varepsilon^{-3 / 2}\right\| u \|\right\}, \tag{3.6}
\end{gather*}
$$

where C is a constant independent of d, ε, u. (c.f. [2])
Let

$$
\begin{aligned}
E_{d, \mathrm{e}, 1}(v)= & \sum_{p=0}^{2} N_{d+\varepsilon}\left(D_{0}^{p}\left\langle D_{1}\right\rangle^{1 / 2} v\right)+N_{d+\mathrm{e}}\left(x_{0}^{k}\left\langle D_{1}\right\rangle^{1 / 2} D_{1} v\right), \\
E_{d, \mathrm{e}, 0}(v)= & \sum_{p=0}^{2} N_{d+\varepsilon}\left(D_{0}^{p} v\right)+N_{d+\mathrm{e}}\left(x_{0}^{k}\left\langle D_{1}\right\rangle v\right), \\
R_{d, 1}(v)= & N_{d}\left(\left\langle D_{1}\right\rangle^{1 / 2} x_{0}^{l} D_{0} v\right)+\varepsilon^{-1 / 2} N_{d}\left(x_{0}^{k} D_{0} v\right) \\
& \left.+\varepsilon^{-1} N_{d}\left\langle D_{1}\right\rangle^{1 / 2} x_{0} v\right)+\varepsilon^{-3 / 2} N_{d}\left(x_{0}^{k} v\right), \quad \text { and } \\
R_{d, 0}(v)= & N_{d}\left(x_{0}^{k} D_{0} v\right)+\varepsilon^{-1} N_{d}\left(x_{0}^{k} v\right) .
\end{aligned}
$$

Then we obtain
Lemma 3.2. Under the hypothesis of proposition 3.1, there are the constants $C_{j}(j=1,2)$ independent of d, ε such that for any $v \in C^{\infty}(\Omega)$,

$$
\begin{align*}
& \varepsilon^{2} E_{d, \varepsilon, 0}(v) \leq \tag{3.7}\\
& C_{1}\left\{\varepsilon^{2} N_{d}(P v)+\varepsilon R_{d, 0}(v)\right\}, \quad \text { and } \tag{3.8}\\
& \varepsilon^{5 / 2} E_{d, \varepsilon, 1}(v) \leq
\end{align*} C_{2}\left\{\varepsilon^{5 / 2} N_{d}\left(\left\langle D_{1}\right\rangle^{1 / 2} P v\right)+\varepsilon^{2} N_{d}(P v) .\right.
$$

Proof. Let $u=\phi_{d, \mathrm{e}}(x) v$ in (3.1). We observe that

$$
\begin{gathered}
N_{d+\mathrm{e}}\left(x_{0}^{k}\left\langle D_{1}\right\rangle u\right) \leq\left\|x_{0}^{k}\left\langle D_{1}\right\rangle \phi_{d, \mathrm{e}} u\right\|, \quad N_{d+\mathrm{e}}\left(D_{0}^{p} u\right) \leq\left\|\phi_{d, \mathrm{e}} D_{0}^{p} u\right\|, \\
D_{0}^{p} \phi_{d, \mathrm{e}}=\phi_{d, \mathrm{e}} D_{0}^{p}+\left[D_{0}^{p}, \phi_{d, \mathrm{e}}\right], \quad \text { and } \\
P \phi_{d, \mathrm{e}}=\phi_{d, \mathrm{e}} P+\left[D_{0}^{2}, \phi_{d, \mathrm{e}}\right]+i x_{0}^{k} b(x)\left[D_{1}, \phi_{d, \mathrm{e}}\right] .
\end{gathered}
$$

Since $\left[D_{0}^{p}, \tilde{\phi}_{d, \mathrm{e}}\left(x_{0}\right)\right]$ vanishes on a neighborhood of the origin, (3.7) follows from (3.2). Let d_{0} be a fixed number and $\psi(x)=\tilde{\psi}\left(x_{0}\right) \tilde{\psi}\left(x_{1}\right)$ such that

$$
\psi \in C_{0}^{\infty}(\Omega),=1 \quad \text { on } \quad \omega^{d_{0}} .
$$

For $d>d_{0}$, let $u=\psi\left\langle D_{1}\right\rangle^{d} \phi_{d, \mathrm{e}} v$ in (3.1). We observe that

$$
\begin{aligned}
& N_{d+\mathrm{e}}\left(\left\langle D_{1}\right\rangle^{1 / 2} x_{0}^{k} D_{1} u\right) \leq\left\|x_{0}^{k}\left\langle D_{1}\right\rangle^{3 / 2} \phi_{d, \mathrm{e}} u\right\| \\
& \quad \leq\left\|P \psi\left\langle D_{1}\right\rangle^{1 / 2} \varphi_{d, \mathrm{e}} u\right\|+\left\|x_{0}^{k}\left\langle D_{1}\right\rangle\left\langle\left\langle D_{1}\right\rangle^{1 / 2}, \psi\right] \phi_{d, \mathrm{e}} u\right\|, \\
& N_{d+\mathrm{e}}\left(D_{0}^{p}\left\langle D_{1}\right\rangle^{1 / 2} u\right) \leq\left\|\left\langle D_{1}\right\rangle^{1 / 2} \phi_{d, \mathrm{e}} D_{0}^{p} u\right\| \\
& \quad \leq\left\|D_{0}^{p}\left[\left\langle D_{1}\right\rangle^{1 / 2}, \psi-\psi\right] \phi_{d, \mathrm{e}} u\right\|+\left\|P \psi\left\langle D_{1}\right\rangle^{1 / 2} \phi_{d, \mathrm{e}} u\right\|+\left\|\left\langle D_{1}\right\rangle^{1 / 2}\left[\phi_{d, \mathrm{e}}, D_{0}^{p}\right] u\right\|, \\
& D_{0}^{p}\left\langle D_{1}\right\rangle^{1 / 2} \phi_{d, \mathrm{e}}=\left[D_{0}^{p}, \tilde{\phi}_{c, \mathrm{e}}\left(x_{0}\right)\right] \cdot\left[\left\langle D_{1}\right\rangle^{1 / 2}, \tilde{\phi}_{d \mathrm{e}}\left(x_{1}\right)\right] \Phi+\phi_{d, \mathrm{e}} D_{0}^{p}\left\langle D_{1}\right\rangle^{1 / 2} \Phi \\
& \quad \text { for } \Phi \in X_{1}, \quad \text { and } \\
& P \psi\left\langle D_{1}\right\rangle^{1 / 2} \phi_{d, \mathrm{e}}=[P, \psi]\left\langle D_{1}\right\rangle^{1 / 2} \phi_{d, \mathrm{e}}+\psi\left[P,\left\langle D_{1}\right\rangle^{1 / 2}\right] \phi_{d, \mathrm{e}}+\psi\left\langle D_{1}\right\rangle^{1 / 2} P \phi_{d, \mathrm{e}} .
\end{aligned}
$$

Then, similarly as before, from (3.3) (3.5), it follows that (3.8) holds.
Lemma 3.3. We suppose the same hypothesis as proposition 3.1. Moreover suppose that for $s \geq 2$,

$$
u \in \mathscr{D}^{\prime}(\Omega), \quad P u=f \in r^{(s)}\left(\overline{\omega^{0}}\right) .
$$

Then theres exists a constant M independent of ε, j such that for $q \leq j$,

$$
\varepsilon^{s(j+2)} \sum_{0 \leq p \leq 2} N_{(1+j) \mathrm{e}}\left(D_{0}^{p} D_{1}^{q} u\right) \leq M^{q+2} .
$$

Proof. By C^{∞}-hypoellipticity of P, we may assume that $u \in C^{\infty}\left(\omega^{0}\right)$. So it suffices to show the estimate. We must prepare some consideration.

Let $K=\overline{\omega^{0}}$. Then by hypothesis, there is the constants A and B such that for any $\alpha \in \boldsymbol{N}^{2}$,

$$
\begin{aligned}
& \sup _{\Sigma}\left|D_{x}^{\alpha} f\right| \leq A^{|\alpha|+1} \alpha!^{s}, \quad \text { and } \\
& \sup _{\Sigma}\left|D_{x}^{\alpha} b\right| \leq B^{|\alpha|+1} \alpha!^{s} .
\end{aligned}
$$

Let $j \varepsilon=d . \quad$ Then, we observe that for $|\alpha|=j$,

$$
\begin{align*}
& \quad \varepsilon^{s j} N_{d}\left(D_{x}^{\alpha} f\right) \leq A^{j+1}, \tag{3.9}\\
& \varepsilon^{s j} \sup _{\omega^{d}}\left|D_{x}^{\alpha} b\right| \leq B^{j+1} \quad \text { since } \quad \varepsilon j \leq 1, \tag{3.10}\\
& {\left[P, D_{1}^{q}\right]=i x_{0}^{k} \sum_{0<r \leq}\binom{q}{r} D_{1}^{r} b D_{1}^{q-r+1}, \quad \text { and }} \tag{3.11}\\
& \binom{q}{r} r!^{s} j^{-j r} \leq 1 \quad \text { for } \quad 0<r \leq q . \tag{3.12}
\end{align*}
$$

Moreover, since we may assume that $\operatorname{supp} \phi_{d, \mathrm{e}} \subset \omega^{d+\varepsilon-\mathrm{e}^{s} / 3}$, as the proof of lemma 2.4 in [2], we see that

$$
\begin{equation*}
N_{d+\varepsilon}\left(\left\langle D_{1}\right\rangle^{1 / 2} u\right) \leq C_{3}\left\{\varepsilon^{s / 2} N_{d+\varepsilon-\varepsilon^{s} / 3}\left(\left\langle D_{1}\right\rangle u\right)+\varepsilon^{-s / 2} N_{d+\varepsilon-\varepsilon^{s} / 3}(u)\right\} \tag{3.13}
\end{equation*}
$$

where C_{3} is a constant independent of d, ε, and u.
Then from (3.9), (3.13), it follows that

$$
\begin{equation*}
\varepsilon^{s(j+1 / 2)} N_{j \mathrm{e}}\left(\left\langle D_{1}\right\rangle^{1 / 2} D_{1}^{j} f\right) \leq C_{3}(A+1) A^{j+1} . \tag{3.14}
\end{equation*}
$$

From (3.10), (3.11), (3.12), it follows that

$$
\begin{align*}
& \varepsilon^{s(q+1)} N_{q \varepsilon}\left(\left[P, D_{1}^{q}\right] u\right) \leq \sum_{r=1}^{q} B^{r+1} \varepsilon^{s(q-r+1)} N_{q \varepsilon}\left(x_{0}^{k} D_{1}^{q-r+1} u\right), \quad \text { and } \tag{3.15}\\
& \varepsilon^{s(q+3 / 2)} N_{q \varepsilon+\varepsilon / 2}\left(\left\langle D_{1}\right\rangle^{1 / 2}\left[P, D_{1}^{q}\right] u\right) \tag{3.16}\\
& \leq \sum_{r=1}^{q} C_{3}\left\{B^{r+1} \varepsilon^{s(q-r+2)} N_{q \varepsilon+\varepsilon / 2-\varepsilon^{\varepsilon} / 3}\left(x_{0}^{k} D_{1}^{q-r+2} u\right)\right. \\
& \left.\quad \quad \quad+B^{r+1}(B+1) \varepsilon^{s(q-r+1)} N_{q \varepsilon+\varepsilon / 2-\varepsilon^{s} / 3}\left(x_{0}^{k} D_{1}^{q-r+1} u\right)\right\} \text {. }
\end{align*}
$$

Here we used the fact that $\left\|\left\langle D_{1}\right\rangle u\right\| \sim\|u\|+\left\|D_{1} u\right\|$.
These inequalities (3.15) and (3.16), and lemma 3.2 imply the desired estimate. In fact, we show this by induction on j. We assume that

$$
\left\{\begin{array}{l}
\varepsilon_{0}^{s(q+1)} N_{(j+1) \varepsilon_{0}}\left(D_{0}^{p} D_{1}^{q} u\right) \leq M^{q+2}, \quad p=0,1,2 \tag{3.17}\\
\varepsilon_{0}^{s(q+1)} N_{(j+1) \varepsilon_{0}}\left(x_{0}^{k}\left\langle D_{1}\right\rangle D_{1}^{q} u\right) \leq M^{q+2} \quad \text { for } \quad q \leq j
\end{array}\right.
$$

and
$(3.18)_{j-1}$

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\varepsilon_{0}^{s(q+3 / 2)} N_{(j+3 / 2) e_{0}}\left(D_{0}^{p}\left\langle D_{1}\right\rangle^{1 / 2} D_{1}^{q} u\right) \leq M^{q+3 / 2} \\
\varepsilon_{0}^{s(q+3 / 2)} N_{(j+3 / 2) e_{0}}\left(x_{0}^{k}\left\langle D_{1}\right\rangle^{1 / 2} D_{1}^{q+1} u\right) \leq M^{q+3 / 2}
\end{array}\right. \\
\quad \text { for } p=0,1,2, \text { and } q \leq j-1 .
\end{array}\right.
$$

In (3.8), let $d=(2 / 3) \varepsilon_{0}(j+1), \varepsilon=\varepsilon_{0} / 2$, and

$$
v=\varepsilon_{0}^{s(q+3 / 2)-2} D_{1}^{q} u .
$$

If $s \geq 2$, we see that

$$
\begin{aligned}
& s^{\prime}+3 / 2 \geq s(q+1), \quad s^{\prime}+1 \geq s(q+1), \\
& s^{\prime}+1 / 2 \geq s(q+1 / 2), \quad s^{\prime} \geq s q,
\end{aligned}
$$

where $s^{\prime}=s(q+3 / 2)-2$. So, by (3.9), (3.14), (3.15), (3.16), we see that (3.17) ${ }_{j}$ and (3.18) ${ }_{j-1}$ imply $(3.18)_{j}$, if

$$
M \geq \max \left\{2 B,\left(32 B(B+1) C_{2} C_{3}\right)^{2},\left(C_{3}(A+1)\right)^{2}, A^{2}\right\}
$$

For, from Schwartz inequality an (3.17) $\boldsymbol{j}_{\text {, }}$, it follows that since $t^{2 k-1} \leq t^{k}$ if $k \geq 1$, and t is small positive,

$$
\varepsilon_{0}^{s(q+1)} N_{(j+1) \varepsilon_{0}}\left(x_{0}^{k}\left\langle D_{1}\right\rangle^{1 / 2} D_{0} D_{1}^{q} u\right) \leq 2 M^{q+2},
$$

and it is seen that

$$
\begin{aligned}
\varepsilon_{0}^{s(q+3 / 2)} N_{(j+1) e_{0}}\left(\left\langle D_{1}\right\rangle^{1 / 2} P D_{1}^{q} u\right) & \leq 2(B+1) B^{2} C_{3} M^{q+2} \sum_{r \geq 0}(B / M)^{r} \\
& \leq 4(B+1) B^{2} C_{3} M^{q+2} \leq(1 / 8) M^{q+5 / 2}
\end{aligned}
$$

and

$$
\varepsilon_{0}^{s(q+1)} N_{(j+1) e_{0}}\left(P D_{1}^{q} u\right) \leq 4 B^{2} M^{q+2} \leq(1 / 8) M^{q+5 / 2} .
$$

The similar argument as above show that $(3.18)_{j}$ and $(3.17)_{j}$ imply $(3.17)_{j+1}$ if

$$
M \geq \max \left\{2 B, A^{2},\left(12 C_{1}\right)^{2}\right\}
$$

Therefore, by induction, we arrive at the conclusion of lemma 3.3 with $\varepsilon=\varepsilon_{0}$.
Lemma 3.4. Under the same hypothesis of lemma 3.3, there exists a constant M independent of j and ε such that for any p, q satisfying $p+q \leq j$,

$$
\begin{equation*}
\varepsilon^{s(p+q)} N_{j \mathrm{e}}\left(D_{0}^{p} D_{1}^{q} u\right) \leq M^{p+q+1} \tag{3.19}
\end{equation*}
$$

Proof. Instead of (3.7), (3.8), we start from the following inequality;

$$
\sum_{p=0}^{2} \varepsilon^{p} N_{d+\varepsilon}\left(D_{0}^{p} u\right) \leq C\left\{\varepsilon^{2} N_{d}(P u)+\varepsilon N_{d}\left(D_{0} u\right)+N_{d}(u)\right\} .
$$

Then, by the similar argument in the previous lemma, from the result of lemma 3.3 it follows that (3.19) holds.

Proof of proposition 3.1. Let $\varepsilon j=d$. Then, from (3.19), it follows that for $p+q=j$,

$$
\left\|D_{0}^{p} D_{1}^{q} u\right\|_{L^{2}\left(\omega^{d}\right)} \leqq N_{d}\left(D_{0}^{p} D_{1}^{q} u\right) \leq j^{s j} d^{-s j} M^{p+q+1} \quad(s \geq 2)
$$

which implies that u is in $\gamma^{(s)}\left(\omega^{d}\right)$. Combining this with the remark in the below of proposition 3.1, we obtain proposition 3.1.

4. Proof of theorem 3.

In this section, we consider the case $k=1$, and shall prove that for $s \geq 2, P$, given in the section 1 , is $\gamma^{(s)}$-hypoelliptic in a neighborhood of the origin. It suffices to show that if $u \in \mathcal{E}^{\prime}(\Omega)$, and $P u \in r^{(s)}(\omega), s \geq 2$, then $u \in \gamma^{(s)}(\omega)$, where Ω and ω are the neighborhoods of the origin such that $\Omega \supset \omega$.

Let $\tilde{x}=\left(x_{0}, \cdots, x_{n-1}\right), x^{\prime}=\left(x_{1}, \cdots, x_{n}\right)$, and $x^{\prime \prime}=\left(x_{1}, \cdots, x_{n-1}\right)$, and denote their dual variables by $\tilde{\xi}, \xi^{\prime}, \xi^{\prime \prime}$, respectively. Define $\gamma_{\tilde{\tilde{I}}}^{(s)}(\Omega)$ by
$\left\{u \in \mathscr{D}^{\prime}(\Omega)\right.$; for any open sets $V \subset R^{n}$, and $W \subset R$ such that $V \times W \subset \Omega$, and any $\psi \in C_{0}^{\infty}(W)$, the distribution u_{ψ} on V given by

$$
\left\langle u_{\psi}, \phi\right\rangle=\left\langle u, \phi(\tilde{x}) \psi\left(x_{n}\right)\right\rangle
$$

belongs to $\left.\gamma^{(s)}(V)\right\}$,
and also define $\gamma_{x_{n}}^{(s)}(\Omega)$, similarly. Then, since there exists a constant C such that for any α, β, and $|\xi| \geq\left|\xi_{n}\right|^{1 / 2}, x \in \Omega$

$$
\left|P_{(\beta)}^{(\alpha)}(x, \xi)\right| /|p(x, \xi)| \leq C^{|\alpha+\beta|+1} \alpha!(\beta!)^{2}(1+|\xi|)^{-|\boldsymbol{\alpha}|},
$$

from the result of [5], it follows that

$$
u \in r_{\tilde{x}}^{(s / 2)}(\Omega) \quad \text { if } \quad r_{x_{n}}^{(s)}(\Omega) \in u
$$

So, in order to prove theorem 3, it suffices to show
Proposition 4.1. Let $u \in \mathcal{E}^{\prime}(\Omega)$, and $P u=f \in \gamma^{(s)}(\omega)(\Omega \supset \omega)$. If $s \geq 2$, then for any neighborhood $\omega_{0} \subseteq \omega$ of the origin, there are the constants C and L such that for any $\phi \in C_{0}^{\infty}\left(\omega_{0}\right)$,

$$
\begin{equation*}
\left|\left\langle D_{x_{n}}^{\alpha} u, \phi\right\rangle\right| \leq C^{\alpha+1}(\alpha!)^{s}|\phi|_{L}, \tag{4.1}
\end{equation*}
$$

where $|\phi|_{L}=\sup _{|\beta| \leq L}\left(\int\left|D_{\tilde{x}}^{\beta} \phi\right|^{2} d x\right)^{1 / 2}$.
We begin with some preparations. By Fourier transformation with respect to x^{\prime}, or x, P is transformed into

$$
\begin{aligned}
& P_{1}=D_{x_{1}}^{2}+\left|\xi^{\prime \prime}\right|^{2}+i x_{0} \xi_{n}, \quad \text { or } \\
& P_{2}=i \xi_{n} D_{\xi_{0}}+|\tilde{\xi}|^{2} .
\end{aligned}
$$

Let $A(z)$ and $B_{\xi}(z)$ are the linearly independent solution of the equation

$$
\left(-(d / d z)^{2}+z\right) V=0
$$

such that

$$
A(z) \sim(1 / 2 \sqrt{\pi}) \cdot z^{-1 / 4} e^{-2 z^{3 / 2} / 3}
$$

as $z \rightarrow \infty$ in $\{|\arg z|<\pi\}$, and for $\sigma=\exp [2 \pi i /(k+2)]$,

$$
B_{\xi}(z)=\left\{\begin{array}{lll}
A(\sigma z) & \text { if } & \xi_{n}>0 \\
A\left(\sigma^{-1} z\right) & \text { if } & \xi_{n}<0
\end{array}\right.
$$

We denote by W_{ξ} the wronskian of $\left\{A(z), B_{\xi}(z)\right\}$, and define the operator E on $\mathcal{S}\left(\boldsymbol{R}^{n+1}\right)$ by

$$
\begin{aligned}
& E \hat{f}\left(x, \xi^{\prime}\right)=\int_{-\infty}^{\infty} E\left(x_{0}, y_{0}, \xi^{\prime}\right) \hat{f}\left(y_{0}, \xi^{\prime}\right) d y_{0}, \quad\left(\hat{f}\left(t, \xi^{\prime}\right)=\int e^{-i x^{\prime} \xi} f\left(t, x^{\prime}\right) d x^{\prime}\right), \\
& E\left(x_{0}, y_{0}, \xi^{\prime}\right)= \begin{cases}\left(i \xi_{n}\right)^{-1 / 3} W_{\xi}^{-1} A\left(z\left(x_{0}, \xi^{\prime}\right)\right) B_{\xi}\left(z\left(y_{0}, \xi^{\prime}\right)\right) & \text { if } x_{0}>y_{0}, \\
E\left(y_{0}, x_{0}, \xi^{\prime}\right) & \text { if } x_{0}<y_{0},\end{cases}
\end{aligned}
$$

where $z\left(t, \xi^{\prime}\right)=t\left(i \xi_{n}\right)^{1 / 3}+\left(i \xi_{n}\right)^{-2 / 3}\left|\xi^{\prime \prime}\right|^{2}$. Here we take a branch such that $z^{1 / 3}$ is real if $z>0$.

Let us define another operator H on $\mathcal{S}\left(\boldsymbol{R}^{n+1}\right)$ by

$$
\begin{aligned}
& H \hat{f}(\xi)=\int_{-\infty}^{+\infty} H\left(\xi_{0}, \eta_{0}, \xi^{\prime}\right) \hat{f}\left(\eta_{0}, \xi^{\prime}\right) d \eta_{0}, \quad \hat{f}(\xi)=\int e^{-i x \xi} f(x) d x \\
& H\left(\xi_{0}, \eta_{0}, \xi^{\prime}\right)=\left\{\begin{array}{lr}
\xi_{n}^{-1} \exp \left(-\xi_{n}^{-1}\left[\left(\xi_{0}^{3}-\eta^{3}\right) 3^{-1}+\left|\xi^{\prime \prime}\right|^{2}\left(\xi_{0}-\eta_{0}\right)\right]\right) \\
0 & \text { if } \xi_{n}>0, \xi_{0}>\eta_{0} \\
0 & \text { if } \xi_{n}>0, \xi_{0}<\eta_{0}, \\
\xi_{n}^{-1} \exp \left(-\xi_{n}^{-1}\left[\left(\xi_{0}^{3}-\eta_{0}^{3}\right) 3^{-1}+\left|\xi^{\prime \prime}\right|^{2}\left(\xi_{0}-\eta_{0}\right)\right]\right)
\end{array}\right. \\
& r \\
& \text { if } \xi_{n}<0, \xi_{0}<\eta_{0}
\end{aligned} .
$$

Now, we consider the equation

$$
\begin{equation*}
P u=f, \tag{4.2}
\end{equation*}
$$

where $f \in \mathcal{S}\left(\boldsymbol{R}^{n+1}\right)$ such that $\hat{f}\left(t, \xi_{n}\right)=0$ if $\left|\xi_{n}\right| \leq 1$. We observe that if $P u=0$, $u \in \mathcal{S}\left(\boldsymbol{R}^{n+1}\right)$, then $u=0$, since $\left(P_{2} \hat{\imath}, \hat{u}\right)=0$ leads to $0=\int|\tilde{\xi}|^{2}|\hat{u}|^{2} d \xi$. So, the solution u of (4.2) is uniquely given by

$$
\begin{equation*}
u(x)=\int e^{i x \xi^{\prime}}(E \hat{f})\left(x, \xi^{\prime}\right)(2 \pi)^{-n} d \xi^{\prime}, \quad \text { or } \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
u(x)=\int e^{i x \xi}(H \hat{f})(\xi)(2 \pi)^{-n-1} d \xi \tag{4.4}
\end{equation*}
$$

We need some properties about E and H.
Lemma 4.2. If $\left|x_{0}-y_{0}\right| \geq \delta>0$, then there exists a constant $\varepsilon>0$ such that

$$
\begin{equation*}
\left|E\left(x_{0}, y_{0}, \xi^{\prime}\right)\right| \leq C t e\left|\xi_{n}^{-1 / 3}\right| \exp \left(-\varepsilon\left|\xi_{n}^{1 / 2}\right|\right) \tag{4.5}
\end{equation*}
$$

as $\left|\xi_{n}\right| \rightarrow \infty$.
Proof. We consider the case $x_{0}>y_{0}$. In the contrary case the similar argument hold, so we omit this. When both $z\left(x_{0}, \xi\right)$ and $z\left(y_{0}, \xi\right)$ tend to infinity, we have

$$
\begin{aligned}
E\left(x_{0}, y_{0}, \xi^{\prime}\right) & \sim \text { Cte } \xi_{n}^{-1 / 3}\left\{z\left(x_{0}, \xi^{\prime}\right) z\left(y_{0}, \xi^{\prime}\right)\right\}^{-1 / 4} \\
& \times \exp \left\{-(2 / 3)\left(z\left(x_{0}, \xi^{\prime}\right)^{3 / 2}-z\left(y_{0}, \xi^{\prime}\right)^{3 / 2}\right)\right\} \\
& \sim \text { Cte } \xi_{n}^{-1 / 3}\{\quad\}^{-1 / 4} \\
& \times \exp \left(-\int_{y_{0}}^{x_{0}} \sqrt{i \xi_{n} t+\left|\xi^{\prime \prime}\right|^{2}} d t\right)
\end{aligned}
$$

where $\operatorname{Re} \sqrt{\xi_{n} t+\left|\xi^{\prime \prime}\right|^{2}} \geq 0$. When $z\left(x_{0}, y_{0}, \xi^{\prime}\right)$ tends to infinity but $z\left(y_{0}, \xi^{\prime}\right)$ is bounded, we observe that

$$
E\left(x_{0}, y_{0}, \xi^{\prime}\right) \sim \text { Cte } \xi_{n}^{-1 / 3} z\left(x_{0}, \xi^{\prime}\right)^{-1 / 4} \exp \left(-(2 / 3) z\left(x_{0}, \xi^{\prime}\right)^{3 / 2}\right),
$$

and in this case, if $\left|x_{0}-y_{0}\right| \geq \delta>0$ and $\left|\xi_{n}\right| \rightarrow \infty$, then $\left|x_{0}\right| \geq \delta / 2>0$. So, these consideration lead to (4.5).

Lemma 4.3. Let $\xi_{m}=t+i \rho \sqrt{\left|\xi_{n}\right|}, 1 \leq m \leq n-1$. Then for $|t| \leq\left|\xi_{n}\right|$, we have, uniformly in t,

$$
\begin{gathered}
\int_{-\infty}^{+\infty}\left|H\left(\xi_{0}, \eta_{0}, \xi^{\prime}\right)\right| d \eta_{0}, \quad \text { and } \int_{-\infty}^{+\infty}\left|H\left(\xi_{0}, \eta_{0}, \xi^{\prime}\right)\right| d \xi_{0} \\
\leq C\left|\xi_{n}^{-4 / 3}\right| \exp \left(C \rho^{3}\left|\xi_{n}^{1 / 2}\right|\right),
\end{gathered}
$$

where C is a constant independent of ρ.
Proof. We observe that there exists constant $C_{0}>0$ such that

$$
|H| \leq \exp \left(-C_{0}\left|\xi_{n}^{-}\right|^{1}\left|\xi_{0}-\eta_{0}\right|^{3}+\delta^{2}\left|\xi_{0}-\eta_{0}\right|\right) .
$$

Let $\left|\xi_{n}^{-1 / 3}\right|\left(\xi_{0}-\eta_{0}\right)=u$. Then, when $\xi_{n}>0$,

$$
I=\int_{-\infty}^{+\infty}\left|H\left(\xi_{0}, \eta_{0}, \xi^{\prime}\right)\right| d \xi_{0} \leq \int_{0}^{+\infty} \exp \left(-\left(C_{0} / 3\right) u^{3}+\delta^{2} \xi_{n}^{1 / 3} u\right) \xi_{n}^{-2 / 3} d u
$$

Let $u=v \delta \xi_{n}^{1 / 6} C_{0}^{-1 / 2}$. Then,

$$
\begin{aligned}
I \leq & \delta C_{0}^{-1 / 2} \xi_{n}^{-1 / 2} \int_{0}^{+\infty} \exp \left(C_{0}^{-1 / 2} \delta^{2} \xi_{n}^{1 / 2}\left(-\left(v^{3} / 3\right)+v\right)\right) d v \\
& \left.\sim \delta C_{0}^{-1 / 2} \xi_{n}^{-1 / 2} \sqrt{\pi} \exp \left((2 / 3) \delta^{3} C_{0}^{-1 / 2} \xi_{n}^{1 / 2}\right) \sqrt{1 /\left(C_{0}^{-1 / 2} \delta^{3} \xi_{n}^{1 / 2}\right.}\right)
\end{aligned}
$$

as $\xi_{n} \rightarrow \infty$. When $\xi_{n}<0$, the similar argument holds. So, we obtain the half of lemma. As for the other half of this lemma, we can prove similarly as above.
Q.E.D.

Lemma 4.4. For $|t| \leq \rho \sqrt{\left|\xi_{n}\right|}$, we have, uniformly in t,

$$
\begin{align*}
& \left|\xi_{0}-\eta_{0}\right|^{p}\left|D_{\xi_{n}}^{q}\right|\left\{\left.H\left(\xi_{0}, \eta_{0}, \xi^{\prime \prime}+i t \theta_{m}, \xi_{n}\right)\right|_{\xi_{m}=\xi_{n}}\right\} \mid \tag{4.6}\\
& \quad \leq C_{p}^{q+1} q!\left|\xi_{n}\right|^{q-1} \exp \left(-\left|\xi_{0}-\eta_{0}\right|\left|\xi_{n}\right| / 4\right) \quad \text { for any } q,
\end{align*}
$$

where $\theta_{m j}=\left(d_{j}\right)_{1 \leq j \leq n-1}$ with $d_{j}=\delta_{m, j},\left(1 \leq m \leq n-1, \delta_{i, j}\right.$ is a Kronecker's $\left.\delta\right)$
Proof. Writing $\left.H\left(\xi_{0}, \eta_{0}, \xi^{\prime \prime}+i t \theta_{m}, \xi_{n}\right)\right|_{\xi_{m}=\xi_{n}}=\xi_{n}^{-1} \exp \left(-h\left(\xi_{0}, \eta_{0}, t, \xi_{n}\right)\right)$, we observe that

$$
\begin{gathered}
-\operatorname{Re} h\left(\xi_{0}, \eta_{0}, t, \xi_{0}\right) \leq-3^{-1}\left|\xi_{0}^{3}-\eta_{0}^{3}\right|\left|\xi_{n}\right|^{-1}-1 / 2\left|\xi_{n}\right|\left|\xi_{0}-\eta_{0}\right|, \\
\left|D_{\xi_{n}}^{q} h\left(\xi_{0}, \eta_{0}, t, \xi_{n}\right)\right| \leq \\
\quad C^{q+1} q!\left\{3^{-1}\left|\xi_{0}^{3}-\eta_{0}^{3}\right|\left|\xi_{n}\right|^{-1}\right. \\
\left.+(1 / 2)\left|\xi_{0}-\eta_{0}\right|\left|\xi_{n}\right|\right\}\left|\xi_{n}\right|^{-q} .
\end{gathered}
$$

So, since $x^{j} e^{-x} \leq j$!, for $x \geq 0$, (4.6) follows from the well known fact that

$$
D_{x}^{\alpha}\left\{e^{-f(x)}\right\}=\alpha!\sum \frac{i!}{i_{1}!\cdots i_{k}!} \frac{(-1)^{i} e^{-f}}{i!} \prod_{j=1}^{k}\left(f_{\left.\left(\gamma^{(j)}\right) / \gamma^{(j)}!\right)^{i_{j}}}\right.
$$

where $\sum_{j=1}^{k} i_{j} r^{(j)}=\alpha, \sum i_{j}=i, \gamma^{(j)} \neq 0$, and $f(\gamma)=D_{x}^{\gamma} f$.
Lemma 4.5. For a measurable function $K(t, s)$ on $\boldsymbol{R}^{2 d}$, suppose that $\int_{\boldsymbol{R}^{d}}|K(t, s)| d t$, and $\int_{\boldsymbol{R}^{d}}|K(t, s)| d s \leq M$. Then the integral operator K given by

$$
K u=\int_{R^{d}} K(t, s) u(s) d s
$$

is a bounded operator on $L^{2}\left(\boldsymbol{R}^{d}\right)$ with norm $\leq M$.
This lemma is well-known. So we omit its proof.
Proof of proposition 4.1. Let $\chi \in \gamma^{(2)}(\boldsymbol{R})$ such that

$$
0 \leq x \leq 1, \quad x(t)=1 \quad \text { if } \quad|t| \geq 2, \quad \text { and }=0 \quad \text { if }|t| \leq 1
$$

Then we see that for $\phi \in C_{0}^{\infty}\left(\omega_{0}\right)$,

$$
\begin{aligned}
(-1)^{q}\left\langle D_{x_{n}}^{q} u, \phi\right\rangle & =\left\langle\chi\left(D_{n}\right) u, D_{x_{n}}^{b} \phi\right\rangle+\left\langle\left(1-\chi\left(D_{x_{n}}\right)\right) u, D_{x_{n}}^{q} \phi\right\rangle \\
& =I+I^{\prime} .
\end{aligned}
$$

Since $1-\chi\left(D_{x_{n}}\right)$ is a regularizing operator with respect to x_{n}, we have $\left(1-\chi\left(D_{y_{n}}\right)\right) u \in \gamma_{x_{n}}^{(2)}\left(\omega_{0}\right)$. So it suffices to show that there exist constants C_{0}, C_{1}, and L such that for any $\phi \in C_{0}^{\infty}\left(\omega_{0}\right),|I| \leq C_{0} C_{1}^{q} q!^{s}|\phi|_{L} . \quad(s \geq 0)$.

Let $\psi \in \mathcal{S}$ such that ${ }^{t} P \psi=g$, where $g=\chi\left(D_{x_{n}}\right) D_{x_{n}}^{q} \phi$. Then we observe that
$I=\left\langle u,{ }^{t} P \psi\right\rangle=\langle f, \psi\rangle$, and

$$
\psi(x)=\int e^{i x^{\prime} \xi^{\prime}}(E g)\left(x^{\prime}, \xi^{\prime}\right)(2 \pi)^{-n} d \xi^{\prime}
$$

Let ω^{\prime} is a neighborhood of the origin such that

$$
\omega_{0} \subset \omega^{\prime} \subset \omega,
$$

and $h \in C_{0}^{\infty}\left(\omega^{\prime}\right)$ such that $h=1$ on ω_{0}. Then, I is written by

$$
I=\langle h f, \psi\rangle+\langle(1-h) f, \psi\rangle=J+J^{\prime}
$$

In view of $h f \in \gamma^{(s)}\left(\omega^{\prime}\right)$, we see that

$$
\begin{aligned}
J=\int & e^{i\left\langle x^{\prime}-y^{\prime}, \xi^{\prime}\right\rangle} E\left(x_{0}, y_{0}, \xi^{\prime}\right)\left(1+\left|\xi^{\prime}\right|^{2}\right)^{-N} \chi\left(\xi_{n}\right) \\
& \quad \times D_{x_{n}}^{q}\left(1-\Delta_{x^{\prime}}\right)^{N}(h f)(x) \phi(y) d x d y d \xi^{\prime}(2 \pi)^{-n}
\end{aligned}
$$

Let $N=q+[n / 2]+1$. Then this representation implies that

$$
|J| \leq C_{0} C_{1}^{q}(q!)^{s}|\phi|_{0}
$$

Next, we consider J^{\prime}. We observe that, since $f \in \mathcal{E}^{\prime}(\Omega)$, there exists a constant L such that $f=\sum_{|\beta| \leqq L} D_{x}^{\beta} f_{\beta}(x)$, where $f_{\beta}(x) \in L^{2}\left(\boldsymbol{R}^{n+1}\right)$, with support contained in some compact set, from which it follows that

$$
J^{\prime}=\sum_{|\beta| \leq L}(-1)^{\beta}\left\langle f_{\beta}(x), D_{x}^{\beta}\{(1-h) \psi(x)\}\right\rangle=\sum_{|\beta| \leq L} J_{\beta} .
$$

We note that $\operatorname{supp} h \cap \operatorname{supp} \phi=\phi$, so that we can take a partition of unity satisfying that

$$
\sum \chi_{j}(x)=1, \chi_{j} \in C_{0}^{\infty}\left(\boldsymbol{R}^{n+1}\right)
$$

$\operatorname{supp} \chi_{j}$ is sufficiently small such that if $x \in \omega_{0} \cap \operatorname{supp} \chi_{j}$ and $y \in \operatorname{supp}(1-h) \cap$ $\operatorname{supp} \chi_{k}$, then the one of the following cases holds:

$$
\begin{align*}
& \left|x_{0}-y_{0}\right| \geq \delta>0 \tag{4.7-1}\\
& \left|x_{n}-y_{n}\right| \geq \delta>0
\end{align*}
$$

(4.7-3) for some $m, 1 \leq m \leq n-1,\left|x_{m}-y_{m}\right| \geqq \delta>0, \quad$ and $\quad\left|x_{n}-y_{n}\right| \leq \delta / 2$.

In view of $\operatorname{ker}^{t} P=0$ in \mathcal{S}, we have the following representations;

$$
J=\sum_{j, k} J_{j, k}
$$

where for $\phi_{k}=\chi_{k} \phi$ and $f_{j}=\chi_{j} f(1-h)$,

$$
J_{j, k}=\int D_{x}^{\beta}\left\{e^{i\left\langle x^{\prime}-y^{\prime}, \xi^{\prime}\right\rangle} \chi\left(\xi_{n}\right) \xi_{n}^{q} E\left(x_{0}, y_{0},-\xi^{\prime}\right)\right\} \phi_{k}(y) f_{j}(x) d y^{\prime} d y_{0} d \xi^{\prime} d x(2 \pi)^{-n}
$$

or $\quad=\int e^{i\langle x-y, \xi\rangle \tilde{\xi} \tilde{\rho_{\xi}} \xi_{n}^{\beta_{n}+q}} H\left(\xi_{0}, \eta_{0},-\xi^{\prime}\right) e^{i\left\langle y_{0}, \xi_{0}-\eta_{0}\right\rangle} \phi_{k}(y) f_{i}(x) d y d \eta_{0} d \xi d x(2 \pi)^{-n-1}$,
where the integration is carried in its order, from left to right. We note that, by the construction of $\left\{\chi_{j}\right\}$, on the support of the integrand of $J_{j, k}$, one of (4.7) holds.

So, we investigate $J_{j, k}$, case by case. In the case (4.7-1), we take the first representation for $J_{j, k}$. Then, from lemma 4.2, it follows that there exists a constant C_{β} depending only on β, such that

$$
\begin{aligned}
\left|J_{j, k}\right| \leq & \int|\xi|^{\beta}\left|\xi_{n}\right|^{q}\left\langle\xi^{\prime \prime}\right\rangle^{-2\left|\beta^{\prime \prime}\right|-2 n} \exp \left(-\varepsilon\left|\xi_{n}\right|^{1 / 2}\right) \\
& \times\left(\left(1-\Delta_{x^{\prime \prime}}^{\left.\mid)^{\left|\beta^{\prime \prime}\right|+n} \phi_{k}\right)(y) f_{j}(x) d y d \xi^{\prime} d x(2 \pi)^{-n}}\right.\right. \\
\leq & C^{q+1}(q!)^{2}\left|\phi_{k}\right|_{\left|\beta^{\prime \prime}\right|+n}\left|f_{j}\right|_{0}
\end{aligned}
$$

where $\left\langle\xi^{\prime \prime}\right\rangle=\left(1+\left|\xi^{\prime \prime}\right|^{2}\right)^{1 / 2}$,
In the case (4.7-2), we take the second representation for $J_{j, k}$ since it is difficul to estimate $D^{\alpha} E$. We note that $\xi_{0}^{\beta}=\sum_{\gamma \leq \beta_{0}}\binom{\beta_{0}}{\gamma}\left(\xi_{0}-\eta_{0}\right)^{\gamma} \eta_{0}^{\beta_{0}-\gamma}$. So, the integration by parts with respect to ξ_{n} implies that

$$
\begin{aligned}
J_{j, k}=\sum_{\gamma \leqslant \beta_{0}}\binom{\beta_{0}}{r} \int & \left(1 /\left(x_{n}-y_{n}\right)^{N}\right) e^{i\langle x-y, \xi\rangle\langle\tilde{\xi}\rangle^{-2 n}} D_{\xi_{n}}^{N}\left\{\left(\xi_{0}-\eta_{0}\right)^{\gamma} h_{\xi^{\prime}}\left(\xi_{0}, \eta_{0}, y, q\right)\right\} \\
& \times\left(1-\Delta_{\tilde{y}}\right)^{n} D_{\beta^{\prime \prime}}^{y^{\prime \prime}}\left(D_{y_{0}}\right)^{\beta_{0}-\gamma} \phi_{k}(y) f_{j}(x) d y d \eta_{0} d \xi d x(2 \pi)^{-n-1},
\end{aligned}
$$

where $\quad h_{\xi^{\prime}}\left(\xi_{0}, \eta_{0}, y, q\right)=\xi_{n}^{\beta_{n}+q} \chi\left(\xi_{n}\right) H\left(\xi_{0}, \eta_{0},-\xi^{\prime}\right) e^{i\left\langle y_{0}, \xi_{0}-\eta_{0}\right\rangle}$.
From lemma 4.4, it follows that for $N=\beta_{n}+q+[n / 2]+1$, on the support of H,

$$
\begin{aligned}
& D_{\xi_{n}}^{N}\left\{\left(\xi_{0}-\eta_{0}\right)^{\gamma} h_{\xi}\left(\xi_{0}, \eta_{0}, y, q\right)\right\} \\
& \quad=\sum_{k+i+j=N} \frac{N!}{i!j!k!} D_{\xi_{n}}^{i}\left(\xi_{n^{\prime}}^{\beta_{n}+q}\right) D_{\xi_{n}}^{j} \chi\left(\xi_{n}\right) D_{\xi_{n}}^{k} H\left(\xi_{0}, \eta_{0},-\xi^{\prime}\right)\left|\xi_{0}-\eta_{0}\right|^{\gamma} \\
& \quad \leq C_{\beta}^{q+1} q!^{2}\left\langle\xi_{n}\right\rangle^{-2} \exp \left(-(1 / 4)\left|\xi_{0}-\eta_{0}\right|\left|\xi_{n}\right|\right) .
\end{aligned}
$$

So, by Parseval equality and lemma 4.5, we have

$$
\begin{aligned}
\left|J_{j, k}\right| \leq \sum_{\gamma=0}^{\beta_{0}} & \delta^{-N} C_{\beta}^{q+1} q!^{2}\left\{\int\langle\xi\rangle^{-n}\left\langle\xi_{n}\right\rangle^{-2} d \xi\right\}^{1 / 2} \int_{0}^{+\infty} e^{-t / 4} d t \\
& \times\left|\phi_{k}\right|_{|\tilde{\beta}|+[n / 2]+1}\left|f_{j}\right|_{0} .
\end{aligned}
$$

Lastly, we consider the case (4.7-3). We also take the second representation for $J_{j, k}$. Let $\Phi\left(\xi_{m}, \xi_{n}\right)$ be a function such that $=1$ if $\left|\xi_{m}\right| \geq\left|\xi_{n}\right|$ and $=0$ if $\left|\xi_{m}\right|<\left|\xi_{n}\right|$. Then,

$$
J_{j, k}=\int e^{i\langle x-y, \xi\rangle} h_{\xi^{\prime}}\left(\xi_{0}, \eta_{0}, y, q\right) \Phi\left(\xi_{m}, \xi_{n}\right) \Phi_{k}(y) f_{j}(x) d y d \eta_{0} d \xi d x(2 \pi)^{-n-1}
$$

$$
\begin{aligned}
& +\int e^{i\langle x-y, \xi\rangle} h_{\xi^{\prime}}(1-\phi) \phi_{k}(y) f_{j}(x) d y d \eta_{0} d \xi d x(2 \pi)^{-n-1} \\
= & K+K^{\prime} .
\end{aligned}
$$

As for K, the integration by parts with respect to ξ_{m} leads to

$$
\begin{gathered}
K=\int\left(x_{m}-y_{m}\right)^{-N} e^{i\langle x-y, \xi\rangle} \Phi D_{\xi_{m}}^{N} h_{\xi^{\prime}}\left(\xi_{0}, \eta_{0}, y, q\right) \phi_{k}(y) f_{j}(x) \\
\times d y d \eta_{0} d \xi d x(2 \pi)^{-n-1} \\
-\sum_{k=0}^{N-1} \int\left(x_{m}-y_{m}\right)^{-1-k} e^{i\langle x-y, \xi\rangle} \widetilde{D_{\xi_{m}}^{k}} h_{\xi^{\prime}} \phi_{k}(y) f_{j}(x) d y d \eta_{0} \\
\times d \xi_{0} \cdots d \xi_{m-1} d \xi_{m+1} \cdots d \xi_{n} d x(2 \pi)^{-n-1} \\
=K_{1}+K_{2}, \quad \text { where } \widetilde{D_{\xi_{m}}^{k} h_{\xi^{\prime}}=\left[D_{\xi_{n}}^{k} h_{\xi^{\prime}}\right\}_{\xi_{m}=-\mid \xi_{n}}^{\xi_{m}=\left|\xi_{\xi_{n}}\right|} .}
\end{gathered}
$$

Since on the support of $\Phi,\left|\xi_{m}\right|^{-N} \leq\left|\xi_{n}\right|^{-N}$ and for some $\tilde{C}_{\beta}, \varepsilon>0$,

$$
\left|D_{\xi}^{N} h_{\xi^{\prime}}\right| \leq \tilde{C}_{\beta}^{N+1} N!\left|\xi_{m}\right|^{-N} \exp \left(-\varepsilon\left|\xi_{0}-\eta_{0}\right|^{3}\left|\xi_{n}\right|^{-1}\right)
$$

, in the same way as case (4.7-2), we obtain

$$
\left|K_{1}\right| \leq C^{q+2} q!\left|\phi_{k}\right|_{|\tilde{\beta}|+2 n}\left|f_{j}\right|_{0} .
$$

On the other hand, since if $\xi_{m}= \pm\left|\xi_{n}\right|$,

$$
\left|\partial / \partial \xi_{n}\{i\langle x-y, \xi\rangle\}\right| \geq \delta / 2>0,
$$

by the integration by parts with respect to ξ_{n}, we have

$$
\left|K_{2}\right| \leq C_{\beta}^{q+1} q!\left|\phi_{k}\right|_{|\tilde{\beta}|+2 n}\left|f_{j}\right|_{0} .
$$

Now, we consider K^{\prime}. To treat this, we use a complex integral with respect to ξ_{m}. We may assume that $x_{m}-y_{m}>\delta$. In the contrary case, the similar argument holds. Then,

$$
\begin{array}{rlrl}
K^{\prime} & =\int_{\Gamma} e^{i\langle x-y, \xi\rangle} h_{\xi^{\prime}}\left(\xi_{0}, \eta_{0}, y, q\right) \phi_{k}(y) f_{j}(x) d \mu \\
& +\int_{\Gamma^{\prime}}\{ & \} d \mu \\
& +\int_{\Gamma^{\prime \prime}}\{ & \} d \mu \\
& =L+L^{\prime}+L^{\prime \prime}, & &
\end{array}
$$

where $d \mu=d y d \eta_{0} d \xi_{m} d \xi_{0} \cdots d \xi_{m-1} d \xi_{m+1} \cdots d \xi_{n} d x(2 \pi)^{-n-1}$, and the paths are taken as follows; for $\rho>0$,

$$
\begin{aligned}
& \Gamma=\left\{\xi_{m}=-\left|\xi_{n}\right|+i t ; 0 \leq t \leq \rho \sqrt{\left|\xi_{n}\right|}\right\} \\
& \Gamma^{\prime}=\left\{\xi_{m}=t+i \rho \sqrt{\left|\xi_{n}\right|} ;-\left|\xi_{n}\right| \leq t \leq\left|\xi_{n}\right|\right\} \\
& \Gamma^{\prime \prime}=\left\{\xi_{m}=\left|\xi_{n}\right|+i t ; \rho \sqrt{\left|\xi_{n}\right|} \geq t \geq 0\right\} .
\end{aligned}
$$

Since if $\xi_{m} \in \Gamma$ or $\Gamma^{\prime \prime}$,

$$
\left|\partial / \partial \xi_{n} i\langle x-y, \xi\rangle\right| \geq \delta / 2>0,
$$

by lemma 4.4 , the integration by parts with respect to ξ_{n} leads to

$$
|L|+\left|L^{\prime \prime}\right| \leq C_{\beta}^{q+1} q!\left|\phi_{k}\right|_{|\tilde{\beta}|+2 n}\left|f_{j}\right|_{0}
$$

On the other hand, we observe that for $\xi_{m} \in \Gamma^{\prime}$,

$$
i\left\langle x_{m}-y_{m}, \xi_{m}\right\rangle=i\left\langle x_{m}-y_{m}, t\right\rangle-\left(x_{m}-y_{m}\right) \rho \sqrt{\left|\xi_{n}\right|}
$$

So, from lemma 4.3, it follows that if ρ is sufficiently small, there are the constant ε and $C>0$ such that

$$
\left|L^{\prime}\right| \leq C\left\{\int\left(e^{-\varepsilon \mid \xi_{n} 1^{1 / 2}}\langle\tilde{\xi}\rangle^{-2 n} \chi\left(\xi_{n}\right)\left|\xi_{n}\right|^{q+\beta_{n}-3 / 4}\right)^{2} d \xi\right\}^{1 / 2}\left|\phi_{k}\right|_{|\tilde{1}|+2 n}\left|f_{j}\right|_{0}
$$

which implies that for some C_{β},

$$
\left|L^{\prime}\right| \leq C_{\beta}^{q+1} q!^{2}\left|\phi_{k}\right|_{|\tilde{\beta}|+2 n}\left|f_{j}\right|_{0} .
$$

Summing up the above argument, we obtain (4.1)
Q.E.D.

5. Proof of theorem 4.

We use the Hörmander-Métivier inequality as follows;
Lemma 5.1. If P is $\gamma^{(s)}$-hypoelliptic in a neighborhood of the origin, then for any sufficiently small, neighborhood $\omega^{\prime} \in \omega$ of the origin, there exist constants C and L such that for any $u \in C^{\infty}(\omega)$, and any $l \in N$.

Proof. P has a right inverse in $L^{2}(\Omega)$ if Ω is small. So, (5.1) follows from [6] (c.f. p. 112 in [3] and [7]).

Proposition 5.2. If there exists a non-zero complex number λ such that the equation $\left\{\left.\hat{P}\left(t, \xi^{\prime}, D_{i}\right)\right|_{\xi=(\lambda, 0, \cdots, 0,-1)}\right\} v(t)=0$:

$$
\begin{equation*}
\left\{D_{t}^{2}-i t^{k}\right\} v(t)=-\lambda^{2} v(t) \tag{5.2}
\end{equation*}
$$

has a non-trivial solution in $L^{2}(\boldsymbol{R})$, then for $1 \leq s<k+2, P$ is not $\gamma^{(s)}$-hypoelliptic in any neighborhood of the origin.

Proof. Let $v(t)$ be a non-trivial solution in $L^{2}(\boldsymbol{R})$ of (5.2.) Then, we note that $v \in C^{\infty}(\boldsymbol{R})$. For a large parameter ρ, let $V(x, \rho)=v\left(\rho x_{0}\right) \exp \left(i \lambda x_{1} \rho-i \rho^{k+2} x_{n}\right)$. Then, this function satisfies the equation

$$
P V=\left(\sum_{j=0}^{n-1} D_{x_{j}}^{2}+i x_{0}^{k} D_{x_{n}}\right) V(x, \rho)=0 .
$$

Moreover, we observe that for any $N \in \boldsymbol{N}$,

$$
\begin{align*}
& \left|D_{x_{n}}^{N} V(\bar{x}, \rho)\right| \geq c \rho^{(k+2) N}, \quad \text { and } \tag{5.3}\\
& \int_{\omega}|V(x, \rho)|^{2} d x \leq c^{\prime} \rho^{-1} e^{\delta \rho}, \tag{5.4}
\end{align*}
$$

where c, c^{\prime}, δ are the positive constants independent of ρ, N, and $\bar{x}=\rho^{-1} \bar{y}$ such that $v(\bar{y}) \neq 0$.

Let $u=V(x, \rho)$ in (5.1). Then, from (5.3), (5.4) it follows that

$$
c \rho^{(k+2)(l-[n / 2]-1)} \leq C L^{l}(l!)^{s} c^{\prime} \rho^{-1} e^{\delta \rho},
$$

which implies that

$$
1 \leq c^{-1} c^{\prime} C \exp (l \log L+l s \log l+\delta \rho-(k+2) l \log \rho+[n / 2](k+s) \log \rho) .
$$

In the last inequality, let $\rho=l$ and $l \rightarrow+\infty$. Then, if $s<k+2$, the right hand side of it tends to 0 , which leads to a contradiction.
Q.E.D.

Proof of theorem 4. We claim that the condition of proposition 5.2 is satisfied if $k=3$ or even number when $n \geq 2$. First, we consider the case $k=3, n \geq 2$. Let

$$
S=\{z \in C ;|\arg z|<\pi / 5\}, \quad \text { and } \quad S^{\prime}=\{z \in C ; 3 \pi / 5<\arg z<\pi\}
$$

From the result of Y. Sibuya [9]. Chap. 6, it follows that there exist the non-zero complex number μ and the non-trivial solution $V(z)$ of equation

$$
\left(D_{z}^{2}+z^{3}\right) V=\mu V
$$

such that $V(z)$ is exponentially decreasing as $z \rightarrow \infty$ in S and S^{\prime}. So, it is easily seen that $V\left(t e^{-\pi i / 10}\right)$ satisfies the condition of proposition 5.2 with $-\lambda^{2}=\mu e^{\pi i / 5}$.

Secondly, we consider the case that k is even and $n \geq 2$. Let $S_{0}=\{z \in \boldsymbol{C}$; $|\arg z|<\pi /(k+2)$ and $S_{1}=\{z \in \boldsymbol{C} ;|\arg z-\pi|<\pi /(k+2)\}$. Then, for each μ, there exists a fundamental system of solution $\left\{V_{j}^{ \pm}\right\}$of the equation

$$
\left(D_{z}^{2}+z^{k}\right) V=\mu V
$$

such that V_{j}^{+}is exponentially increasing and V_{j}^{-}is exponentially decreasing as $z \rightarrow \infty$ in $S_{j}, j=0,1$. On the other hand, it is well known that the operator

$$
-(\partial / \partial y)^{k}+y^{k} \quad \text { on } \quad L^{2}(\boldsymbol{R})
$$

has infinitely many eigenvalues if k is even. Let μ be a non-zero eigenvalue and V be its eigenfunction belonging to $L^{2}(\boldsymbol{R})$. We note that V is an entire function. Since the real line \boldsymbol{R} is properly contained in $S_{j}(j=0,1),\left\{V, V_{j}^{-}\right\}$is linearly dependent, for $j=0,1$, which implies that $V\left(t e^{-\pi i /(2 k+4)}\right)$ satisfies the condition of proposition 5.2 with $-\lambda^{2}=\mu e^{\pi i /(k+2)}$.

Therefore, we can use proposition 5.2 and obtain theorem 4.
Remark. For $\lambda \in \boldsymbol{R}$, the condition of proposition 5.2 is never satisfied. This is connected to C^{∞}-hypoellipticity of P. Of course, for the case $n=1$ (i.e. $\lambda=0$) and $k=1$, the condition of proposition is not satisfied.

Department of Mathematics Kyoto University

References

[1] M. Derridj and C. Zuily, Sur la régularité Gevrey des opértaeurs de Hörmander, J. Math. pure et appl., 52 (1973), 301-336.
[2] M. Durand, Régularité Gevrey d'une classe d'opérateurs hypoelliptiques, J. Math. pure et appl., 57 (1978), 323-366.
[3] L. Hörmander, Linear partial differential operators, (1963), Springer.
[4] A. Menikoff, On hypoelliptic operators with double characteristics, Ann. Scuola. Norm. Sup. Pisa, (4) 4 (1977), 689-724.
[5] T. Matsuzawa, Partially hypoelliptic pseudodifferential operators, Comm. Part. Diff. Eq., 9 (1984), 1059-1084.
[6] G. Métivier, Une classe d'opérateurs non-hypoelliptiques analytiques, Indiana Univ. Math. J. 29 (1980), 823-860.
[7] T. $\bar{O} k a j i$, On the lowest index for the semi-elliptic operators to be Gevrey hypoelliptic, J. Math. Kyoto Univ. 25 (1985), 693-701.
[8] L.P. Rothschild and E.M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1977), 247-320.
[9] Y. Sibuya, Global theory of second order linear ordinary equation with a polynomial coefficient, (1975) North Holland Math. Studies 18.

