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1. Introduction.

Let P  be a partial differential operator with analytic coefficients in S2 which
is an open set in  R d .  F o r  xE  S2 , we say P be r ( s) -hypoelliptic in  a neighborhood
of x if there exists a neighborhood co of x such that the following implication holds;
for any open subset co' c  co, any uGg'(co)

Pu E  r ( s) (w ) u e r ( s) (co') .

Here r ( s) (co') means the Gevrey class of order s  in co'

f ( x )E r ( ') (0)') i f  f ( x ) E C - (o)') and satisfies
v l<= co ', C1, 'a E N ,  supl M f(x )1  < .

Our concern is to determine the smallest numbers for P  to  b e  r (s) -hypoel-
liptic in a neighborhood of x .  Let

x ( P)= {se R ; P is r (s) -hypoelliptic in a n.b.d. of x} and r x (P)—  inf s  which
s CP )

we call the Gevrey index for P. Here we define 7- x (P) =  0 0  if F ( P ) = 0 . x We think
that in general, F (P )  is a closed connected set.

For the operator with constant coefficients and the semi-elliptic operator
with variable coefficients, r x (P) has been determined by L. Hiirmander [3], and
T . O kaji [7 ]. In this paper, we consider the following simple operator;

„ aP E , Dz . ; = (11i)
=1

°

(j = 0, 1, • • • , n) ,

where k is a positive integer.
From the result of [7], it follows that r o(P)...- 2 since r( P ) 2 for xo * O .  On

the other hand, since P is viewed as an operator of Hiirmander type; E x;+xo,
from the result of M . Derrdji and Ci. Zuily [1], it follows that 7-  o(P)<2(k +2).
But we have more sharp result for P as follows;
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Theorem 1. r o(P)< k +2.

Theorem 2. W hen n=1, r 0(P) < 2.

Theorem 3. When k =1, 7-0(P)< 2.

Theorem 4. When n 2 and either k =3  or even number,r0 (P),>-k+2.

Corollary. r e (P)  = (  2 (n=1 or k =1)
k+2 (n „>.- 2 and either k =3 or even)

W e conjecture that if and k 2, r0 (P)=k+2, but possibly for a technically
reason, we must make a restriction on k.

The plan of this paper is as fo llow s. In  §2, we shall show theorem 1 with
aids of the result of M. Durand [2 ]. In §3, we shall prove theorem 2 by  the meth-
od of Morrey and N irenberg . In  §4, we shall construct a  parametrix of P, when
k =1 , which implies theorem 3 . In  the  last section, we shall prove theorem 4
by using the Flôrmander-Métivier's inequality.

2. Proof of theorem 1.

In  1978, M . Durand has proved that if the partial differential operator Q  of
order 2 with coefficients belonging to r"(S 2) satisfies the  following estimate; for
t > 0, any K ,.(2 , and any gE C - (S2), there exist constants C K ,t5  C 1(g ) such that
for any uEC,;(K ),

(2.1) II[Q, Dxf ]ulli cK.,{11QuIlt±i_b+11u110} , (), •.., n , and

11[Q,

where C K , t 5  C f ( g )  are the constants depending uniformly on t when t is bounded,
and

11u0 (1+ 1 e 1)2 t 1 û(e)I 2de ,

then for any s>max(1/b, 2/a), 0  is r"-hypoelliptic in D.
For our operator P, from the result of [8] (c.f. th.18) it follows that

which implies (2.1) with a=2I(k +2), b=1/(k +2) since for any e>0,

iitillt _Eii<Dx>'ulltd- Ce,0ralluilo i f  t, u>0.

Therefore, applying the result of M . Durand to P, we conclude that for any
s >k +2 , P  is r"-hypoelliptic in a neighborhood of the origin. This proves theo-
rem 1.
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3 .  Proof of theorem 2.

In this section, we consider the case n=1, and denote Dx i  by D .  We observe
that from the result of [4] o r [8], it follows that for uEC7'(2), (D  is sufficiently
small neighborhood of the origin),

(3.1) ,
i=0

where ii•ii =11•110 and 6 KA .>)=( 1 + I e. 12)1" •
So, in order to prove theorem 2, it suffices to show

Proposition 3 . 1 .  L et P=M-Fixf;b(x)D, satisfy (3.1), where b  is  a  real-valued
function belonging to r ( Q )  and b (0 )* O . Then for any s>2 , P is r ( s) -hypoelliptic
in a neighborhood of the origin.

W e note that for xo *O , P  is  a  semi-elliptic operator, so that if  uegY (D)
and Pu E r (s) (co), S2 D co, s> 2, then u e  r (s) OA Ix o=0} ) . Hence it suffices to show

cotha t if  u E 2 '(1 2 ) a n d  P u  r w (0), s > 2 , then u  r (s) (0 ) ,  w h e r e  ° =(—r, r)x
(—r, r), (r is a  small positive number.)

W e prove this proposition b y  the  method o f  M orrey and  N irenberg . We
begin with some preparations. Let

cod (— r-Fd, r— d), and

denote by xd ,,(t) the characteristic function of

(— r+d+e,r— d— e).

We define 6d,2e(t) = 6 * tie)*  Zd,,(t), where :7S(t) e  C((— r,r)), s-6(0) 1, and jç-S1

Let Od,2,(x) -- fl cd , 2 ( x ) .  Then sbd a e  h a s  the  following properties;
i=o 

d ,2e =  1 o n  coi + " , =  0  on C o , , I Od ,2, I <  1, a n d
(3.2) sun D:95d,e(x) C„e -  ,

where Cx  is a constant independent of e, d. We consider the norm;

Are (<D,>iv) =  in f  j<Di >10vi 1/.2 ((-r+e,r-e)xR) 3=  0, 1/2, 1, 3 /2 ,
oex e

where Xx = -(0 E M R 2 ) ; 1  on @} . W e note that N,(v)=Iivii L 2 (.1) • Then we
observe that for u (.5(R),

(3.3) 1K-Di>v2, ti6-d,e(xi)1n I i ,

(3.4) i<DIX<D1>1/2, C16-11 i<D1>1 ui + 6 - 3 / 2 1 lui ,

(3.5)I i<D1>1/2 's6d.e(x1)ui C{I i<D1>1/2u1 I ± 6
-

1121luil} and

(3.6)I  I<D1>3/2 [D1, s3 d.e(x1)]ui C KAY/2141 I+ e-3121141
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where C is a constant independent of d, e, u. (c .f. [2])
Let

E d =  E N d-Fe(Dg<A>1 "  V)+ N d-i-e(X 1X -Dl>" 2  )
p=o

E d .e,o(1) = N d +e(DtV)+ N  d+ e(X IX D1> V) 3p=o

R  d ,i( 1)  =  NaKIV I 2 x6D00+ CON d (41)0 v)
± e 'V D , > 112x,v)---ke - 3 1 2 N d (xv ) , and

Rdo(v) = Nd (x 1
c,'Do v)d-e - W d (xt,v) ., 

Then we obtain

Lemma 3.2. Under the hypothesis of proposition 3.1, there are the constants
C  (j= 1 , 2) independent of d, s such that for any v C - (S2),

(3.7) 62Ed,,,„(v)_ C,-(e2A rd (Pv)+ eR d ,„(v))- , and

(3.8) ev'Ed,e,i(v)< C2 {6 5 1 2 N dKA>112 P e2 N d(1 ) v)

+ 5 3 1 2  R d , 1(V) + e" 2 ± Na(Dôv)} •P=0

P r o o f .  Let u=0d ,e (x)v in (3.1). We observe that

Nd ± e (x/(10 1 > u ) .  Ix■KDI>Od,eu IIN d -F E (D u ) - -  I ISd,eptui
Dt,§5d ,e = Od.ED+[Dg, sbd ,d , and

P O d , e  =  d,eP- F[Dg, d ,e1+ ixt,b(x)[Di , kei •

Since [De, 93d,e(x0)1 vanishes on a neighborhood of the origin, (3.7) follows from
(3.2). Let d, be a fixed number and * ( x ) = V - ; ( x 0 ) 1 ( x 1 )  such that

C,7(S2) , 1 o n  cod() .

For d>d 0 , let u=-Iff<A>a 0d,,v in (3.1). We observe that

Nd+ (<p i >112xD iu )._  I xg<DYP Od,su I
-‹ IN<A>nod,eui ±  I1401>[01> 1/2 , *]0d,eu I

N d + ,(D16'0 ,> 1 u)G  I<A>1/20a,eptui
DVD

1
>112 , Vr1keulid- IIPIP<Di>1 /2 0a,eull - FIKA>1"[Od„, D]uII

DVDY 1295a,e [D ô, q3 ,,e(x0)]•KAYI 2 , a  e (x010 +0d,,Dg<DY1 2 0

fo r  (/) X „  and

Plk<DY 120.1,E = [P, A<A> 1120d.e- Hk[P, <DI>112i0d.e- Hfr<A>v 2 P0a,e •

Then, similarly as before, from (3.3) (3.5), it follows that (3.8) holds.

Lemma 3.3. W e suppose the same hypothesis as  proposition 3.1. Moreover
suppose that for s>2,
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uG.0'(..(2) , P u  f  Er ( s ) (0) .

Then theres exists a constant M  independent of e, j such that for g  j ,

es(j+2) E  N( l + .) (Di'Dqu)<mq+ 2 .e 0  1  —

391

Proof . By C - -hypoellipticity of P , we may assume that u C - (0)°). So it
suffices to show the estimate. We must prepare some consideration.

Let K— co°. Then by hypothesis, there is the constants A and B  such that
for any a 117.2 ,

sup I Dxa  f I <A 1(61-" a r  ,  and

sup I D11•1 <B " a l s  .
JZ

Let je  — d. Then, we observe that for jai

(3.9) esi N d (DIsf)._<_Al+ 1 ,

(3.10) esi sup Bi-" since ej<1

(3.11) [P, DY] ix i
o'o < a (qr )D ri hDY - '  ,  and

(3.12) Mrisf -ir<1r — fo r  0 < r_ g .

Moreover, since we may assume that supp d . , c (1 ) d ± e - € .  a s  th e  proof of lemma 2.4
in [2], we see that

(3.13) Na-Fe(<A>12u) < C3 fe s/Wd+E-ed<A>u) - F e - s i Wd+e-eve(u)}

where C3 is a constant independent of d, e, and u.
Then from (3.9), (3.13), it follows that

(3.14) es(j+ImN ;,(‹D i >v2D1f)< C 3(A +1),V + 1 .

From (3.10), (3.11), (3.12), it follows that

(3.15) e.,(q+i)N o u ,  D l i o < B r+16.,(,-r+i)N  0 (x iw rr+ l u) , and
r=1

(3.16) s ( 9 + 3 / 2 )  N
q e+ e2(< p l> 1/2 [P ,  MU)

< ± C3 {Br+les(I—  r +2) N  q e + 0 _ e v 3 (x t r -I-  2u )
r

+ B r + I (B + 1 )e s (Y — r+ 1 ) N q e+2/2—ev3(x DY.— r + 1  u )}  •

Here we used the fact that II<A>ui iul I+
These inequalities (3.15) and (3.16), and lemma 3.2 imply the desired estimate.

In fact, we show this by induction on ]. W e  assume that



392 Takashi 15kaji

e,;( q+ ' ) N u + ,),o (DtDiu)<M q + 2  ,{
Œ . ( q + 1 )  N

u+1).0(.4<A>DY u)<Mq+2

et) ( q+ 3 /2 ) N ( i ÷ g2 ) ,0(Dt<D i >1/2 D7u)<M q+3/2I
ets) N(i+3/0e0OCIP<A>1/2 D1+10<mq-1-3/2

fo r  p =  0 , 1 , 2 , a n d  q. j - 1 .

In (3.8), let d=(213)5 0( j+1 ) , 6 =6 0/2, and

v eô( q+ 3 1 2 ) - 2 Diu .
If s >2 , we see that

s '+3 1 2 _ s (q +1 )  ,  s ' +1 > s (q +l)
s'+1/2_>_s(q+1/2) , ,

where s' =s(q + 3 / 2 ) - 2 .  So, by (3.9), (3.14), (3.15), (3.16), we see that (3.17) ;

and (3.18)_, imply (3.18), if

M  > max (2B, (32B(B+1)C2C3)2 , (C3(A-I-0)2 ,

For, from  Schwartz inequality an (3.1'7), it follows that since t ' ' < t k if  k > l ,
and t is small positive,

6- 0 7 + 1 ) No + ,) ,o(xfKAYPA,DIu)<2Mq+ 2 ,

and it is seen that

e; ( q+ 3 /2 ) N ( L<_ 2(B+ E  (BIM)'
r o

<4(B +1)B 2 C3 Mq+ 2 <(118)Mq + 5 /2 ,

d q + i ) N u + 1 ) e 0 (PD1u)<4B 2Mq+2 <(118)Mq+5/2 .

The similar argument as above show that (3.18) ;  and (3.17) imply (3.17) ; +

if
,

M > max {2B, A2 , (12C1)2} •

Therefore, by induction, we arrive at the conclusion of lemma 3.3 with e=e 0 ,

Lemma 3.4. Under the same hypothesis of lemma 3.3, there exists a constant
M  independent off  and e such that for any p, q satisfying p +q G  j,

(3.19) es(P-Fq)Arie(Dt,D1u)<MP+q+1 .

P ro o f  Instead of (3.7), (3.8), we start from the following inequality;

6 P Ndl-e(Dtu) C fe2 N d (Pu)± eN d (Dou)±  Ard(u)} •

p  = 0 ,  1, 2 ,
for

and

p=o
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Then, by the similar argument in the previous lemma, from the result of lemma
3.3 it follows that (3.19) holds.

Proof of proposition 3.1. Let e j = d .  Then, from (3.19), it follows that for
P+9 =j,

111;071411r L 2 (,d) 115 N d(DtD7U) d— MP + q + 1 (s  2)

which implies that u is in r ( s) (cod ). Combining this with the remark in the below
of proposition 3.1, we obtain proposition 3.1.

4 .  Proof of theorem 3.

In this section, we consider the case k=1, and shall prove that for s>2, P,
given in the section 1, is r (s) -hypoelliptic in a neighborhood of the origin. It suf-
fices to show that if uG e '(D ), and Pu E r ( 8 ) (co), s>2, then u e r ( s) (co), where D
and co are the neighborhoods of the origin such that 12 D

Let ". =(x,) , •••, ••-, x„), and x"—(x1, •••, xn-i), and denote their
dual variables by e ', e", respectively. Define riP(12) by

{uEgY (S2); for any open sets Vc Rn , and W CR such that Vx WC S2, and
any *E  C(7(W), the distribution u,,t, on V given by

<uf , 0> = <u, 0(5011, (x .)›
belongs to r ( s) (V)} ,

and also define 7- (x s2(2), sim ilarly. Then, since there exists a constant C such that
for any a, fi, and le  >  I f I 1

,  
xE D

I P l? (x , 01 lAx, oi __.cic"- '31-"ce!(fi!)2(1+ le ,
from the result of [5], it follows that

u e  r2 (Q )x
if 7- (

x s2(2) u .

So, in order to prove theorem 3, it suffices to show

Proposition 4 . 1 .  L e t  u e e '( D ) ,  and  Pu=f  E r ( s) (a)) (S2 D a ) ) .  I f  s>  2, then
f or any neighborhood a),■=a) of the origin, there are the constants C and L such that
for any OE Cc (coo),

(4.1) I <D u, 0> I -C 6 H -1 (aD s sbi

where 101,—  sup ( I  Di..1.012dx)0

We begin with some preparations. By Fourier transformation with respect
to x ' ,  or x , P is transformed into
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P i  = 12 , or

P2 = ienDe o + I 12 •

Let A (z) and Bt(z) are the linearly independent solution of the equation

(—(didz)2 ±z )V  = 0
such that

A(z)-- (V W  7, ),, z -v4e -2z3/2/3

as z—> 00 in {1 arg zl <2r}, and for a = exp[27c0(k+2)],

i f  en >0
B t ( z )  = A ( a z )

A(cr i z) i f  e n <o .
We denote by Wt the wronskian of {A(z), BE(z)). , and define the operator E on
S(Rn-H.

 ) by

El(x, =  r o gxo, Yip> elf(Y o, e )4o (j(t, e') x')dx') ,

{(ienyiPw -e- iA(z(xo, e))BAz(Y o, e))E(xo, yo, e') =
g y o ,  x0, e')

i f  xo> yo ,
i f  x o <y o ,

where z(t, e')—t(ie n) 13 +(iC n) - 0  r  F. Here we take a  branch such that z 11
3  is

real if z>0.
Let us define another operator H  on S(Rn+') by

= e')dno , 7(e) = e- i xV.(x)dx ,

exp (—evt(eg-773.)3 - '+ e" I 2 (4-7201)
i f  en>o, e0> 770 ,
i f  en> 0, eo< 7to0

me., no, e') 0 i f  en <0, 4> 77 0 ,
C;1 exP ( — ev [(e8 --77 )3- '+ I e" I 2 (e0 —no])

i f  e <o, eo <770 .
Now, we consider the equation

(4.2) Pu

where f  ES(R n+1)  such that At, en )=o if I C,J-._ 1. We observe that i f  Pu=0,

u S(lin + 1 ) , then u=0, since (P272, i°) =0  leads to 0 =  le- 12 1i112de. so, the solu-
tion u of (4.2) is uniquely given by

(4.3) u(x) =  e i x '  (E j)(x  , e ')(2r) - nde ' , or
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(4.4) u(x) eile(1-e)(e)(270-n-ve

We need some properties about E and H.

Lemma 4 .2 .  I f  I x0 —yo >  a> o , then there exists a constant e> 0 such that

(4.5) I E(xo , yo, e') Ctel,V 1 3 I exp (-6 I e112 I)

as le 1,  CO.

P ro o f  We consider the case xo> y o. In the contrary case the similar argu-
ment hold, so we omit this. W hen  bo th  z(xo, e) and z(yo, e) tend to infinity, we
have

E(xo, yo, e')— cre e;-1 /3 {z(xe , e')z(y.,e ')} - 1 "
X exp —(2/3)(z(x0, e ) 3 13 — z(Y0, e ) * ))-

-- Cte CVO{ } —1/4

X  exp (— Yie n t+  I e" 12dt)
• Yo

where Re Ve nt+  en  12 O .  w h e n  z(xo , yo, e ') tends to infinity but z(yo, C') is
bounded, we observe that

E(xo , yo, oz(xo, C') ' 4 exp (—(2/3)z(x0, C')313
)

and in this case, if 1 xo —y, I > a> 0 and I e n  I 00 , then I xo I >a/2> o. so, these
consideration lead to (4.5).

Lemma 4 .3 .  L e t em = t+ipV le .1, 1. ni Then for I t l e „ I ,  we
have, uniformly in t,

+00
I 1/(e0, 770, e') I d 0 , a n d  LI H(e0,720, e') I de 0

C:4 1 3 I exp (c/o' I eY2 I) ,

where C is a constant independent of p.

P ro o f  We observe that there exists constant Co> 0 such that

I exp (— Co I er7 e0-77.1 3 -1-a2 I 4-770 I )
L et e,71/3 1(eo -720)---u. Then, when e n > o ,

= I if(eo, 770, e') I deo. exp ( —(C0/3)u3 +8 2eY3 u)e,72 1 3du

Let u= vae,Y6C,y1/2. Then,

<a c112e;v2 exp (ccTii2 32eL/2 (—(v73)+v))dv
Jo

—  cv i2e: 112 /  exp ((2/3)0CVeL/2) \/1/(C1/2(VeL/2)
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as en —>00• When ce,, <0, the similar argument h o ld s . So, we obtain the half of
lem m a. As for the other half of this lemma, we can prove similarly as  above.

Q.E.D.

Lemma 4 .4 .  For I t \,/ je n j, we have, uniformly in t,

(4.6) I e0—no I I D/„ I -(1-1(e0, no, e"+ito„„ en)1 t„,=t,,} I
cry ' e n i-g - i exp (-1 eo —no ile n 1/4) for any q,

where (9„,; =(d ; ), „_, with d i — m ,» a i j  is a Kronecker's a)
Proof . W riting meo ,  770 ,  e"+ite„„ en)I e = e ,74 exp (—w 0 , ?)0, t, e .)), we

observe that

—Reh (eo, 7 7e ,  t, —3- 1 1e8—ngl le .1 - 1  —1/2Ie nlle 0-7701
DLh(e,,, t, 5,,)1 __cq-EY {3-' I eg— er I lenI

± ( 1/2 )1e0-770 I lenlIlenl - q •

So, since xle - x< j ! ,  for x>0, (4.6) follows from the well known fact that

M e ' f a! E  !   ( - 1)1e - f
11 ( f ( ( i ) ) / r ( i ) » i i

11 ! » 1 k !! =1

where E  ii r (i) =a, E  i f =  r (i) * 0, and f ( i ) f

Lemma 4 .5 .  F o r  a  m easurable function K (t, s) R2 d ,  suppose that

Ld K(t, s) I d t , and I K(t, s) I ds< M . T h en  the integral operator K  given by
R a

K u = 
R d  

K(t, s)u(s)ds

is a bounded operator on L 2 (R d ) with norm< M.

This lemma is well-known. So we omit its proof.

Proof of proposition 4.1. Let x r (2 ) (R) such that

, x(t) =  1  if I t I > 2  ,  and = 0  i f  I t I .

Then we see that for 0 ec(co o ) ,

(--i)q<D%u, o> <i(D )u, D 0+<(1— ,y (D x „))u,D%tb>
= 1+1'

S in c e  1 —x ( D )  is a  regu lariz ing  opera to r w ith  respect t o  x„, w e  have
(1—x(D.,,,,))u r (22(c00). So it suffices to show that there exist constants Co,  C1,
and L  such that for any 0 ec ;00, C oC N V IO IL . (s 0).

Let * C S  su c h  th a t IPIIr =g, where g = x(D x ”)1X .0. Then we observe that
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I =<u, =<f, lb.>, and

* (x ) = (Eg)(x', e')(27r) - nde ' .

Let co' is a neighborhood of the origin such that

coo t=co '(=co ,

and he C,;(co) such that h=1 on coo . Then, I is written by

<h.f, *>+<( 1
-

11)f = .1+

In view of hf E r ( s ) (0 '), we see that

J  =  e i <xi - / 4 5  gxo, Y o, e ')( 1 + I e'12) - Nx(e.)
DI„(1 —  x ,)N (hf)(x)95(y)dxdyde ' (27T) n .

Let N =q - k [n12]+1. Then this representation implies that

I/1 C'oCl(q!)s lsblo.

Next, we consider J'. W e  observe that, since f '(S2), there exists a con-
stant L  such that f =  E Dix3f 0 (x ), where f p (x)e L 2(lin+1) , with support contained

foi5i;
in some compact set, from which it follows that

J ' =  E (-0A<A3(x), — h»(x )I> = E J .
igisL irusL

We note that supph fl supp =0, so that w e can take a partition of unity satis-
fying that

E xxx) 1, z  C  (A R ')  ,

supp z ;  is sufficiently sm all such that if  xE co,n supp z .  and y E supp (1 — h) n
suppXk , then the one of the following cases holds:

(4.7-1) I xo ,

(4.7-2) I — Yn I a> 0
(4.7- 3) for some m,1 < m < n —1, I x „,—y „3 1 a> 0, a n d  I x o— .Y 

In view of ker f P = 0  in S, we have the following representations;

E JJ , k ,
j ,k

where fo r k =  X  05 and f i  =x ; f(1—h),

= D  f e`<.' - /.e> z(e „)e''E(x o , yo , ')}  k(y)f; (x)dy' dyo de 'dx(27c)n ,
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ore 20, — e)e'<Y 0'0 - no) tbk ( y ) f i (x )dy ck o dedx(27r) - n- '  ,

where the  integration is carried in  its o rder, from  left to  righ t. W e note  that,
by the construction of {z}, on the support of the integrand of J .0 „ one of (4.7)
holds.

So, we investigate J i . k ,  case by case. In  the case (4.7-1), w e take the  first
representation for J i , k. Then, from lemma 4.2, it follows that there exists a  con-
stant Co depending only on /9, such that

Ji,k1 IP I en exp (-6 I en11")

X—  z x /,) 1'3 " i+ nOk )(y )f f (x)dycle 'dx(27r) - n

< Cq + 1 (q!)2 I g5k 1 it3"1-F,, IL o
where <e">— (1+ e" 2)1 ,

In the case (4.7-2), we take the second representation for J i . k  since it is diffi-

cu l to estim ate DE. W e  note tha t el=  E  ( 18°)(e0—n0)"7700- 7 . so, the integ-
yspo r

ration by parts with respect to en implies that

E  ( 14 )  ( 1/(x.—YON)ei<x- Y."<É->-2 nge„{(e0-770)7ht,(eo, 770, y,o)-
X (1 —4,7)W ;(D y0 )130- 1 0k (y )fi (x)dyck o de'dx(27r) - n ,

where ht,(5 0, 72,, y , q) = 

From lemma 4.4, it follows that fo r N =f l„±q±[,712]+1, on the support of H,

-1, 14 {(eo—no)ht(eo, no,
N ! 

=  E DL,(ef,'”+q)Diej(en)DLMeo, —e')Ieo-77,17
k +i+j=lr i!j!k !
< w i g  ,2<en>-2 exp

(1 / 4 ) e 0l  e n I)

So, by Parseval equality and lemma 4.5, we have

+00
Ji,k E C rq ! 2<e>-"<e „>-2d0-0 e-tI4dt

7=0 J Jo
X i 95k I 1+[n/21-1-1 I f j  0 •

Lastly, we consider the case (4 .7-3). W e also take the second representa-
tion for J .  L e t  o(e„„ Co be a  function such that =1 if  I I  and =0 if

IOE.1< le „1 . Then,

J j , k  =  e i < x — Y 4 > h r( e 0 5  no, Y, q) 0 (e,o, e„)0k(Y )Mx)dychiodedx(270-3-1
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e1<x- .Y'VhE, (1--0)0k(y )f i (x)dych7o dedx(27) - n- 1

K-FK' .

As for K, the integration by parts with respect to en, leads to

K S (x . — YO- N ei < x - Y 't ) D11,,hei(eo• 720, Y • q)ck(Y)fi(x)

xdydno dedx(270 - '

Y .t> D th  e'ç b k(Afj(X)dY

X de0 —dem _l de„,,,•••den dx(270- - 1

Ki +  K „ w h e re  14 . he, .

Since on the support of 0 , I emp-N <  le n f N  and for some e> 0,

D h t i i N eXP (— 6 I eo I I en I ' )
, in the same way as case (4.7-2), we obtain

K1 1 < Cq± 2 q! 10kIli3- 1+2nifj10 •

On the other hand, since if en t — ±ie n l,

I a me n {Kx—y, I> (3/2> 0 ,

by the integration by parts with respect to en , we have

K2I C rq !

Now, we consider K '.  To treat this, we use a complex integral with respect
to  en i .  W e may assume tha t x„, —y„,> S. In the contrary case, the similar argu-
m ent holds. Then,

K ' = e Y4 ) 14, (eo , no , y, q)(bk(Y )gx)d,u

/ I

//

} d,u

)-d,u

= L +L 'H-L " ,

where du=dykde „tdeo • • -dOE „,_i de„,+ ,••• de n dx(20 - n- 1 ,  and the paths are  taken as
follows; for p>0,

I' =  fe„, —  — le„i±it; o<t<p N/ le n il
= = td-ipV  le„j; —len1

r"  =  {em  le  n i +it; pV  le n i > t > o l  .
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Since if e m G  r or I ' ,

e>i __ô/2>0 ,

by lemma 4.4, the integration by parts with respect to en leads to

L  +1/-7 1- C r l i7!I Oki 11i1+2n1 fil 0 •

On the other hand, we observe that for e „ ,G r ' ,

i<xm — Y ., e m> = t>—(xm—Y m)P I e n i •

So, from lemma 4.3, it follows that if p  is sufficiently small, there are the constant
e and C> 0 such that

(e- e  I . 1112‹ -É>- 2 n X(e.) en I + -3/4 ) 2d }  l/2 10ki 1;11-1-2,2 .05

which implies that for some C ,

L ' I  .C73± 1 q!'ls6k I I f  l1 + 2. ; ( )  •

Summing up the above argument, we obtain (4.1) Q.E.D.

5. Proof of theorem 4.

We use the 1-16rmander-Métivier inequality as follows;

Lemma 5 .1 .  I f  P  is r ( s) -hypoelliptic in  a neighborhood of  the origin, then for
any sufficiently small, neighborhood co' co of  the origin, there exist constants C and
L such that for any u E C`'(0.), and any  le N .

(5.1) -( E E  P(' IID:PullL2(.)+(n)sllullL2(01

P ro o f  P  has a  right inverse in L 2 (Q ) if D is  sm a ll. So, (5.1) follows from
[6] (c.f. p . 112 in [3] and [7]).

Proposition 5 .2 .  If  there ex ists a non-zero com plex  num ber A  such that the
equation -(P(t, e t=0,,,,...,,,_01v(t)---0:

(5.2) v(t) —22 v(t)

has a non-triv ial solution in L 2 (R ),  then  f ir 1< s < k + 2 , P  is not r ( s) -hypoelliptic
in any neighborhood of the origin.

Pro o f . Let v(t) be  a non-trivial solution in L 2 (R )  of (5.2.) Then, we note
th a t  y G C - ( R ) .  F or a  la rge  parameter p , let V(x, p)----v(px o )exp (i2x1p p k+2) ( n ) .

Then, this function satisfies the equation
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PV = ( E V(x, p) 0.
=0j

Moreover, we observe that for any N E N,

(5.3) Yxv„ V(t, p) cp (H-2 ) N , and

(5.4)I  fqx, P)I 2dx p 'e "  ,

where c, c', 8 are the positive constants independent of p, N , and î= p - 1 J7 such
that v(Y)*O.

Let u= V(x, p) in (5.1). Then, from (5.3), (5.4) it follows that

cp
( k  - 1 - 2 )  ( 1  -  [n / 2

]
-  

<  COPY c' p- l e"
which implies that

l < exp (1 log L+Is log 1+0 —(k+2)/ log p-F[n/2](k+s) log p).

In the last inequality, let p=1 and 1 ---koo . Then, if s<k+2, the right hand side
of it tends to 0, which leads to a contradiction. Q.E.D.

Proof of theorem  4. We claim that the condition of proposition 5.2 is satisfied
if k= 3  or even number when n > 2 .  First, we consider the case k=3, n> 2. Let

S  { z E C ;  a r g  I < r /5 1  ,  a n d  S ' =  {zE C ;  37r/5<  arg z<z)- .

From the result of Y. Sibuya [9]. Chap. 6, it follows that there exist the non-zero
complex number it and the non-trivial solution V(z) of equation

(D! +2) V = ,a V

such that V(z) is exponentially decreasing as z—.00 in S and S'. So, it is easily
seen  that V(te - ' 1 1 ° )  satisfies the condition of proposition 5.2 w ith  ---22 —ne' 15 .

Secondly, we consider the case th a t k  is even and n> 2. Let S0 = -(zEC;
I argz <r1(k+ 2) and S, =  C ;  a r g  z I <7r1(k+ 2))- . Then, for each p, there
exists a fundamental system of solution -[ i l l -  of the equation

(D 2,.+ 2 )V  =

such that V ; is exponentially increasing and V7 is exponentially decreasing as
z—>00 in S) , j= 0 , I. On the other hand, it is well known that the operator

a y yz y k o n  12 (R )

has infinitely many eigenvalues if k is  even . Let be a non-zero eigenvalue and
V be its eigenfunction belonging to L A R ).  We note th a t V is an entire function.
Since the real line R  is properly contained in S;  (j=0, 1), -(V, V7)- is linearly de-
pendent, for j= 0 , 1 , which im plies that V ( t e ' ' " ' ) )  satisfies the condition of
proposition 5.2 with —22= i t e i / ( k + 2 ) .
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Therefore, we can use proposition 5.2 and obtain theorem 4.

Rem ark. For 2 E R , the condition of proposition 5.2 is never satisfied. This
is connected to  C - -hypoellipticity of P .  Of course, for the case n= 1 (i.e. 2=0)
and k =1, the condition of proposition is not satisfied.
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