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1. Introduction.

In this paper, we consider the following equation:
(LD L@)=3 (xi+a)oulosx = u,
i=1

where 1,€C (i=1,2,---,n) and a; (i=1, 2,:--,n) are all holomorphic in a
neighborhood of the origin of C”. We assume, moreover, that each g; vanishes at
the origin with an order larger than two.

In [4] and [5], we have concerned with the holomorphic solutions of the equa-
tion of the type (1.1), but of fairly particular one. Here, we shall wholly concern
with the singular solutions.

To clarify the motivation of this study, we make a slight review to the case
of ordinary differential equations:

(1.2) P@)=3} {p+q,(x)}u” =0,

where p; (i=1, 2, ++-, n)EC with p,,=1 and each g,(x) is a holomorphic function in
a neighborhood of the origin of C, vanishing at the origin with an order larger
than i+1. Now, let P, be as follows:

(1.3) Py = 3 pixidijdx’,

then, for a certain solution u,(x) of the equation:
(1.4 Pyv) =0,

we can always find a solution u(x) of (1.2) having the form:
(1.5 u(x) = uy(x)H(x) ,

where H(x) (£0) is holomorphic at the origin.
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We shall intend to adapt what is stated above to the equation (1.1), that is,
we shall look for a solution u(x,, -+, x,) having the form:

(16) u(xla ttty xn) = uo(xl’ ttty xn)H(xl’ M) xn) s

where uy(x,, <>+, x,) is a solution of the equation:
(.7 Ly()=3 4x,0v/0x; = v,
i=0

and H(x,, **+, x,) is a holomorphic function at the origin.

In the case of ordinary differential equations, the number of the solutions
of (1.4) which are linearly independent are finite, and this makes it simple to study
the problem. However, it is infinite in the case of partial differential equations,
and this will make it fairly hard to study the problem. Nevertheless, we can make
a characterization of the solutions of (1.7), that is, we can see that every solution
v(xy, =+, X,,) of (1.7) has the following property:

(1'8) v(txlxb Tty t}‘"-xn) = tv(xb R xn) (t=|=0) s

In fact, it is easy to see that a function v(xy, -+, x,) satisfying (1.8) is a solution
of (1.7). Conversely, let v(x;, ---, x,) be a solution of (1.7), then substituting
(tMx,, oo+, 1'x,) for (x,, ++-, x,), we have

1.9) tdv(tMxy, -, 1%, de = vt xy, o, £7x,)

and this implies (1.8). It should be noted that (1.8) shows that the solution of
(1.7) is a homogeneous function of degree one in (xi’1, .-+, x;/*), if none of ;
(i=1, 2, -+-, n) is zero.

Remark. When ;%0 (i=1, 2, -+, p) and 2,=0 (k=p—+1, -+, n), we can show
that the solution of (1.7) is given by

(1'10) v(x,-, "ty xn) = vo(xly "t xﬁ)w(sz+ls R xn) s

where v, is a homogeneous function of degree one in (xi/™, -++, x;*») and w an
arbitrary function of (x4, ***, X,).

Substituting u(x,, *+, x,,) given in (1.6) into (1.1), we have immediately
(1.11) uoL(H)+(§;: a;:0u/0x)H = 0.,

Hence, if it holds
(1.12) L(u)= 2 a;0up)0x; = bug ,

with a holomorphic function b vanishing at the origin, it follows

(1.13) L(H)+bH =0.
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As is shown in the next section, the equation (1.13) admits always a holomorphic
solution, and this means that (1.12) gives a sufficient condition in order that (1.1)
has a solution such as given by (1.5). I, myself, anticipate that (1.12) is also neces-
sary for the equation (1.1) to have a solution such as given by (1.5), however, to
my regret, I will show it only for the following three cases:

M sy, ey x,) = X X et =1)
)l %) = (B extry (r0)

A oy, oo, x,) = (D ex PP dixi™y (pgtrs = 1),
i=1 i=1
under the assumption
(1.14) A0,

where @, ¢;, d; (i=1, 2, -**,n), p,q,r and s are all in C and 4 denotes the convex
hull of 2,, +-, 2,.

2. The case (I).

In this section, we consider the case (I). In virtue of (1.11), we have
@.1) X, w00 X L)+ (S @iy Xia¥pns o+ X)H =0
Lemma 2.1. Let a;=0, then
2.2 a;=0 (mod x;) ,
is necessary for the equation (2.1) to have a non-trivial solution.

Proof. We may assume that @;==0. If (2.2) does not hold for i=1, it fol-
lows immediately that H =0 (mod x,), that is, H=xG, where vEN and G is a
holomorphic function=0 (mod x;). Thus, we obtain that ¢,G=0 (mod x,), but
this is a contradiction. Q.E.D.

Now, let @;=0 (i=1, 2, -+, p) and @,=0 (k=p-+1, -+, n), then we have
2.3) a; = x;b; i=12,+,p),
where b; (i=1, 2, -+, p) are all holomorphic. Hence we have

(2.4) L(H)—]—(g‘, ab)H =0.

We can show that the equation (2.4) has always a non-trivial solution by using
the method of dominant series. In fact, taking the dominant series as follows:

@2.3) Z:i b K M(xy+ o+ +x,) {l—p(x1 4+ +x,)}
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where M and p are positive constants chosen suitably, and letting ¢ be the dis-
tance between A and the origin, we see that the formal solution H of (2.4) is domi-
nated as follows:

(26) H(xl’ M) x,,)<<H0(x1+~---I-x,,) )
where Hy(z) is a solution of the auxiliary equation:
2.7 {e—Mz/(1 —p2)}dH,/dz = MH/(1—pz),

satisfying Hy(0)= | H(0, -+, 0)].
Thus, we can obtain the

Theorem 2.1. In the case of (1), the equation (1.1) has a solution of the type
(1.6), if and only if a,=0 (mod x;) for k such that a,=0.

Remark. Theorem 2.1 shows us the necessity of (1.12) for the existence of
the solution of the type (1.6).

3. The case (II)-1.

In this section, we consider the case (II) under the assumption:
(A) 1)2r&EZ foralli.
We begin with the following lemma.

Lemma 3.1. Let u,, -, u, and v be holomorphic functions in a neighborhood
of the origin of C*. If it holds

»

(31) Exal:::ui_i_v =0 {kh ""kp}c{l’ "',I‘l}‘,
i=1
for some a; (i=1, 2, -+, p)& Z, then it follows that u;=0 (i=1, 2, +--, p) and v=0.
Proof. Tt is easy. Q.E.D.

From (1.11) we have

(.2) (z‘, c,.x}/*f')L(H)+(§ XN aax)H = 0,
Hence by the assumption (A) and Lemma 3.1, we obtain

3.3) Aix;L(H)+a;H=0,
for all i such that ¢;=0.

Lemma 3.2. It must hold that

(3.4 a;=0 (mod x;) ,

for the equation (3.3) to have a non-trivial solution.
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Proof. Let i=1. If (3.4) does not hold for i=1, it follows that H=xG
(v&N and G %0 (mod x;)). Thus, we obtain

3.5 vii+1 =0
and
(3.6) L(G)=G.
For the equation (3.6) to have a non-trivial holomorphic solution G it must hold
(3.7 St =1,
i=1
for some (@, -, a,)eN". However, this contradicts (1.14), since 4,<0 by (3.5).

Q.E.D.

By (3.3) we can see that a;/2;x; does not depend on i{. This implies that a;=
2;x;b for some holomorphic function b.

Theorem 3.1. To the case (II), under the assumption (A), the equation (1.1)
admits a solution given by (1.6), if and only if it holds

(3.9) a; = Ax;b (b is holomorphic) ,
for all i such that c;=+0.

Remark. Theorem 3.1 shows us the necessity of (1.12) for the existence of
the solution given by (1.6).

4. The case (ID)-II.

We should take the case where 1/4;r (i=1, 2, :--, n) belong to Z. We start
with the

Lemma 4.1. Let 1/2,r (k=1,2, -, n)EZ, then 2;2,r*>0 for all j and k.
Proof. Let 2,=0,~+ir, and r=a+if, then we have
.0 ar,+fo, =0 (k=1,2,+-,n).
If 2;2,r*<0 for some j and k, it follows
4.2 (@o;—pr;)(@o,—fr,)>0.

When g=0, we see that 0,0,<<0, and this contradicts (1.14). When A0, we
see that 2,=(—a/g+i)r, for all k and that z;7,<<0. This contradicts also (1.14)
Q.E.D.

In this section, we study the case (I1I) under the assumption:

(B) 1/j2reN forall j.
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Let us put
4.3) 1/2;r =m;+1 (m;EN),
then we obtain from (1.11)
4.4 OL(H)+L,(P)H =0,
where ®=i_é1 c;x?i*'.  We divide our study into the following two cases:

(i) @ isirreducible in C[x,, *-+, x,]
(ii)) @ is reducible in C[x,, -, x,].
We consider first the case (i).

Lemma 4.2. Suppose that @ is irreducible and that f and g are holomorphic
in a neighborhood of the origin of C". If fg=0 (mod @), that is, if there exists a
holomorphic function h such tha) fg=h®, then it follows that f=0 (mod @) or
g =0 (mod 9).

Proof. 1t is almost obvious. Q.E.D.
Now, let us show the following proposition.

Proposition 4.1.  Suppose that @ is irreducible. The following condition

4.5) L,(9)=0 (mod ),

is necessary and sufficient in order that the equation (4.4) has a non-trivial solu-
tion.

Proof. 1t suffices to show the necessity. Let us assume that (4.5) does not
hold, then we see by Lemma 4.2 that H=0 (mod ®). Putting H=0'G (v€N
and G =0 (mod @)) and noticing

(4.6) rL(®) = 0+L,(9),
we obtain

4.7 O(rL(G)+vG)+(v+r)L,(9)G = 0.
Hence we obtain that v+r=0 and therefore

4.8) LG =G.

Thus, it must hold
4.9) é ar =1,
i=1
for some (@;, +, @,)EN".

On the other hand, we see that ; (i=1, 2, ---, n)<0, since r<0. This is not
compatible with (4.9). Q.E.D.
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Next, we shall consider the case (ii). In this case, we may assume that
¢6,#+0 and ¢;=0 (i=3, -+, n). Let @ be as follows:

(4.10) o=T¢ (=2,

where ¢; and ¢, are mutually prime. As is easily seen, @ has no diviser such
as 5 (s=2). Let us assume that, for example,

(4.11) L(9)%£0 (mod ¢,) ,

then we obtain that H=¢)G (v€N and G%0 (mod ¢,)). Substituting H into
(4.5), we get

4.12) O(rL(G)+vG)—vré, L(y)G+(v+r)L, ()G =0,
where w:ﬁzq&;. Hence we obtain that v+r=0 and therefore that

(4.13) YL(G) = (L¥)+¥)G .

Lemma 4.3. If it holds

4.14) L(y)=*=0 (mod ¥) ,
then the equation (4.13) has no non-trivial solution.

Proof. Let us assume that

(4.15) vL(y) = (r+h),

where 7 €C and h is a holomorphic function vanishing at the origin. Then, we
have

(4.16) ‘ L(G) =(+r+hG.
If we put
4.17) B; = xTi4 -t (@;#0;i=2,+-,p),

then we obtain from (4.15)
(4.18) Ao = At =T1/V,

where a=g2 o; and ‘r:i__é2 7;. Moreover, from (4.16) we obtain
(4.19) .g”la,.z,. =147,

for some (a, -+, @, )EN".
On the other hand, we see that 2,, 2,<0, since r<0 and from (4.18)

4.20) r =vlo = —rko = —o/(m+1)>—1,
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and this contradicts (4.19).

If we assume L(y)=0 (mod ¢,), then putting v =g, we have

4.21) Yol (Gy) = (Y L(¥ro)+40)G,y s

Q.E.D.

where G, is holomorphic. Applying Lemma 4.3 to (4.21) again and again, we

obtain finally

(4.22) L(g) =g,

for some holomorphic function g. However, the solution of (4.22) is no more
than the trivial one, since 4; (i=1, 2, ---, n)<<0. Thus, we can have the same result

as Proposition 4.1, even if @ is reducible.

5. The case (II)-II1.

In this section, we study the case (II) under the assumption:

© —1/3reN  forall i
Putting
(.1) 0 = Stearmi=(I] XY,
we have from (1.11)
(5.2) OL(H)+L,(®)H =0,
where m;=—1/A;r. Moreover, we introduce a polynomial Q by
(53) 0 = (I *7*)L,(®),

then we obtain
(5.9 X x, Y L(H)+QH =0.
Now, let us divide our study into the following two cases:

(i) ¥ isirreducible in C[xy, **+, x,]
(i) ¥ is reducible in Clx,, -+, x,].
Let us consider the case (i). We start with the

Lemma 5.1. It must hold
(5.5) 0=0 (mod ¥),

for (5.4) to have a non-trivial solution.

Proof. Let us assume the contrary. Putting H=®G (v&N and

(mod 7)), we get

G*0
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(5.6) x; o X,(YL(G)+vL(¥)G)+ QG =0.
Using (5.2), (5.3) and
(5.7 rl(®) = O+rL,(9),
we obtain that v+r=0 and
(5.8) X1+ X, (L(G)+(n—1)G)+AG =0,
where A4 ———i‘, Xyt X;_1@iXi41 ** X,/4;. We note that 2,>0 (i=1, 2, -+, n), since
r<0. Nowtif A=0 (mod x, :-* x,), we get
(5.9) L(G)+(n+1)G =0.

However, (5.9) has no more than the trivial solution, because 2,>0 (i=1, 2 -+, n).
Hence, for example, 40 (mod x,). Then, putting G=x{G, (+EN and G,*0
(mod x,)), we have

(5.10) Au+1=0,
and this contradicts that 2,>0. Q.E.D.
In virtue of Lemma 5.1, we may put
(5.11) 0 =c",
where ¢ is a holomorphic function. Hence we obtain
(5.12) x; o x,L(H)+cH =0.
Lemma 5.2. If (5.12) has a non-trivial solution, then
(5.13) c=0 (mod x; -+ x,) .

Proof. 1If, for example, c%=0 (mod x,), it follows that ¢,#0 (mod x,) and
H=0 (mod x,). Putting H=x{G (r€N and G=0 (mod x,)), we obtain

(5.14) oD +caxi™d = x0,

where @ is meromorphic but holomorphic in x;. Since @,%0 (mod x;), we have
2,0+1=0 and

(5.15) o( 3] eixi™)a, = x@ .
i=2
However, this is a contradiction. Q.E.D.

Summing up the results obtained above, we can see that (1.12) is also neces-
sary to the existence of the solution of the form (1.6), if ¥ is irreducible.

Next, we consider the case (ii). Let y; (i=1, 2, -+, 5) be the irreducible fac-
tors of 7.
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Lemma 5.3. For any i€ {l, -+, s}, ¥* (p=2) is not the factor of ¥.
Proof. 1tis easy. Q.E.D.

Let us assume that, for example, - is not a factor of L,(®) (or Q), then Put-
ting H=vy1G (v N and G %0 (mod ) and ¥ =y~ and using (5.7), we obtain
that v4+r=0, and consequently

(5.16) xp o0 X {LY(G)+(n— 1) G+rL(¥)} G+yAG = 0.
we note here that 2,>0 (i=1, 2, -+, n), since r=—v,

Lemma 5.4. Let ¢; 50, then it must be a;=0 (mod x;) in order that (5.16) has
a non-trivial solution.

Proof. Let us assume that ¢;% Oand ¢,;%=0 (mod x,), then putting G=x{G,
(#EN and G,%=0 (mod x,)), we can see easily that ,#+1=0. But this contra-
dicts that o+r=0 and (C). Q.E.D.

For the simplicity, we assume that ¢;==0 for all /. By virtue of Lemma 5.4, we
can set a;=4;x;b; for all i, and then we obtain from (5.16)

(5.17) Y{L(G)+(n—1)G+BG} +rL(¥)G =0,
where B=$} b;

Lemma 5.5. If L(y)=0 (mod ), then (5.17) can not have a non-trivial solu-
tion.

Proof. Let rL(y)=(r-+h)y, where 7 is a constant and 7 a holomorphic
function vanishing at the origin, then we obtain

(5.18) L(G)+(ro+h+B)G =0,
where 7,=(n—1)+7>0. But (5.18) can not have a non-trivial solution, since
;>0 (i=1, 2, +, n). Q.E.D

In virtue of Lemma 5.5, we obtain, for example, that L(y*)30 (mod v~,). Then,
putting G=v-5G, as usual and =+ry,, we obtain #+r=0, and consequently

(5.19) Yo{L(Go)+(n—1)Gy+BGot +rL(¥2)G, = 0.
Repeating the above arguments, we atatin finally
(5.20) L(g)+(n—1)g+Bg =0 (g is holomorphic).

However, (5.20) has no non-trivial solution, since 2,>0 for all ;. Thus, we can
have the following lemma.

Lemma 5.6. 1t is necessary that

(5.21) L,(9)=0 (mod ¥),
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in order that the equation (5.1) has a non-trivial solution.

Summing up the results obtained above, we can show the following theorem.

Theorem 5.1. In the case (11), under the assumption (C), the equation (5.4)
admits a non-trivial solution if and only if L,(®)=0 (mod ).

Remark. in the case where r/2;&Z (i=1, :+-, p) and /3, €Z (k=p+1, .-+, n),
Theorem 5.1 is also valid.

Remark. Theorem 5.1 means that (1.12) is also necessary in order that the
equation (1.1) has a solution of the form (1.6).

6. The case (III)-L.

In this section, let us consider the case (III). The methods used to the case
(I11) is almost same as those to the case (II), therefore we shall give only a sketch
of our arguments. First, we study the problem under the assumption:

(D) r/i,&Z  for somei.

For the simplicity, we assume that c;, d;50 for all ., We may assume that i=1
in (D) without loss of generality.
If (r+q)/2, & Z, we have immediately

6.1) Ax,L(H)+aH =0,
and this implies that
6.2) a = x.b (b is holomorphic) .

This shows us that (1.12) is necessary for the existence of the solution such as in
(1.6).

Let us consider the case where (r+¢)/4, (=m)EZ and g=r, then using the
following notations:

n ”
c(x’) = ‘22 cixi™, cy(x) = 22 cixiia; | ;x;
= =

dx') = 33 i, dx) = 3] diadix;
i= i=2

we obtain
(6.3) c(x")L(H )+ (sre(x")a;/ i, +pged(x))H = 0,
(6.4) d(x")L(H )~ (srdi(x)+pgd(x)a/ 2 x)H = 0,
(6.5) (e dixT+ce(xNd(x")L(H)+c dxTa H| 2 x,

+(sre(x")dy(x)+pqd(x)c(x))H = 0 .
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Lemma 6.1. If the equations (6.3) (6.5) have a non-trivial solution, then a;=0
(mod x,).

Proof. 1If a;==0 (mod x,), then it follows that H=x1G (v€N and G=£0
(mod x;)). Then, it follows

(6.6) Av+pg =0, 2wv+rs=0,

and consequently

(6.7) (ca(®)/e(x") = dy(x)/d(x)(= @(x)) .
We notice that w(x) is holomorphic in x;. Using (6.5) and (6.7), we obtain
(6.8) (1 xT —c(x)d(x Way— A x@(x)) = 0.

This shows that @,=2,x,@(x), and consequently that w(x) is holomorphic. This
is a contradiction. Q.E.D.

Now, putting a,=24,x,b (b is holomorphic), we get also (6.7) from (6.3)~(6.5).
This implies that (1.12) is necessary for the existence of the solution such as in

(1.6).

Next, we consider the case where (r+¢)/4,€Z and g=r. In this case, we
obtain

6.9) (e, d(x")+dx(c"))L(H )+(disre(x")+ ¢y pqd(x " ))a Hl A, x,
+(@dpgex)+ersd(x)H =0,
(6.10) (adxP+e(x")d(x")L(H )+ dixTa H A x,
+(pgd(x")e,(x)+rsc(x")d,(x))H = 0.
Of course, we may assume that (g+r)/4;=2q/; € Z for other i’s.
If ¢,d(x")+d;c(x")=0, we have from (6.9)
(6.11) (p—s) 2 i@ x—ai2ix) = 0.

When p=s, we have from (6.10)
(6.12) (cix¥ —e(x"V)L(H)+(cixTay/ 2 —c(x")e (x))H = 0.

We can show that (cix?a,/Ax;—c(x)e(x))/(cix} —c(x')?) must be holomorphic
for the equation (6.12) to have a non-trivial solution by the techniques used in
the sections 4 and 5.

When p=Fs, we see that a;=2,x,/b (b is holomorphic) and have

(6.13) (eixt —c(x"V)LH)+(cix'b—c(x")e(x)es(x)H = 0,

and we can have the same result as the case when p=s.
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Let us consider the case where c,d(x)+dic(x)=0. We assume, for the sim-
plicity, that g/2, & Z for other i’s.

Lemma 6.2. If the equations (6.9) and (6.10) have a non-trivial solution, then
a;=0 (mod x,).

Proof. Let us assume that ¢;=%=0 (mod Xx,), then we obtain with some vEN,
(6.14) (Aw+gs)die(x)+(Awv+pg)ed(x’) =0.

If 2,v+gs=0, then Av+pg=0. Then, we have p=s, and 24,y41=0, since
pq+gs=1. Thus, we obtain from (6.9) and (6.10)

(6.15)  (crd(x")+de(x))Qerdyxi'an/2x,+c(x)dy(x)+d(x")eq(x))
= (adixt+e(x")d(xNdic(x)+ e1dy(x)+(die(x)+-ed(x ey Ax,) -

And (6.15) shows that ¢,=0 (mod x;).
If 2v+gs=0, it follows from (6.14)

(6.16) ad(x’) = —d(Av+gs)c(x')/(4v+pq)

(6.17) aidy(x) = —dy(4+45)c(x)/(Av+pq) .
Substituting (6.16) and (6.17) into (6.9) and (6.10), we have

(6.18) c(x"VL(H)—qa,c(x")-x;— A+ e, (x))H =0,

(6.19) (ciAw+pg)xT —(+gs)e(x)’L(H)
+cf(/11v-|—pq)xi"a,/llxl—(llu-}—qs)c(x')c,,(x)H =0.

From (6.18) and (6.19), we can show that ¢, =0 (mod x,). Q.E.D.

By virtue of Lemma 6.2, we put a,=2,x,b, where b is a holomorphic func-
tion. Substituting it into (6.9), we have

(6.20) (c:d(x")+die(x") L(H)+g {(dsc(x")
+e1pd(x")b+-dy pe(x)+esd ()} H =0 .

We shall study the case where g/2;,E N (i=2, -+, n) and 2(x')=c,d(x")+dc(x’) is
irreducible.
Now, let us assume that

(6.21)  (disc(x")+eipd(x)b+dypey(x)+esd,(x)£0  (mod 2),
putting H=£"G (v& N and G0 (mod £)) and noticing
(6.22) L(2) = q2+q(cd(x)+dic(x)) ,

we obtain from (6.20)
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(6.23) (disc(x") -+ pd(x")b+-dy(=+p)c(x)+cy(v+5)d,(x)
= o(x)2(x’),

where o(x) is a holomorphic function vanishing at the origin. Hence if (6.20)
has a non-trivial solution, it must hold

(6.24) S adirg =0,

for some (o, -+, @,)EN". However, this is impossible, since g/2;>0 for all i.

When £2(x') is reducible or when ¢/2;<<0 for all /, repeating the almost argu-
ments as those of the sections 4 and 5, we can obtain the same result. Thus, we
can attain the

Theorem 6.1. In the case (I1I), under the assumption (D), (1.12) is necessary
in order that the equation (1.1) has a solution such as in (1.6).

7. The case (IID)-II.

Here we consider the case (II1) where the assumption (D) is removed. The
study of this case will be divided into the following three cases:

@) q/A;, r/A;EN for all i

(b) g/, EN and —r|/};EN for all i

() —q/d;, —r/}; &N for alli.

Using the following notations:

A=Nexih, B=3dxi,
i=1 i=1
and putting u=A4?B°H, we have from (1.1)

(7.1) ABL(H)+(sAL(B)+pBL(A)H = 0.

First, we consider the case (¢). For the simplicity, we assume that 4 and B
are irreducible. We note that %; (i=1, 2 :--,n) ¢ and r are as follows:

i =0;r G=1,2,:-,n)
q=r1r
r=or,
where 7 is a complex number and 0; (i=1, 2, :+-, n), r and o belong to R.
Lemma 7.1. It is necessary that
(7.2) L,(4)=0 (mod A4)
(7.3 L,(B)=0 (mod B),

in order that the equation (7.1) has a non-trivial solution.
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Proof. We assume that L,(4)%0 (mod A), then putting H=A"G as usual,
we have v+p=0 and

(7.4) BL(G)~+-vqBG+sL,(B)G =0 .

If L,(B)=0 (mod B), then we have for some (a,, ---, a,,)E]V "

(7.5) é a;l;+vqg =0.

However, this is a contradiction.
If L,(B)=0 (mod B), we put G=BG, as usual. Then we have #+s=0 and

(7.6) L(G)+(vg+u5)G, = 0.
But this leads us also to a contradiction. Q.E.D.

By virtue of Lemma 7.1, we can see easily that (1.12) is necessary for (1.1) to
have a solution such as in (1.6).
Secondly we study the case (b). We put

(1.7) ¥ =x"B,
where x™ denotes f[ xPi with m;=—r[; (i=1, 2, -+, n). We notice that
i=1
(7.8) L) =r(Q—n)?+x"L,(B)+o,¥ ,

where @m=$ m;a;/x;. Substituting (7.7) and (7.8) into (7.1), we obtain

(1.9) A¥Y—L(H)+ {(n—1)rsA—sw,A+pL (A} ¥ H+sAL{¥')H = 0.

For the simplicity, we assume that 4 and ®, are mutually prime. By the usual
way, we can shwo the

Lemma 7.2. If (7.8) has a non-trivial solution, then it must holds

(7.10) a;=0 (mod x;) for all i
(7.11) L,(4)=0 (mod A4)
(7.12) L¥)=0 (mod ¥) .

By virtue of Lemma 7.2, w, becomes holomorphic and vanishes at the ori-
gin. Moreover, noticing the degree of ¥ as a polynomial, we obtain

(7.13) L@®) = {r(0—n)+h 7,

where /2 is a holomorphic function vanishing at the origin. From Lemma 7.2,
we can show that L,(B)=0 (mod B) is also necessary for (7.1) to have a non-trivial
solution.
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Finally we study the case (¢). Let us introduce @ by
(7.14) O =x'4,
where x/ denotes H xli with [;=—q/2; (i=1, 2, -+, n). We notice that
(7.15) L(®) = (1 —n)®+x'L(A)+w,P,
where co,='_i=‘; La;/x;. We obtain from (7.1)
(7.16) Q¥ L(H)+{(n—1)—w} 0¥ H+(sOL(¥)+p¥ L(P))H =0,
where @ denotes '_él a;/2;x;.  To this case, by the same methods as those in the case

(b) we can obtain the

Lemma 7.3. If (7.16) has a non-trivial solution, then it must hold

(7.17) a,=0 (mod x;) foralli
(7.18) L(9)=0 (mod @) .
(7.19) L¥)=0 (mod ¥) .

In virtue of Lemma 7.3, becomes holomorphic and vanishes at the origin. More-
over, we have

(7.20) L(®) = {g(1—n)+h} @
(7.21) L) = {r(0—n)+h} o,

where h; and A, are holomorphic functions vanishing at the origin. From (7.18)
and (7.19) we can easily obtain

(7.22) L,(4)=0 (mod A)
(7.23) L(B)=0 (mod B).
Summing up the results obtained above, we can have the following theorem.

Theorem 7.1. To the case (I11), the equation (1.1) has a solution such as in
(1.6), if and only if (1.12) holds.

Remark. the assertion of Theorem 7.1 is also valid to case where uy(x,, «+*, x,)
is given by

(7.24) to(xp, o0, Xp) = T1 (3 €i,x 8yt
j= 1

ji=1 1=

where ﬁ}quj=1.
j=1
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