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Geometric aspects of Malliavin’s calculus
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1. Introduction.

Various analytical researches have been made concerning Malliavin’s sto-
chastic calculus of variations ([9], [10]): cf. Shigekawa [13], Bismut [1],
Stroock [14], lkeda and Watanabe [6]. In Euclidean case, Watanabe [17] has
defined the composite of “smooth and non-degenerate” Wiener functionals and
Schwartz’s tempered distributions to obtain probabilistic expressions of heat
kernels (cf. [7], [18]). In this direction, Taniguchi [16] has studied the case of
manifold-valued Wiener functionals. The integration by parts over a Wiener
space plays a fundamental role in their calculus.

In this paper, we give differential geometric aspects to the integration by
parts over a Wiener space and !to the above Watanabe’s idea by working on
vector bundles. Since tensor distributions, such as currents of de Rham, can be
grasped as section distributions (Schwartz [12], cf. [2]) and as generalized
sections (Guillemin and Sternberg [5]) of certain vector bundles, the use of
vector bundles will be suitable for geometric comprehension of Watanabe’s idea.

Now let wz: E—M be a C* real vector bundle over a ¢-compact manifold
M; we admit the case where M is not orientable (or not oriented). First we
derive integration by parts formulas for the composite of M-valued “smooth and
non-degenerate” Wiener functionals and covariant derivatives of C* cross sections
of E in the case where a linear connection is given in E (Theorem 4.1). To
do this, we develop an intrinsic (coordinate free) formulation, which will be
adapted to the modern differential geometric style ([8]). Next, we establish the
composite of M-valued “smooth and non-degenerate” Wiener functionals and
section distributions [resp. generalized sections] of E (Theorem 6.1).

When E is a Riemannian vector bundle and M is compact and Riemannian,
this result is applied to probabilistic expressions of heat kernels for E-valued
differential forms. We roughly illustrate our idea of getting the heat kernel of
the heat equation
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for E-valued differential p-forms. Consider the vector bundle r;:&=(A?TM)QE*
—M, so that &*=(APT*M)QE. Let v be the Riemannian volume density, r, be
the stochastic parallel displacement of fibers of & along the Brownian motion X,
on M starting from the point x€M at time t=0, and |A4|*(M) be the (real)
bundle of densities of order acR. Then 7,0®|v| Y(X,) is a &R | 4| (M)-valued
Wiener functional covering X, for each {&.=nF'(x). Let &%, (yEM), be the
&,-valued generalized section of §*@|A|(M) defined by &%[E]1=5(y) for every
C> cross section & of & For each t>0 and x, yeM, we would obtain a linear
mapping &,—&, which assigns to each {€&, the &, -valued “generalized expec-
tation” <d%(X){r.LRlv|"(X,)}> of the “pairing” (65(X.), r.L®|v|-*(X,)) between
&R A|(M) and £Q| A|-Y(M). Let ¢, x, y)Hom (&%, &%) be its dual mapping.
Then f,(, x, ), ¢>0; x, yeM), would be the heat kernel of (1.1) with respect
to v. We give a precise meaning to f,(¢, x, y) in the final section. A prob-
abilistic expression of the heat kernel of the heat equation involving —[Op=
—(dgd¥+d¥dg) (the Laplacian) [resp. —(dg+d¥%?*] on E-valued differential
forms (cf. [3], [11]) is also obtained in a similar manner.

This paper is organized as follows. In §2, we prepare necessary notations
about Sobolev spaces of Wiener functionals and about operators on Wiener func-
tionals following [7] and [18]. In §3, E-valued Wiener functionals are con-
sidered. Also the operators in §2 are extended (in a sense) in treating E-valued
Wiener functionals. Section 4 establishes integration by parts formulas in our
intrinsic way. In §5, we fix some terminology and notations about section
distributions, density bundles, and generalized sections according to [2], [4], [5],
[12] for later use. [When there is no need to fix any volume measure on M,
the density bundle | A](M) of order one is useful; for, unlike d-forms (dim M
=d), C~ densities (=C= cross sections of |A4|(M)) with compact support can be
always integrated over M even if M is not orientable (or not oriented) and thus
C> densities become distributions on M.] We state Theorem 6.1 in §6 and give
a proof in § 7. Extending the concept of the composition in Theorem 6.1 to the
case of section distributions with values in a finite dimensional real (topological)
vector space, we obtain useful cross sections of some vector bundles in §8.
Finally, we apply our results to heat kernels in §9.

The author wishes to thank Professor S. Watanabe for his valuable com-
ments.

2. Preliminaries.

In this section, we give some notational preliminaries following [7] and
[18] (cf. [16]).

We fix an abstract Wiener space (W, H, #). For a separable real Hilbert
space S, let Dp(S), (1=p<oo, r€R), denote the system of Sobolev spaces of
Wiener functionals obtained by completing @(S)={S-valued polynomial Wiener
functionals} with respect to the norm
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IFllp-=II—=L)Y"?F|.», Fe®(S).

Here ||-||.» is the LP-norm of the L?-space L?(S) of S-valued Wiener functionals
and L is the Ornstein-Uhlenbeck operator. Set

D=L DU, D)= A) DYS).

The weak (Fréchet) derivative, its dual operator, and the (extended) Ornstein-
Uhlenbeck operator are denoted by D, D¥*=—9 and L, respectively, so that

D: D(S) — Dy Y(AH, S)),
D*: Dy(A(H, S)) — D5X(S),
L : D%(S) — D3¥(S)

are continuous linear mappings (1<p<oo, r€R), where A(H, S) denotes the
Hilbert space of all continuous linear mappings f : H—S of Hilbert-Schmidt class.
We write D}, D=, D-= for D%(R), D(R), D~=(R), respectively. For details,
see [7], [18] (cf. [6], [15]).

From now on, M will denote a g-compact d-dimensional C* manifold. Let
C=(M) be the set of all C~ functions on M and C5(M) be the elements of C=(M)
with compact support.

Definition 2.1 (cf. [16]). A p-measurable mapping F:W—M is said to be
of class D=(M) if f-Fe D> for all feCy(M).

For Fe D*(M), we define DF and {DF, DF) to be
(DF(w)LhD(F)=D(f-F)Xw)[h],
{DF, DFY(w)(df, dg)=<D(fF)(w), D(g*F)(w)>x

for every f, geC3y(M), weW, heH, where {,>y denotes the inner product in
H. Thus DF(w) is an R-linear mapping from H into the tangent space 7 Mp(w)
of M at F(w), and <DF, DF) is a mapping from W into the tensor bundle T M)
of order (2, 0) with #-(DF, DFY)=F, where #:T%M)—M stands for the pro-
jection.

3. Wiener functionals with values in a vector bundle.

Let zz: E—M be a C real vector bundle of rank (=fiber dimension) m and
E* be the dual bundle of E. Let I'(E) be the real vector space of all C* cross
sections of E and I'(E) be the elements of I'(E) with compact support. Denote
by E, the fiber mz'(x) of E over xM. In this section, we develop an intrinsic
formulation to treat E-valued Wiener functionals.

Definition 3.1. A p-measurable mapping G:W—E is said to belong to
Dom (D, E) if it satisfies the following conditions:
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1) mgeGeD=(M),
(2) &(G, EemgeG)ree D> for every £l o(E*), where g(, )z denotes the canon-
ical pairing between E and E*.

Example 3.1. If Fe D=(M), ¢I(E) and G D>, then G-(¢-F)eDom (D, E).
Let Map(H, E) be the set of all mappings from H into E.

Definition 3.2. A mapping F: W—Map (H, E) is said to belong to Dom (D*, E)
if it satisfies the following conditions:

(1) There exists an element FeD=(M) such that re(F(w)[h])=F(w) for
every weW and heH. [This condition will be written briefly as nzeF=F.]

(2) The mapping H—E#w, (=5 (F(w))) defined by h—F (w)[h] is R-linear.

(38) For each éeI'y(E*), the mapping g(F, éemge F)g.: W—Lin(H, R)={linear
mappings from H into R} given by

w—> [h —> g(F(w)[h], Eomge F(w))p.]
belongs to D>(H).

Example 3.2. In the case E=MXR (the trivial line bundle), we see that
D>(M)x D*CDom (D, MXR), D>(M)x D*(H)CDom (D*, MXR).

Remark 3.1. Let TM, T*M and TMOTM be respectively the tangent
bundle over M, the cotangent bundle and the symmetrization of TM@TM.
Suppose Fe D*(M). Then DFDom (D*, TM) and <{DF, DF>=Dom (D, TMOQTM),
by setting

ru(DF, (df ) F)roy=DF(f)(=D(f-F)),
TM@TM((DF, DF5, (df©dg)°F)T-M@T~M:<DF, DF)(df, dg)
for every f, geCy(M).

Example 3.3. If FeD=(M) and ¢([(T*MQE), then ryu(DF, &F)ry<
Dom (D*, E).

Definition 3.3. Let 7g,: E;.—M (i=1, 2) be C* real vector bundles of finite
rank. For F;eDom(D*, E;) (i=1, 2) such that mgF,=xpF,=F (€ D*(M)),
define <Fi®F,>)=Dom (D, E,QEFE,) by

E1®E‘2(<F1®F2>» ($1®§2)°F)E}®E§
={e,(Fy, &0 F)ey 5,(Fe, 802 Fpp
for every &, €l(E¥), i=1,2. (Use EXQE¥=(E,QE,)*.)

Example 3.4. If FeD=(M), then DFeDom (D* TM) and {DFQRDF)=
{DF, DF>.
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Now suppose a linear connection F is given in E. Let ['* be the dual con-
nection in E* induced naturally from /.

Definition 3.4 (definition of Dy and D¥%).
(1) For FeDom (D, E), define DgF:W—Map(H, E), DeF(w)[h]lens (zge
Fw)) (weW, heH) by

e(DgF(w)[h], emge F(w))gs
=D(g(F, &emge F)g)(w)[ 1]
— pory(F(W)Q(D(wge F)(w)[h]), (7*5)°7TE°F(H'))E-®T~M

for every £ '(E*).
(2) For FeDom (D*, E), define D¥F:W—E, DEF(w)s npl(mgeF(w)) by

e(DEF, §emge Fg.
=D*(g(F, e 7rE°F)E‘)+E®TM(<F®D(ﬂE° F», (r*§)°7fE°F)E-®T'M

for every £='(E*). [Note that the left hand sides of the formulas in (1) and
(2) become C%(M)-linear with respect to £.]

Remark 3.2. If FeDom (D, E), then the mapping H—E_,.r,, defined by
h—DgF(w)[h] is R-linear.

From the definition, we have Dg(Dom (D, E))CDom (D*, E) and D¥Dom(D*, E))
cDom (D, E).

Definition 3.5. Put Lp=—D}<Dg: Dom(Lg)=Dom (D, E)—»Map (W, E).

In the following proposition, let E, and E, be C* real vector bundles of
finite rank over M. Suppose that a linear connection is given in each of E,
and F,, and consider the tensor product connection in E,QFE,. In the case of
a trivial bundle, we consider the trivial connection. We shall use the letter Z
indifferently to denote E, E*, E,, E,, E,QE,, and so on. Recall Example 3.2.

Proposition 3.1 (properties of Dz, D% and Lz). The following hold.

(1) If FeDom(D, E,), GeDom(D, E,) and mgcF=mg,-G, then FQGe
Dom (D, E,QE,) and

Di,er,(FQG)=(Dg, FIRG+FQ(DE,G).

(2) If FeDom(D, E,), GeDom (D*, E,) and ngF=xg,G, then FQGe

Dom (D*, E,QE,) and
D% e5,(FQRG)=—L(Dg, FIQG>+ FR(DE,G)

where (FRG)w)[A]=F(w)R(G(w)[h]) for every weW and h<H.

(3) If FeDom(Lg,), Ge€Dom(Lg,) and zgeF=ng,°G, then FQGe
Dom (Lg,er,) and
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LE1®E2<F®G):(LE,F)®G+F®(LE20)+2<(DE1F)®(DE26)> .

4y The operation of Dz [resp. D%, Lz] commutes with every pairing.
[Here, for example, for FEDom(D, E) and Ge€Dom (D, E*) with wge F=mg.-G
=F, regard x(F, G)pe D> as (F, x(F, G)g)eDom (D, MX R).]

(5) If FeDom (D, E), GeDom (D*, E*), mge F=rg.G and g(F, G)g.€ D*(H),
then

[, 2<DsP@CYsdp={ s(F, DECIzdp.

(6) If FEDOm(LE). GEDOm(LEt), 7'L'E°F:7L'Eo°G and E(DEFy G)E'J E(F’ DEaG)Eo
e D>(H), then

[, s(LeF, Omdp={ o(F, LoGClodp.

Proof. By choosing an adequate C= partition {X;} of unity, every &e
I'(E¥XQE%) can be expressed in the form §=XX£=3 7@ w: (finite sum)
1 11

with pay€(EY) and 9 €1(E¥). Then (1)-(3) are easily shown. To verify

4), let rel'(E*®E) be such that r,=(E*QE).=Hom (E,, E.) equals the identity
mapping of E, for every xeM. Using

w(F, G)E':E®E‘(F®Gy T°F)E'®E
and VE®E(ur)=du@r (usC(M)), we can get (4). From (2), (4) and the relation
SWD*jdy=SW<D1, Toudp=0,  (JeDH)),

we obtain (5). Finally, (6) follows from (5).

4. Integration by parts.

In this section we give vector bundle version of integration by parts formulas.
We use the same notations as in §3. Let F:W—M satisfy the following as-
sumptions of “smoothness” (Al) and “non-degeneracy” ((A2)-(A3)):

(Al) FeD=(M).

(A2) o(w)=<DF, DF)(w) is positive definite pg-a.e. Then for almost all w,
an inner product y(w) is induced in TMp(,, from ¢(w). That is, defining @:
T*Mpwy—TMrpqw, by @(0)=a(w)(8, -) (€T*Mrw,) and setting T=0 ' : TMr(w)
—T*Mpy,, We obtain y: W—-T*MQT*M such that for almost all w,

W)Xy, X)=ow)¥ (X)), ¥(Xa), (X, X%ETMrw).
(A3) yeDom (D, T*MQT*M).

Example 4.1. Consider the case M=R? Let F=(F!, ---, F%): W—-R¢
satisfy FieD>, (=1, ---, d). Then F satisfies (Al). If F satisfies (A2) and if
r=(r:i7)=<DF, DF)* satisfies y;;€ L? for all p>1andi, j=1, 2, ---, d, then y;E€
D> and we see that F satisfies (A3) (cf. [7], [18]).
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In the next theorem, we use the following notation: For each /=1, ---, %,
let A;€Dom (D, E;,) or A;=Dom (D*, E;,) for some vector bundle E, of the
form

EH=E; QRF;:Q - QF: 0, (J@=2 for i#1, k)

where E; ., =+, Ei jw, (=1, -+, k), are vector bundles such that E¥ ;;,=F;.;,,
@¢=1, -+, k—1). Denote by [A;QA,Q -+ ®A,] the evaluations of the nearest-
neighbor-(vector bundle)-components (that is, E; ;- and E;., ,-components) of
all pairs (A;, Ay), i=1, -+, k—1. Namely

I[A1®A2® o ®Ak:ﬂ=Ek_1,j(k_,)('A'."Ez,j(z)(El,j(l)(Alv ‘42)E’2,1‘ A"’)Es.l”.)Ek»l‘

Theorem 4.1 (integration by parts). Let F:W—M satisfy (Al)-(A3). Let
Zel(E), neDom (D, TMRE*), nrueg-n=F.
(1) If x(&, [DFQrQ@n])s-€ D=(H), then

SWT‘M®E((VE)°Fy 7})TM®E'dﬂ=SWE(5°Fr DEIDFQQrQnDedpy . 4.1)

(2) If moreover a linear connection is given in M, then the right hand side
of (4.1) can be rewritten as

[, & F [~ LuF@@n1~KDF®Druwss [1@7DVsdp  @.2)
where LyF=—D¥yDF:W—-TM.
Proof. We first note that ry(DF, 7)r«y €Dom (D*, T*M) and thus [DFQr®»]
=reu(ru(DF, P)ron, N)ry€Dom (D*, E*). (Local components of [DFXr®n] are

expressed as ¢ ;o9 DFJ, (=1, .-, m).) Now for every é'((E*) and he H
we have

e(Dg(E<F)[h], §°F)pe
=D(s(EF, §°F)p)[h]—peru((E-F)Q(DFLh]), (F*&)F)paren
=ru(DF[h], d(5(E, &)z) F)ren
—ru(DF[R], {d(a(&, §)p)—5W 5, E)get o Frey

=g(reu({V E) FYQ(DF[hD)ru, &2 F)pe,
that is,
Dg(E-F)=[{F £)-F}QDF].

If p(&-F, [DFQrR®n]e.c D>(H), then (4.1) follows from (5) of Proposition 3.1
and the relation

KPP E-F1QDFIQIDF Qr&n1))ke
=ruree((P 5)-F, I[<DF®DF>®T®77]])TM®E'

=reyer((V E)-F, 77)TM®E- .

As for (2), since
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D:[DFRr&n1=[D¥xDFQ[yQ®1]11—[{DFQDreyoe-lr@nI>]1,

(4.2) is also verified.

Remark 4.1. If a linear connection is given in each of E and M, then using
Theorem 4.1 repeatedly, we can rewrite an integral of the form

S ,T~M®~-®T~M®E((Vk5)°F, "')TM@m@TM@E‘dﬂ
Ju —k_a —;._/
into the form

gWE(EOFV '")Ead‘[,l
where Fk=F .- T.

——

=k

Corollary 4.2. Let Z€l'(E), usC=(M), @=Dom (D, TMXE*) and mrygg-O
=F. Suppose supp = suppu is compact. Then

[, rwos(F D) F, (usF)O)rwor-d o
=§WE<5oF, DE[(u-F)DFQrR01)edp. (1.3)

Proof. Since z(Z°F, [DFRrQu-F)ON)ge=r((uE)F, [DFQRQrQO1)r.= D*(H),
(4.3) follows from (4.1) with p=(u-F)6.

Remark 4.2, Let X be a C* vector field on M, so that Xl (TM). Let
EeDom(D, E), §<Dom (D, E*) and rgz-0=F. If supp&NsuppX is compact,
then setting y=(X-F)®0 in (4.1) we have

[, 2 x2)F, 0)ndp={ s(3-F. DIIDF@IQX-F)10)edp.

5. Section distributions and generalized sections.

We shall prepare some terminology and notations about section distributions
and generalized sections for later use. (For details, see [2], [5], [12]. cf. [4].)

Let 7g: E—M be as in §3. We admit the case where M is not oriented
(or not orientable). Here, we need not consider a linear connection in E, unless
otherwise stated. Give I'(E) the topology of uniform convergence together with
each finite number of derivatives on each compact subset of M. For each com-
pact set K of M, put

I'k(E)y={p€l'(E);supp pCK}.
Since M is g-compact, there exists a sequence of compact sets K,CK,C -
CK,CK,.,C -+ such that Lan,,:M. Then 'k, (EXCI 'k, ,(E)) are topological

subspaces of I'(E). Take the inductive limit DM, E)=lim 'k (E)(=I(E) as
sets). Each element of the (topological) dual space 9'(M. E) of 9(M, E) is called
a section distribution of E in this paper.



Malliavin’s calculus on vector bundles 681

Let | A4|*(M) be the C real bundle of densities of order & (£R) over M; it
is the line bundle associated with the bundle L(M) of linear frames over M,
with standard fiber R, the structure group GL(d, R) whose element A acts on R
in such a way that A:v—|det A|-%v, (veR). If (x?) is a local coordinate system
valid on a coordinate neighborhood U of M, we denote by |[dx'A --- Adx%|%(p),
(p€l), the image of ([(d/dx"),, -+, (3/0x%),], 1) under the natural projection
LIM)XR—| A|*M). Then |dx'A -+ Adx%|® is a local frame for |A|%(M)
over U, and under a change of local coordinates (x*)—(y*), we have

[dy*A - /\dy"l“zldet(%—j)'ﬂdx‘/\ e Adxd|e.

Each p'(E*Q| A|(M)) (| A|(M)=|A|Y(M)) is regarded as an element T°
€9'(M, E) by

T”[ﬂ]‘:SMﬂ'p, €M, E)

where 7-p is obtained from the evaluation map P®p—75:p=z(%, p)e(=[7Rp]),
EQE*Q®|A|(M)—| A|(M). Each section distribution of E*®|A|(M) is called
also a generalized section of E.

As usual, we identify I'(M X R) [resp. 9(M, M X R)] with C*(M) [resp. D(M)
={feC>(M); supp f is compact}=C3(M)] and denote the dual space of D(M)
by @’(M). For each relatively compact open set U of M, we define 9(U) and
9’(U) in the same manner. We set &' (U)={Te9'(U); suppTCU}, &'(M)=
{Ted'(M); suppT is compact}.

We shall give local expressions of T€9'(M, E). Let (U, ¢) be a chart of M
such that U is relatively compact and E|y,==g'(U) is trivial. Let (e)c=1... m,
(e.:U—E), be a C~ local frame for E over U and (f*) be its dual frame
(f*: U—E*). Define T .€9'(¢(U)) by

T (v]=T[(v-g)e,]

for every ve9(¢p(U)). (Note that ve¢= D), (v-@)e,€ DU, EX=2DWU, E|y))C
DM, E).) Moreover, define (¢ 1)«T)f*€D'(U, E)(={section distributions of
E|y}) by

(@ 4T f[E]1=(¢ T ) e(f*, E)e]=T [&(f?, E)po9 ']

for every é€9U, E), where (¢ ")«T, stands for the push-forward of T, by
¢ ':o(U)-U. Then T is expressed on U as

T=3(@NTaf,  (T.eGUN. 5.1)

Take a C= partition {X;} of unity subordinate to a countable, locally finite atlas
{{Us, ¢:); il} of M such that each U, is relatively compact and each Ely, is
trivial. (Only such atlases will be considered in the following.) Then for some
T:..€92(¢:(Uy),

TEI=STEI=S BTulé]l,  E=9M, E))
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where &5=pg.(f%, %:&)e° 97 €D(P:(U;)). (For each 7, (f%) is a local frame for E*
over U;.)

Let S=8(R?%) be the Schwartz space of all rapidly decreasing C= (real) func-
tions on R¢ and let $’=8’(R?) be the Schwartz space of all tempered distribu-
tions on R¢. For ueS and £=0,+1, +2, ---, put

lulles=I(1+|x|*— D) *u]
where Azij(a/axi)2 is the d-dimensional Laplacian and || f|.=max{|f(x)|; x€

R4}, Let 8, be the completion of S by the norm |-|,,. Then (cf. [7], [15],
[187)
S={\Sss, S'=\S-2.
k>0 kS0

Let K be a compact set in M. Set 9%(M, E)={T9’'(M, E); suppTCK]}.
Let {¥;} be as above. Using a local frame (f}) (=1, ---, m) for E* over U;,
express X;0 (o€l (E*Q| A|(M))) locally as

Xo=F (0u ) fi®Idx*A = Adx?| on Uy,
where ;€ D(P(U:)CDRY)CS. Define a norm in I'x(E*®| A|(M)) by
“.0”(21:)'——21.:1 lellpullu , PEPK(E*®|AI(M))-

For each integer £k, let Dk, ..(M, EXQ|A|(M)) be the topological vector space
obtained by completing I'x(E*®|A|(M)) with respect to this norm. The to-
pology on Dg .. (M, E*®|A|(M)) does not depend on the choice of {X;} (and the
local trivialization). It holds that Dy ..(M, E*Q|A|(M))CD'(M, E) for every
integer k. Using the increasing sequence {K,} (yanM) of compact sets, we
have

Die(M, EYC U \J D, oM, E*@|A|(M)).

6. The composite of manifold-valued Wiener functionals and section
distributions or generalized sections.

We shall first state the composite of manifold-valued Wiener functionals and
section distributions. Let mz: E—M be as in §5. For an M-valued Wiener
functional Fe D=(M), set

X(F, EQ|A|-"(M))={np€Dom (D, EQ|A|Y(M)); mgeisi-1an°n=F}.
Theorem 6.1. Let F be an M-valued Wiener functional satisfying the assump-
tions (A1)-(A3) in §4. Then there exists a unique R-linear mapping
Urp: 9'(M, E) —> Map (C3(M) X X(F, EQ|A|"{(M)), D),
T—Tp=UT) (T€D'M,E)

satisfying the following conditions:
1) Tg(, 9):CoM)—>D= is R-linear for every ne X(F, EQ|A|(M)).
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(2) Tplu, ): K(F, EQ|A|-Y(M))—D~= is R-linear for every usC3(M).
() If TedM, EXQIA|(MNC D' (M, E)), then
Tr(u, )=u-T)F
in the sense that
Tru, D)=pgeinun((uT)F, Deeisi-10n € D*C D>

for every neX(F, EQ|A|-Y(M)).
@) If uw, uxneCYM) and nEX(F, EQ|A|*(M)), then

T ey uew, 77)=TF(14(1), u(2)<F)7])=u(z)(F)'TF(u(n, 77)=(u(2)T)F(u<,), 77)
(ZWF(U(Z)T)(UU), 77))-

(5) Let ueCsy(M) and ne X(F, EQ|A|-Y(M)). Then for each compact set
K in M and for each positive integer k, the mapping T—Tp(u, n) gives the con-
tinuous R-linear mapping

TeDg, -02(M, EXQ|A|(M)) —> Tp(u, n)€ D3**
for every 1< p<oo,

The proof will be given in §7.

We shall call T in the above theorem the composite of F and T. To define
the composite of F (satisfying (A1)-(A3)) and a generalized section of E, we have
only to replace E, EQ|A| (M), EXQ|A|(M) by E*Q|A|(M), E*, E, respec-
tively in Theorem 6.1, since |A|(M)R|A|-(M) and (|A|(M))*R|A|(M) are
isomorphic to the trivial real line bundle over M.

7. Proof of Theorem 6.1.

For the proof, we shall prepare some lemmas obtainable with slight changes
from Watanabe’s discussion [18] about R¢-valued Wiener functionals (see also

71, 017D).

Lemma 7.1. Let F=(F!, -, F%): W—>R* be an R%-valued Wiener functional
such that Fte D~, i=1, -+, d. Set ¢(w)=<DF?, DFy(w), (¢, j=1, ---, d), for
weW. Assume that there exist elements y, ;D> (i, j=1,--,d), and a p-
measurable set A such that the matrix (¢*(w)) has the inverse for almost all w
in A and for such we A

(rifw)=(a¥(w)*.
Furthermore, let Be D> be such that B(w)=0 for we A. Then for every ues
and G D>,

Sw(%oz?)ﬂc dp= kZZ)lSw(qu)-D*(r“,/SG-DF”)dp. (7.1)

Moreover, the right hand side of (7.1) can also be written in the form
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d )
Sw(qu){ﬁGo+i§<DF‘, DB uGiap
for some Go, Gy, -+, Gag= D™
Proof. For almost all w in A, we have
ou

it - F)=Z10DWF)), DF*) y(w).

Thus letting I, be the indicator function of A, we obtain
ou ou
J G+ F)BG dpn={,, 1( ¢ + F)BG d
=3, D), 14pG-DF*>
=3, uF)- D86 DFYdp

=[, 4 (S LPYWG—DP*, DG w68
——Zk)<DF", DBu(rinG)ldp.
This proves the lemma.
Lemma 7.2. Let F and B be as in Lemma 7.1. Suppose for we A,
{DF%, D{DF*, D{DF%, -, DCDFY, DBy -+ gy uy a(w)=0 (7.2)

holds for every positive integer | and iy, i, -+, 1€{1, 2, -+, d}. Then for every
Ge D> and positive integer k, there exists 0,,(8G)e D™ such that

[, (a+iz12=arr1oF)-8G du={ 7Py nalsGrdp
for every fES.
Proof. This is an immediate consequence of Lemma 7.1.

From this lemma, we get the following fundamental proposition analogous
to [7, p. 21, Corollary 4.2], [18, pp. 57-58].

Proposition 7.3. Let F, 8 be as in Lemma 7.2. Then the mapping feS—
B-f(F)e D> extends to a unique continuous R-linear mapping O(F, B): T €S_op—
O(F, BLT1eDz** for every positive integer k and p<(1, o). (Thus O(F, B):
S§’—» D~ is defined.)

Proof. For fe8 and G D=, it holds from Lemma 7.2 that
[, 871G du|=|[ 1+1%17— 2 At 1212~ -4 F} G d
SIA+ 1212 =D)* flloos [92(BGl 21 -
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Take positive numbers ¢ and r such that (1/p)+(1/¢)=1, 1<r<g<oco. Let ¢’
be such that (1/¢9)+(1/¢’)=1/r. Then by [18, Proposition 1.10] there exists a
constant Cg 4,2 such that

HﬁG"r,zk§Cq.q’.zk”ﬂ”q'.zk"G”q,zk'
Therefore, we have

C=sup{|1::(BG)lz1; GEDE, [Gllgx=1]< 0

in the same way as in [18]. Thus we have
18Py -sx=sup{|{ B 1(FIG dp|; Ge D, 16,1}

=CIIfll-2x-

This shows that O(F, 8): S—D> given by f(eS)—f-f(F) extends uniquely to a
continuous R-linear mapping S-,,—D3** and thus we obtain O(F, 8): S'—»D=.

Lemma 7.4. Let F, (r:;) and A be as in Proposition 7.3 and let G, BeD™.
Suppose B satisfies the assumption in Lemma 7.2. Then O(F, GB)[T]1=G-

(O(F, B)T]) for every TES'.

Proof. For TeS’, take a positive integer & such that T=S_,,. Then there
exists a sequence {f,}CS such that f,—7T in S_,, as n—oo. Note that G has
the same property as 8 in Lemma 7.2. Since O(F, GB) fr]l=GB fz(F)=G"
(B(F, B)[fz]), we have O(F, GR[T]=G-(O(F, B[T]) if we let n—oco,

Proof of Theorem 6.1. Let Fe D*(M) satisfy (A1)-(A3). For simplicity, we
write KX for X(F, EQ|A|-'(M)).

Step 1. Let (U, ¢) be a chart of M such that U is relatively compact and
E|y is trivial, so that (EQ|A|"{(M))|y and (E*®|A|(M))|y are also trivial.
Take an open set VCU such that the closure V of V is included in U. Suppose
ucsC3(M) satisfies suppuCV. Choose r=CH(M) such that supprCU, 0=k=1
and k(p)=1 for peV. Since x|y-¢ is an R¢valued C> function on U whose
support is contained in U, it can be extended to an R%-valued C* function v=
@Y, -, v¥) on M in an obvious manner, so that suppvCU, v|y=«|y-¢ and v|,
=¢|y. Moreover F=veF=(F", -, F%) is an R%valued Wiener functional such
that £, .-, Fée D= and F(w)=¢(F(w)) for every we F- (V).

Let (x%) be a local coordinate system in (U, ¢). Then there exist C* vector
fields X, (a=1, -+, d) on M such that each X, is expressed on V as X,=0d/0x®
and satisfies (X,),=0 if pe&lU. By the assumption (A3), it holds that y.,:=
17X, X»)eD> (a, b=1, -+, d). Furthermore

(Fas(w)=(DF?, DF®) y(w))™*
for every we F-%V). In fact, since

ru( X, dv*)ren|y=0%,

we have, for we F-Y(V),
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(DF?, DF*) y(w)=rueru({DF, DFw), (dv*@dv*)s F(w))r-nor-u
=“the (a, b)-component of <DF, DF)(w) with respect to
(0/0xrcwy, 5 (0/0xY)r ()"

Take a C= local frame (e;) for E over U and let (f*) be its dual local frame.
Then (f%) defined by

F=fIQ|dx'A - Adx?|: U —> EXQ|A|(M), =1, -, m

becomes a local frame for E*®|A|(M) over U. Making use of the above &, we
extend x|y-f? to f*? on the whole M by

fricp)— {x(p)f‘(p) if peU,
o if pel,

so that supp f**CU. (Of course, each f*? is a (global) C> cross section of
E*@|A|(M), while (f*%);-,,...m does not become a global frame.)
Next, for e K, define %€ D> by

772=E®IAI'1(M)(77r f* e F)peitian -
Recall that T€9'(M, E) is expressed on U as T=;((¢_l)*T1)f)’ T2 =2 GO

Choose XeC5(R?) such that supp XCg(U), 0<X<1, and X(p)=1 for peg(V).
Since Xl sw) T2 9D (¢(U)) has its support in ¢(U) for =1, ---, m, it can be in-
terpreted as an element, which we write simply as XT;, of &' (¢(U))CE'(RH)CS".
Now set B=u-F(eD~). We shall show the following lemma.

Lemma 7.5. Let V, U, u, B, X,, v%, F=(F*, ---, F'%) be as above. Then 8
satisfies the assumption in Lemma 7.2 with respect to F and A=F-YV).

Proof. Since supp(du)CV, setting uoa=ry(Xq, du)r+yy, we have u,€C3(M)
with suppu,CV and du=3 u.dv® Therefore

<DFQ, Dﬁ)H:TM@)TM((DFv DF, (dva©du)°F)T‘M@T'M
IZh:(qu)'TM@TM((DF, DF53, (dva©dvb)°F)T'M©T'M
=3 (upe F)-(DF*, DF%y

which is of the form % (4o F)G** with G D>. Set Bo=u,°F. Then B,(w)

=0 for we A. Since u, also satisfies u,=C3(M) and supp u,CV (as well as u
does), we can deduce by the derivation property of D that B satisfies (7.2) for
we A with respect to £ and A=F-Y(V).

Let us continue to prove Theorem 6.1. Taking A=F-'(V) and using F, we
can construct @(F, B#*)[XT ;] (Proposition 7.3). Then by Lemma 7.4,
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?n-«(@(ﬁ, BT ;1] G?‘)mo:Zz)pm(@(F. BHNIAT ;], Gop
=;p-w<@(ﬁ, BGHOIAT 1], Lpe (7.3)
for every G D>
We shall show that (7.3) does not depend on the choice of x. Let 2 be a

positive integer such that XT,e8.;, for every A. Let {f, 1}5-:CS be such
that f, ;—XT; in S_,; as n—co, Then we have

SO, BG1I fai, D=3 (f0.)(F)-8G7 dp

Z;SF-l(V)f"‘I(F)‘BGﬁzd#- (7.4)

We see that the last side of (7.4) does not depend on the choice of ¥ in actual
fact. Therefore, if we let n—oo, the left hand side of (7.4) converges to

X3 O(F, BGHNAT ], Dp=p-=(3 OF, BHMIAT 1], Gope

which must also be independent of the choice of &.

Step 2. Let T€e9'(M, E). Let (U’, ¢’) be another chart of M such that U’
is relatively compact and E|y is trivial. Take V', X/, (ey), %, ', frnv (v=
1, -+, m) in the same manner as in step 1. Suppose that VNV’ is not empty.
Assume that supp uC VNV, so that f=u-F satisfies f(w)=0 for we& F-(VNV’).
Since there exists a GL(m, R)-valued C* function (g%) on UNU’ such that e, (p)
:;gﬁl(p)ex(p), peUNU’, it holds that

ﬁ‘(w)zé}(]det(¢’°¢")l"l-gf,)(¢(F(w)))-;7“'(w)

for every we F-(VNV’) where gl =§%-¢-'. Here, we may assume that
fn,w(F’(w))“:;(ldet (@ ¢ gl fa, DEF W)

for n=1, 2, --- and we F-{VNV’). Construct ZV)Q(F", B%#* ) fn,.] in the same

way as in step 1. Then for every Ge D> we have

S( o fa BB G dp=3
which implies (cf. (7.4))

Z;J‘D-“<@(F/, B fn], G>D°°:;D'°°<@(Fr ,Bﬁl)[fn,ll Gop=.

fra(F)B7Gdy,

F-Lvnvr)

Letting n—o0, we obtain

| Sp-XOF, B )UT ], Coom=Zp-=(O(F, B7NAT ], Cop~

or

3 OF", BT 1= O(F, B7HIXT 4].

(This implies in particular that (7.3) does not depend on the choice of X.)
Step 3 (general case). Let ueC3(M). Let {(U;, ¢:)} be a countable, locally
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finite atlas of M such that each U, is relatively compact and E|y, is trivial.
Then (EQ|A|-Y(M))|y, and (E*Q|A|(M))|y, are also trivial. We can choose a
countable, locally finite open covering {V;} of M, such that V;CU; for each :.
Take a C= partition {¢;} of unity subordinate to {V;}:¢;€C3(M), supp ¢;:CV;,
0=¢;=<1 and ;)gbi:l.

Set u;=¢u and B;=u;°F. Use the same notations as in steps 1 and 2 with
the subscripts i’s. Then we can construct O(F;, B;7H[X;T:;]. Put

Te(u, =3 2 6(Fy, BindLT ], 7.5)
namely,
o (T (i, 1), Gopo=3 5 p-=(O(Fy, BADILT ), Com,  (GEDX).

The above summation with respect to 7 is essentially a finite sum, since suppu

is compact. By Lemma 7.4 and step 2, it is easily shown that (7.5) does not

depend on the choice of {(U;, ¢:)}, {Vi} and {¢;}; (7.5) depends onlyon T, F, u

and 7. Moreover, we see from the construction of T z(u, %) that the conditions

1), (2), 3), (4) and (5) are satisfied (cf. Proposition 7.3) and that the mapping

Ur:T—Tr is R-linear. Uniqueness follows from the way of the construction.
This completes the proof.

8. Some cross sections obtained by Theorem 6.1.

Let ng: E—M be as in §6 and let F: W—M satisfy (Al)-(A3). Let V bea
k-dimensional real (topological) vector space (k: finite). We denote by 92'(M, E)
®V the space of V-valued section distributions of E. For Ted' (M, E)YRV,
define

Tr:C3(MXHK(F, EQ|A]"Y(M)) — D~QV

as follows: Take a basis {e,, ---, e,} of V, express T as T= Zk T*Qe, with
a=1
Tec9’'(M, E) and set

oeslT s, 1), Go= 3 5ol (T, ), Gopmea(€ V)

for every ueCy(M), neH(F, EQ|A|-*(M)) and Ge D~

In the following of this section, we assume for simplicity that M is compact.
(Othewise, a function u=C%(M) will be needed. When supp T is compact, we
take u=CH(M) such that u=1 on supp T ; cf. Theorem 6.1, (4).) From now
on, we write <T(F)p)> for p-«(Tk(l, 3), 1>p=. For each xeM, we define i,
DM, | A/ (MNQ(| A|(M)z) by

0:[L1={(x), e DM, |A1(M)).
Moreover, for each ¢=I'(E), define

Pocy 1 xEM —> ¢6.€D' (M, EXQ| A|(M)HQ(| A|(M),)
by
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(o) Ppl=0.[p-@ls | A|(M),, PEDM, EXQ|A|(M)).
The relation
L Po)F)p>=Lo(F)e(d(F), e(€ | A|(M),), (ne X(F, E*)) (&.1)

is easily shown by expressing both sides of (8.1) locally and using Theorem 6.1,
(5). The quantity (8.1) is R-linear in ¢» and depends only on F, y and ¢(x).
(Note that ¢§,=0 if ¢(x)=0.) By using the local triviality of E and taking local
coordinates, it is seen from the well-known Euclidean case (cf. [7], [15], [18])
that (8.1) is C= in the x-variable.

On the other hand, define

Ee ' (M, EXQ| AI(M)QUE*Q| A|(M)))
by
B [E]=E(x), Ee oM, EXQ|A|(M)).

Then we get an element <§%3(F)p>e '(E*®| A|(M)) defined by : x € M—{6E(F)p)
E(E*QIA|(M))z, nEK(F, E*). Now let veE,;. Assume ¢el'(F) satisfies ¢(x)
=v. We shall show that

e (CGE(F)ND, v)g,=<0:(F)e(@(F), etX (€| 41(M).,). 8.2)

Choose e, I'(E), (a=1, -+, m), in such a way that (e,(x)) is a basis of the
vector space E, (x: fixed). Let (f¢) be the dual basis of (e,(x)). Since

(Bl )@ VNE]: =S54, e)sIQF =5 (x)
for every € 9(M, EX®|A|(M)), it holds that
=X (e8RS

Letting vzg‘_,v“e,,(x), (v*eR), we have

ey (COE(F)n), v)g, (€ IAI(M)x)=E;(<§ (a0 )F)PDRSf e, vk,

={02(Fe(n, ZvTeal P> (8.3)
If we use the conditional expectation E#[-|F=x], (8.3) is equal to
Ef[e(Zveq(F), Nl F=x 16 (F1>= E*[e($(F), 9)p| F=x1<8(F)1)
=GP e(P(F), D}y,
(cf. Euclidean case [7], [18]). This proves (8.2).
Since T¢[¢]=SM(¢5(.,)[¢] for ¢ DM, E*®|A|(M)), Theorem 6.1 implies
(cf. Euclidean case [7], [17], [18])
[ @, mndu=oPm={ <@s)Frm>=| sGEFI, §(-)s.

Thus we have the following.
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Theorem 8.1. Assume that the base manifold M of the vector bundle E is
compact. Let F satisfy (A1)-(A3) in §4 and let neX(F, E*). Then the mapping

DM, E)—R defined by ¢—>SWE(¢°F, Nedy is a section distribution of E obtainable
from GE(F)p>e(E*Q|A|(M)), namely

[, 5@ F. medu={ oG8

Combining Theorem 4.1 with the above theorem, we get the following.

Corollary 8.2. Let M and F be as in Theorem 8.1. If a linear connection
VE is given in E, then

[, ruos(@0)oF, Drwosdu={  o-GEFIDEIDFRI@7T>
for every € DM, E) and nEX(F, TMQE*).
Remark 8.1. Let M and F be as in Theorem 8.1. Take a positive density
pel'(|A|(M)); that is, in each coordinate neighborhood, p is expressed as p(x)
=f(x)-[dx*A -+ Adx?| with f(x)>0. (Such p exists even if M is not orien-

table.) Then |p|-!, which has a local expression |p|'=1/f(x))|dx'A -
Adx®|7Y, is in I'(|A|-Y(M)). Since

65 =(lp|"105)Qp(x);
2LI={(p! 5L Qp(x)
=0FTia-1anpl ™ Dinon D@e(x)(=(x)),
Cea(M, EXQ|A|(M))

where 05'€9'(M, EX)Q(E%) is defined by 05[5]=E(x) for all S I(E*), we
have, for nEX(F, E*),

GEFEP=CFF) (@ p| - FINRp(x),  (xeM).

This implies in particular that <0..,(F)(|p|*F)>: M—R is the C density func-
tion of the probability law of F (satisfying (Al)-(A3)) with respect to the positive
density p, where §,€9'(M) isldefined by 0,[f]1=f(x) for all feC=(M). Thatis,

[, 7P ap={, raxo.)1 01 o)

for every feC=(M). Note, however, that there is no “canonical” way to choose
a positive density for a general manifold.

9. Applications to heat kernels for differential forms with values in a
Riemannian vector bundle.

Vector bundle valued differential forms appear in several contexts (cf. [3],
[117). [For example, if f: M—M’ is an isometric immersion from a Riemannian
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manifold into another, then the differential of f can be regarded as a (differen-
tial) 1-form on M with values in the pull-back bundle f-'TM’ of TM’ by f, and
the second fundamental form of (M, f) can be treated as a Hom (TM, NM)-
valued 1-form where NM is the normal bundle of M in M’. If, moreover, E is
a Riemannian vector bundle over M, the curvature operator of the induced con-
nection of E is regarded as a Hom (E, E)-valued 2-form on M. Note that each
of f-*TM’, Hom (T M, NM) and Hom (E, E) becomes a Riemannian vector bundle.]
In this section, we give probabilistic expressions of the heat kernels of two heat
equations ((9.1) and (9.2)) for Riemannian vector bundle valued differential forms.

Let #: E—-M be a C* Riemannian vector bundle of rank m (with a metric
linear connection in E) over a compact, connected, d-dimensional Riemannian
manifold (M, g) (cf. [11]). Consider the vector bundle m¢:&=(A?TM)RE*—M.
By definition, the C= cross sections of the dual bundle &*=(APT*M)QE of &
are the F-valued p-forms on M. We use the symbol // indifferently to denote
various covariant differentiations induced naturally from the Riemannian metric

of M and the given metric connection in E. Set A= éo{(APTM YRE*} (Whitney
p=

sum) and A*= @ {(APT*M)RE}. Let dg: [(A*)—T'(A*) be the exterior differ-

p=0
ential operator on E-valued differential forms and d¥%: I'(A*)—I(A*) be the
codifferential operator ([3]). Consider the following two heat equations (up to
the time t,&(0, o0)) for E-valued p-forms on M;

6 1 1 :
7—5436’(-—‘2*1‘”03770), ltlilg o, x)=a(x), .1
06 1 :
= z0s0 limot =0 .

where Oz=dzd%+d¥dg stands for the Laplacian ([3], [11]) acting on E-valued
differential forms on M, and s='(¢*). From now on, we take the d-dimen-
sional Wiener space (cf. [6]; with the time parameter ¢ being considered up to
t,) as W, H, p).

We shall construct the solutions of (9.1) and (9.2). Let x,: O(M)—M be the
bundle of orthonormal frames for TM over M and let =,: OF(E)—M be the
bundle of orthonormal frames for E over M. Let P={r=(r,, .)€ O(M)XOF(E);
m(r)=m,(r,)} denote the fiber product of =z, and =x,. Then we obtain the
principal O(d)X O(m)-bundle zp: P-oM with zp(r)=m(r,). Obviously the vector
bundles & and &* are associated with P. Let p,: OMM)XOF(E)->O(M) [resp.
Do OM)XOF (E)-OF (E)] be the projection onto the first [resp. second] factor.
Let ¢ : P,O(M)XOF (E) be the inclusion mapping. Let w, [resp. w,] be the con-
nection from on O(M) [resp. OF (E)] giving the Riemannian connection on M
[resp. the metric connection in EJ]. Then P has a connection with the connec-
tion form ([8])

w=c*p*w,Pc*p¥w,: TP —> o(d)Po(m) (direct sum).

Define a 1-form § on P with values in R? by
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B(X)=riNmpX), X€TP,, r=(r, r)eP.
As is easily seen, there exist uniquely C* vector fields L,, (k=1, 2, ---, d), on
P such that

B(L)=0, -, 0,\;/, 0, -,0eR?, w(Ly)=0.

Setting dp= él(L,,)z and defining f,: P~(A?R)QR™ by f.,(r)-:r"a,‘P(,, for o=
(&%), we have
(APfu)(r)——_fAEa(r) .

Consider the stochastic differential equation (in the Stratonovich form)
d
dri= 3 (Ly)r,dw}

for the process {r,} on P, where w,=(w#%) is the canonical realization of a d-
dimensional Wiener process. Let r,(r)=(r(t, , w)) denote the solution such that
ro=r. Set X,r)=np(r,(r)) and write X,(r)=(X(, r, w)). Then {r,} is the (1/2)
4 p-diffusion and

Ty=rers': . —>€x,m [resp. % — fi‘qmj

is the stochastic paralle]l displacement of fibers of & [resp. £*] along X,(») with
x=mnp(r). It is easy to see that

rt, ra, w)=r({t, r, a,w)a, X, ra, w)=X(@, r, a,w)

for t=0, a=(a,, a,)€0(d)X0O@m) and weW. Since a,w is another d-dimensional
Wiener process, the probability law of X(:, », w) depends only on x=mxp(r).
Moreover X,;(r) becomes the Brownian motion on M such that X,(»)=x. Recall
Weitzenbdck’s formula ([3], [11]):

—0Ogo=dgoc+Ps, D(x)cEnd(E¥), (ecl'(&%).
Set

é@) :=r"°%(b(n’p(r))°reEnd (APRY)QR™), reP

and define a stochastic process 1?, with values in End (A?R*)@R™) by the
equation
d
dt
Then K,:=reK,or~}, with values in End (§%,»), is the solution of

%K,: —;—KtTZIQ)(X[(f'))Tt , K,=identity mapping.

K,=R.®@r,), K,=identity mapping.

It is easy to show that

o, X)=SWTZ‘0(Xz(r)) dp

[resp. 0, x)=SWK,r;’a(X;(r)) d;z] (mp(r)=%)
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is the solution of (9.1) [resp. (9.2)]. The proof is similar to the case of R-
valued differential forms and so we omit it (cf. [6]; note that our sign conven-
tion in O differs from that of [6] in the case E=MXR).

To study the heat kernel of (9.1) [resp. (9.2)], for each ¢t>0 and x, yeM,
we want to take T, F and 7 as T=8€9'(M, §)®¢,, F=X,(r) (=X(t, 7, +)), and
N=1LQv| "1 (X,(r)) [resp. p=7.K¥Q|v| }(X,(r))], where v is the Riemannian
volume density on M and K}<End ($,P(,,) is the dual (stochastic) mapping of K.

Lemma 9.1. Let t>0 and x, yeM. Then X, r, ), (r=x5'(x)), satisfies the
conditions (A1)-(A3). Moreover
tl@Iv] X)) € H(X(r), ERQ|A]71(M)). (9.3)
T KEQ v H(Xi(r) € K(X(r), Q1 A|-1(M) 9.9)
for every [€&,.

The proof will be given later.
Once this is established, by Theorem 6.1 (cf. §8), we can define a linear

mapping §,—§&, by
L&) — Xt d®Iv|H( X)), rezpi(x).

We write the dual mapping of this mapping by f,(¢, x, »). which is an element
of Hom (&%, £%). Similarly, we can define an R-linear mapping ¢,—¢&, by

{— GX N KIQIv (X)), re=pi(x).
Let k,t, x, y)=Hom (£%, %) denote its dual mapping. Then we have the fol-
lowing.
Theorem 9.2. The above f,(t, x, y) [resp. ky(t, x, ¥)]. (t>0; x, yeM), is
the heat kernel of (9.1) [resp. (9.2)] relative to the Riemannian volume density v
in the sense that 6(t, x)=SM ot x, »)a(y(y) [resp. 6(¢, x)=§” Ryt x, y)a(y)v(y)]
satisfies (9.1) [resp. (9.2)].

Assuming that Lemma 9.1 holds, we prove Theorem 9.2 with the use of
the following lemma.

Lemma 9.3. Let ¢&%, (€&, renpix). If (&) satisfies J(y)=¢,
then for t>0,

s (Bat, %, P, O v(0) =48 (XD FXu(r)), 7. KFO:1D.

Proof. The assertion follows from the discussion in §8. (Replace E* by §
in §8.)

Proof of Theorem 9.2. Let t>0. For every (€5,
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(I, Ko X dp, ©),
=[, Ko (X)), Or i
=, oo, 210

=], kst 2 900, Ve29)
(by Theorem 8.1, Remark 8.1 and Lemma 9.3)

:E‘;(gM ko(t, 2, y)a(yv(y), C)ex.

This shows that SW K. rilo(X,(7)) d,u=SM ky(t, x, ¥)a(y)v(y). The proof for f,(t, x. y)

is similar.

Now we prove Lemma 9.1. Let ¢t>0. Observe that Span{mp«(Lj),, -+,
Tex(La)} =TM,, (mp(r)=x). As is seen from the proof of Taniguchi [16,
Theorem 2.1], it holds that

r@, 7, )eD=(P), K,eD*®End(A?R)QR™),
X, r, -)e D=(M),

and moreover a(w) :=<DX(, r, w), DX(t, », w))> is positive definite a.s., (cf. [16]).
Set F=X(¢, r, -) (¢, x: fixed). To show that the condition (A3) is satisfied, since
Troeru =X, r, )eD=(M), it is sufficient to show that y(w)Y, Y.,)eD>
holds for every C= vector fields Y, Y, on M. To show this, using the same
notations as in step 1 in the proof of Theorem 6.1, we have only to verify that

u(Fy(Xq, Xo)eD>,  (a, b=1, -, d) 9.5)
holds for every u=C3(M) such that supp uC VCU. Now for almost all w,
[o(w)QgFw)]EEnd(T Mp(w)y)

(cf. §4 for the definition of [ ]) and thus det[o(w)Q®grw ] can be defined.
Introduce dXd-matrices

F(w):=(KDF*, DF»W)),  Zrow =(@ruw(Xe, X)).
Then det [o(w)Rgrw)]=det (6(w)Erw)) for weF- (V). Therefore it holds that
(r(w)(Xe, Xo)=E&rw)(6(W)Erw)™
for we F-%(V). Thus for almost all weW,we have
u(F(w)(r(w)(Xe, Xo)=u(F(w)){det [6(w)®&rw 1} Eran C(w),

where 5(w):(Ci,-(w)), C:j(w) being the (j, 7)-th cofactor of 4(w)&rw,. From the
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discussion in [16, § 3], we see that {det[e@gr]}*=L?, (1<p< o), so that we
can show in the same manner as in [18, pp. 52-53] that each component of
{1/det l[o‘®gp]!}5 belongs to D=, Since u(F)e D> and since each component of
gr is in D=, we have (9.5). Since

m(T K =mr K3 D) =npr) =X,
where K¥ is the dual mapping of K,, and since
5-(51", TtK’fOe=(7’z_'5xt)‘(7611{?‘0
(the standard inner product in (A?R%)QR™)
=fstr)- (K3l eD=,  FelE,
we have r,K¥{eX(X(@, r, <), £). This yields (9.4). Similarly, we can get (9.3).
The proof is completed.
Remark. We obtain
Trace k,(t, x, x)=E*[Trace (r. K¥)| X.(r)=x]k3t, x, x). (renp'(x))
from Lemma 9.3, denoting k, by k) when E=MXR.

Next, consider the heat equation

—aaf—=—%(dzs+d§)20, lim 6¢t, x)=0(x), (e=I(A*). (9.6)

Note that the relation (dg)?0=R¢ holds, where R(€'(End (A*))): ['(A*)—T(A%),
T((Ro)x)=R(x)[o(x)], R(x)eHom ((A?T*M)QE)z, (AP*T*M)QE),), xeM), is
defined by

~

(RU)(X], R Xp+2)=—i§j (_l)i+jR(Xir Xj)[a(le Sty ‘Xir Tt ‘?j) Tty X}H-Z)])
R(Xi: Xj)=VXiVXj_VXjVXi—VEX,;,Xj]: F(E) —— F(E)y
(" : omitted), X, o, Xpne€l(TM).

. Let R*eI'(End(A*)) be the adjoint of R with respect to the global inner product
{ay, 02>A‘=SM(61y 02).0(x), (05, a.€(A%),

where (,), is the pointwise inner product in A* induced naturally from g and
the fiber metric in E. Then —(dg+d¥)?c=—{0z+(dg)*+(d¥)?}6=dze+(P—R
—R*)¢ holds and §—R—R*c'(End (A*)). Therefore, to obtain the heat kernel
e(t, x, v) of (9.6) relative to v, we have only to replace &, &*, &,, &%, (A?RY)QR™,

0,5 and kylt, x,3) by A, A% A., A%, S (A’RHQR™), d—R—FR*, 5) and
D=
e(t, x, y), respectively, in the preceding context.
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