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on vector bundles

By

Hiroshi AKIYAMA* )

1. Introduction.

Various analytical researches have been m ade concerning M alliavin 's sto-
chastic calculus of varia tions ( [9 ] , [1 0 ])  : c f .  Shigekaw a [13], B ism ut [1 ],
Stroock [14], Ikeda and Watanabe [ 6 ] .  In Euclidean case, W atanabe [1 7 ] has
defined the com posite of "smooth and non-degenerate" Wiener functionals and
Schwartz's tempered distributions to obtain probabilistic expressions of heat
kernels (cf. [7 ] ,  [1 8 ] ) .  In  this direction, Taniguchi [16 ] has studied the case of
manifold-valued Wiener functionals. T he integration by p a rts  ove r a Wiener
space plays a  fundamental role in  their calculus.

In this paper, we give differential geometric aspects t o  th e  integration by
p a rts  over a  W iener space and t o  the above Watanabe's idea by working on
vector bundles. Since tensor distributions, such as currents of de Rham, can be
grasped as section distributions (Schwartz [1 2 ] , c f .  [2 ] )  and as generalized
sections (Guillemin and Sternberg [5 ] )  of ce rta in  vector bundles, the use of
vector bundles will be suitable for geometric comprehension of Watanabe's idea.

Now let r E : E-*M  be a  C-  real vector bundle over a a-compact manifold
M ; w e  adm it the case where M  is not orientable (or not oriented). First we
derive integration by parts formulas for the composite of M-valued "smooth and
non-degenerate" Wiener functionals and covariant derivatives of CO° cross sections
of E  in the case where a  linear connection is given in  E  (Theorem 4.1). To
d o  th is, w e develop a n  intrinsic (coordinate free) formulation, which will be
adapted to the modern differential geometric style ([8]). Next, we establish the
composite of M-valued "smooth a n d  non-degenerate" W iener functionals and
section distributions [resp. generalized sections] of E  (Theorem 6.1).

When E  is  a  Riemannian vector bundle and M  is  compact and Riemannian,
this result is applied to probabilistic expressions of hea t kerne ls f o r  E-valued
differential form s. W e roughly illustrate our idea o f  getting th e  heat kernel of
the heat equation
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for E-valued differential p-forms. Consider the vector bundle r e : E=(APTM)0E*
—>M, so that e* -=- (APT*M)0E. Let v be the Riemannian volume density, r t be
the stochastic parallel displacement of fibers of $ along the  Brownian motion X,
on M starting from the point xeM  a t tim e  t=- 0, a n d  1 Ala(M ) b e  th e  (real)
bundle of densities of order a E R .  Then rtC01v1 - 1 (X )  is a EOIAI - W)-valued
Wiener functional covering X , for each CEEx = r i l (x ) .  Let .3V, (y EM), b e  the
Eu-valued generalized section of M I  Al(M ) defined by bey [S ]= 1 7,(y) fo r  every
C-  cross section 8  of e. For each t>0 and x, yEM, we would obtain a  linear
mapping ex —>ey which assigns to each CEE.v  t h e  Ey -valued "generalized expec-
ta tion" < 6 ( X t ) { r t C e l v 1 - ' ( X e ) } ›  o f  the "pairing" (3 (X ), reCO lvi - '(X e)) between
e*o Al(M ) and e a  A1 - 1(M ) .  Let f y (t, x, y)e Hom (Et, El') be its dual mapping.
Then f y (t, x, y), (t> 0 ; x, y  M), would be the heat kernel of (1.1) with respect
to  v . W e g ive  a  precise meaning to f y (t, x, y )  in  th e  f in a l se c tio n . A  prob-
abilistic expression of the  heat kernel of the heat equation involving — DE=
— (dEd 4E'd- a d E )  ( th e  Laplacian) [resp. — (dE-Fa)2 ]  o n  E-valued differential
forms (cf. [3], [11 11) is also obtained in  a  similar manner.

This paper is organized as follow s. In § 2, we prepare necessary notations
about Sobolev spaces of Wiener functionals and about operators on Wiener func-
tionals following [7 ] and [18 ]. In  § 3, E-valued W iener functionals a r e  con-
sidered. Also the operators in  § 2 are extended (in a sense) in treating E-valued
Wiener functionals. Section 4 establishes integration by parts form ulas in our
intrinsic w a y .  I n  § 5, w e fix som e term inology and notations about section
distributions, density bundles, and generalized sections according to [2], [4], [5 ] ,
[12] fo r  later u s e .  [W hen there is no need to fix any volume measure on M,
the density bundle I Al(M ) of order one is useful ; for, unlike d-forms (dim M
=d), C-  densities (=Cc° cross sections of I Al(M)) w ith compact support can be
always integrated over M  even if  M  is not orientable (or not oriented) and thus
C" densities become distributions on M .] We state Theorem 6.1 in  § 6 and give
a  proof in  § 7. Extending the concept of the composition in Theorem 6.1 to the
case of section distributions with values in a finite dimensional real (topological)
vector space, we obtain useful cross sections of som e vector bundles in  § 8.
Finally, we apply our results to heat kernels in  § 9.

The author wishes to thank Professor S . Watanabe fo r  his valuable com-
ments.

2 .  Preliminaries.

In this section, we give some notational preliminaries following [7 ]  and
[18] (cf. [16]).

We fix an abstract Wiener space (W, H, p ) .  F o r  a  separable real Hilbert
space S , let D (S ),  rER), 'denote the system of Sobolev spaces of
Wiener functionals obtained by completing P (S ) {S -valued polynomial Wiener
functionals} with respect to  the norm



Malliavin's ca lcu lu s on vector bund les 675

FM pr L)r"Fll L P  , FG 2(S) .

Here II ML is  th e  LP-norm o f th e  LP-space LP(S) of S-valued Wiener functionals
an d  L  is  the Ornstein-Uhlenbeck operator. Set

D '° (S )= r)  D (S) D ( S ) =  U  D rp (S) .z o 1<p<m

T h e  weak (Fréchet) derivative, its dual operator, a n d  th e  (extended) Ornstein-
Uhlenbeck operator a re  denoted by D , D * =-3  and L , respectively, so that

D : D (S ) Drp-1(A(H, S))

D* :  Drp (A(H , S)) ----> Drp - 1 (S)

L : DVS) ---> D 2 (S)

are  continuous linear mappings (1<p<., r  R ), w here A (H , S) denotes the
Hilbert space o f all continuous linear mappings f  : H->S of Hilbert-Schmidt class.
W e w rite D r, D , D - "' for D ( R ) ,  D ( R ) ,  D ( R ) ,  respectively. F o r  details,
see  [7 ], [18 ] (cf. [6], [15]).

From now on , M  will denote a  a-compact d-dimensional C°' m anifo ld . L e t
C (M ) be th e  se t o f  a ll C-  functions o n  M  and C °(M ) be the elements of C°°(M)
with compact support.

Definition 2.1 (cf. [1 6 ] ) .  A 1-measurable mapping F: -W -M  is sa id  to  be
of class D'°(M) if  f  °FED -  f o r  a ll f  EC(M ).

F or FE D`"°(M), we define D F and  <DF, DF> to be

(DF(w)[h])(f)=.-D(f oF)(w)[h] ,

<DF, DF>(w)(df, dg)=<D(f.F)(w), D(g.F)(w)>ir

fo r every f , gEC7,(M ), w EW , hEH , where < , > H denotes th e  inner product in
H . Thus DF(w ) is  a n  R-linear mapping from H  into the tangent space TMF(.)
of M at F(w), and <DF, DF> is a  mapping from W into th e  tensor bundle Tg(m)
o f  o rd er (2 , 0 ) w ith  ilo<DF, DF>=F, w h e re  : T (M ) -+M s tan ds fo r th e  pro-
jection.

3 .  W iener functionals w ith v a lu e s  in  a  vector bundle.

L et r E : E - 0 1  be a  C-  real vector bundle o f rank (=fiber dimension) m  and
E* be the  dual bundle o f E .  L et R E ) be the  real vector space o f all Ccx' cross
sections of E  and T o (E) be th e  elements o f F(E) with com pact support. Denote
by E z  the  fiber ri'(x )  o f E  over x  M .  In  this section, we develop a n  intrinsic
formulation to treat E-valued W iener functionals.

Definition 3.1. A  p-measurable mapping G :W - E  is  sa id  to  belong to
Dom (D, E) i f  it satisfies th e  following conditions :
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(1) r E oG eD - (M),
(2) E (G, orcE 0G)E .ED 00 fo r  e v e ry  Ero(E*), where E ( , )E . denotes the canon-

ical pairing between E  and E*.

Example 3 .1 .  If F E D-(M), e E F(E) and G E D - , then G•(e.F)e Dom (D, E).

Let Map (H, E) be the set of all mappings from H into E.

Definition 3 .2 .  A mapping F: W—Map (H, E) is said to belong to Dom (D*, E)
if  it satisfies the following conditions :

(1) There exists an  element P e D - (M ) su ch  th at r E (F (w )[h ])=P (w ) for
every w EW and h E H . [T h is  condition will be written briefly as r E -F = P .]

(2) The mapping H- - E -P(w) (=ri l (P(w))) defined by h--F(w )[h] is R-linear.
(3) For each e e r a (E*), the mapping E(F, e.r E .F) E .: (H, R)= {linear

mappings from H into R } given by

w —> Eh --> E(F(w)[12], e.2VeF(w))E•1

belongs to D - (H).

Example 3 .2 .  In the case E = M x R  (the trivial line bundle), we see that

D - (M )XD - CDom(D, Mx R), D - (M )x D - (H)CDom(D*, Mx R) .

Remark 3 .1 .  L e t TM , T *M  a n d  TM C)TM  be respectively the tangent
bundle over M , th e  cotangent bundle a n d  th e  symmetrization of TMOTM.
Suppose F e  D (M ). Then DF G Dom (D*, TM) and <DF, DF> E Dom (D, TMC)TM),
bywsetting

Tm(DF, (df).F)T•m-=DF(f)(=D(f °F)),

rm©Tm(<DF, DF>, (dfOdeoF)r•m©T.m=<DF, DF>(df, dg)

for every f, geC7(M).

Example 3.3. If F ED (M )  a n d  E eF (T *M O E ), th en  rm(DF, e .F ) T . ,E

Dom (D*, E).

Definition 3 .3 .  Let Et—Of (i=1, 2) be Cc° real vector bundles of finite
rank. F o r  F,EDom (D*, E i ) (i= 1 , 2 )  such that n- E1 -Fi-=TrE 1 .F 2 =P  (ep - (M)),
define <F,OF2> E Dom (D, E R E 2 )  by

EICEOE2(<F10F2>, (e10e2) ° P)E1OEI

= <EI(FI, P)E1, E2(F2 E2 ° P)E1> H

for every $ i T „ (E * ) , i= 1 , 2 . (Use ETOET-(E 1OE 2 )*.)

Example 3.4. If F E D - ( M ) ,  t h e n  DFE Dom (D*, T M ) a n d  <DFODF>=
<DF, DF>.
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Now suppose a linear connection 17 is given in  E .  Let 1*  b e  the dual con-
nection in  E * induced naturally from F.

Definition 3.4 (definition of D E  and Dr).
(1) F o r  FEDom (D , E ), define  DE F: W-4Map D E F (u ')[h ]E rii(re°

F (w )) (w E W , hE H ) by

E((DEF(w)[h], Œ rE°F(w))e.

D(E(F, eore.F)E.)(w)Ch7

— E0T31(F(w)0(D(7tE-F)(w)Chi), (f7 * ). 7rE.F(w))E•02-m

for e v e r y  E ro (E * ).
(2) For FeDorn (D*, E ), define DPF:W—E,DPF(w)E7r -

E
1(7rE . F (w ))  by

E(DPF, e° F)E.

= "D* (E(F, e . E. F)E.)± Eer m(<FØD(n- E° F)>. (1 * e!)°77E0F)E.0T..if

for every e E ro (E * ) . [Note th a t the  left hand sides of the formulas in (1) and
(2) become C (M ) -linear w ith respect to  e .]

Rem ark 3.2. If  FE Dom (D , E ), then  the m apping H-->E, E .E ( w )  d e fin ed  b y
h---*DE F (w )[h ]  is  R-linear.

From the definition, we have DE (Dom (D, E))CDom (D*, E) and D(Dom(D*, E))
CDom (D, E).

Definition 3.5. P u t L Dt° DE : Dom (L E )=- Dom (D, E)—›Map (W, E).

In the following proposition, let E , a n d  E , b e  C-  r e a l v e c to r  b u n d le s  of
f in ite  ra n k  o v e r  M .  Suppose th a t  a  linear connection is given in  each of E,
and E2 ,  and consider the tensor product connection in  E i  O E ,  In  the case of
a trivial bundle, we consider the trivial connection. W e shall use the le t te r  Z
indifferently to denote E, E*, E„ E 2 , E 10 E 2 ,  and so o n .  Recall Example 3.2.

Proposition 3.1 (Properties of Dz , D I and L e ). The following hold.
(1) I f  FEDom (D, E 1), G  eDom (D , E ,) and  r z i . F = r E z - G ,  then  FOGE

Dom (D, E 1OE 2 )  and

DE1 0E2 (FOG) -=(DE 1 F)OG+FO(DE 2 G).

(2) I f  Fe Dom (D , E ,), G E D om(D *, E 2 )  and 2r z 1 . F = r E 2 0G , then  FOGE
Dom (D*, E1 OE 2 )  and

D t o z 2 (FOG)-=—<(DE,F)0G>+ FO(DP,G)

where (FOG)(w)C 121 = F (w )0 (G (w )[h ] ) fo r every w E W  and hEH.
(3) I f  FE Dom (L E ,), G  E Dom (L E 2 ) and r E ,.F= r z , - G ,  then FO G  e

Dom ( L E , 0 E 2 )  and



678 Hiroshi Akiyama

LE10E2 (FO G )= (LE 1F)OG + F0( LE,G)+ 2<(DE,F)0(DE,G)>

(4) The operation o f D z  [resp. D ,  L z ]  commutes w ith ev ery  pairing.
[Here, fo r  example, fo r  FeDom (D, E) and G eDom (D, E*) w ith r E .F = r E ..G
-P, regard E (F, G)E .ED -  as (P, E (F, G) E .)EDom(D, MXR).]

(5) If FEDom(D, E), G eDom (D*, E*), r E .F=Ir E .0G and E (F, G) E .E D - (H),
then

w
E(<DEFOG>)E.dii-=-1 E (F, DI.G) E .dp.

(6 )  If  FE Dom (L E ), G E Dom (L E .), irE .F=n-
E oG and E(DEF,G)E., c(F,DEZ)E.

e D *(H ), then

ÇE(LEF, G)E•dp= w E(F, L E .G)E .dp.

Pro o f . By choosing a n  adequate C * p a r tit io n  {X ,} o f  unity, every e E
ro(EteEt) can be expressed in  the  form e=zm=Ey)(i),®72(2) (finite sum)

with 72(n Ero(Et) and 72(2)i / 7 0(E `). Then (1)-(3) a re  easily shown. To verify
(4), le t T e r (E *O E ) be such that -r,E(E*OE)„:Hom(E x , E x ) equals the identity
mapping o f E , fo r  every x e M .  Using

E (F, G)E.=Eoc.(FOG, r'P) E .® E

and  FE. (ut-)=duOr (uEC(M)), we can get (4). From (2), (4) and the relation

D*Jd,u= <D1, J> 11 dp=0, (J E D - (H)) ,

we obtain (5). Finally, (6) follows from (5).

4 .  Integration by parts.

In  this section we give vector bundle version of integration by parts formulas.
We use  the  same notations as in  § 3. L et F: W-4111 satisfy t h e  following as-
sumptions of "smoothness" (Al) and  "non-degeneracy" ((A2)-(A3)) :

(A l)  FE D - (M).
(A2) o.(w)=-<DF, DF>(w) is positive definite p-a.e. Then for almost all w,

an  inner product y(w) is induced in  TM F ( „,) from a (w ).  T hat i s ,  defining 0 :
T*MF(.)--4TMF(.) by 0 (0 )= 6 (w)( 64, -) (O T M , , ) ) and setting W=0 - ' : TA/F ( „, )

we obtain y: W—>T*MOT*M such that fo r almost all w,

7(W)(X1 , X2) = 6 T(W)(rX1), Yr (X0) , (X 1 , X 2  TMF(w)).

(A3) TEDom (D, T*MC)T*M).

Example 4.1. Consider th e  c a s e  M = R a .  L e t  F=(F 1, • ,  Fa): T47—>Ra
satisfy FieD*, (i=1, •-• , d). Then F satisfies (A l). I f  F satisfies (A2) and if
r=(T i i ) , <DF, DF> -1  satisfies ru e L P  for all p >1 and i, j=1, 2, • , d, then 7,,E
D " and we see that F satisfies (A3) (cf. [7], [18 ]) .
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In  th e  next theorem , w e use  the  fo llow ing  nota tion: F o r each i= 1 , ••• , k,
le t  ..4i eDom (D, E ( , ) )  o r  A i EDom (D*, E ( ) )  fo r some vector bundle E ( , ) o f  t h e
form

E ( i )= E i , ,O E i ,2 0  • • •  ® E i jc i ) , ( j ( i ) _ 2  for i 1,  k)

w here E i , 1, ••• (1= 1 , ••• k ), a re  vector bundles such that Et,;(0=Ei+1,1
(i = 1, •••, k - 1 ) .  D enote by EAIOA20 ••• ®Ak] th e  evaluations o f  t h e  nearest-
neighbor-(vector bundle)-components ( th a t  is , E i , ; ( 0 -  an d  E 1 , 1 , 1 -components) of
a ll pairs (A i, A i+1 ) , 1 =1 , • - •  k -1 . Namely

TA IO A20  ' ' • ® A k1 = Ek -1 ,7 ( k - 1)( . " -E2. J (2) (EI , j ( i ) ( A i , 4 2)E2, i .

Theorem 4 .1  (integration by parts) . L e t F: W -0 /1  satisf y  (A 1 ) - (A 3 ) .  Let
ZEF(E), )7eDom (D, TMOE*), irTm®E•0 =F.

(1) I f  E (E , I[D F0 7 0 0 )E .E D - (H ) , then

w 7, , ,110E((rE).F, )y , moDE.ditt= i . w E(E.F, DP.EDFOTØY AD E .d p . (4.1)

(2) I f  moreover a linear connection is given in  M , then the right hand side
o f  (4.1) can be rewritten as

w
E (E °F, — LmFOTO)711 — E<DFODT•mcoE470/2MDE.dp (4.2)

where L m F-=--M m DF:W — *TM.

Proof. W e  f ir s t  note that T M(D Fr r ) T . M  Dom (D*, T*M ) and thus [DFO1® 72]
=702,f(rm(DF, 77)rmEDom (D*, E * ) .  (Local components o f  EDF(D7(3)0 are
expressed as El.:2=172ViiDP, (2=1, ••• , m ) . )  Now for every eE ro (E * ) and hEI-1
w e have

E((DE(E ° F)Chl, E.F)E.

=D( E (E -F, e° Eorm((E °F)0(DF[h]), (F*E)°F)E•or.x

=rm (DF[h], d(E(E, e)E.)°F)2 , 31

—Tm(DFEhi, {d(E(E, e)E.)—.(vE, e)E.}

=E(T.m cf(rE ).F io(DFEhDrm , eoF)E .,

th a t is,
D E ( E .F ) = (FE). F} O D F].

I f  E ( 0 F , EDFOTOO)E.ED . . . (H ), then  (4.1) follows from (5) of Proposition 3.1
and  the  relation

E(<E{VE.F}ODF110EDFOr0)21>)E•

=T*meE((VH).F, E<DFODF>0707211)TmeE.

=nmeEVE).F,
A s fo r (2 ), since
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Dp4DFOrOn1=EDPmDFOU0011-1I<DF0DT.meE4r07211>11

(4.2) is also verified.

Remark 4 . 1 .  If  a  linear connection is given in each of E and M. then using
Theorem 4.1 repeatedly, we can rewrite an integral of the form

T•MO-OT•MOE((17 k 5 ) * F 1  • )7'310-0 T M OE
4

into the form

•••).E . d p

w here 17 k =17••. 17.
:k

Corollary 4 .2 . L et E E RE), U E C° (M), 0 E Dom (D, TM0E*) and r rm0E.'e
=F. S uppose supp Ensupp it is com pact. Then

L.T..lrgE((rE).F, (u0F)e)TmeE.dp

ST' 
E(E°F, D'Eq(u.F)DFOrOOJ) E .dp. (4.3)

P roo f. Since E (1- 0F, EDFOTO(u°P)eDE.=E((uE).F, EDFOrOe] )E.E 1) - (H),
(4.3) follows from (4.1) w ith  n=(u.F)(9.

Remark 4 .2 .  Let X  be a  C" vector field on M , s o  t h a t  X E T (T M ).  Let
Dom (D, E), 0 eDom (D, E*) a n d  irE . . 0 = F .  If supp Ensupp X  is  compact,

then setting  72= (X .F )0 0  in  (4.1) w e have

((F xE).F, 0)E•dp= w E(E.F, DV[DFOr0(X°P)110))E.dp.

5. Section distributions and generalized sections.

W e shall prepare some terminology and notations about section distributions
and generalized sections for la ter use. (For details, see [2 ], [5 ], [12]. c f. [4].)

Let irE  : E—>A1 be as in  § 3. W e admit the case w here M  i s  not oriented
(or not orientable). Here, we need not consider a  linear connection in E, unless
otherwise stated. Give r (E ) the topology of uniform convergence together with
each finite number of derivatives on each compact subset of M .  For each com-
pact set K  of M , put

r ic (E )=IpŒ r(E );supppC K I.

Since M  is ti-compact, there exists a  sequence of compact sets K 1 c K 2 c
••• such  that UK — M. T h e n  r i c , i (E)( r K „ , ( E ) )  are topological

subspaces o f  r ( E ) .  T ake  the inductive lim it 2(M, E)=1im1 K ,i (E )(= T o (E ) as
se ts). Each element of the (topological) dual space O W . E ) of 0(M , E) is called
a  section distribution of E  in th is paper.
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L et I A ia(M) be the  C-  rea l bundle  of densities of order a  (E R ) over M; it
is  the line bundle associated with the  bundle L (M ) o f  lin e a r  f ra m e s  o v e r  M,
w ith  standard fiber R , the structure group GL(d, R) whose element A  acts on R
in such a  w a y  th a t A  : v-> I d e t  I - a v , (v E R ). If (xi) is a local coordinate system
valid on a coordinate neighborhood U of M , we denote by I dxiA ••• A d x  I "(P ),
(pEu), th e  im age  o f (1 (0 /a x i)p , •••  , (a/axd),], 1 ) under the  natura l projection
L (M )x R H A Ia(M ). T h e n  dx'A ••• A dx d  a  i s  a  lo c a l f ra m e  f o r  LAMM)
over U, and under a change of local coordinates ( x ) - ( y ) ,  w e  have

Idyl A AdY d l a =  d e t  aaYx:

 
a

''•  A d X d l a  •

Each p E R E .®  Al(M)) (1 A l(M)= I Al l (M)) is regarded a s  a n  elem ent TP
E O W , E) by

TP[7.2]=1.3,77• p , 0(M, E)

w here )2•p is obtained from the evaluation map )20p->)2 • 40.- - E(12, p)E•(=En0,011),
EOE*OI A 1 ( M ) .  Each section distribution of E*01 A l(M ) is called
also a  generalized section of E.

A s usual, we identify  T (M xR ) [resp. 0(M , M x R )] with C (M ) [re sp . D(M)
= If  GC- (M ); supp f  is  com pact1=C(M )] and denote the dual space  o f  0(M)
by  .0/(M). For each relatively compact open set U of M , we define .W(U) and
g '(U ) in  the s a m e  m a n n e r . W e  s e t  e'(U)={ T  eg'(U); supp TcU}  ,
{ T EV (M ); supp T  is compact}.

W e shall give local expressions of  T 2 / ( M ,  E ) .  Let (U, 0) be a chart of M
such  that U  is relatively compact and E  u = - 7 r i ' ( U )  i s  trivial. L e t  (e ,),= 1 ....,

(es : U->E), b e  a  C-  lo c a l  fra m e  f o r  E  o v e r  U  a n d  (P )  be its dual fram e
( f ':U - -E * ) . Define T„E.0'(0(U)) by

T,[v]=T[(v.q5)0.]

fo r  ev e ry  ve 2 (0 (U )) .  (Note th a t vog5e 2(U), (v .0)e,E0(U, E)(=.2(U, El u ))C
.0(M , E).) M oreover, define ((0 - 1 )* T )PE O /(U , E)(= {section distributions of
Elu }) by

((0-)*T )f2[]=((95 - , ),,T)[E.(.0, e)E]=T.[E.(f  2 , e)E.0 - 1]

fo r  ev e ry  eE 2(U , E ), w h e re  (0 - 1 )* T ,  stands fo r the  push-forward of T , by
0(U)-q J. T h en  T  is expressed on U as

T = ( ( 9 5 - 1 )*T (T .E 0 / (0(U))) (5.1)
.=1

T ake  a  C-  partition {Xi } of unity subordinate to a  countable, locally finite atlas
I(Ui, 0 ,) ; iE / 1  of M  such  that each  Ui  is  re la tive ly  compact and each E I u i  i s
trivial. (Only such atlases will be considered in the fo llow ing.) Then for some

e  gY(sbt(Ui)),

T [e]= TEX%el-- :±i T.Cet], ( Eg(M, E))



682 Hiroshi A kiyama

where eI=--- E.(f , Xze)E°5671eg(Oz(Ui)). (For each 1, (f t) is  a local fram e for E*
over Ui .)

Let S =S (R d) be the Schwartz space of all rapidly decreasing C-  (real) func-
tions on R a and let S ' = S ( R a )  b e  the Schwartz space of all tempered distribu-
tions on R d .  For u e 8  and k=0,+1, +2, ••• , put

liull2k=11(1+ x  2 - 4 ) k U

w here 4 = i ( a lax i )2 i s  the d-dimensional Laplacian and lIf11.-.- --max{ If(x)I ; x ez=i
R '1 }. L e t  c.92k  be the completion of S by  the norm II II2n•
[18])

S= nS2k  ,5 = U S - 2 k .
k>0 k>0

Let K  be a compact set in M .  Set V i c (M, E)=-A T EgY (M, E); supp T C K I.
Let {X,} b e  a s  a b o v e . U s in g  a local fram e (f1) (r=1, ••• , m) for E* over
express Xip ( 10ErK (E * 01A 1(M ))) locally as

x1p— E(pieNftO ldx 1 A ••• Adxd I on

w here p„E Z(v5i(Ui))C.0(R d)c S .  Define a  norm  in rK (E*01A 1(M )) by

p e  TK (E*0 IA I (M)).

For e a c h  in te g e r  k , let K 2 k s -(M E * 01A (M )) be the topological vector space,

obtained by completing r x ( E * 0  IA 1 (M )) w ith  respect t o  t h i s  n o rm . T h e to-
pology o n K , 2 k . - -( M > E * 0  I A 1(M)) does not depend on the choice of {Xi } (and the
local trivialization). It holds that q)K ,2 k s -- (M  E * 01A (M ))E V (M , E ) fo r every—

integer k. Using the increasing sequence {Kn} (UKn=M ) of compact sets, we
have

co
E ) C U  O K  -2k(M, E * 01A 1(M )).k=i

6. The composite of manifold-valued Wiener f unctionals and section
distributions or generalized sections.

W e shall first state  the composite of manifold-valued Wiener functionals and
section distributions. Let 7rE : E—A4 b e  a s  in  § 5. F o r an  M-valued Wiener
functional FE D`*(M), set

,K (F, E01 A I -1 (M))=----  {2 eDom (D, Ea./11 - 1 (M)); r Eel A I-1 (3 1 ) . 72=F} .

Theorem 6.1. Let F  be an M-valued W iener functional satisfying the assump-
tions (A1)-(A3) in § 4. Then there ex ists a unique R -linear mapping

grp: (M, E) ----> Map (C(M) X JC(F, I Al - '(M)), D - °')
T ----> T F =T F (T) ( T  O W , E))

satisfying the following conditions:
(1) T F (., ):C`',7(M)-41J - °' is R -linear fo r  every .72E,X (F, EOIA I-A M)).

T h en  (cf. [7], [15],
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(2) T F (u, •):JC(F, EOIA I 1(M))--43 - -  is  R -linear fo r  every  uECV M ).
(3) I f  T E Z (M , E * 0 1A 1 (M ))(C O (I, E )) , then

T  F(u, •)=(u•T)oF

in the sense that

TF(U, 1)) = E.01A1(31)((UT) ° F ,  7)).E01.41 - 1 (M )E M ' C D

for ev ery  72 e,X (F, E® AI - 1(M)).
(4) I f  u m , u (2 ) ECV M ) and V E JC(F, E® AI - 1 (M )), then

TF(U0) •  u (2 ),  7)) = - T F ( 11 (1), ( 2 ) ( F ) 72)= 1 1 1 2 )(F )
• TF (U  ( 1 ) ,  7)) =

( 11 (2) T ) F ( U (1 ) ,  72)

(=q1. F(u(2)T)(u (1), V))

(5) Let uE C A M ) and 72EJC(F, EOIA 1 - 1 (M ) ) .  Then f o r  each com pact set
K  in M  and fo r  each positive integer k , the mapping T—).TF (u, 77) gives the con-
tinuous R -linear mapping

T ic,-2k(M, E * 01A 1(M)) ----> T F (u, 72)E

fo r  every 1<p<00.

The proof w ill be given in  § 7.
W e shall call T F  in  the  above theorem the composite of F and T. To define

the composite of F (satisfying (A1)-(A3)) and a generalized section of E ,  w e have
o n ly  to  replace E, EOI AI - 1 (M ), E*01A1(M ) b y  E * 0  A l(M ) , E * , E , respec-
tively in  T heorem  6.1, since I A I (M )0  I Al - 1 (M )  a n d  (1 A I (M)) * 0  I A  (M )  are
isomorphic to the trivial real line bundle over M.

7. Proof o f Theorem 6.1.

For the proof, we shall prepare some lemmas obtainable with slight changes
from W atanabe's discussion [18] about Ra-valued Wiener functionals (see also
[7 1  CND.

Lemma 7 .1 .  Let F=(F 1 , ••• , Fa): W --42d be an Rd-valued W iener functional
such that FiE D - , i=1, ••• , d .  S et cro(w)=<DP, DF i >u(w), (i, l=1, ••• , d ), fo r
w E W . A ssume that there ex ist elem ents r o e l ) - , ( i ,  j = 1 ,  • • ,  d), and a p-
measurable set A such that the m atrix  (aii(w)) has the inverse for alm ost all w
in A and for such w A

(ro(m))=(aii(w )) - '.

Furtherm ore, le t  fi e D -  be such that i3(w)=0 fo r  wEE A . T hen  fo r  every u E S
and G E lr ,

aa:i F) I3 G  d p = 
k--, 1 W

( U o F ) • D * ( r i k l 3 G • D F k ) d p . (7.1)

Moreover, the right hand side o f (7.1) can also be w ritten in the form
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T r (u.F){ /3G o + DA >HGilap

fo r  some G o , G1 , ••• , G d ED ".

Pro o f . For alm ost all w in  A , w e have
au 

 F(w )-= T ik <D (u(F)), D F k >H(w)•

Thus le tting  IA  be the indicator function of A , we obtain

au au
a x i  .F )AG  dp-=)'

w  I A ( a x i  F)13G  dp

= <D(Lt(F)), TOk G.D F 0 >HdIJ

= u(F)•D*(rikA G-DF")dia

-=.).
w u(F)• g ( - 1-Fk )rikG — <DFk , D(rikG)>H)P

Di3>H•(rikG)}dp.

This proves the lemma.

Lemma 7 .2 .  Let F  and A be as in Lemma 7.1. Suppose for w EA ,

<DFil, D<DF i z, D<DP3, ••• , DPH •• - >H>n>n(w)=0 (7.2)

holds fo r  every positive integer l  and i 1 ,  i2, •-• , itE {1, 2, ••• , dl. Then for every
G E D " and positive integer k , there exists 7)2 k (PG )E D " such that

.çw ({ (1+ I x1 2 —  4 )k f } F)- 13G d li q v f (F)•722k(PG)d

fo r  every f

P ro o f . This is  an  immediate consequence of Lemma 7.1.

From  this lem m a, w e get the following fundamental proposition analogous
to  [7, p. 21, Corollary 4.2], [18, pp. 57-58].

Proposition 7 .3 .  Let F, A be as in Lemma 7.2. Then the m apping f ES—>
I3•f (F)E D " extends to a unique continuous R -linear mapping e(F, 13): TES-2k - - ÷
e (F , 48)[T ]eD y ; 2 0  f o r  every  positive integer k  and p G ( 1 . ,  0 0 ) .  (Thus e(F, 13):

is defined.)

P ro o f  For f 8  and G e D -,  it holds from Lemma 7.2 that

f (F)G cl,a = 1Ç {(1 + x12- 4 )0(1 +1X12- 4 )—k f .F113Gdp

-5E1+ I x I 2- 4 )— kflico• 072k(ARIL i .
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Take positive numbers q  and r  such that (1/p)-F(1/q)=1, 1 <r<q< co. Let q'
be such that (1/q)+(1iq')=1/r. Then by [18, Proposition 1.101 there ex ists a
constant C "

,
 , 2 k  such that

11/3 G117-,2k Cq,q',2k11/3 11e.2k1IGIL,2k •

Therefore, we have

C=suP{11722k(i3G)llLI ; G E M ', 11G11q,2k . 1 ] < 0 0

in the same way as in  [1 8 ]. Thus we have

1118•f(F)11p, -2 k  =sup{ .fw 13 • f (F)G d ; GEDV, 11G11,,21,51}

ClIf II-2k -

This shows that e(F, p ) :  S - 4 ) "  given by f(ES)—>13- f(F) extends uniquely to a
continuous R-linear mapping S + D 2 '  a n d  thus we obtain e(F, p):

Lemma 7 .4 .  L et F , ( i i )  and  A  be as in Proposition 7.3 and  le t G , E D " .
Suppose IS satisfies th e  assumption i n  Lemma 7.2. Then e(F, GIS)[T ]= G -
(e(F, 13) [T ] )  f o r every TES'.

P ro o f. For T ES', take a positive integer k such that T ES _2 k . Then there
exists a sequence {f a } CS such that f— >T in 5 - 2 k  a s  n-÷co. Note that G/3 has
th e  same property a s  p  in  Lemma 7.2. Since e(F, Gi3)Cfn1=GA.f.(F)=G•
ce(F, p)[fn l,  we have 0(F, G IS )[T ]= G -(e(F , IS )[T ]) if  we le t n--co.

Proof o f  Theorem 6.1. Let F E  D°°(M) satisfy (A1)-(A3). For simplicity, we
write cfc for ,K(F, E ®  AI - 1 (M)).

Step 1. Let (U , 0 ) be a  chart of M  such that U  is relatively compact and
El u  i s  tr iv ia l, so  th at (EOIALAM))1u and (E*0 l Al(M))1 u  are  also trivial.
Take an open set VCU such that the closure V of V is included in  U .  Suppose
uECVM) satisfies supp uCV. Choose KEQ(M) such that suppxcU,
a n d  x (p )= 1  f o r  pE V. Since i r l u Ø  is  an Rd-valued C°' function on U  whose
support is contained in  U , it can be extended to an Rd-valued C-  function v=
(v', ••• , v d )  on M  in  an  obvious manner, so that supp vCU, v I u = K  u•y5 and v v
=95

 v . M oreover .P=voF=(P 1, , Pd) is an  Rd-valued Wiener functional such
that P I , •-• , PdED -  and  P(w)=0(F(w)) for every wGF - 1 (V).

Let (xa) be a local coordinate system in  (U , 0 ) .  Then there exist C o  vector
fields X a ( a = 1 ,  « ,  d) on M  such that each X a is expressed on  V as X a =a/axa
a n d  satisfies (Xa ) ,= 0  i f  p e U .  B y the  assumption (A3), it holds that r a b :

=

7(x., Xb ) E D " (a, b = 1 , • • , d ) .  Furthermore

(rab(tv))=(<DP a , DP>u(w)) - 1

for every w F - ' (V ) .  In fact, since

T M (X  b y  d v a )T•311V -=- 6g

we have, for w E F - '( V),
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<DE", DP>H(w)=Tm©rm(<DF, DF>(w), (dv a adv b).F(w))T.m©T•31

= " th e  (a, b)-component o f <DF, DF>(w) w ith  respect to

((a/ax I )F(w), ••• (a/ax d )Fovi)".

T a k e  a  C"' local fram e (e A)  for E  over U  and let  ( f ' )  b e  its  d u a l local frame.
T hen  (p) defined by

P = P O ld x 1A ••• Adx d l :  U -->E *01A 1 (M ), 2=1, ••-, m

becomes a local fram e fo r  E*01A1(M) over U .  Making use of the ab o v e  , we
extend K lu •P  to  f l "  o n  th e  whole M  by

K(P)P(P) if

s o  th a t  s u p p  f * A c U . (O f course , e a c h  f "  i s  a (global) C-  cross section of
E*01A l(M ), w hile (f*A) 2 =1, .,,„ does not become a global frame.)

N ext, fo r  72 E  ,  define 7j G D - by

ij a =E01.41-1(m)(7), f * 2 0F)E.0141(m)•

Recall that T (M, E) is expressed on U as T ((g5-')*T 2 )f 2 , (T  E g / (0(U))).

Choose XEQ(Rd) s u c h  th a t  supp XCO(U), O _ X • 1 ,  a n d  X(p)=1 f o r  peO (V ).
Since X I o ( u ) • T A EgY(O(U)) h as  its  support in 95(U) fo r 2=1, ••• , m , it can be in-
terpreted a s  a n  element, which we write simply as XT I , of e(O (U ))ce '(R d )cs '.
Now set j9=u0F (eD 0 ). W e shall show  the following lemma.

Lemma 7 .5 .  L et V , U, u, [3, v", P=(P', •-• , Pd) be as above. T h e n
satisfies the assumption in Lemma 7.2  w ith respect to  E  and A = F -1 (V).

Pro o f . Since su p p (d u )C V , setting ua=7, m(X., du)7, m , w e have u a e C ( I lf )
w ith  suppu a C V  an d  du=E u a dva. Therefore

a

<Dta , DP>H=rm©Tm(<DF, DF>, (dv a adu).F)r.m©T•31

=(ub.F)-Tm©Tm(<DF, D F > ,  (dv a (DdiP)0F)T•m©T•m

= ( u b .F)•<Dta, DP> l l

w hich is o f th e  form  E  (u b . F )G ab w ith  Gab D " .  S et Aa =u a .F .  T h e n  8,,(w)

= 0  fo r  wE A . S in c e  u a  a lso satisfies u a EC 7(M ) and  supp u a c V  (as w ell as u
does), we can deduce by th e  derivation property o f  D  th a t  p satisfies (7 .2 ) for
wEA w ith  respect to  Ê  and  A =F - 1 (V).

.f* '(P )=
0 if pEELI ,

Let us continue to prove Theorem  6.1. Taking A = F - , (V) and using E , we
can construct e(E, ge)ExT,i (Proposition 7.3). Then by Lem m a 7.4,
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)[XT 2], Ge>D-c-=D--<e(t, P -Y22 )ExT 2], G>D-

=D--<e(P, i3G72 2 )ExT 21,1>D- (7.3)

for every GE D - .
We shall show that (7.3) does not depend on the choice of x. L e t k  be a

positive integer such that XT 2 ES 2 k  f o r  every 2. L e t  f f n , 2 1 7 1 = 1 , 3  be such
that f „, 2 —>XT a in  S  - 2 k  a s  n.-00 . Then we have

PG52- 2 )Cfn, 21  1 >D °"=" n. 2 ) ( P ) • 1 3 G e d p

=  . yfF- 1 ( V) f  2 ( P ) 1 3 " 2 (7.4)

We see that the last side of (7.4) does not depend on the choice of in  actual
f a c t .  Therefore, if  we le t n—>oo, the  left hand side of (7.4) converges to

pce)ExT isoEx T  c>„oo

which must also be independent of the choice of K.
S tep 2. Let T  E V (M , E ). Let (II', 0 ') be another chart of M such that U'

is relatively compact and E I u , i s  trivial. Take V ', X', P', (V=
1, ••• m) in  the  same manner as in  step 1. Suppose that V n V ' is not empty.
Assume that supp u cV n V ', so that IS F satisfies I3(w)=-0 fo r W EE F -  i(Vn V ').
Since there exists a  GL(rn, R)-valued C—  function (V , ) on Unt/' such that e (p )
= (p)ea(p), peu nu' , it holds that

2

-7)2(w)--- det (0' 0 -1 )1 • g,2 )(0(F(w))) ,( w )

for every wEF - 1 (V n V i) where 0 0 -'. Here, we may assume that

fm,■J(P/(W))=, (Id e t (0' • f n , 2 )(P (w))

for n=1, 2, • and W  F - i( v n v '). Construct E e(P', ')Efn,,' I in  the  same

way as in  step 1. Then for every GED -  w e have

G cl tt=- E 2 (P )k ,
F - 1 (V rir )

which implies (cf. (7.4))

ED--<e(P', G>D-=D--<0(P, lee)Cf „A , G>D-•

Letting n-00, we obtain

E0 -00<9(P, 195r)CrT i, G>p-s=o--<e(P, Pe)EXT27, G>D°.

or
e(P', ENÊ, 180[x T  2].

(This implies in particular that (7.3) does not depend on the choice of X.)
S tep 3 (general case). L e t u E Q (M ).  L et {(U i , OM be a  countable, locally



688 Hiroshi Akiyama

finite atlas of M  su ch  th a t each  U  is  re la tiv e ly  com pact and El u ,  i s  trivial.
T hen  (E® A  - 1 (m))I u and (E*0 I A I (M))1 u i  a r e  also t r iv ia l. We can choose a
countable, locally finite open covering {V}  o f  M , su c h  th a t Vi cU i, for each  i.
T ake  a  C - partition {0 i )  of unity subordinate to {Vi } : C (M ) , s u p p  O i CV i ,
0 and E0 1=-1.

Set u i =Oi u  and Ai =u i .F .  Use the same notations as in steps 1 and 2 with
the subscripts i's. Then w e can construct e ( P i , Put

T F (u , .7))= 4 i  i 0 ( P  48 i -7)[7(iT i 21 , (7.5)

namely,

D --< T F (u , 72), G>Dc--- 27712 = if , - - < e c t i , G>D.: (G ED °).

The above summation with respect to  i  is essentially a  finite sum, since supp u
is  com pact. By Lemma 7.4 and step 2 , it  is  e a s ily  sh o w n  th a t (7.5) does not
depend on the choice o f {(Ui , OM, {V}  a n d  10,1 ; (7.5) depends only on T , F, u
and )2. M oreover, we see from the construction of T F (u, )2) th a t  the conditions
(1), (2), (3), (4) and (5 ) a re  satisfied (cf. Proposition 7.3) and th a t the mapping
WF:T—+TF is  R -lin ear . Uniqueness follows from the w ay  of the construction.

This completes the proof.

8 .  Some cross sections obtained by Theorem  6.1.

Let 7rE : E --M  be  as in  § 6 and let F:VV—M sa tisfy  (A1)-(A3). Let V  be a
k-dimensional real (topological) vector space (k  : finite). W e  d e n o te  b y  V (M , E)
O V  th e  space  o f  V -valued section distributions of  E .  For T  O W , E)OV ,
define

T F :   CAM ) X ,IC(F, E® AI - 1 (M)) D-'1DV

as follows : T ake a  basis {e1 , ••• , e k }  o f V , express T  a s  T =  i T 'O e  with
a= 1

Taeg '(M , E ) and set

D---ap (u , 72), G>D-= u--<(T")F(u, 77), G>D-e«( E V)
a= 1

for every u  C (M ), )2 E iC(F, E ®  A 1- i(111)) and GE D".
In the following of th is  section, w e assume for simplicity that M is compact.

(Othewise, a  function u  C°(M) w ill be  needed . W hen supp T  is com pact, w e
ta k e  u EC VM ) su c h  th a t  u = 1  o n  supp T ; cf. Theorem 6 .1 , (4 ).) From now
on, w e w rite  <T(F) .72> fo r D--<TF(1, )7), 1>D -. For each  x E M , w e d e fin e  (i.E
2W ,IA I(M ))0 (1A1(M )x) by

[ ]=(x ) ,c E ( M , I A 1(M)).

Moreover, for each OE T(E ), define

çbj(•) : x  M ---> Otix  g '(M , E*O IA I(M ))0(1 A I (M ))
by
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(çbjx)CO]=Jx[0.0] I A  (M ),g ( M ,  E * 0  I A I (M)) .

The relation

<(0 .)(F)v > x(F)E(O(F), i)).E.>(E IA  (M )),( 7 7  E X (F, E*)) (8.1)

is easily shown by expressing both sides of (8.1) locally and using Theorem 6.1,
(5). The quantity (8.1) is R-linear in gb a n d  depends only on 7)  a n d  0(x).
(Note that 0 .j,= .0  if  0 (x )= 0 .)  By using the local triviality of E  and taking local
coordinates, it is seen from the well-known Euclidean case (cf. [7 ], [15], [18 ])
tha t (8.1) is  C-  in  th e  x-variable.

On the other hand, define

o' ( M , E * 0  Al(M ))0 ((E*O I A 1(M )).)
by

j5TE]=E (x), E E g(M, E * 0  I A l(M))

Then we get an element <Jf.;(F)0ET(E*01 AI (M)) defined by :  x E /1 4 .- - 05*(F) 72>
E (E* 0  Al (m ))x, nEiC(F, E * ) .  Now let v E E s . A ssum e E T(E) satisfies 0(x)
= v . W e  sh a ll show that

E-x (<35*(F)7)>, v)Ex =<j).(F){E(çb(F), 7))E.IXE I AI(M).) . (8.2)

Choose e „ F ( E ) ,  (a=1, ••• , ni), in  such a  w ay  th a t (e „(x)) i s  a  basis of the
vector space E s  ( x  : fixed). Let ( f  a

)  be the dual basis o f (e,,(x)). Since

(E (eajx )Of")CE1: = [E.(E, e . )E ]O fa = E (X )
a a

for every 17 E g(M, E * 0  IA I(M )), it holds that

(earjx)Of " •
a

Letting v=E vaea (x ) , (v a R ) , w e have
a

E l(05 * (F) 12> E  x ( E  Al(M )x)=E1(< (e .,)(F)72>0 f  , v ) E  x

= -  x (F)E ,,(7 2 , va e a(F))E> . (8.3)

If  we use the conditional expectation EP[• I F = x ],  (8.3) is equal to

EPEE ( v" e,„(F), 72)E.IF=x]<ils(F)1>=-EPEE(0(F), x]<5(F)1>

=Cc; x(F)1E(gb(F), 77).E.}>,

(cf. Euclidean case [7 ] ,  [1 8 ] ) .  This proves (8.2).

Since To[0] ,-=L  (0( • 0 [01 for E 2(M, E*(D I A I (M )), T heorem  6.1 implies

(cf. Euclidean case [7 ], [17 ], [18 ])

E(sb° F, n)E.dp=<To(F)72>= . < (0 (.))(F )7 )>= fri E.(0F..)(F)77>, 0(•)).E •

Thus we have the following.
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Theorem 8 .1 .  A ssume that the base manifold M  of  the  vector bundle E  is
com pact. L et F satisfy (A1)-(A3) in  § 4 and let nE,X(F, E*). Then the mapping

2(M , E)-4? defined by 0—> w E(00F, v)E .dp is a section distribution of E obtainable

from  M i(F )7 )>  RE*® A l(M )), namely

w E(Sh°F, 77).E.d m 0. <sr.;(F),> .

Combining Theorem 4.1 with the above theorem, we get the following.

Corollary 8 .2 .  L et M  and F be as in  Theorem 8 .1 .  I f  a  linear connection
FE is given in E , then

77)T3pDE.d p---=- 2,1 a • Or.;(F)Dt.EDFOr077]1>

f o r every o.E2(M , E ) and 72E,X(F, TMOE*).

Remark 8 .1 .  Let M  and F be as in  Theorem  8.1. Take a positive density
per( I A I (M )); tha t is, in  each coordinate neighborhood, p is expressed a s  p(x)
= f  (x )•  d x 'A  • • •  A d x d i  w ith  f (x )> 0 .  (Such p exists even if  M is not orien-
table.) T h e n  i p I ,  w h ic h  h a s  a  loca l expression  I pi 1 = ( 1 /f(x))idx 1 A  •• •

Adx d i l , i s  in  r(  I A I - 1 (M)). Since

ig* I p I - 1 35')0 p(x) ;

g*EC1= {Op I - 1 35*)[C11 Op(x)

=(5571.41-1(m)(lp I - 1 , C)1 1, (31)7)0 P(x)(=C(x))

(CG 2(M, E*01 A l(M)))

w here 55*E.V(M, E*)0(Et) is defined by 35T,E]=E(x) for all EGT(E*), we
have, for 72E,X(F, E*),

05*(F)72>=0T(F)(770(1 p F))>0 p(x) , (x EM).

This implies in  particular that <3(.)(F)(1 p 1- 1 ° : M -+R is the C°' density func-
tion of the probability law of  F (satisfying (A1)-(A3)) with respect to the positive
density p, where 5 x E O W ) isidefined by 3xE f7= f(x) for all f eC - (M ) .  That is,

(F) d p=L f  (x)(6 x(F)(I p I- 1 . F)> p(x)

for every f GC - (M ) .  Note, however, that there is no "canonical" way to choose
a positive density for a  general manifold.

9. Applications to heat kernels fo r  differential forms with values in a
Riemannian vector bundle.

Vector bundle valued differential forms appear in  several contexts (cf. [3],
[1 1 ]) . [For example, if  f : is  an isometric immersion from a Riemannian
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manifold into another, then the differential of f  can be regarded a s  a  (differen-
tial) 1-form on M  w ith  values in the pull-back bundle f - 1 T M ' of TM' by f , and
the second fundamental form o f  (M , f )  c a n  b e  t r e a te d  a s  a  Hom (TM , N M )-
valued 1-form where N M  is  the normal bundle of M  in  M '.  If , moreover, E  is
a Riemannian vector bundle over M , the  curvature operator of the induced con-
nection of E  is regarded a s  a  Horn (E, E)-valued 2-form on M .  Note that each
of f  Hom (TM, N M ) and Horn (E, E) becomes a Riemannian vector bundle.]
In this section, we give probabilistic expressions of the heat kernels of two heat
equations ((9.1) and (9.2)) for Riemannian vector bundle valued differential forms.

Let 7r: E--01 be  a  Cc° Riemannian vector bundle of rank  m (w ith  a  metric
linear connection i n  E )  o v e r a compact, connected, d-dimensional Riemannian
manifold (M , g) (c f. [11 ]). Consider the  vector bundle r e : e=(APTM)0E*— >M.
B y defin ition, th e  C-  cross sections of the dual bundle e* , (A PT *M )0E of e
are the E-valued p-forms on M . W e use the symbol 17 indifferently to denote
various covariant differentiations induced naturally from the  Riemannian metric

d

of M  and the given metric connection in E .  Set A= G { (A PTM)0E*}  (Whitney
p= 0

d

sum) and A *= e {(APT*A4)0E}. L et dE  : R A *),R A *) be the  exterior differ-
P= 0

ential operator o n  E-valued differentia l form s and d :  r(A*)-4"(A*) b e  the
codifferential operator ( [3 ] ) .  Consider the following two heat equations (up to
the tim e ti E (0, 00)) for E-valued p-forms on M;

ae1 (46+E =4  Trace vv o) , lim 0(t, x )=a(x ), (9.1)at 2 2 t.o)

ae e(t, x )=a(x ) (9.2)at 2 " E ' t 1 0

w here D E =dE d t+adE  stands for the Laplacian ([3], [11 ]) acting on E-valued
differential forms on M , and a E r( e * ) .  From  now  o n , w e  ta k e  th e  d-dimen-
sional Wiener space (cf. [6] ; w ith  the tim e param eter t  being considered up to
t,)  as (W , H, p).

W e shall construct the solutions of (9.1) and (9.2). Let r 1 : 0(M)-->M be the
bundle of orthonormal fram es for TM  o v e r  M  a n d  le t  7r2 : OF(E)— M  b e  the
bundle of orthonormal fram es for E over M . Let P= f r=(r i , r 2 )E 0(M) X OF(E);
ri(r1)=7r2(r2)} denote  th e  fibe r p roduc t o f  7r1 a n d  7r2. T h e n  w e  o b ta in  the
principal 0(d)x  0(m)-bundle 7Cp :  P -0 /I  w ith  rp(r)=/ri(ri). Obviously the vector
bundles e  and E* a re  associated w ith P .  L e t p ,: 0 (M )x 0 F(E )--0 (M ) [resp.
p , :  19(M)X OF (E) — )OF (E)] be the projection onto the first [resp. second] factor.
Let e:P--->O(M)x0F(E) be the inclusion m ap p in g . Let oh  [resp. oh] be  the con-
nec tion  from  o n  0(M ) [resp. OF (E)] giving the Riemannian connection on M
[resp. the metric connection in  E ] .  T hen  P has a  connection with the  connec-
tion form  ([8])

co=c*PT(oie(*M1(02: TP --> c(d)o(m) (direct sum).

Define a  1-form p on P  w ith  values in Rd by
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A (X )=-1-11(rp*X ), X E  TP, , ro)EP.

A s  is easily seen, there exist uniquely C* vector fields L k ,  (k ==1, 2, ••• , d ) , on
P  such that

1 9 ( L k ) =t( 0 , • • • 0 , • • •  ,  c o E R d , w ( L k ) = O .

d
Setting 413-=. E (L0 2 an d  defining f ,:P— *(A PRd)ORni by f  c (r)=r - la n.  t r , for a E

k=1

Re*), w e have
(dpf 0)(r)=f 4 E ,t(r).

Consider the stochastic differential equation (in the Stratonovich form)
d

d rt= E ( L k ) r, * (1 W it
k=1

fo r  th e  process {r t } on P , where w = (w )  is  the canonical realization o f a  d-
dimensional Wiener process. Let r t (r)=(r(t, r, w )) denote the solution such that
ro= r .  Set X t(r)=7rp(rt(r)) and write X t(r)=(X (t, r, w )). T hen 1rd is  the (1/2)
J e -diffusion and

7 t =n°1'71 1 : extol [resP. -> Vi- t (r)]

is the stochastic parallel displacement of fibers of e [resp. e*] along X ( r )  with
x = r e (r). It is easy to see that

r(t, ra, w )=r(t, r, a i w)a , X (t, ra, w )=X (t, r, a i w)

for a2)E  0(d)x 0(m ) and w  W . Since a i w  is another d-dimensional
Wiener process, the probability law of X (• ,  r,  w )  depends only o n  x = r e (r).
Moreover X ( r)  becomes the Brownian motion on M  such that X o (r)-= x . Recall
Weitzenbôck's formula ([3], [11 ]) :

— ElEa=-4E0H- Oa , 0(x)E End , (0-Erce*)).
Set

(r) : = r '  —1  0(np(r))or E End ((A PIV )ORm), r EP
2

a n d  define a  stochastic process K t w i t h  va lues in  End((A PRd)OR 14 )  by the
equation

d
K t=- K tO(rt),R 0 = identity mapping.

dt
Then K t :=ro k t or - i ,  with values in End (et ( , ) ) ,  is the solution of

K o =iden tity  mapping.

It is easy to show that

0(t, x ) .A ;rT i a(X t(r))dp

[resp. 0(t, x)= , , K t rT i o. (X t (r))dp ] (rp(r)= x)

d1
d t  

K t= -

2
KtrT 1 0(X t(r))rt ,
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i s  the  so lu tion  o f (9.1) [resp. (9.2)]. The proof is similar to the case of R-
valued differential forms and so we omit it (cf. [6 ] ; note that our sign conven-
tion in  DE differs from that of [6 ] in the case E = M xR ).

To study the heat kernel of (9.1) [resP. (9.2)], for each t> 0 a n d  x, y GM,
w e w ant to take T, F and 7) as T=g, EgY(M, E)Oe y , F=X,(r) (=X(t, r, •)), and
7)=-7tC(2?) v - 1 (Xt(r)) [resp. =rtiftc® v - 1 (Xt(r))], where n  i s  th e  Riemannian
volume density on M and Kt G End (e, p ( r ) )  is the dual (stochastic) mapping of K .

Lemma 9 . 1 .  L et t> 0 and x , y E M . Then X(t, r, •). (rG7ri,'(x)), satisfies the
conditions (A1)-(A3). Moreover

rtC® y I - 1 (X t(r))E S (X t(r), $01 A I - 1 (A1)) (9.3)

rtKtC® y - 1 (Xt(r))E S(Xt(r), e® I A I - 1 (M)) (9.4)

for every CEe s .

The proof will be given later.
Once this is established, by Theorem 6.1 (cf. § 8), w e can  define  a  linear

mapping e s -->$,, by

C( $x) <6Ey(X t(r))12" tC® 1y '(X (r))}>,r

We write the dual mapping of this mapping by f p (t, x , y ). which is an element
of Hom (et, $1̀ ). Similarly, we can define an R-linear mapping e s —).E, by

C --> <5(X e(r)) ir t CO 1 1 (X t(r))} > r 77)(x) .

L e t  kp (t, x, y)EHom (et, denote its dual m apping. Then w e have the fol-
lowing.

Theorem 9 .2 .  The above f p (t, x, y ) [resp. k p (t, x , y)]. (t> 0 ; x , y G M ), is
the heat kernel o f  (9.1) [resp . (9.2)] relative to the Riemannian volume density v

in the sense that 0(t, x)= .f m  f p (t, x, y)a(y)v(y)[resp. 0(t, k p (t, x, y)a(y)v(y)]

satisfies (9.1) [resp . (9.2)].

Assuming that Lemma 9.1 holds, we prove Theorem 9 .2  w ith  the  use  o f
the following lemma.

Lemma 9 .3 .  L et O G et, CEe s , rG7ti, 1 (x). I f  JE T(,.;*) satisfies (y)=0,
then f o r t>0,

k p (t, x, y)0, C)$x v(Y)=0,,(X1(r)){e.(ç3(Xt(r)), r,Kg);}>

P roo f. The assertion follows from the discussion in § 8. (Replace E* by e
in  § 8.)

Proof o f  Theorem 9.2. Let t> 0. F o r  every Ce ex,
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.f i i v iCt r t io. (X t (r)) d du, Ex

= n i rz (Ift -rT'a(Xt(r)), C) E x dp

=ÇE-( 0 *(X t(r)), r i KtC)edte

=5 2,1 1 .(k p (t, x, y)a(y), C) $ x v(y)

(by Theorem 8.1, Remark 8.1 and Lemma 9.3)

kp(t, x, y)a(Y )v(Y ), C) -
Ex

This shows that K t ri-1 (X t (r))dtt= k  p (t, x, y)cr(y)v(y). The proof for f p (t, x  y )

is  similar.

N o w  w e  p ro v e  L em m a 9.1. L e t t> 0 .  Observe that Span frp*(Li), •••
rp*(La),1=- T M .x , (rp (r)=x ). A s  is  s e e n  f ro m  th e  proof o f  T aniguch i [16.
Theorem 2.1], it holds that

r(t, r, •)EDw(P), R t E Dw®End((APIV)ORm) ,

X (t, r, •) 1)- (M) ,

and moreover cr(w):=<DX (t, r, w), DX (t, r, w)> is positive definite a.s., (cf. [16]).
Set F=X (t, r, -) (t, x :  f ix ed ). T o  show th a t  the condition (A3) is satisfied, since
2tr.mgr.m07=X(t, r, .)ED - (M ),  i t  is  s u f f ic ie n t  to  show  t h a t  r(w )(Y„ YOED"
holds fo r  ev e ry  C-  v e c to r  fields Y 2 , Y , on M .  T o  show this, using the same
notations as in step  1 in  the proof of Theorem 6.1, w e have only to verify that

u(F)r(X ., X b) D -  , (a , b=1, ••• , d) (9.5)

holds for every ty - C°(M) such that supp uc Vc1./. Now for alm ost all w,

la(w)Ogr( w)] E End (TMF( w))

(cf. §4  fo r the  definition of [ID a n d  th u s  det Ecy(w)OgF ( w a  can be defined.
Introduce dX d-matrices

a(w): --=(<DPa , DP>(w)), kr(w):=(gF(,0)(X ., X 2)).

T hen det Pt(w)Ogrc.)1=det(a(wYgr(w)) for wEF - 1 (V ) .  Therefore it holds that

(T(w)(X., X2))=- kF(.)(6i(w)gr(w)) - 1

for w EF - 1 (V ) . T hus for alm ost all w EW,we have

u(F(w))(T(w)(Xa, X b))=u(F(w)){det Eo- (w)Og F ( w ) ] } - 1 .gp ( w ) (W),

w h ere  'C(w)=-(Ci . ,(w)), C1 5 (w) being the (j, i)-th cofactor of ã(w )F ( ) . From the
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r,.

discussion in [16, § 3], w e  se e  th a t idetT7OgA -1 E L P , (l< p < co), so that w e
can show in the sam e m anner as  in  [1 8 , pp. 52-53] th a t each  co m p o nen t of
flidet [cO g l l  belongs to D .  S in c e  u (F )E D - and since each component of
g ,  is  in D ,  w e  have (9.5). Since

7r(DtKPC)= 7rgrtIZt(rVC))=7tp(rt) .
-=- Xt

where kt is  the dual mapping of k „ and since

v  rtKPC)=(rT'S' ,)-(r7D 1 KtC)
(the standard inner product in (APRd)OR 73)

=f ff(rt)•{RtrVC} , F(e*),

w e  have r i K ne.X (X (t, r, •), e ). This yields (9.4). Sim ilarly, w e can get (9.3).
The proof is completed.

R em ark. W e obtain

Trace k p (t, x , x ) = E P E T r a c e ( r t K 1 9 1 X t ( r ) = x 1 1 4 ( t ,
 x ,  x ). (r ci-1 (x))

from Lemma 9.3, denoting ko b y  kg w hen E =M xR .

Next, consider the heat equation

ao (dEd-dve , 04, x) , a (x ) ,  (a e r (A * )). (9.6)at 2 C.10

Note th a t the relation (dE )2 a=Ra holds, where R(GT(Encl(A*))): T(A*)-->T(A*),
• ((Ra)(x)=R (x)[a (x)], R ( x ) H o m  (((A )T * M)0E)r, ((AP 4 T *M )0 E )x ), x e M ), is

defined by

(Rcr)(Xi , ••• , Xp+2)
=

( - 1 ) + 3 1 ? ( X 1 ,  X i ) [a (X i,  « , , -•• , X , + 2 ) ] ,

R(X i , X,)=17x,17 x,-17 x i rx ,-1 7 tx,, x i ] :  R E ) R E ) ,

( :  omitted), X 0 , • •• , Xp+ o EF(TM ).

Let R*ET(End (A*)) be the adjoint of R  w ith respect to the global inner product

<al, a2>A•=Lf (ai, a2)xv(x), (ai, azGr(A*)),

w here ( , )., is  the pointwise inner product in A* induced naturally from  g  and
the fiber metric in E .  T h e n  — (dE - Pc11)2 6 ,

— {1:1E +(d E )2 + (a ) 2 1a=40•+(0 — R
—  R*)o• holds and 0 —  R —  R *  r(End (A * )) .  Therefore, to obtain the heat kernel
e(t, x , y) of (9.6) relative to y, w e have only to replace e, e*, ex, et, (APRd)ORm,

3 t an d  kp (t, x , y )  b y  A , A *, A x ,  A , 6 0((A 9 .11d)O R m ), 0 — R — R *, a j and

e(t, x , y ), respectively, in the preceding context.
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