Decay rates of scattering states for Schrödinger operators

Dedicated to Professor Sigeru Mizohata on his 60th birthday

By

Hiroshi ISOZAKI

Introduction.

In this paper, we derive a best possible decay rate of scattering states for the Schrödinger operator $H=-\varDelta+V(x)$ in $L^2(\mathbb{R}^n)$ $(n\geq 2)$ with a long-range potential. We impose the following assumption on V(x):

(A) $\begin{cases} V(x) \text{ is a real-valued } C^{\infty} \text{-function on } \mathbb{R}^n \text{ and for some constant } \varepsilon_0 > 0 \\ D_x^{\alpha} V(x) = O(|x|^{-1\alpha(1-\varepsilon_0)}) \text{ as } |x| \to \infty \\ \text{for all multi-index } \alpha. \end{cases}$

Here for $\alpha = (\alpha_1, \dots, \alpha_n)$, $D_x^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$.

As is well-known, if f belongs to the absolutely continuous subspace for H, the local position probability of e^{-itH} decays in the sense that for any R>0

$$\int_{|x|< R} |e^{-itH} f(x)|^2 dx \longrightarrow 0 \quad \text{as} \quad |x| \to \infty.$$

It is a rather difficult problem to obtain the rate of decay. In order to study it, one usually considers the operator norm of e^{-itH} in various function spaces different from $L^2 = L^2(\mathbb{R}^n)$. A convenient choice is the so-called weighted L^2 -spaces, and one studies the operator norm in L^2 of $\langle x \rangle^{-\sigma} e^{-itH} \langle x \rangle^{-\rho}$ ($\sigma, \rho > 0$), where $\langle x \rangle = (1+|x|^2)^{1/2}$. In our previous work [2], we have already proved some decay rates for e^{-itH} . Combining the result of [2] with the estimates for the parametrix of e^{-itH} introduced in [5] enables us to prove the following

THEOREM 1. Let $\chi(\lambda) \in C^{\infty}(\mathbb{R}^1)$ be such that for some d > 0, $\chi(\lambda) = 1$ if $\lambda > 2d$, $\chi(\lambda) = 0$ if $\lambda < d$. Then for any $s \ge 0$, there exists a constant $C_s > 0$ such that

$$\|\langle x \rangle^{-s} e^{-itH} \chi(H) \langle x \rangle^{-s} \| \leq C_s (1+|t|)^{-s}$$

for any $t \in \mathbf{R}^1$, where $\|\cdot\|$ is the operator norm in L^2 .

This estimate is seen to be best possible if one examines the case of $H_0 = -\Delta$. One can also allow some local singularities for V. Suppose V is split into two

Received May 22, 1985

parts: $V = V_L + V_S$, where V_L satisfies the assumption (A) and V_S is a real function of compact support belonging to the Stummel class. Let $\chi(\lambda)$ be as above. Then one can show for any $s \ge 0$

$$\|\langle x \rangle^{-s} e^{-itH} \chi(H)(H+i)^{-1} \langle x \rangle^{-s} \| \leq C_s (1+|t|)^{-s},$$

which we do not prove here, however.

Decay rates for scattering states have been studied by many authors. Assuming sufficiently rapid decay on the potential V, Rauch [12] and Jensen-Kato [7] studied the operator $e^{-itH}P_{ac}$, where P_{ac} denotes the projection onto the absolutely continuous subspace for H. More general elliptic operators were studied by Murata [10], [11]. In these cases, a delicate problem (that of resonance) arises from the low energy part of $e^{-itH}P_{ac}$. As for the long-range potential, Kitada [9] studied the high-energy part of e^{-itH} . In the recent work of Jensen-Mourre-Perry [8], they obtained a weaker estimate than Theorem 1 using the simpler commutator method. Cycon-Perry [1] also discussed the decay property of the high-energy part. Combining the results of [1] and [8], one can derive almost the same results as ours. Hewever, we develope here our own method.

The notation used in this paper are as follows: For $x \in \mathbb{R}^n$, $\langle x \rangle = (1+|x|^2)^{1/2}$, $\hat{x} = x/|x|$. For a Banach space X, B(X; X) denotes the totality of bounded linear operators on X. $C_0^{\infty}(\mathbb{R}^n)$ is the space of smooth functions on \mathbb{R}^n with compact support. $\hat{f}(\xi)$ means the Fourier transform:

$$\hat{f}(\xi) = \int e^{-ix\xi} f(x) dx$$
, $dx = (2\pi)^{-n/2} dx$.

By a F.I.Op. and a Ps.D.Op. we mean a Fourier integral operator and a pseudodifferential operator, respectively.

§1. Proof of Theorem 1.

1.1. First we recall the parametrix for e^{-itH} introduced in [5]. Let $\varepsilon > 0$ be a sufficiently small constant. Then there exists a real C^{∞} -function $\phi(x, \xi)$ on $\mathbb{R}^n \times \mathbb{R}^n$ satisfying

(1.1)
$$|\nabla_x \phi(x, \xi)|^2 + V(x) = |\xi|^2$$

for |x| > R for some R > 0, $|\xi| > \varepsilon$, $\hat{x} \cdot \hat{\xi} > -1 + \varepsilon/2$, and

(1.2)
$$|D_x^{\alpha} D_{\xi}^{\beta}(\phi(x, \xi) - x \cdot \xi)| \leq C_{\alpha\beta} \langle x \rangle^{1-|\alpha|-\varepsilon_0} \langle \xi \rangle^{-1}$$

for $x, \xi \in \mathbb{R}^n$ ([5], Theorem 2.2). We construct $a(x, \xi)$ and $G(x, \xi) = e^{-i\phi(x,\xi)}(-\Delta + V - |\xi|^2)e^{i\phi(x,\xi)}a(x, \xi)$ in such a way that

(1.3)
$$|D_x^{\alpha} D_{\xi}^{\beta}(a(x, \xi) - 1)| \leq C_{\alpha\beta} \langle x \rangle^{-|\alpha| - \varepsilon_0} \langle \xi \rangle^{-1}$$

for $|\xi| > \varepsilon$, $\hat{x} \cdot \hat{\xi} > -1 + \varepsilon$, |x| > 2R and

(1.4)
$$|D_x^{\alpha} D_{\xi}^{\beta} G(x, \xi)| \leq C_{\alpha\beta N} \langle x \rangle^{-N} \langle \xi \rangle$$

for any N>0, $|\xi| > \varepsilon$, $\hat{x} \cdot \hat{\xi} > -1 + \varepsilon$ ([5], Theorem 2.3). Choose a constant μ_+ such that $-1 + \varepsilon < \mu_+ < 1$ and $b_+(x, \xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ satisfying

(1.5)
$$b_+(x, \xi) = 0$$
 if $|\xi| < \varepsilon/2$ or $\hat{x} \cdot \hat{\xi} < \mu_+$ or $|x| < 1$,

(1.6)
$$|D_x^{\alpha} D_{\xi}^{\beta} b_{+}(x, \xi)| \leq C_{\alpha\beta} \langle x \rangle^{-|\alpha|} \langle \xi \rangle^{-|\beta|}.$$

We define F. I. Op.'s A_+ , B_+ and G_+ by

(1.7)
$$A_{+}f(x) = \int e^{i\phi(x,\xi)} a(x,\xi) \hat{f}(\xi) d\xi$$

(1.8)
$$B_{+}f(x) = \int e^{i\phi(x,\xi)} b_{+}(x,\xi) \hat{f}(\xi) d\xi,$$

(1.9)
$$G_+f(x) = \int e^{i\phi(x,\xi)} G(x,\xi) \hat{f}(\xi) d\xi$$

Our parametrix is then defined by

$$(1.10) U_+(t) = A_+ e^{-itH_0} B_+^*,$$

([5], Definition 2.4). A simple calculation shows that

(1.11)
$$e^{-itH}A_{+}B_{+}^{*}=U_{+}(t)-i\int_{0}^{t}e^{-i(t-s)H}G_{+}(s)ds,$$

where

(1.12)
$$G_{+}(t) = G_{+}e^{-itH_{0}}B_{+}^{*}.$$

The estimates for $U_+(t)$ and $G_+(t)$ are summarized in

Lemma 1.1. For any ρ , $\sigma \ge 0$ and t > 0

(1.13)
$$\|\langle x \rangle^{-(\rho+\sigma)} U_+(t) \langle x \rangle^{\sigma} \| \leq C_{\rho\sigma} (1+t)^{-\rho},$$

(1.14)
$$\|\langle x \rangle^{\sigma} \langle D_x \rangle^{-1} G_+(t) \langle x \rangle^{\sigma} \| \leq C_{\rho\sigma} (1+t)^{-\rho},$$

where $\langle D_x \rangle^{-1}$ is the Ps. D. Op. with symbol $\langle \boldsymbol{\xi} \rangle^{-1}$,

(1.15)
$$\|\langle x \rangle^{\sigma} G_{+}(t) \langle x \rangle^{\sigma}\| \leq C_{\rho\sigma} t^{-1} (1+t)^{-\rho}.$$

Proof. (1.13) and (1.14) have been proved in [5], Lemma 2.5. We prove (1.15), which must be treated carefully, since G_+ is not L^2 -bounded. Choose a constant $\tilde{\mu}$ such that $-1+\varepsilon < \tilde{\mu} < \mu_+$ and C^{∞} -functions $\rho_1(t)$, $\rho_2(t)$ such that $\rho_1(t) + \rho_2(t) = 1$, $\rho_1(t) = 1$ for $t > \tilde{\mu} + 3(\mu_+ - \tilde{\mu})/4$, $\rho_2(t) = 1$ for $t < \tilde{\mu} - (\tilde{\mu} + 1 - \varepsilon)/4$. Split $G_+ = G_+^{(1)} + G_+^{(2)}$, where

$$G_{+}^{(j)}f(x) = \int e^{i\phi(x,\xi)}G(x,\xi)\rho_{j}(\hat{x}\cdot\hat{\xi})\hat{f}(\xi)d\xi.$$

The idea of the estimation for $G_{+}^{(1)}e^{-itH_0}B_{+}^*$ has been given in [5], §1. Looking at the proof of [5], Lemma 1.1 carefully and noting (1.4), we see that

$$\langle x \rangle^{\sigma} G_{+}^{(1)} e^{-itH_0} B_{+}^* \langle x \rangle^{\sigma} = \sum_{m}^{\text{finite}} A_m e^{-itH_0} B_m(t)^*$$

where A_m is an L^2 -bounded F. I. Op. and $B_m(t)$ is a F. I. Op. similar to B_+ with symbol $b_m(x, \xi, t)$ satisfying

$$|D_x^{\alpha}D_{\xi}^{\beta}b_m(x, \xi, t)| \leq C_{m\alpha\beta}t^{-1}(1+t)^{-\rho}$$
.

This shows that $\langle x \rangle^{\sigma} G_{+}^{(1)} e^{-itH_0} B_{+}^* \langle x \rangle^{\sigma}$ has the decay rate of $t^{-1}(1+t)^{-\rho}$. We can treat $\langle x \rangle^{\sigma} G_{+}^{(2)} e^{-itH_0} B_{+}^* \langle x \rangle^{\sigma}$ similarly, if we look at the proof of [5], Lemma 1.3 carefully. \Box

1.2. Let $\chi(\lambda)$ be as in Theorem 1. In [2], Theorem 3.1, we eave already shown the following decay rates for e^{-itH} :

(1.16)
$$\|\langle x \rangle^{-\rho} e^{-itH} \chi(H) \langle x \rangle^{-\rho-2} \| \leq C_{\rho} (1+|t|)^{-\rho}, \qquad \rho \geq 3,$$

(1.17) $\|\langle x \rangle^{-\rho} e^{-itH} (H+i) \chi(H) \langle x \rangle^{-\rho-2} \| \leq C_{\rho} |t|^{-\rho}, \quad \rho \geq 3.$

We also note the following proposition whose proof will be given in §2.

Proposition 1.2. For any $\phi \in C_0^{\infty}(\mathbb{R}^1)$ and any N > 0,

 $\langle x \rangle^N \phi(H) \langle x \rangle^{-N} \in B(L^2; L^2).$

1.3. With the above preparations one can show the following lemma which is a generalization of the propagation properties for e^{-itH_0} (see [5], §1 and also [6]).

Lemma 1.3. Let P_{\pm} be the Ps. D. Op.'s with symbols $p_{\pm}(x, \xi)$ such that for some constants $0 < \varepsilon < 1$ and $-1 < \mu_{\pm} < 1$,

$$p_{+}(x, \xi) = 0 \quad if \quad |\xi| < \varepsilon \quad or \quad \hat{x} \cdot \hat{\varepsilon} < \mu_{+} \quad or \quad |x| < 1,$$

$$p_{-}(x, \xi) = 0 \quad if \quad |\xi| < \varepsilon \quad or \quad \hat{x} \cdot \hat{\xi} > \mu_{-} \quad or \quad |x| < 1,$$

$$|D_{x}^{\alpha} D_{\xi}^{\beta} p_{\pm}(x, \xi)| \leq C_{\alpha\beta} \langle x \rangle^{-1\alpha} \langle \xi \rangle^{-1\beta}.$$

Let $\chi(\lambda)$ be as in Theorem 1. Then we have

(1.18)
$$\|\langle x \rangle^{-(\rho+\sigma)} e^{-itH} \chi(H) P_{\pm} \langle x \rangle^{\sigma} \| \leq C (1+|t|)^{-\rho}$$

for $\sigma \geq 0$, $\rho \geq 3$ and $\pm t > 2$, respectively.

Proof. We prove the lemma for P_+ and $t \ge 2$. By (1.11) we have for $t \ge 2$ $\|\langle x \rangle^{-(\rho+\sigma)} e^{-itH} \chi(H) A_+ B_+^* \langle x \rangle^{\sigma} \|$ $\le \|\langle x \rangle^{-(\rho+\sigma)} \chi(H) \langle x \rangle^{\rho+\sigma} \| \times \|\langle x \rangle^{-(\rho+\sigma)} U_+(t) \langle x \rangle^{\sigma} \|$ $+ \int_0^{t/2} \|\langle x \rangle^{-(\rho+\sigma)} \chi(H) (H+i) e^{-i(t-s)H} \langle x \rangle^{-(\rho+\sigma+2)} \|$ $\times \|\langle x \rangle^{\rho+\sigma+2} (H+i)^{-1} G_+(s) \langle x \rangle^{\sigma} \| ds$ $+ \int_{t/2}^t \|\langle x \rangle^{-(\rho+\sigma)} \chi(H) e^{-i(t-s)H} \langle x \rangle^{-(\rho+\sigma+2)} \|$ $\times \|\langle x \rangle^{\rho+\sigma+2} G_+(s) \langle x \rangle^{\sigma} \| ds$

598

$$\leq Ct^{-\rho} + C \int_0^t (1+t-s)^{-\rho} (1+s)^{-\rho} ds ,$$

where we have used Proposition 1.2 and (1.13) for the first term (note that $\chi(H)=1-\phi(H)$ for some $\phi \in C_0^{\infty}(\mathbf{R})$), (1.14) and (1.17) for the second term, (1.15) and (1.16) for the third term. Therefore

(1.19)
$$\|\langle x \rangle^{-(\rho+\sigma)} e^{-itH} A_+ B_+^* \langle x \rangle^{\sigma} \| \leq C (1+t)^{-\rho}.$$

As has been proved in [5], Theorem 7.4, for any N>0 there exists a Ps. D. Op. P_N such that

$$(1.20) P_+ = A_+ B_+^{(N)*} + P_N.$$

where $B_{+}^{(N)}$ is a F.I.Op. with symbol $b_N(x, \xi)$ satisfying (1.5) and (1.6) so that (1.19) holds with B_{+} replaced by $B_{+}^{(N)}$, and the symbol $p_N(x, \xi)$ verifies

$$|D_x^{\alpha} D_{\xi}^{\beta} p_N(x, \xi)| \leq C \langle x \rangle^{-N-|\alpha|}.$$

Choosing N large enough, we have in view of (1.16), (1.19), (1.20),

$$\begin{aligned} \|\langle x \rangle^{-(\rho+\sigma)} e^{-itH} \chi(H) P_{+} \langle x \rangle^{\sigma} \| \\ &\leq \|\langle x \rangle^{-(\rho+\sigma)} e^{-itH} \chi(H) A_{+} B_{+}^{(N)*} \langle x \rangle^{\sigma} \| + \|\langle x \rangle^{-(\rho+\sigma)} e^{-itH} \chi(H) P_{N} \langle x \rangle^{\sigma} \| \\ &\leq C(1+t)^{-\rho} , \end{aligned}$$

which proves the lemma. \Box

Taking the adjoint in Lemma 1.3, one can easily see that

(1.21)
$$\|\langle x \rangle^{\sigma} P_{+} \chi(H) e^{itH} \langle x \rangle^{-(\rho+\sigma)} \| \leq C(1+|t|)^{-\rho}$$

for $\sigma \ge 0$, $\rho \ge 3$, $\pm t > 2$, where we have used the asymptotic expansion of the symbol of P_{\pm}^{*} ([4], Theorem 2.4).

1.4. We turn to the proof of Theorem 1. Let $\phi_0(\xi)$, $\phi_{\infty}(\xi) \in C^{\infty}(\mathbb{R}^n)$ be such that $\phi_0(\xi) + \phi_{\infty}(\xi) = 1$, $\phi_0(\xi) = 1$ for $|\xi|^2 < d/2$, $\phi_0(\xi) = 0$ if $|\xi|^2 > 3d/4$. Choose $\rho_{\pm}(t) \in C^{\infty}(\mathbb{R}^1)$ such that $\rho_{+}(t) + \rho_{-}(t) = 1$, $\rho_{+}(t) = 0$ if t < -1/2, $\rho_{-}(t) = 0$ if t > 1/2. Let A, B, P_{\pm} be Ps. D. Op.'s with symbols $\phi_0(\xi)$, $\phi_0(x)\phi_{\infty}(\xi)$. $\phi_{\infty}(x)\rho_{\pm}(\hat{x}\cdot\hat{\xi})\phi_{\infty}(\xi)$, respectively. Since $A + B + P_{+} + P_{-} = 1$, we have

(1.22)
$$\langle x \rangle^{-s} \chi(H)^{s} e^{-itH} \langle x \rangle^{-s}$$
$$= \langle x \rangle^{-s} \chi(H) e^{-itH} A e^{-itH} \chi(H) \langle x \rangle^{-s} + \langle x \rangle^{-s} \chi(H) e^{-itH} B e^{-itH} \chi(H) \langle x \rangle^{-s}$$
$$+ \langle x \rangle^{-s} \chi(H) e^{-itH} P_{+} e^{-itH} \chi(H) \langle x \rangle^{-s} + \langle x \rangle^{-s} \chi(H) e^{-itH} P_{-} e^{-itH} \chi(H) \langle x \rangle^{-s}.$$

Here we quote the following proposition whose proof will be given in §2.

Proposition 1.4. For any N > 0, $\langle x \rangle^N \chi(H) A \langle x \rangle^N \in B(L^2; L^2)$.

Using this proposition (1.16) and the fact that the symbol of B is compactly supported in x, we see that the norms of the first and the second terms of (1.22)

are bounded from above by

$$|\langle x \rangle^{-s} \chi(H) e^{-itH} \langle x \rangle^{-s-2} || \leq C(1+|t|)^{-s}$$

In view of (1.18) and (1.21), we see that the norms of the third and the fourth terms are majorized by

$$\|\langle x \rangle^{-s} \chi(H) e^{-itH} P_{+}\| + \|P_{-}e^{-itH} \chi(H) \langle x \rangle^{-s}\| \leq C(1+t)^{-s}$$

for $s \ge 3$ and sufficiently large t > 0 (take $\sigma = 0$, $\rho = s$), which proves the theorem for $t \ge 0$, $s \ge 3$. Since the case s = 0 is evident, the case $s \le 3$ follows from this by an interpolation.

$\S 2$. Asymptotic expansion of functions of *H*.

2.1. First we prove Proposition 1.2. Since

$$\langle x \rangle^{N} e^{-itH} \langle x \rangle^{-N} (H+i)^{-N} = e^{-itH} (H+i)^{-N} -i \int_{0}^{t} e^{-i(t-s)H} [\langle x \rangle^{N}, H] e^{-isH} \langle x \rangle^{-N} (H+i)^{-N} ds ,$$

one can show by induction on N,

$$\|\langle x\rangle^N e^{-itH} \langle x\rangle^{-N} (H+i)^{-N} \| \leq C_N (1+|t|)^N.$$

Using the relation

$$\phi(H) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} \check{\phi}(t) e^{-itH} dt$$

where $\dot{\phi}(t)$ is the inverse Fourier transform of ϕ , we see that $\langle x \rangle^N \phi(H) \langle x \rangle^{-N}$ $(H + i)^{-N}$ is bounded, from which follows Proposition 1.2.

Proposition 1.4 can be derived from the following theorem.

Theorem 2.1. Let $\phi(\lambda) \in C_0^{\infty}(\mathbb{R}^1)$. Then for any $N \ge 2$,

(2.1)
$$\phi(H) = \phi(H_0) + \sum_{m=1}^{N-1} P_m \phi^{(m)}(H_0) + R_N,$$

where $\phi^{(m)}(\lambda) = (d/d\lambda)^m \phi(\lambda)$, P_m is a Ps. D. Op. with symbol $p_m(x, \xi)$ such that

$$|D_x^{\alpha} D_{\xi}^{\beta} p_m(x, \xi)| \leq C_{\alpha\beta m} \langle x \rangle^{-|\alpha| - m \varepsilon_0}$$

(2.2)
$$\langle x \rangle^{N \varepsilon_0/2} R_N \langle x \rangle^{N \varepsilon_0/2} \in B(L^2; L^2).$$

In particular, $p_1(x, \xi) = V(x)$.

Remark 2.2. As ca be seen from the proof given later, P_m is a polynomial of V and the multiple commutators of H_0 and V.

In order to prove Proposition 1.4, we choose $\psi(\lambda) \in C_0^{\infty}(\mathbf{R}^1)$ such that $\psi(\lambda) = 1 - \chi(\lambda)$ for $\lambda > 0$ and $\psi(H) + \chi(H) = 1$. From Theorem 2.1 it follows that

$$\psi(H) = \psi(H_0) + \sum_{m=1}^{k-1} P_m \psi^{(m)}(H_0) + R_k$$

600

with P_m and R_k having the properties stated above. Then

$$\langle x \rangle^{N} \chi(H) A \langle x \rangle^{N}$$

$$= \langle x \rangle^{N} (1 - \psi(H)) A \langle x \rangle^{N}$$

$$= \langle x \rangle^{N} \chi(H_{0}) A \langle x \rangle^{N} - \sum_{m=1}^{k-1} \langle x \rangle^{N} P_{m} \psi^{(m)}(H_{0}) A \langle x \rangle^{N} - \langle x \rangle^{N} R_{k} A \langle x \rangle^{N}$$

Recall that A is a Ps. D. Op. with symbol $\phi_0(\xi)$ and the supports of $\phi_0(\xi)$ and $\chi(|\xi|^2), \phi^{(m)}(|\xi|^2)$ $(m \ge 1)$ are disjoint. Then we have

$$\langle x \rangle^N \chi(H) A \langle x \rangle^N = - \langle x \rangle^N R_k A \langle x \rangle^N$$

Choosing k large enough and using (2.2), we conclude Proposition 1.4.

2.2. We turn to the proof of Theorem 2.1. It is convenient to introduce a class of Ps. D. Op.'s. We define: a Ps. D. Op. P belongs to $S(\sigma, m)$ if its symbol $p(x, \xi)$ verifies

$$|D_x^{\alpha} D_{\xi}^{\beta} p(x, \xi)| \leq C_{\alpha\beta} \langle x \rangle^{-\sigma - |\alpha|} \langle \xi \rangle^{m - |\beta|}.$$

Note that if $P \in S(\sigma, m)$, $[H_0, P] = H_0P - PH_0 \in S(\sigma+1, m+1)$. Now, we construct Q_m $(m=1, 2, \cdots)$ in such a way that

(2.3)
$$Q_1 = -iV, \quad Q_m = -i[H_0, Q_{m-1}] \quad (m \ge 2).$$

One can see by induction that

(2.4)
$$Q_m \in S(m-1+\varepsilon_0, m-1), m=1, 2, \cdots.$$

Let us define

$$U_t = e^{-itH} \quad (t \ge 0), \qquad U_t = 0 \quad (t < 0),$$

$$U_t^0 = e^{-itH_0} \quad (t \ge 0), \qquad U_t^0 = 0 \quad (t < 0).$$

Then we have

$$[U_{l}^{0}, Q_{m}] = U_{l}^{0}Q_{m+1} * U_{l} = \int_{0}^{l} e^{-i(l-s)H_{0}}Q_{m+1}e^{-isH_{0}}ds,$$

where * denotes the convolution. We consider the perturbation expansion for U_t :

(2.5)
$$U_t = U_t^0 + (-i)(U_t^0 V) * U_t^0 + (-i)^2 (U_t^0 V) * (U_t^0 V) * U_t^0 + \dots + (-i)^N (U_t^0 V) * (U_t^0 V) * \dots * U_t.$$

The idea of the proof consists in calculating the multiple commutator of V and U_{l}^{o} . Since $(t^{n}U_{l}^{o})*U_{l}^{o}=(t^{n+1}/n+1)U_{l}^{o}$, we have

$$\begin{split} -iU_{t}^{0}V*U_{t}^{0} &= (U_{t}^{0}Q_{1})*U_{t}^{0} \\ &= (Q_{1}U_{t}^{0})*U_{t}^{0} + (U_{t}^{0}Q_{2}*U_{t}^{0})*U_{t}^{0} \\ &= Q_{1}(U_{t}^{0}*U_{t}^{0}) + Q_{2}(U_{t}^{0}*U_{t}^{0})*U_{t}^{0} + ((U_{t}^{0}Q_{3}*U_{t}^{0})*U_{t}^{0})*U_{t}^{0} \\ &= Q_{1}tU_{t}^{0} + Q_{2}\frac{t^{2}}{2!}U_{t}^{0} + Q_{3}\frac{t^{3}}{3!}U_{t}^{0} + \cdots + R_{N}^{(1)}(t) \,, \end{split}$$

where $\|\langle x \rangle^{N \varepsilon_0/2} R_N^{(i)}(t) \langle x \rangle^{N \varepsilon_0/2} (H_0 + i)^{-N} \|$ is of polynomial growth in $t \ge 0$, here we use the estimate of $\langle x \rangle^m e^{-itH_0} \langle x \rangle^{-m} (H_0 + i)^{-m}$ proved at the beginning of this section. Repeating this procedure for each term of the right-hand side of (2.5), we have for $t \ge 0$

(2.6)
$$U_t = U_t^0 + P_1 t U_t^0 + P_2 \frac{t^2}{2!} U_t^0 + \dots + R_N(t),$$

where $P_m \in S(m\varepsilon_0, l(m))$ with an integer l(m) depending on m, $\|\langle x \rangle^{N\varepsilon_0/2} R_N(t) \langle x \rangle^{N\varepsilon_0/2} (H+i)^{-N} \|$ is of polynomial growth in $t \ge 0$, and $P_1 = -iV$. (2.6) also holds for $t \le 0$. We multiply the inverse Fourier transform of $\phi(\lambda)$ to (2.6) and integrate with respect to t to obtain

(2.7)
$$\phi(H) = \phi(H_0) + \sum_{m=1}^{N-1} \widetilde{P}_m \phi^{(m)}(H_0) + R_N.$$

where $\tilde{P}_m \in S(m\varepsilon_0, 0), P_1 = V$ and

(2.8)
$$\langle x \rangle^{N \varepsilon_0/2} R_N \langle x \rangle^{N \varepsilon_0/2} (H+i)^{-N} \in \boldsymbol{B}(L^2; L^2)$$

In order to complete the proof, choose $\psi(\lambda) \in C_0^{\infty}(\mathbf{R}^1)$ such that $\psi(\lambda) = 1$ on supp ϕ . Then by (2.7)

$$\phi(H) = \psi(H)\phi(H)$$

= $\psi(H)\phi(H_0) + \sum_{m=1}^{N-1} \psi(H)\widetilde{P}\psi^{(m)}(H_0) + \psi(H)R_N.$

From (2.8) it follows that $\langle x \rangle^{N \varepsilon_0/2} \psi(H) R_N \langle x \rangle^{N \varepsilon_0/2} \in B(L^2; L^2)$. Since $\psi(H)$ admits an asymptotic expansion similar to (2.7), we have

$$\psi(H)\phi(H_0) + \sum_{m=1}^{N-1} \psi(H) \widetilde{P}_m \phi^{(m)}(H_0)$$
$$= \phi(H_0) + \sum_{m=1}^{N-1} \widetilde{P}_m \phi^{(m)}(H_0) + \widetilde{R}_N,$$

where \tilde{R}_N satisfies (2.2). This completes the proof.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] H.L. Cycon and P. Perry, Local time-decay of high energy scattering states for the Schrödinger equation, (preprint).
- [2] H. Isozaki, Differentiability of generalized Fourier transforms associated with Schrödinger operators, J. Math. Kyoto Univ., 25 (1985), 789-806.
- [3] H. Isizaki and H. Kiłada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sec. IA, 32 (1985), 77-104.
- [4] H. Isozaki and H. Kitada, Micro-local resolvent estimates for two-body Schrödinger operators, J. Functional Anal., 57 (1984), 270-300.
- [5] H. Isozaki and H. Kitada, A remark on the micro-local resolvent estimates for twobody Schrödinger operators, Publ. R. I. M. S. Kyoto Univ., 21 (1985), 889-910.
- [6] H. Isozaki and H. Kitada, Asymptotic behavior of the scattering amplitude at high

energies, Differential Equations, I.W. Knowels and R.T. Lewis (Editors), Elsevier Science Publishers B.V., 1984, 327-334.

- [7] A. Jensen and T. Kato, Spectral properties of Schrödinger oprators and time-decay of the wave functions, Duke Mrth. J., 46 (1979), 583-611.
- [8] A. Jensen, E. Mourre and P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect. A, 41 (1984), 207-225.
- [9] H. Kitada, Time-decay of the high-energy part of the solution for a Schrödinger equation, (preprint).
- [10] M. Murata, Rate of decay of local energy and spectral properties of elliptic operators, Japan. J. Math., 6 (1980), 77-127.
- M. Murata, Asymptotic expansions in time for solutions of Schrödinger type equations J. Funct. Anal., 49 (1982), 10-56.
- [12] J. Rauch, Local decay of scattering solutions to Schrödinger equations, Comm. Math. Phys., 61 (1978), 149-168.