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Lyapunov-like functions and geodesic flows

By

Nobukazu OTSUKI

Introduction.

As is well known, Anosov systems (or hyperbolic systems) play important
roles in the theory of dynamical systems. Once a given system is proved to be
Anosov, one knows that it is both structurally stable and topologically stable,
and it has many ergodic properties. (See, for instance, Anosov [1] and Walters
[19].) Moreover small deviation from Anosov systems gives wider classes of
interesting systems. Therefore, in this paper, we are interested mainly in ob-
taining good criteria for a given system to be Anosov.

Here, we shall give general comments for Anosov systems. Already at the
starting point of the investigation, Anosov systems were considered analogous
to hyperbolic ordinary linear differential equations with constant coefficients.
We explain this more exactly. Let A be an n-square matrix over R and let us
consider an ordinary differential equation: dx/dt=Ax. The fixed point x=0 is
called hyperbolic if there exists an invariant hyperbolic splitting of R":R"=
Es@®E*. This corresponds to the definition of Anosov systems. There are
several equivalent criteria for this as follows:

(A) The real parts of every eigenvalues of A are non-zero.

(B) There exists no non-zero bounded orbit.

(C) There exists a non-degenerate quadratic form Q(x) such that (d/d¢#)Q(x)

>0 for any non-zero solution x.

The criterion (A) corresponds to the spectral theory of vector bundle systems.
This point of view goes bach at least to the work of Mather [13], and im-
portant results have been obtained by many other authors. (See Chicone-
Swanson [3], [4], Churchill-Franke-Selgrade [5], Hirsch-Pugh-Shub [8] and
Otsuki [147, [15].) The criterion (B) corresponds to the theory of quasi-
hyperbolic systems. We cite the contributions of Mafié [12], Sacker-Sell [16]
and Selgrade [18] which are especially important for our present work. The
criterion (C) corresponds to the work of Lewowicz [10], [11]. He proved that
the hyperbolicity of a vector bundle system is equivalent to the existence of a
non-degenerate quadratic form with adequate properties.

In the present article, we prove first a proposition which gives a criterion
for vector bundle homeomorphisms to be quasi-hyperbolic. By applying this
result to geodesic flows, we give a sufficient condition for geodesic flows to be

Communicated by Professor H. Yoshizawa, May 20, 1985



560 Nobukazu Otsuki

Anosov. This criterion may be applied to Riemannian manifolds with small
paches of small positive curvatures. Our method enables us also to obtain a
generalization of Chicone’criterion in [2] for geodesic flows to be Aonsov.

The contents of this paper is devided into five sections. In §1, we define
notations of vector bundle systems and prove Theorem 1 which gives a criterion
for vector bundle homeomorphisms to be quasi-hyperbolic. In §2, applying
Theorem 1 to diffeomorphisms, we get Proposition 2 which states that the quasi-
hyperbolicity is stable in a certain sense.

In §3, we prove one of our main results (Theorem 4) in this paper, which
gives a sufficient condition for geodesic flows to be Anosov. The key point of
the proof of this theoerem lies in finding an appropriate quadratic form used in
Theorem 1 for geodesic flows. This theorem may be meaningful in geometry;
that is, Theorem 4 seems to us to suggest relations between geodesic flows of
Anosov type and indices of geodesic curves. It may be also interesting to com-
pare Theorem 4 with the work of Eberlein [7]. As a consequence of Theorem
4, Proposition 5 is obtained in §4. In the 2-dimensional case, this proposition
is known (Lewowicz [11]), but it seems to us that it is new for general case.
In this section, we define “asymptotic curvature” and prove some result (Proposi-
tion 6). We shall not discuss it in detail in this paper.

In §5, we prove Theorem 9 which gives a generalization of Chicone’s cri-
terion. This theorem is another main result in this paper. Our proof is different
from Chicone’s one, and is based on two key ideas, that is, on Lemma 8 which
is suggested by our Theorem 1 and on finding the quadratic form in L2setting
which is analogous to that used in Theorem 4.

In this paper, we denote the sets of integers, real numbers and complex
numbers by Z, R and C respectively.

§1. Lyaupnov-like functions and quasi-hyperbolicity of vector bundle
homeomorphisms.

We begin with notations of vector bundle systems. Let M be a compact
metric space and E a real or complex vector bundle on M with an inner product.
We call a pair (D, ¢) a vector bundle homeomorphism if ¢ is a homeomorphism
on M and @ is a bundle automorphism which intertwines with ¢. A vector
bundle homeomorphism (@, ¢) is called quasi-hyperbolic if there exists no non-
zero vE€E such that {|®™v|: neZ} is bounded. Here ||-| denotes the norm
induced from the inner product on E. Further (@, ¢) is called hyperbolic if
there exists a @-invariant hyperbolic splitting E=FE*@E*, where E*and E* are
the stable and unstable subbundles of E respectively, namely there exist con-
stants C>0 and 0<A<1 such that

@ || =CA™ v for veE*, n=0

and
|@-"v|ZCA*|lv|| for veE*, n=0.

A real valued function @ on E is called a quadratic form on E if Q is
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continuous and @Q.,=Q|E. is a quadratic form on the fibre space E, for every
xeM.

The following theorem is essentially due to J. Lewowicz, but we prove it
here for convenience of readers.

Theorem 1. A vector bundle homeomorphism (D, @) is quasi-hyperbolic if and
only if there exists a quadratic form Q on E such that Q(Pv)—Qw)>0 for every
non-zero veE.

Proof. (i) Necessity. If (@, ¢) is quasi-hyperbolic, then there exists a
positive integer N such that for every non-zero v E, there exists at least an
integer n, |n|<N, for which [[@™|>2|v| holds. We prove this by contradic-
tion. Assume, for every positive integer n, there exists v,€F with |v,|=1
uch that

max{[|@™v,|: |m|=n}=2.

Then by taking a subsequence of {v,}, if necessary, we may assume that {v,}
converges to some vEE as n—-+oo. So we obtain that max{||@™v|:meZ}<2
and |jv]|=1, which contradicts the quasi-hyperbolicity of (@, ¢).

By the technique of Lewowicz [10, Lemma 2.3], combined with above fact,
we see that there exists a positive integer m such that ||@™v||>2|v|| or |@ ™|
>2|v||, for every non-zero veE.

Define Q(v) as follows:

Q)="S {|D™+v|*—| DWv|?).

=0

Then Q(v) is obiously a quadratic form on E, and we have

Q(Pv)—Q)=|P*™v|*—2| ™|+ |v|?
>2|9™v|2>0,
for non-zero ve E, because of
10> |*+[lv]*> 4] @™v|*.

(ii) Sufficiency. Conversely, let @ be a quadratic form on E such that
Q(Pv)—Q)>0 for every non-zero v E. Then the compactness of M and the
continuity of Q imply that there exist positive constants C; and C, such that

QW) =G Ivl2, QD)—QW)ZCelv|? (veE).

Assume that there exists non-zero ve E such that {|®™v| : ne Z} is bounded.
Then {Q(@™v): neZ} is bounded because |Q(v)|=C,|v|>
On the other hand, for every positive integer n, we have

1

QO™ — Q)= (Q@ )= Q@) ZC, T |90,

n-
=0

K

QW= Q@)= TP )= QO~) ZC, Z D],

i=1
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Since {Q(P™v): neZ} is bounded, we see that
|®™v| —0 as n— +oo,

Therefore Q(@P"v)—0 as n—=+oo because |Q@)| =C,|lv|*%
Note that for positive integer n,

Q(P™)>Q(P™ ) > - >Q(Pv)>Q(v),

then we must have Q)< Q(Pv)<0 because Q(P"v)—0 as n—-+oo, Similarly
we get Q(v)>0 because

QW)>Q@')> - >Q@ ) >Q(P ™),

for positive integer n and Q(@ "v)—0 as n—-+oo. This is a contradiction.
Hence there exists no non-zero vEE such that {||@™v| : n=Z} is bounded. This
completes the proof.,

Remark 1. Theorem 1 remains to be true even if Q is a continuous homo-
geneous function of degree 2, not necessary a quadratic form. This can be seen
directly from the above proof of Theorem 1.

§ 2. An application for diffeomorphisms.

Let us now consider the case where ¢ is a diffeomorphism f of a manifold
M, @ its differential Tf and E the tangent bundle TM of M.

Let f be a C!-diffeomorphism on a compact C™-manifold M (r=1). The
diffeomorphism f is called quasi-Anosov (resp. Anosov) if the vector bundle
homeomorphism (7f, f) on E=TM is quasi-hyperbolic (resp. hyperbolic) on E.
By definition of quasi-Anosov diffeomorphisms, one can apply Theorem 1 directly
to diffeomorphisms.

By the way, we give the definition of Anosov flows here. Let f; be a flow
on M and X the vector field on M generating f,. The flow f, is called Anosov
if there exists a TYf-invariant continuous splitting of TM: TM=XDE*DE*,
where X is one dimensional subbundle of TM defined by the vector field X and
E* is exponentially contracted by Tf, in positive time while E* is exponentially
contracted by Tf, in negative time, for some Riemannian metric on M.

We can prove the following proposition by the same argument in the proof
of Corollary 2.2 in [10].

Proposition 2. Let f be a C'-quasi-Ansov diffeomorphism on a compact C’-
manifold M (r=1). Then there exists a C'-neighbourhood U of f, in the space of
diffeomorphisms of M, such that any finite composition of elements of U is quasi-
Anosov.

Proof. By Theorem 1, there exists a quadratic form Q such that Q(Tfv)
—Q@)>0 for every non-zero v€TM. Let U be the set of C'-diffeomorphism g
of M such that Q(Tgv)—Q)>0 for every non-zero v&TM. Then U is a C!-
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neighbourhood of f because M is compact.
Take g, heU and a non-zero veTM, then we have

Q(T(h-gw)—Q)={Q(Th(Tgv)—Q(Tgv)} +{Q(Tgv)—Qw)} >0,

which completes the proof by Theorem 1.

§3. Geodesic flows of Anosov type.

In this section, we consider geodesic flows. General references for geodesic
flows are [1], [7], [9] and [14].

Let Y be an n-dimensional compact connected Riemannian C™-manifold (r=2)
without boundary, and TY the tangent bundle of Y. We can naturally interpret
the double tangent bundle T(TY)=T?Y as the vector bundle on Y as follows.
Let K:T?Y—TY be the Riemannian connector (cf. [6] P.74), and let #ny:TY
—Y and nry:T®Y—TY be natural projections for tangent bundles on Y and TY
respectively. Further let m4 be the differential of ny. Then 7;yPr«PK maps
T?Y to TYATYPTY isomorphically as vector bundle on Y. (About this fact,
see [6] and [17] for details.) From now on, we identify a tangent vector & on
TY with a pair (z*&, K&) of tangent vectors on Y.

It is well known that the tangent bundle is a Riemannian manifold with
Sasakian metric: <&, PDry=<(m4&, meNdr+<KE, Kndy, where {,Dy is the Riemn-
nian metric on Y. We will omit the suffices Y and TY of {,)y and ¢, >;y in
the following.

Let M=SY be the sphere bundle of Y and E the vector bundle on M defined
as follows: For veM, the fibre E, is given by

E,={,€T,M: (ni&, v)=<K§, v)>=0}.

Let ¢,: M—M be the geodesic flow on Y and @,=T¢, the tangent cocycle
of ¢,. We proved in [14, Lemma 3] that (9,, ¢,) is a vector bundle flow on E
and obtained the following result which enables us to apply Theorem 1 for
geodesic flows.

Proposition 3 [14, Theorem 1].
The geodesic flow ¢, is Anosov if and only if for some T >0 (and hence for
all T>0), the vector bundle homeomorphism (®r, ¢r) on E is hyperbolic.

Remark 2. Actually we gave there the criterion with T=1. But the above
generalization can be obtained easily.

Now we define a bundle map A: E—FE covering the identity map of M as
follows: for ¢é€E,,

{ mx(A8)=me Ab=—R({, mbv,
3.1)

K(A§=KAE=KE,

where R is the curvature tensor of the Riemannian metric on Y. It is easy to
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check that <A¢, n>=<§, An), for & nEE,.
From Theorem 1 and Proposition 3, we obtain the following sufficient condi-
tion for a geodesic flow to be Anosov, which is one of our main results.

Theorem 4. Let Y be a compact connected CT-Riemannian wmanifold (r=2)
without boundary. Let ¢, be the geodesic flow on Y and @, its differential, and
let M=SY, E and A be as above. Assume that there exists T >0 such that

[T caew, ewpar>o,

for every non-zero §€E, and veM, where &1)=0,&. Then the geodesic flow ¢,
is Anosov.

Proof. Define a quadratic form Q on E as Q(§)=<=m«&, K&), and put &@t)=
0.4, vit)=d,v for veM, £€E, In [14, Lemma 2], we gave the following
equations:

D rEO=KeW,
3.2)

L %K&(t)=—R(v(l‘), TR EOWW),

where D/dt is the covariant derivative for Riemannian connection on Y.
By (3.1) and (3.2), we have

d D D
3.3) < Q=g w0, Ke)+(m*60), 5 Ke®)

=<CKE®1), KE))—<(msé(®), Rw(®), ms&®(®)>
=<AEQ@), £).

Hence
Q18— QO=QEM-Q®=|] casw), swdat,

which is positive for every non-zero £ E, by assumption. Therefore it follows
from Theorem 1 that the vector bundle homeomorphism (@7, ¢7) on E is quasi-
hyperbolic.

On the other hand, since the geodesic flow preserves the Riemannian measure
induced on M, the homeomorphism ¢r is chain recurrent on M. Hence we see
from the theory of Selgrade [18] and Sacker-Sell [16] that the quasi-hyperbolic
vector bundle homeomorphism (@r, ¢r) is hyperbolic. Then Proposition 3, com-
bining with this fact, implies that the geodesic flow is Anosov.

Remark 3. We can not yet prove the converse of Theorem 4. But it is
likely to be true under a certain appropriate condition.

§4. Simple consequences of Theorem 4.

From Theorem 4, we obtain the following proposition which enables us to
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prove easily the familiar fact that geodesic flows on Riemannian manifolds with
negative curvature are Anosov.

Proposition 5. Let Y be a compact connected Riemannian manifold without
boundary and with non-positive sectional curvatures. Let A be the set of poinis at
which every sectional curvatures ave zevo. If A contains no full geodesic curve,
then the geodesic flow on Y is Anosov.

Proof. Note that A is compact, being a closed set in the compact set Y.
The compactness of A implies that there exists 7>0 such that the geodesic
curve with the length T is not completely contained in 4. Therefore for every
veM and non-zero £ E, (M and E, being the same as in §3), we have

[} caew, sovar={ (IKEDI—Cmate), Ro®, mOR@H}d>0,

because <{(mx&(t), Rw(t), m«&@))v()>=0, and for some t (0=t=T), {m4&(t), Rw(),
m&))v(t)> <0, by assumption. This completes the proof.

We define I’{Fj) as follows and call it the asymptotic curvature of the direc-
tion v: for veM,

4 o~ 1 ¢r
I K=tip s {,_gop,_, 7, <~ 40, g0},

where &)= ¢.
~
Untill now we do not know exactly what K(v) means. However Theorem 4
combining with the familiar technique of analysis induces the following.

Proposition 6. Assume that
1 (r
|, <~ g, &t
0

converges uniformly in §, |§|=1, as T—+co, If Ia;)<0 for every veM, then
the geodesic flow is Anosov.

Proof. The assertion follows easily from the following lemma.

Lemma. Let X and Y be compact metric spaces and f: XXY XR—R a con-
tinuous function. Put g(x, t)=max{f(x, y, t): y€Y}, and assume f(x, y, t) con-
verges uniformly in x, y, as t—-+oo. If ﬁl‘{l supg(x, 1)<0 for every x€X, then

400

there exists T >0 such that g(x, T)<0 for every xeX.

Remark 4. In [117, Lewowicz has proven Theorem 4 and Proposition 5 in
the case of 2-dimensional manifolds.

§5. Generalization of Chicone’s criterion.

We keep the same notations as in §3. Let C(E) denote the real Banach
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space of continuous sections of E with the supremum norm ||&||=sup{<&(x), §(x)>*/*:
xeM}.

On the other hand, as is well known the geodesic flow ¢, preserves the
Riemannian measure g on M. The space C(E) is equipped with the inner product

@ m={, &), gddar),  for & neCE).

Let L*E) denote the completion of C(E) with L2%norm induced from this
inner product. L?*E) is a Hilbert space over R. We denote the complexifica-
tions of C(E) and L*E) by I'(E) and I'E) respectively. We extend =4, K, A
and @, so as to commute with complex conjugation. And we also extend inner
products <,>» and (,) to Hermitian inner products.

For a fixed teR, the vector bundle homeomorphism (@, ¢,) induces a
bounded linear operator @f, so called the adjoint representation of (@,, ¢,), on
I'(E) (resp. I'*(E)) as follows:

Q=089 for &el'(E) (resp. '(E)).

It is easily checked that the vector bundle map A:E—FE also induces a bounded
linear operator A* on I'(E) (resp. ['*(E)), in particular, the operator A*¥ on ['*E)
is selfadjoint.

Let T be a bounded linear operator on a Banach space H over C. We
denote by o(T:H) and o¢,,(T:H) the sets of spectra and approximate point
spectra of T on H respectively.

J.N. Mather [13] has already proven that for a fixed ¢t R, the vector bundle
homeomorphism (@., ¢,) is hyperbolic if and only if o(@f:I(E)) is disjoint from
the unit circle. (Mather has proven this theorem in some restricted situation.
For a proof in general setting as above, see [15], for instance.) Recently, C.
Chicone and R.C. Swanson proved the following powerful result.

Proposition 7 [3, Proposition 1.4 and Theorem 1.5].
There hold the following equalities for any t€R,

o(0F : [(EN)=0,p(0F : ['(E)=0,p(0F : '(E)=0(®F : ['(E)).

Proposition 7 combining with the following lemma enables us to obtain a
theorem corresponding to Theorem 4.

Lemma 8. Let H be a Hilbert space over C, T a bounded linear operator on
H, and Q a quadratic form on H:Q(&)=(S§, &), é=H, where S is a bounded

selfadjoint operator. If inf{Q(T&)—Q(&): |§I|=1}>0, then o,,(T : H) is disjoint
from the unit circle.

Proof. Let A=C with |2|=1 and &,€H with |&,]|=1, and assume
(T —A0)&,|—0 as n—+oco. Then (S(T—AI&*, T&,)—0 as n—-+oo, because

[(S(T—4D&n, TE) SNSI-WT =D IIT]l .
On the other hand, we have
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(B (S(T—2aD&n, TE)=(T*S(T —2D)&x, &n)
=(T*STé&n, §2)—A(T*SEx, £r)
=(T*STé,, §2)—(S&s, §2)+AUSER, £4)—A(SEn, Tér)
=(T*STé&n, £2)—(Sn, £n)—A(SEn, (T—ADER).
By assumption, there exists C>0 such that

(5.2) (T*ST&q, £2)—(S6q, £2)=Q(TE,)—Q(6,)=C>0.
The above equalities (5.1) and (5.2) contradict that
(S(T—2D)n, TEr), (S&n, (T—ADE,) —> 0 as n— +oo.

Thus we have shown that A& a,,(T : H).

Theorem 9. Let ¢, be the geodesic flow on a compact connected Riemannian
manifold. Assume that there exists T >0 such that

T
int {{ (A%, genar: e, 1g1=1}

is positive, where Et)=D%&E.  Then the geodesic flow is Anosov.

Proof. Let us define a quadratic form Q on the Hilbert space I'¥E) as

Q($)=SM<7r*f(X), Ké(x)»dpu(x)  (§€l™(E)).

We see easily that Q(&) gives actually a quadratic form on the Hilbert space.
Since ¢, preserves the measure g, we have

QO18)={  (rsP1r8($-rx), KOG -rx)dp(x)

=, ms018(x), KO2EGDAp)
Therefore, from (3.3) and Fubini’s theorem, we have

(5.2) Q((D?S)—Q(S)=SM{(n*d)rf(x), KOy —Cmall), KEC)> ) dpx)
:SM{S:<A¢t5(x), ¢z§(x)>dt}dp(x)
ZS:{SM<A¢‘G(¢—tx): ¢t5(¢—¢x)>dy(x)}dt

=|.arew, goyar,  where &m=07¢.

By using (5.3) and Lemma 8, we see that ¢,,(@%:'*(E)) is disjoint from
the unit circle, and hence, so is o(@%:'(E)) because of Proposition 7.

By Proposition 3, combined with Mather’s theorem, we conclude that the
geodesic flow ¢, is Anosov.
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C. Chicone [2] detined K,(Y), the so-called H’-curvature of Y, as
Ky(Y)=sup{(—A¥*¢, &): §eI'(E), |I&]=1},

in our notation. We can obtain the Chicone’s criterion as a corollary of
Theorem 9.

Corollary 10 [2, Corollary 5.9]
If K(Y)<0, then the geodesic flow on Y is Anosov.

Proof. Assume Ky (Y)<0. Then we can get
inf {{ (4280, &0t g (B, 181=1} >0

for any T >0, where &(t)=0#¢.
In fact, Put Ky(Y)=—C<0, then

inf{(A*¢, £): [§1=1}=C>0,

whence (A#*€, §)=C|&||? for every £ E).
Since (A*@te, OiE)=C||D#E|%, we have

(A* 08¢, DFEZC int |DFEI*=CIO%]

because

1=[gll=11D%-PEENI <DLl - | DEEI .

Since {@#} is a strongly continuous group of bounded linear operators, there
are £>0 and >0 such that

|@%,|<ke*t  for t=0,
hence

N
Therefore
i " 2 r -2a
int {] a0, sz e
=(C/2k*a)(1—e22T)>0.

So we can apply Theorem 9 and get the assertion.

We can consider the object analogous to I%) in (4.1) in LZsetting. We
call the following K,(Y) the asymptotic H'-curvature of Y :

G=tipsup{_ sup -7~ a%e), aonar),

-+ Wer2E,s=1 T Jo

where §(t)=0#& We suspect whether it has some relations with the ergodic
properties of the geodesic flow ¢, on a Riemannian manifold Y.
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