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Lyapunov-like functions and geodesic flows

By

Nobukazu ÔTsuici

Introduction.

As is well known, Anosov systems (or hyperbolic systems) play important
roles in the theory of dynamical systems. Once a given system is proved to be
Anosov, one knows that it is both structurally stable and topologically stable,
and it has many ergodic properties. (See, for instance, Anosov [1] and Walters
[1 9 ] .)  Moreover small deviation from Anosov system s g ives w ider classes of
interesting system s. Therefore, in this paper, w e are interested mainly in ob-
taining good criteria for a  given system to be Anosov.

Here, we shall give general comments for Anosov system s. A lready at the
starting point of the investigation, Anosov systems were considered analogous
to hyperbolic ordinary linear differential equations with constant coefficients.
We explain this more e x a c t ly . Let A be an n-square matrix over R  and let us
consider an ordinary differential equation :  d x Id t= A x . The fixed point x = 0  is
called hyperbolic if  there exists an invariant hyperbolic splitting o f Rn : Rn =
EsEDEu. This corresponds to  the definition o f Anosov system s. T here are
several equivalent criteria for this as follows:

(A ) T he real parts of every eigenvalues of A are non-zero.
(B) There exists no non-zero bounded orbit.
(C) There exists a  non-degenerate quadratic form Q(x) such that (dIdt)Q(x)

> 0  for any non-zero solution x.
The criterion (A) corresponds to the spectral theory of vector bundle systems.

This point of view goes bach a t  le a s t  to  the w ork o f Mather [1 3 ] , and im-
portant results have been obtained by m any other authors. (See Chicone-
Swanson [3], [4], C hurchill-F ranke-Selgrade [5], H irsch-P ugh-Shub [8] and
Ô ts u k i [1 4 ] , [1 5 ] .)  T he criterion (B ) corresponds to  th e  theory o f  quasi-
hyperbolic system s. W e cite the contributions of M afié [12], Sacker-Sell [16]
and Selgrade [18] which are especially important for o u r p resen t w o rk . The
criterion (C ) corresponds to the work of L ew ow icz  [10], [11]. He proved that
the hyperbolicity of a vector bundle system is equivalent to the existence of a
non-degenerate quadratic form with adequate properties.

In the present article, we prove first a proposition w hich gives a  criterion
for vector bundle homeomorphisms to be quasi-hyperbolic. By applying this
result to geodesic flows, we give a  sufficient condition for geodesic flows to be

Communicated by Professor H. Yoshizawa, May 20, 1985



560 Nobukazu Otsuki

Anosov. T h is  criterion may be applied to Riemannian manifolds with small
paches of small positive curvatures. O ur method enables u s  also to obtain a
generalization of Chicone'criterion in  [2] for geodesic flows to be Aonsov.

The contents of this paper is devided into five se c tio n s . In  § 1, we define
notations of vector bundle systems and prove Theorem 1 which gives a criterion
f o r  vector bundle homeomorphisms to be quasi-hyperbolic. I n  § 2, applying
Theorem 1 to diffeomorphisms, we get Proposition 2 which states that the quasi-
hyperbolicity is stable in a certain sense.

In  § 3, we prove one of our main results (Theorem 4) in  this p ap e r, which
gives a  sufficient condition for geodesic flows to be Anosov. T h e  key point of
the proof o f this theoerem lies in  finding a n  appropriate quadratic form used in
Theorem 1 for geodesic flows. T his theorem may be meaningful in  geometry ;
that is , Theorem 4 seems to u s  to suggest relations between geodesic flows of
Anosov type and indices of geodesic curves. It may be also interesting to com-
pare Theorem 4 with the  work of Eberlein [7]. A s a  consequence of Theorem
4, Proposition 5  is obtained in  § 4. In  th e  2-dimensional case, this proposition
is known (Lewowicz [11]), b u t it seems to u s  that it is new f o r  general case.
In  this section, we define "asymptotic curvature" and prove some result (Proposi-
tion 6). We shall not discuss it in  detail in  this paper.

In  § 5, we prove Theorem 9 which gives a  generalization o f  Chicone's cri-
terion. T h is  theorem is another main result in this paper. O ur proof is different
from Chicone's one, and is based on  two key ideas, that is , o n  Lemma 8 which
is suggested by our Theorem 1 and on finding the  quadratic form in L 2-setting
which is analogous to that used in  Theorem 4.

In  this paper, we denote th e  s e ts  o f  integers, real numbers a n d  complex
numbers by Z , R  an d  C  respectively.

§1. Lyaupnov-like  functions and quasi-hyperbolicity o f vector bundle
homeomorphisms.

We begin with notations of vector bundle systems. L e t  M  be a com pact
metric space and E  a  real o r complex vector bundle on M with an inner product.
We call a  p a ir  (0 , 95) a  vector bundle homeomorphism i f  95 is  a  homeomorphism
o n  M  a n d  0  i s  a  bundle automorphism which intertwines with 95. A  vector
bundle homeomorphism (0', 0) is called quasi-hyperbolic if  there exists n o  non-
zero v E E  such that {110 '0  : n  Z }  is bounded . H ere  • II denotes th e  norm
induced from the  inner product o n  E .  Further (0 , 95) is called  hyperbolic if
there exists a  0-invariant hyperbolic splitting E=DEDEu, where E 8 and Eu are
the stable and unstable subbundles o f E  respectively, namely there exist con-
stants C>0 and 0<2<1 such that

liOnvII- C2ullv11 f o r  vcEs,

110 - n v11 C2n lIvIl f o r  yEEu,

A  real valued function Q on  E  is called a  quadratic form o n  E  i f  Q  is

and
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continuous a n d  Qx QIE., is a  quadratic form on the fibre  space E x  f o r  every
xE M.

T he  following theorem is essentially due to J. Lewowicz, b u t  we prove it
here fo r convenience o f readers.

Theorem 1. A  vector bundle homeomorPhism (0, 0) is quasi-hyperbolic if and
only if  there exists a quadratic form Q on E such that Q(0v)—Q(v)>0 fo r  every
non-zero v E E.

P r o o f .  ( i )  Necessity. I f  (0 , 0) is quasi-hyperbolic, then there exists a
positive integer N  such that fo r  every non-zero v EE, there exists at least an
integer n, !n _- N, fo r which liOnvil >2110 holds. We prove this by contradic-
tion. A ssu m e , fo r  every positive integer 7/, there exists v EE with Ilvn li=1
uch that

max{110mv11:

Then by taking a  subsequence o f  {v } ,  if  necessary, we may assume that {v.}
converges to some vEE a s  n—>+co. So we obtain that max {11(P -v11 : m E Z }  2
and which contradicts the  quasi-hyperbolicity o f  (0, 0).

By the technique of Lewowicz [10, Lemma 2.31, combined with above fact,
we see that there exists a positive integer m such that 110mvil >2110 or 4'2)11
>21101, fo r every non-zero vEE.

Define Q(v) a s  follows :

Q(v)=A {1 1 0 7 " - i v112 - 110 i v1121-

Then Q(v) is  obiously a  quadratic form on  E , and we have

Q(00— Q(0-1102 mv112 -21107 3 v112 +11012

>2110 7710 2 >0,
for non-zero vEE, because of

110 2 '012+11v112 > 4 110 m v1I2 .

( i i )  Sufficiency. Conversely, le t  Q be a  quadratic form o n  E  such that
Q(0v)—Q(v)>0 fo r  every non-zero v EE. Then th e  compactness o f  M  and the
continuity o f  Q imply that there exist positive constants C, and  C, such that

I (2(01 1102, Q(Ov) —  Q(v)_ C2ii (vEE ).

Assume that there exists non-zero vEE such that { 0"v : n  Z } is bounded.
Then {Q(Onv): is bounded because IQ(v)1 CAv112.

O n the other hand , fo r every positive integer n, we have
n - 1 n - 1

Q(Onv)—Q(v)-- -  E  {Q(0' -"v)— Q(Vv)I E_ Cz 110' 11 2 ,1=0 i=0

Q(v )— Q(0 - nv )= {Q (0 - i+10 — Q( 0 - 1 v)} -?:,c2,Ei 110'1)112 •
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Since {Q(Onv): n E Z } is bounded, we see that

110 '01 --> 0 a s  n ±00.

Therefore Q(0 4 v)—>0 a s  n—>-± co because I Q(01 -5C11102.
Note that for positive integer n,

Q(Onv)> Q(0n - lv)> • • • > Q(0v)> Q(v) ,

then  w e m ust have  Q (v )< Q (0 v )0  because Q(0 4 v).--0 a s  n—*+00. Similarly
we get Q(v)>0 because

Q(v)> Q(0 - iv)> • • • > Q(0 - "'v )>  Q (0  - nv) ,

for positive integer n  a n d  Q(0 - nv)—>0 a s  n— + 00. T h is  i s  a contradiction.
Hence there exists no non-zero yE E  such that CIOnv II : n E Z1 is bounded. This
completes the proof.

Remark 1. Theorem 1  remains to be true even if  Q  is a  continuous homo-
geneous function of degree 2, not necessary a  quadratic fo rm . T h is  can be seen
directly from the above proof of Theorem 1.

§  2 .  An application for diffeomorphisms.

Let us now consider the case where 0 is  a  diffeomorphism f  of a manifold
M , 0  its differential T f  and E  the tangent bundle T M  of M.

Let f  be a  C1-diffeomorphism on  a  com pac t C'-manifold M (r 1). The
diffeomorphism f  is  ca lled  quasi-Anosov (resp. Anosov) i f  t h e  vector bundle
homeomorphism (T f , f ) on E --=TM is quasi-hyperbolic (resp. hyperbolic) o n  E.
By definition of quasi-Anosov diffeomorphisms, one can apply Theorem 1 directly
to diffeomorphisms.

By the w ay, we give the definition of Anosov flows here. Let f ,  be a flow
on M and X  the vector field on M  generating f t . The flow f ,  is called Anosov
i f  there exists a  Tf t -invariant continuous splitting o f TM:TM=XEDEsEDEu,
where X is one dimensional subbundle of T M  defined by the  vector field X  and
E 3 is exponentially contracted by T f, in positive time while Eu is exponentially
contracted by T f, in  negative time, for some Riemannian metric on M.

We can prove the  following proposition by the same argument in the proof
of Corollary 2.2 in  [10].

Proposition 2. L e t f be a 0-quasi-Ansov d&eomorphism on a  compact Cr-
manifold M  (r_>J ). Then there exists a 0-neighbourhood U  of f, in the space of
diffeomorphisms of M, such that any f inite composition of elements o f U  is quasi-
Anosov.

Pro o f . By Theorem 1, there exists a  quadratic form Q  such that Q(Tfv)
—Q(v)>0 for every non-zero v E T M . Let U  be the set of 0-diffeomorphism g
of M  such that Q(Tgv)—Q(v)>0 for every non-zero v E T M .  Then U  i s  a  C'-
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neighbourhood of f  because M is  compact.
T ake  g ,  hEU and a non-zero vETM, then  w e have

Q(T (h. g)v)— Q(v)=1Q(Th(Tgv))— Q(Tgv)} {Q(Tgv)— Q(v)} > 0 ,

which completes the proof by Theorem  1.

§ 3. Geodesic flows of Anosov type.

In th is section, we consider geodesic flows. General references for geodesic
flows are [1], [7], [9] and [14].

Let Y b e  an n-dimensional compact connected Riemannian Cr-manif old (r_2)
without boundary, and TY  the tangent bundle  of Y . W e can naturally  in terpret
the double tangent bundle T(TY)=- T 2 Y  as the vector bundle on Y as follows.
Let K: T 2 Y-4TY be  the Riemannian connector (cf. [6] P. 74), an d  le t TCy: TY
—>Y and r r y  : T2 Y—>TY be natural projections for tangent bundles on Y and TY
respectively. Further let 7r*  b e  the differential of r y . T h en  i r r y @ r * E B K  maps
T 2 Y to  TYEDTYEBTY isomorphically as vector bundle on Y .  (About th is  fact,
see [6] and [17] for deta ils.)  F rom  now  on, w e identify  a tangent vector e on
TY  w ith  a pair (7r*e, KC) of tangent vectors on Y.

It is  w ell know n tha t the tangent b u n d le  is  a  Riem annian manifold with
Sasakian metric : <C, n>r y =<r * e, 707>F +<Ke, K72>y , w here < , >y is  the Riemn-
nian m etric on Y . W e  w ill omit the suffices Y and TY of >Y and < , >T y  in
the following.

Let M - SY be  the sphere bundle of Y and E the vector bundle on M defined
as follows : For v M, the fibre E„ is given by

E t.={e E  Ty M : Or*E, v>=<Ke, v>=0}.

Let ç5 : be the geodesic flow on Y and TO, the tangent cocycle
of Ø .  W e  p ro v e d  in  [14, Lemma 3] th a t  (C , 95t )  is  a  vector bundle flow on E
and obtained the fo llow ing result w hich enables u s  to  a p p ly  T h e o re m  1 for
geodesic flows.

Proposition 3 [14, Theorem  1].
The geodesic flow 0, is  Anosov if and only if  for som e T>0 (and hence for

all T>0), the vector bundle homeomorphism (OT, Or) on E is hyperbolic.

R em ark 2 . A ctually w e gave there  the criterion with T = 1 . But the above
generalization can be obtained easily.

Now we define a  bundle map A: E---).E covering the identity m ap of M  as
follows : for

r*(Ae) r*Ae=—R(v, r * e)v,
(3.1)

I. K(Ae).=- KAer---Ke,

w here R is  the curvature tensor of the Riemannian metric on Y . I t  is  e a sy  to
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check th a t  <AE, 72>=<e, A O , fo r  e, >2E Ev.
From Theorem 1 and Proposition 3, we obtain the following sufficient condi-

tion for a  geodesic flow to  be  Anosov, w hich is one of our main results.

Theorem 4. L e t Y  be a compact connected Cr-Riemannian manifold (r_2)
w ithout boundary . Let fbt b e  the geodesic flow on Y and Ot its dif ferential, and
let M - SY, E and A be as abov e. Assume that there ex ists T>0 such that

.ÇT
<Ae(t), e(t)>dt>0 ,

for ev ery  non-zero eEE, and vEM, where e(t)=O te. Then the geodesic flow çbt

is Anosov.

Pro o f . Define a  quadratic form  Q on E as Q(e)=<r * e, Ke>, and put e(t)=
Ote, v(t)=O tv f o r  vEm, eGE,. I n  [14, L em m a 2 ], w e gave the following
equations :

D r * e(t)=Ke(t),dt
D K(t)=—R(v(t), 74e(t))11(t)dt

w here D/dt is  the covariant derivative for Riemannian connection on Y.
B y (3.1) and (3.2), w e have

d D(3.3)
(2(e(t)).=/ c t-

r * e ( t ) ,  K e ( t ) ) + K e e ( t ) ,  - - K e ( t ) )
dt

=<Ke(t), Ke(t)>—<r * E(t), R(v(t), r * e(t))v(t)>

=<Ae(t), ect» .
Hence

Q(OrE)—(2(e)=Q(e(T)) —Q(E)= o
r  <AE(t), e(t)>dt ,

w hich is positive for every non-zero eEE„ by assumption. Therefore it follows
from Theorem 1 th a t  the vector bundle homeomorphism (Or, g5T) on E is quasi-
hyperbolic.

On the other hand, since the geodesic flow preserves the Riemannian measure
induced on M, the homeomorphism Or is chain recurrent on M .  Hence we see
from the theory of Selgrade [18] and Sacker-Sell [16] th a t  the quasi-hyperbolic
vector bundle homeomorphism ((JT , Or )  is  hyperbo lic . T hen  Proposition 3, com-
bining w ith this fact, im plies that the geodesic flow is  Anosov.

Remark 3 .  W e can not yet prove the converse of Theorem 4 .  B u t i t  i s
likely to be true under a certain appropriate condition.

o

(3.2)

§ 4 . Simple consequences o f Theorem 4.

From Theorem 4, w e obtain the following proposition w hich enables u s  to
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prove easily the familiar fact that geodesic flows on Riemannian manifolds with
negative curvature are Anosov.

Proposition 5. L e t Y  be a compact connected Riemannian manifold without
boundary and with non-positive sectional curvatures. Let A  be the set of points at
which every sectional curvatures are z e ro . I f  A  contains no full geodesic curve,
then the geodesic flow on Y is Anosov.

Pro o f . Note that A  is  compact, being a  closed set in the compact set Y.
The compactness o f  A  implies that there exists T > 0  such that the geodesic
curve with the length T  is not completely contained in A .  Therefore for every
vE M  and non-zero C EE„ (M  and E v being the same as in § 3), we have

rT
<Ae(t), e(t)>dt -  = illKe(t) 2 - 0r*e(t), R(v(t), Tr* e(t))v(t)>Idt>0 ,

Jo

because <r* e(t), R(v(t), 7r C ( t) ) v ( t )> 0 , and  fo r some t Or*e(t), R(v(t),
r *e(t))v(t)><O, by assumption. This completes the proof.

We define K(v) as follows and call it the asymptotic curvature of the direc-
tion v : for v

(4.1) K(v)-=lim sup {
41
 sup ,„1 ,ÇT < — Ae(t), e(t)>dt}

T.-..-Fco E 4 ,  lie ll=1  1 0

where e(0= O l e.
Untill now we do not know exactly what K(v) means. However Theorem 4

combining with the familiar technique of analysis induces the following.

Proposition 6. Assume that
C T

T   3° <-11$(0, e(t)>dt

converges uniformly in e, mell=i, as I f  K (v)<0 fo r  every  vEM , then
the geodesic flow is Anosov.

Pro o f . The assertion follows easily from the following lemma.

Lem m a. Let X  and Y be compact metric spaces and f : X x Y x R — d? a con-
tinuous function. Put g(x , t) = m ax{f(x , y, t): y E Y } , and assum e f (x , y, t) con-
verges uniformly in x , y, as I f  lim sup g(x , t)< 0  fo r  every  xEX , then

there ex ists T >0 such that g(x , T )<0 fo r  every xE X .

Remark 4 .  In [11], Lewowicz has proven Theorem 4 and Proposition 5  in
the case of 2-dimensional manifolds.

§  5 .  Generalization of Chicone's criterion.

We keep the same notations as in § 3. L e t  C (E ) denote th e  real Banach
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space of continuous sections of E with the supremum norm liell=supl<e(x), e(x)>'" 2 :
xEMI.

On the other hand, as is  w ell know n th e  geodesic flow  0 , preserves the
Riemannian measure p  on M .  The space C(E) is equipped with the inner product

(e, .72)=. 3 1 <e(x), )7(x)>dp(x), f o r  e, r2EC(E).

Let P (E ) denote the  completion of C(E) w ith  L 2-norm induced from  this
in n e r  product. P (E )  is  a Hilbert space over R .  W e denote the complexifica-
tions of C(E) and L 2 (E ) by P(E) an d  p(E) respectively . W e extend r * , K, A
and 0, so as to  commute w ith com plex conjugation. And we also extend inner
products C>  a n d  ( , ) to Hermitian inner products.

F o r  a  fixed tE R , t h e  vector bund le  homeomorphism (0t, Ot) induces a
bounded linear operator Œ, so  ca lled  the adjoint representation of (00 ¢t), on
T (E ) (resp. 1 2 (E )) as follows :

Of$=O t o$00_ t f o r  E r ( E )  (resp. r u » .
It is easily  checked that the vector bundle map A: E—>E also induces a bounded
linear operator 245  on RE) (resp. P (E )), in particular, the operator 115  o n  p(E)
is  selfadjoint.

Let T  be  a  bounded linear operator o n  a  Banach sp ace  H  o v e r  C. We
d e n o te  b y  a(T : H ) a n d  a a p(T : H ) the  se ts o f spectra and approximate point
spectra of T  on H respectively.

J. N . M ather [13] has already proven that for a fixed t E R , the vector bundle
homeomorphism (, g5 t) is hyperbolic if and only if  a(Or : R E )) is  disjoint from
th e  u n it  circle. (M ather has p roven  th is  theo rem  in  some restricted situation.
For a  proof in general setting as above, see [15], fo r  in s ta n c e .)  Recently, C.
Chicone and R. C. Swanson proved the following powerful result.

Proposition 7  [3, Proposition 1.4 and Theorem 1.5].
There hold the following equalities fo r  any

a(0?: T(E))=Grap(Or: r(E))=-*(rap( (Pr :F 2 (E))=cr(Or :1' 2 (E)).

Proposition 7 combining with the following lemma enables u s  to  o b ta in  a
theorem corresponding to Theorem 4.

Lemma 8. Let H  be a Hilbert space over C, T a bounded linear operator on
H, and Q a quadratic form  on H:Q($) , (Se, $), E H ,  w h e re  S  i s  a  bounded
selfadjoint operator. I f  inf { Q (T ) —  Q (e) II E(='1} >0, th en  a a p(T : H) is disjoint
f rom  the unit circle.

Proof. L e t 2 E C  w ith  I  I  = 1  and E H  w i t h  enII=1, and assume
11(T --2/)ei,11-4  a s  n-4+00. T hen (S(T —2I)eu, Te.)--40 as + 00, because

(S(T — 2I)e n, TER) I 511s11 .11 (T — 2 I)e.11* 11T 11 •
On the other hand, w e have
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(5.1) (S(T —  2I)e Te n )=(T *S (T -2I)e n , en )

=(T *S T e n , en)-2(T*S$n, en )

=(T *S T e n , e n )--(Se n , en)+2.,I(s$n, en )-2(Sen, Te n )

=(T *S T e n , e n )—(Se n , e n )-2(S e n , (T  — 2 I)).

By assumption, there exists C>0 such that

(5.2) (T*STen, en)—(sen, en)=Q(T e) — Q ( e ) C > 0 .

T h e  above equalities (5.1) and  (5.2) contradict that

(S (T - 2 I ) ,  T e n ), (S e ,  (T  — . I ) )  - -> 0  a s  n + 0 0 .

Thus we have shown that 2EE cla p (T : H).

Theorem 9. Let Ot be the geodesic flow on a compact connected Riemannian
manifold. Assume that there exists T >0 such that

inf -60 (A 4 e(t), e(t))dt : r 2 (E ),

is positive, where en=ore. Then the geodesic flow is Anosov.

Proof. L et us define a  quadratic form Q  on the H ilbert space T 2 (E) as

<2.4e(x), Ke(x)>dp(x) ( P(E )).

W e see easily that Q(e) gives actually a  quadratic form on the H ilbert space.
Since 0, preserves th e  measure p , we have

Q(Vi.e)= 2,i <r*OTe(0-Tx), KOre(95-7 , 4>dp(x)

Or*Ore(x), KOTe(x)>dp(x)

Therefore, from (3.3) and  Fubini's theorem, we have

(5.2) Q(01,e)—Q(e)=3,f {<7r*OTe(x), KOTE(x)>— <r*e(x), Ke(x)>Idp(x)

<AOte(x), Ote(x)>dt}dp(x)

=  iL f< A 0 te (0 -tx ), Ote(0_,x)>dp(x)}dt

=1 (iV e(t), e(t))dt , where (t)=Ore.0

By using (5.3) and  Lemma 8, w e see that (7.17(44 : P ( E ) )  i s  disjo in t from
the  un it circle, and hence, so is u(Of : RE)) because o f Proposition 7.

By Proposition 3, combined with Mather's theorem, we conclude that the
geodesic flow 0, is  Anosov.
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C . Chicone [2] cla m e d  K o ( Y ) ,  t h e  so-called H°-curvature  o f  Y , a s

Ko(Y)-- suP{( — A° e, e): eEr2(E), 11=1} ,

i n  our notation. W e  c a n  o b t a i n  th e  Chicone's crite rion  a s  a  corollary of
Theorem 9.

Corollary 10 [2, Corollary 5.9]
I f  K o (Y )<O, then the geodesic flow o n  Y is Anosov.

Pro o f . Assume K0(Y )< 0 . Then w e can get

inf .60 (.4* $(t), e(t))dt: p(E ), i=i} >o

fo r any  T > 0 , where e(t)=Ore.
In  fac t, P u t Ko(Y)= —C <0, then

inf{(A'e, e): Ilell=1}=C>0,

whence (A °e, e) Clleir fo r every T'2(E).
Since (A re, or e)>=ciloreir , w e have

(A0 or e, ve)_.cinf IIOreli 2 C110!t11 - 2 ,

because
1=1Iell = M0.'-ta tcI II M II II t e II .

Since {O } i s  a  strongly continuous group of bounded linear operators, there
a re  k>0 and a > 0  such that

MV-'111 keat for
hence

k
Therefore

(CTC r
inf (2Pe(t),(t))dt (C1k 2 )

o
e - 2 atclt[1=1 0

=(C/2k2a)(1—e-2"T)>0.

So w e can apply Theorem  9 and g e t the assertion.

W e can consider the  object analogous to K (v ) i n  (4.1) i n  L 2-setting. We
call the  following Ko(Y) the  asymptotic H°-curvature o f Y :

1  .ÇTKo(Y)= lim sup { sup (—A°e(t), e(t))dt}
$Er 2 (E).11$11=1 I 0

where e(t)=Pre. W e suspect w hether it has som e re la tions w ith  th e  ergodic
properties o f the  geodesic flow Ot o n  a  Riemannian manifold Y.
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